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Abstract
We investigate the low rank matrix completion
problem in an online setting with M users, N
items, T rounds, and an unknown rank-r reward
matrix R ∈ RM×N. This problem has been well-
studied in the literature (Jain & Pal, 2023; Dad-
khahi & Negahban, 2018; Sen et al., 2017; Zhou
et al., 2020) and has several applications in prac-
tice. In each round, we recommend S carefully
chosen distinct items to every user and observe
noisy rewards. In the regime where M,N ≫ T,
we propose two distinct computationally efficient
algorithms for recommending items to users and
analyze them under the benign hott items assump-
tion 1) First, for S = 1, under additional inco-
herence/smoothness assumptions on R, we pro-
pose the phased algorithm PHASEDCLUSTERE-
LIM. Our algorithm obtains a near-optimal per-
user regret of Õ(NM−1(∆−1 + ∆−2

hott)) where
∆hott,∆ are problem-dependent gap parameters
with ∆hott ≫ ∆ almost always. 2) Second, we
consider a simplified setting with S = r where
we make significantly milder assumptions on R.
Here, we introduce another phased algorithm,
DETERMINANTELIM, to derive a regret guaran-
tee of Õ(NM−1/r∆−1

det)) where ∆det is another
problem-dependent gap. Both algorithms cru-
cially use collaboration among users to jointly
eliminate sub-optimal items for groups of users
successively in phases, but with distinctive and
novel approaches.

1. Introduction
Collaborative Filtering via matrix completion (Koren, 2008)
is a fundamental framework for large-scale recommenda-
tion systems that cater to millions of users and items jointly.
Usually collaborative filtering is an online problem since the
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recommendation system can update its suggestions based
on the history of observed ratings from users. Thus, there
is a clear tension between exploration and exploitation -
the system needs to learn the user preferences accurately
through a diverse set of recommendations and yet recom-
mend meaningful likeable items quickly. Recently, to study
the aforementioned exploration/exploitation dilemma theo-
retically, (Jain & Pal, 2023; Pal et al., 2023) have modelled
the problem on lines of online matrix completion that is
equivalent to the well-known Multi-Armed Bandit (MAB)
optimization (Lattimore & Szepesvári, 2020) for multiple
agents (representing users) jointly over a common set of
items (representing arms).

We consider the same setting of online matrix completion
under bandit feedback with M users, N items, T rounds, and
an associated low rank reward matrix R ∈ RM×N. This
setup was first studied theoretically in (Jain & Pal, 2023)
and a close variant in (Sen et al., 2017) - at each round,
one item is recommended to every user. Note that the rec-
ommended item in a particular round can be different for
each user and we only observe noisy rewards for the rec-
ommended item-user pairs. The main difficulty in obtain-
ing optimal algorithms in this setting is the latent structure
which makes it challenging to characterize sharp confidence
widths on non-uniform sampling of items. On the other
hand, greedy algorithms exploiting the low rank of reward
matrix were proposed in (Jain & Pal, 2023),(Sen et al., 2017)
that achieved a regret guarantee of Õ(NM−1∆−2) where ∆
is the minimum sub-optimality gap across users and items
(Definition 2). Exploiting collaboration among users i.e.
aggregating their feedback lead to a significantly smaller
effective number of items per user - O(NM−1). However,
because of the greedy nature, the achievable regret guaran-
tee is sub-optimal in its dependence on the gap parameter
∆.

To alleviate this issue, an optimal algorithm with a regret
guarantee of Õ(NM−1∆−1) was proposed (Jain & Pal,
2023) only for rank-1 reward matrices. The key idea was
that for rank-1 setting, users can be partitioned into two
latent clusters - users in the same cluster have the same
preference ordering of items while users in different clusters
have the exact opposite preference ordering of items. While
this property was crucially used for algorithm design in
rank-1 case, it does not extend for higher rank. In fact, even
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when the reward matrix is rank-2, the possible orderings
of items across users is polynomially large in N (Asteris
et al., 2014). To get around this, in (Maillard & Mannor,
2014; Pal et al., 2023; Gentile et al., 2014; Lee et al., 2023),
the authors provided optimal algorithms by assuming that
users can be partitioned into a small number of latent clus-
ters - users in same cluster have identical preferences across
items. However, such an assumption can be very restrictive
in practice. On the flip side, (Dadkhahi & Negahban, 2018;
Zhou et al., 2020) studied the same problem with a weak
low rank assumption on the reward matrix - they proposed
computationally efficient algorithms but with no theoretical
guarantees.

For tractability of analysis, we adopt a relatively weak hott
items (aka separability) assumption (A1) widely used in
literature - for instance, in non-negative matrix factoriza-
tion (NMF) (Arora et al., 2012; Recht et al., 2012; Donoho
& Stodden, 2003), bandit optimization (Sen et al., 2017;
Kveton et al., 2017) and mixture models (Pal & Mazumdar,
2022). The assumption only posits that that the best (most
preferred) item of every user can belong to a small set of
particular items called hott items 1. Consider a weak notion
of latent user clusters based on the best item - users with the
same best item belong to same cluster. Our assumption im-
ply that number of such clusters is small. However, unlike
the rank-1 setting, users in the same cluster can have vastly
different ordering of remaining items. In the seminal work
on topic modelling via LDA, (Blei et al., 2003) showed that
such an assumption is satisfied approximately by several
real-world recommendation datasets.

Techniques and Contributions: In this work, we make
two contributions related to online matrix completion for
rank > 1 reward matrices - the goal is to improve regret
guarantees of greedy algorithms proposed in (Jain & Pal,
2023; Sen et al., 2017).

• First, if number of hott items is small (A1) and with addi-
tional standard incoherence/smoothness assumptions (A3)
on reward matrix R with rank r > 1, we propose Alg.
PHASEDCLUSTERELIM. Initially, our algorithm finds a
set of r distinct opinionated users - users who have very
strong preferences for a particular hott item over other
items. This is easy since we can expect few users to be
very opinionated in most applications. We consider this
set of identified opinionated users as labels - the goal is to
cluster users based on best item and thus associate the true
label 2 with each of the more challenging non-opinionated
users. Thus, we attempt, in phases, to associate each non-
opinionated user to at-least one of the labels. In each

1An example of hott items - in a large library of films, only a
small number have the highest of ratings provided by users.

2To elaborate, true label corresponds to the opinionated user
sharing the same best (hott) item as the non-opinionated user.

phase, we assign multiple labels to each non-opinionated
user encoding the uncertainty. Since there are r opin-
ionated users, the above label association defines r over-
lapping groups/clusters of users corresponding to each
label. For each group of users, we find a common set of
good items that are high rewarding. Next, we estimate
relevant sub-matrices of the reward-matrix from feedback
data - based on the estimates, we refine items for each
user group. Algorithm PHASEDCLUSTERELIM obtains
a near-optimal regret guarantee described in Theorem 1.
We remark that no prior knowledge of gaps is required to
invoke our algorithms.

• Our second contribution is to propose a theoretically
sound algorithm under significantly milder assumption of
non-negative reward matrix (A2) satisfying the hott items
property. To this end, following (Kveton et al., 2017),
we consider a simplified setting where r items are rec-
ommended to every user at each round. The set of items
recommended at each round can vary across users. We
wish to ensure that there is at-least one item in the rec-
ommended set that is high rewarding 3. The hott items
assumption (A1) ensures that the unique highest reward-
ing set of r items that can be commonly recommended to
any user is the set of r hott items. Our proposed algorithm
DETERMINANTELIM eliminates subsets of r items in suc-
cessive phases and achieves a regret guarantee described
in Theorem 2. For r = 1 (rank one reward matrix), our
regret guarantees recover the results in (Jain & Pal, 2023)
and are thus optimal.

Technical Challenges: Here, we highlight the challenges
in analysis of Alg. PHASEDCLUSTERELIM. Recall that
at beginning, we find a set of r opinionated users with dis-
tinct hott items as best item and use them as labels. The
opinionated users have strong preferences towards their
corresponding best item and are thus easy to identify. For
labelling non-opinionated users, the challenge is that their
preferences are more spread out - this makes labelling dif-
ficult. Our algorithm, in each phase, assigns the set of
non-opinionated users into r overlapping groups. There are
three key steps 1) First, we show that each group of users (in
any phase) is a superset of a cluster of users all having the
same best item. 2) Second, we show that in every phase the
joint set of good items for each user group (corresponding to
a label) is high rewarding for all users in the group 3) Fnally,
we show that the best hott item for every user survives in the
union of the joint set of good items for the groups that the
user belongs to. Therefore, we refine the set of items gradu-
ally with each phase (jointly across many users) and obtain
our guarantees. Later, in Section 3, we also demonstrate
with an illustrative example why simple item elimination

3This setting models situations where a handful of movies are
recommended by a streaming website and the user is satisfied if
at-least one of the recommendations is of interest to the user
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strategies fail - necessitating our novel approach.

For the analysis of Alg. DETERMINANTELIM, we use the
fact that the hott items are, in some sense, the unique high-
est rewarding set of r items that can be recommended to
any user. Hence, we track subsets of r items and eliminate
them succesively to converge to the set of r hott items. This
was also observed in (Kveton et al., 2017) where a similar
problem was studied with the goal of finding the largest
entry of a low rank matrix in an online fashion. However,
in their setting, it was possible to choose both row and col-
umn of reward matrix in each round. However, we need
to recommend to every user r items at each round. This is
challenging because the difficulty of identifying preferred
items can vary significantly across users. Here, we jointly
estimate how good each group of r items is and eliminate
sub-optimal groups of r-items based on the estimates - these
estimates are based on determinant of relevant sub-matrices.
Our key idea (Lemma 13) is to exploit redundancy in rec-
ommending overlapping sets of r items at every round and
characterize the sufficient rounds in each phase for ensur-
ing nice concentration properties of our estimates (Lemma
14). Due to space restrictions, a description of other loosely
related work has been delegated to Appendix.

2. Problem Formulation and Results
2.1. Formulation

Notations: We write [m] to denote the set {1, 2, . . . ,m}.
Mi denotes the ith row of M and Mij or Mi,j denotes the
(i, j)-th element of matrix M. For any set U ⊂ [m],V ⊂
[n], MU,V denotes the matrix M restricted to the rows in
U and columns in V . Similarly, MU denotes the matrix
M restricted to the rows in U . We write det(M) to denote
the determinant of a matrix M. We will assume that the
elements in sets I,J will be ordered in ascending order.
We will refer as d−row (analogously d− column) a set
of d distinct rows (columns respectively) of a matrix. We
denote the set Sd ≡ {v ∈ [0, 1]d | ||v||1 ≤ 1} to be the d-
dimensional simplex; Sn,d denotes the set of n× d matrices
whose rows belong to Sd i.e. Sn,d = {M ∈ [0, 1]n×d |
Mi ∈ Sd}. Let Πk(A) denote the set of all k-subsets of
set A with distinct elements. We use EX to denote the
expectation of a random variable X . Õ(·) hides logarithmic
dependencies on M,N,T. Notations such as Q̃ denotes an
estimate of a quantity Q.

Consider a set of M users, N items and a horizon of T
rounds. We have an associated unknown rank-r expected
reward matrix R ∈ [−1, 1]M×N such that R = UVT where
U ∈ RM×r, V ∈ RN×r denotes the user embedding matrix
and item embedding matrix respectively. At each round t ∈
[T], for each user u ∈ [M], S carefully chosen distinct items
{ρu(t, j)}Sj=1 ∈ [N] are recommended and we observe S

rewards denoted by the random variables {P(t)
uρu(t,j)

}Sj=1

such that

P
(t)
uρu(t,j)

= Ruρu(t,j) +E
(t)
uρu(t,j)

. (1)

Here E
(t)
uρu(t,j)

denotes the additive noise that are i.i.d zero-
mean sub-Gaussian random variables with variance proxy at
most σ2. We consider the practical regime where M,N≫ T
i.e. the number of users and items are much larger than the
number of rounds. Let ordering πu : [N] → [N] sort the
rewards for each user u ∈ [M] in descending order, i.e., for
any i < j, Ruπu(i) ≥ Ruπu(j). We make the following
assumption:

Assumption 1 (A1 Hott items and vectors). We assume
that there exists a set of r unknown distinct ordered indices
A ⊆ [N], |A| = r such that all the item embedding vectors
{Vi}i∈[N] lie within the convex hull of {Vi}i∈A ∪ {0}. We
will call the items corresponding to indices in A hott items
and the rows in VA to be hott vectors.

As mentioned before, Assumption 1, also sometimes known
as separability assumption in existing literature has been
used widely. In fact, as pointed out in (Donoho & Stodden,
2003; Arora et al., 2012), an approximate separability con-
dition is regarded as a fairly benign assumption that holds in
many practical contexts in machine learning such as LDA in
information retrieval (Blei et al., 2003). We first show that
with Assumption 1, for each user u ∈ [M], the highest and
lowest rewarding items πu(1), πu(N) ∈ A are hott items.

Lemma 1. For any u ∈ [M], it must happen that
πu(1), πu(N) ∈ A.

Thus, we can partition the users T (1), T (2), . . . , T (r) into r
clusters such that ∀i ∈ [r], T (i) ≜ {u ∈ [M] | πu(1) = Ai}
is the set of users whose best item is the ith hott item.
For some κ, we can write the minimum cluster size to be
mini∈[r]

∣∣T (i)
∣∣ ≥ κMr−1. We will now consider two dis-

tinct (although related) notions of regret under different
additional assumptions on the reward matrix R:

Setting 1 (General Regret): We consider S = 1 i.e. at ev-
ery round t ∈ [T], for each user u ∈ [M], a single item ρu(t)
is recommended to user u. The objective is to design an
algorithm (possibly randomized) for the recommendation
policy so that the expected regret defined below is mini-
mized:

Reg ≜
1

M

( ∑
t∈[T]

∑
u∈[M]

Ruπu(1) −
∑
t∈[T]

∑
u∈[M]

Ruρu(t)

)
.(2)

We make the following additional assumptions on the ex-
pected reward matrix R:

Assumption 2 (A2). We will assume r, σ, κ are positive
constants that do not scale with M,N,T.
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Note that Assumption 2 is made only for simplicity of ex-
position/analysis and is not necessary for our theoretical
guarantees or the algorithm. It is routine to generalize our
results for a non-constant r, σ, κ and leads to a polynomial
dependence on the parameters in the regret guarantee.

Assumption 3 (A3 Assumptions on reward matrix R). We
assume that R with SVD decomposition R = ŨΣṼT

satisfies the following properties 1) (Condition Number)
R has rank r and has non zero singular values λ1 >
λ2 > · · · > λr with λ1/λr = O(1) 2) (µ-incoherence)∣∣∣∣∣∣Ũ∣∣∣∣∣∣

2,∞
≤

√
µr/N and

∣∣∣∣∣∣Ṽ∣∣∣∣∣∣
2,∞
≤

√
µr/M for some

µ = O(1). 3) (Subset Strong Smoothness (a)) For some con-
stant β > 0 and for any subset of indices S ⊆ [N],S = T (j)

(corresponding to some cluster of users), we must have
xTŨT

SŨSx ≥ β for all unit norm vectors x ∈ Rr. 4)
(Subset Strong Smoothness (b)) For some α satisfying
α logM = Ω(1), γ = Õ(1), for any subset of indices
S ⊆ [M], |S| ≥ γr, we must have xTṼT

SṼSx ≥ α |S| /M
for all x ∈ Rr, ||x||2 = 1.

Assumption 3, also proposed in (Pal et al., 2023) states that
matrix R must be well-conditioned and incoherent - two
properties that are commonly used for invoking theoretical
guarantees on offline low rank matrix completion (Chen
et al., 2019; Jain et al., 2013). In essence, Assumption 3 al-
lows us to invoke low rank matrix completion guarantees to
suit large sub-matrices of R. The subset strong smoothness
assumptions on U,V suffice to prove that any sub-matrix
of R of a reasonable size also satisfies the low condition
number and incoherence properties (see (Pal et al., 2023)).
Now, we define some problem-dependent gap parameters:

Definition 1 (Hott item gaps). Let A be the set of hott
items. For any user u ∈ [M], define the hott item gap ∆u ≜
Ruπu(1) −maxv∈A\πu(1) Ruv to be the minimum gap for
user u between the best item and any other hott item. For
each i ∈ [r], we will call the user u⋆(i) ≜ argmaxu∈T (i)∆u

with the largest hott item gap to be the most opinionated
user in the ith cluster. Now, define ∆hott ≜ mini∈[r] ∆u⋆(i)

to be hott item gap minimized across the most opinionated
users across each cluster.

Definition 2 (Minimum Reward gap). Define ∆ ≜
minu∈[M] Ruπu(1) − Ruπu(2) to be the smallest gap be-
tween the best item and second best item minimized across
all users.

In most settings, the hott item gap ∆hott is significantly
larger than ∆ – the hott item gap needs to be satisfied by
only a single user from every latent cluster. To make this
clear, consider the illustrative reward matrix in equation
(4) in Sec. 3 - for this matrix, ∆hott = 1 and ∆ = 2ϵ/3
from definitions - the latter quantity can be made as small
as desired by setting ϵ appropriately. We are now ready
to present our first main result. All proofs are deferred to

Appendix C.

2.2. Main Results

Theorem 1. Consider the online matrix completion prob-
lem with M users, N items, T rounds such that at round
t ∈ [T], we observe reward {P(t)

uρu(t)
}u∈[M] as in eq.

((1)) with S = 1 (i.e only one item recommended per
user). Let R ∈ RM×N be the expected rank-r reward ma-
trix. Suppose Assumptions 1, 2, 3 are true. Then Alg.1
(PHASEDCLUSTERELIM) guarantees the regret Reg (eq.
(2)) to be Õ

(
max

(
1,NM−1

)(
∆−2

hott +∆−1
)
+ 1

)
.

Importantly, the regret guarantee above depends on the gap
parameters ∆,∆hott - the dependence on number of rounds
T is poly-logarithmic and is hidden within Õ(·) notation 4

For readability, we have also hidden the polynomial depen-
dence on r, σ, κ that are assumed to be constants (A2).

The regret guarantee in Theorem 1 has an optimal linear
dependence on NM−1,∆−1 and a quadratic dependence on
∆−1

hott; it is significantly better than the ∆−2 dependence
achieved by the greedy algorithm proposed in (Jain & Pal,
2023). Again, we stress that the hott item gap ∆hott is
significantly larger than the minimum reward gap ∆ from
definition. While the quadratic dependence on ∆−1

hott is
unwanted, ∆hott being large should make its contribution to
the regret small in practice.
Remark 1. The optimality of the dependence on N,M,∆
can be observed from a simple example. Suppose all users
are equivalent - hence, rows of R are identical and in a
single round, users come in a sequential fashion too. This is
strictly easier and equivalent to a multi-armed bandit (MAB)
problem with N items and MN rounds up to normaliza-
tion. Standard MAB literature imply that asymptotic lower
bound for our setting is Õ(NM−1∆−1) - see(Lattimore &
Szepesvári, 2020), Chapter 16.
Remark 2. Note that our guarantees in Theorem 1 can
also be extended easily to the setting where the number of
hott vectors is t > r. In the extreme case, when all the
item embedding vectors lie on the surface of a sphere, the
number of hott vectors is same as total number of items.
However, if number of hott vectors is smaller, then we have
non-trivial regret guarantees. Hence, we can also think of
our result as a more fine-grained parameterization in terms
of the number of hott vectors which can be small in several
practical applications.

Setting 2 (Simplified Regret): Next, we consider a related

4Gap-dependent regret bounds with logarithmic dependence
on T are stronger than gap-free worst case regret bounds with
fractional power dependence on T. (see for example (Lattimore
& Szepesvári, 2020), Theorem 7.1). Usually, we can convert gap-
dependent regret bounds to worst-case regret bounds by setting the
gap parameter appropriately as function of N,T.
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setting with S = r i.e. at each round t ∈ [T], for each
user u ∈ [M], r distinct items ρu(t, 1), . . . , ρu(t, r) ∈ [N]
are recommended and we observe the corresponding noisy
rewards. Now, instead of Assumption 3, we make the follow-
ing milder assumption (similar to (Kveton et al., 2017)) that
the latent embeddings of users and items are non-negative:

Assumption 4. The user (item) embedding matrix U (V)
belongs to the set SM,d (SN,d).

In this setting, we consider the simplified regret:

RegSimple ≜
1

M

( ∑
u∈[M]

TRuπu(1) −
∑
t∈[T]
u∈[M]

max
j∈[r]

Ruρu(t,j)

)
.

(3)

Note that at each round t, the simplified regret for a user u
is small if one of the recommended items {ρu(t, j)}j∈[r] is
close to the best item πu(1). In general the simplified notion
of regret (eq. (3)) is easier to optimize than the general
regret (eq. (2)) - more precisely, if there exists an algorithm
guaranteeing the regret Reg = O(h) for some h that is a
function of M,N,T by recommending items with S = 1,
then the same algorithm can also guarantee RegSimple =
O(h) with S = r. However, as shown below, our theoretical
guarantees for RegSimple hold under significantly milder
assumptions than that for Reg. Due to Assumption 1, we
can conclude that the squared determinant det2(VA) of the
item embedding matrix restricted to the hott items is larger
than det2(VA′) for any A′ ̸= A, |A′| = r (see (Kveton
et al., 2017)). Thus, we can define the following:

Definition 3 (Determinant gap). We define the determinant
sub-optimality gap ∆det as follows: ∆det = det2(VA) −
maxA′ ̸=A,|A′|=r det

2(VA′).

We now state our second main result:

Theorem 2. Consider the online matrix completion prob-
lem with M users, N items T rounds such that at round
t ∈ [T], we observe noisy reward {P(t)

uρu(t,j)
}u∈[M],j∈[r]

as in eq. ((1)) with S = r, noise variance proxy
σ2 > 0. Let R ∈ RM×N be the expected rank-r re-
ward matrix. Suppose Assumptions 1, 4 are true. Then
Alg.3 (DETERMINANTELIM) guarantees regret RegSimple

(eq. (3)) to be Õ
(

σ2N
cavgcmaxM1/r∆det

+ 1
)

where cavg ≜(
M
r

)−1 ∑
I⊂[M]||I|=r det

2(UI) and cmax ≜ det2(VA).

As in Theorem 1, the poly-logarithmic dependence on T and
the poly dependence on r, σ, κ (assumed to be constants)
are subsumed within Õ(·). The regret guarantee in Theorem
2 has a linear dependence on the inverse of determinant gap
∆−1

det . For rank-r > 1, we do suffer a cost in form of the
factor M−1/r in the regret. For r = 1 (rank-1), the two
proposed notions of regret are equivalent and the guarantee

in Theorem 2 recovers the guarantees in (Jain & Pal, 2023)
for rank-1 setting.

Remark 3. Note that our proposed algorithms are com-
putationally efficient with run-times having polynomial de-
pendence on M,N. Their run-times do have an exponential
dependence on the rank-r and hence, the proposed algo-
rithms are computationally feasible for small values of rank
r. Our poly dependence on M,N stems from the use of low
rank matrix completion algorithms as a sub-module (see
Step 17 in Algorithm 1) - the convex relaxation based ap-
proach used crucially for strong theoretical guarantees is
computationally less efficient for matrix completion. How-
ever, in practice, a number of highly efficient techniques
have been proposed for optimizing matrix completion - for
example, see (Recht & Ré, 2013; Teflioudi et al., 2012). Sub-
stituting such estimators for invoking matrix completion can
allow us to scale significantly.

3. Algorithm PHASEDCLUSTERELIM and
Analysis of Reg (Theorem1)

Due to space restrictions, certain modules of algorithm are
delegated to Appendix C. Below, we provide an overview of
the main components of Alg. PHASEDCLUSTERELIM (see
Algorithm 1) and their analysis. The algorithm is divided
into two distinct stages, each of which runs in phases of
exponentially increasing length. Note that we ensure every
user u ∈ [M] is recommended one item at each round in the
ESTIMATE.

Stage 1 (Identifying a set of opinionated users via inde-
pendent set): Our first key step is to identify a set of r
users such that any pair among them clearly do not share the
same best item. We find these set of r users in the follow-
ing way: for the first few rounds, we explore i.e. for every
user, we recommend randomly sampled items (See Remark
4) via the call to ESTIMATE and store the corresponding
noisy observations (Line 3). The rows and columns of the
reward matrix is given by the first and second arguments
of ESTIMATE respectively (which are set equal to [M] and
[N] in Line 3). At this point, we have a partially observed
(noisy) reward matrix. Due to its low rank, we can invoke
guarantees of well-known low rank matrix completion es-
timators that allow us to compute an estimate of the entire
reward matrix from the few observed entries with an error
guarantee (equal to kℓ, see Line 3) on each entry. The task
of matrix completion is also carried out within ESTIMATE.
Based on the estimated rewards, we maintain a candidate
item set for each user (denoted by T ℓ+1

u at phase ℓ, Line
4). This item set is used to construct a graph with users
as nodes such that two users are connected iff their candi-
date item sets have a non-empty intersection. The idea of
the graph is to cluster similar users (in terms of their latent
embeddings) together. As the phase number increases, we
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Algorithm 1 PHASEDCLUSTERELIM (Iterative Multi-Label User Classification and Joint Item Elimination)

1: Initialize G to be a fully connected graph of M users. Set T 0
u = [N] for all users u ∈ [M], phase number ℓ = 0, k0 = 1 and c0 = 3k0.

// Stage 1: Identifying a set of opinionated users via independent set
2: while CheckIndependentSet(G) returns False do
3: R̃ℓ+1 ← ESTIMATE([M], [N], kℓ)

4: Update the item set for each user as T ℓ+1
u = {x ∈ T ℓ

u : R̃ℓ+1
u,π̃u(1) − R̃ℓ+1

u,x ≤ cℓ}
5: Update the graph G such that two users u and v are connected iff T ℓ+1

u ∩ T ℓ+1
v ̸= Φ; Set ℓ← ℓ+ 1, kℓ ← kℓ−1/2 and cℓ = 3kℓ

6: end while
7: Let u1, . . . , ur be the users returned by the last call to CheckIndependentSet(G)
8: Set kℓ ← kℓ−1/10 and cℓ = 3kℓ.
9: R̃ℓ+1 ← ESTIMATE_SIMPLE([M], [N], kℓ)

// Stage 2: Joint Elimination of items via expansion and intersection
10: while time horizon of the game is not reached do
11: Update the item set for each user as T ℓ+1

u = {x ∈ T ℓ
u : R̃ℓ+1

u,π̃u(1) − R̃ℓ+1
u,x ≤ cℓ}

12: Update the graph G such that two users u and v are connected iff T ℓ+1
u ∩ T ℓ+1

v ̸= Φ; Set ℓ← ℓ+ 1; kℓ ← kℓ−1/2 and cℓ = 3kℓ
13: Update candidate item sets by calling ExpanditemSets(G, (u1, . . . , ur), cℓ−1, R̃

ℓ)
14: Let T ℓ

Ci
be the common good item set for all users that are connected to user ui

15: for each cluster i ∈ [r] do
16: U ← {u : T ℓ

u ∩ T ℓ
Ci
̸= Φ} // Recommend items to users in U by calling ESTIMATE as below

17: R̃ℓ+1

U,T ℓ
Ci

← ESTIMATE(U , T ℓ
Ci
, kℓ).

//ESTIMATE collects data for O(k−2
ℓ max(1,NM−1)) rounds and estimates matrix RU,T ℓ

Ci

18: end for
19: end while

get finer estimates of the reward matrix (the argument kℓ
in the call to ESTIMATE controls the estimation accuracy
level) . Consequently the size of the candidate item sets
become small and many of the nodes in the graph get dis-
connected, thereby surfacing out similar users. We prove
that after log(1/∆hott) phases, an independent set of size r
arises in the graph, where ∆hott is as in Definition 1. Since
the independent set has size r, there must exist at-least r
users that are mutually disconnected in the graph. We call
such users opinionated users since it can be shown that their
hott-item gap is at-least ∆hott (see Defn. 1). We prove that
at every phase, the best item for any user belongs to their
candidate item sets with high probability. Consequently, the
set of r opinionated users must have distinct best items.

Lines 8-9 are necessary for technical reasons to ensure that
if an item is not in a user’s candidate item set, its reward
for that user is sufficiently lower than the reward of the best
item.

Remark 4. The recommendation of items to users is being
done inside the ESTIMATE_SIMPLE function (Algorithm
2) in L17 of Algorithm PHASEDCLUSTERELIM. On invok-
ing ESTIMATE_SIMPLE function , the algorithm recom-
mends randomly sampled items from the input subset of
items in the second argument of the function to the input
subset of users in the first argument (the third argument
determine the number of rounds for which to recommend).
To invoke the theoretical guarantees of offline low rank ma-
trix completion (Chen et al., 2019), the recommendation
strategy needs to be slightly modified (see Sec. 3 in (Jain

& Pal, 2023)) to account for our setting. Furthermore, the
theoretical estimator used is the convex relaxation approach
wherein we minimize the MSE with a nuclear norm regu-
larizer - for details, see the more sophisticated Algorithm
7 (ESTIMATE) in Appendix, for which, sharp theoretical
guarantees can be invoked.

After identifying r opinionated users, our strategy is to
utilize the opinionated users as labels for r groups i.e. if
we say that a user u ∈ [M] has similarity with a subset of
opinionated users, then the best item of u must be among
the best items (hott items) of the aforementioned subset
of opinionated users. The correct label for each user is
determined by the opinionated user who shares the same
best item. If a user is connected to multiple opinionated
users, we assign multiple labels to capture the uncertainty
in their best item. At most, we assign r labels per user,
but we aim to reduce the number of labels as we gather
more information. This brings us to the second stage of our
algorithm:

Stage 2 (Joint Elimination of Items via Expansion and
Intersection): Our strategy for refining the labels is to ex-
plore carefully while exploiting the user-user and item-item
similarities learned from the previous phase. User-user simi-
larity is leveraged by forming groups of users with the same
assigned label (for non-opinionated user, this means that
the label under consideration is present in its multi-label
set). There can be r such (possibly non-disjoint) groups.
For concreteness, we restrict our attention to a group corre-
sponding to label ui hereof, where ui is an opinionated user
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with Ai as its best hott-item (see Assumption 1). Thus all
users in this group have connection to the user ui. Such a
group corresponding to a label ui is stored in U in Line 16
of Algorithm 1. Due to our graph design, the set of all users
whose best item is Ai must be a subset of U . To exploit
the item-item similarity we can take the intersection of the
candidate item sets of the users in a group (see Line 14).
This set of items must be high rewarding for all users within
that group. However there can be multiple users (for eg. the
user ui) in U with best item being Ai. So the intersection
can potentially eliminate the best item Ai. This can happen
because of the subset condition noted before, there can also
be users in U that do not have Ai in its candidate item set.
Specifically, a non-opinionated user u with its best item not
equal to Ai can be connected to ui (or equivalently has a
label ui) due to some x ∈ T ℓ

ui
∩ T ℓ

u with x ̸= Ai. In order
to resolve this issue, we expand (Line 13) the candidate item
set for each non-opinionated user slightly so that provably:
1) the expanded set will contain the true best item (hott
item) of the user u and the item Ai and 2) the set of labels
assigned to user u is same as that before the expansion. As
mentioned before, best item for any user belongs to their
candidate item sets with high probability. Subsequently,
taking intersection of the candidate item sets of all users
with label ui assigned to them (denoted by T ℓ

Ci
in Line 14)

will ensure that the itemAi will not be eliminated from T ℓ
Ci

.
So we can randomly explore within the sub-matrix defined
by the rows U and columns T ℓ

Ci
via the call to ESTIMATE

in Line 17 with a finer estimation error kℓ. This ensures that
the regret due to the exploration is low enough and at the
same time the best item for each user is not eliminated when
updating the candidate item sets via the refined estimates
of reward (sub) matrix in Line 11. The process is repeated
across phases, increasing confidence in user similarity and
rewarding items. This is reflected in the algorithm by a
decrease in multi-labelled users as well as a shrinkage of
candidate item set sizes.

Regret Analysis: Stage 1 of our algorithm is greedy i.e.
we incur worst-case regret until we have found a set of
r opinionated users. However, we only need to find one
opinionated user per hott item and therefore the regret for
Stage 1 scales as Õ(max(1,NM−1)∆−2

hott). For the subse-
quent stages, we can show that in an phase with length
Õ(max(1,NM−1)∆−2) (needed for getting the estimates
of the relevant sub-matrices up to error O(∆)), the regret
incurred per round is at most ∆ ≥ ∆. Combining the
above and the fact that the total number of phases is at most
O(logT), we obtain the regret described in Theorem 1.

To ensure that expanding the item sets for non-opinionated
users does not increase regret, we work with latent embed-
dings of users and items. Consider the scenario where a
user u is connected to opinionated users ui and uj with
their respective best items Ai and Aj . Let T̃ ℓ

v denote the

candidate item sets for any user v before Line 13. Suppose
Ai is not in T̃ ℓ

u but there exists x in T̃ ℓ
u ∩ T̃ ui

ℓ due to their
connection. The call to ExpanditemSets ensures that
both Ai and Aj are in T ℓ

u . We aim to demonstrate control
over Ru,Aj

−Ru,Ai
sinceAi will be recommended to user

u during the ESTIMATE call. Let e and e′ denote the latent
embedding maps of users and items respectively. We begin
with the regret decomposition

Ru,Aj −Ru,Ai = e(u)T e′(Aj −Ai) = e(u)T e′(Aj − x)

+ e(ui)
T e′(Ai − x) + e(ui + u)T e′(x−Ai)

≤
(
Ru,Aj

−Ru,x

)
+ (Rui,Ai

−Rui,x) .

We show that for a hypothetical user defined by the embed-
ding e(ui + u), its best item must be Ai, due to which the
last inequality follows. Since x ∈ T̃ ℓ

u ∩ T̃ ℓ
ui

, even before the
expansion step, the last two terms can also be controlled (at
the level O(kℓ)). This also guarantees that Ai will belong
to the modified item set of user u after a slight expansion of
the item set.

Illustrative example on why simple item elimination fails:
Now, we provide a working example to motivate why a
careful design of algorithm is required to attain optimal
regret. Suppose for simplicity we know the value of ∆hott =
Θ(1). Then by running Stage 1 Θ(1) number of times,
we can guarantee that the suboptimality of any candidate
item for any user is at-most ∆hott/4 (for eg. see Lemma 5).
Consider the following claim which we eventually show to
be false.

Proposition 4. Suppose we run Stage 1 of Alg. PHASED-
CLUSTERELIM so that the sub-optimality of each candidate
item is at-most ∆hott/4. Then if two users u and v do not
share the same optimal item, their items sets maintained at
the current round will be disjoint.

Before disproving the proposition, we note that if it was
true, then it will imply a simple item elimination strategy as
follows. We can run Stage 1 for a constant number of times.
Then we cluster together all users who have non-empty
intersection of their candidate items and play items that
are present in the intersection of their candidate item sets.
Afterwards we can refine the intersection of their candidate
item sets via matrix completion. This will also guarantee
that the regret will remain controlled since the intersection
of the item sets do not eliminate the best item of users within
a cluster. Unfortunately the proposition above can be false
as shown by the counter-example below.

Consider a ground truth reward matrix as follows:

R =

1 0 1/3
0 1 2/3
p p− ϵ p− 2ϵ/3

 (4)
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Algorithm 2 ESTIMATE_SIMPLE (Function for estimating reward sub-matrix restricted to a subset of users and items)

1: Input: Set of users U ⊆ [M], V ⊆ [N], desired entry-wise error η.
2: for round index 1, 2, . . . , O(η−2 max(1,NM−1)) do
3: For each user u ∈ U , recommend to u an item v ∈ V sampled randomly. Store the observed feedback.
4: end for
5: Use offline Matrix Completion with observed feedback as input data and return an estimate of the matrix RU,V .

//There exist several standard algorithms for offline Low Rank Matrix
Completion with partial noisy observations. Two well-known approaches are
1) Minimizing MSE with nuclear norm regularizer 2) Alternating Minimization
(see (Jain & Kar, 2017) and references therein).

with the corresponding user and item embeddings denoted

by U =
(

1 0
0 1
p p−ϵ

)
and V =

(
1 0
0 1

1/3 2/3

)
where ϵ < 1/4

and 1/4 < p < 1. Let user corresponding to row i of
reward matrix be denoted by ui and item corresponding to
column i be denoted by vi. Here the hott-topics are items
v1 and v2 and the hott-topic gap ∆hott = 1 and ∆ = 2ϵ/3.
Further u1 and u2 are the opinionated users as defined in
Proposition 6. By Lemma 5, we attain a sub-optimality
of the candidate item set of 1/4 by running Stage 1 until
kℓ = 1/20. Then the candidate item for user u1 is {v1}, u2

is {v2} and u3 may contain {v1, v2, v3}. Thus Proposition
4 only holds true for opinionated users and can be false for
non-opinionated user u3 since the item sets for u3 and u1

intersect although their optimal items are different.

Takeaway message. The primary challenge in our algo-
rithm lies in how to recommend items to less opinionated
users while still exploiting their mutual similarities. This re-
quired us to do careful identification of relevant sub-matrices
that are forwarded to downstream estimation (function ES-
TIMATE Alg. 2) - here, noisy entries of the sub-matrix are
observed to collect data for sub-matrix completion task.

4. Algorithm DETERMINANTELIM and
Guarantees on RegSimple (Theorem2)

In this section, we consider the setting when at each
round t ∈ [T], for each user u ∈ [M], r distinct items
ρu(t, 1), ρu(t, 2), . . . , ρu(t, r) ∈ [N] are recommended
with the goal of minimizing the simplified regret RegSimple

defined in equation (3). In this setting, we make benign
assumptions on the reward matrix R = UVT namely As-
sumptions 1 and 4. Note that for any r-row I and r-column
C, we must have that det(RI,C) = det(UI)det(VC) where
RI,C is the sub-matrix of R restricted to rows in I and
columns in C. This implies that det(RI,C) is a scaled ver-
sion of det(VC). Recall that A ⊆ [N] corresponds to the
indices of the r hott columns. Notice that determinant of
a matrix corresponds to the signed volume determined by
the matrix rows and zero vector. The hott items assump-
tion ensures that the volume of V restricted to indices in

Algorithm 3 DETERMINANTELIM (Collaborative Filtering
via Phased Elimination of r-columns)

Require: Set of users [M], set of items N, rounds T, noise
variance σ2 > 0.

1: Initialize B(1) = Πr(N) and d1 = O(NM−1/rC(r))
where C(r) = 2r+1r1+r/2.

2: for ℓ = 1, 2, . . . do
3: For each user u ∈ [M], sample uniformly at random

dℓ items from ∪J∈B(ℓ)J . Store the sampled dℓ items
in the set T (ℓ)

u . // Beginning of a phase
4: For the next 2σ2dℓ rounds, for each user u ∈ [M],

for each item z in T (ℓ)
u , recommend some J ∈ B(ℓ)

2σ2 times such that z ∈ J . // Recommending
items to users

5: Initialize R̃(ℓ,1), R̃
(ℓ,2)
uz ∈ 0M×N to be all zero matri-

ces. For each user u ∈ [M], for each item z ∈ T (ℓ)
u ,

we store R̃
(ℓ,1)
uz (R̃(ℓ,2)

uz ) to be the mean of the first
σ2 (remaining σ2) observations corresponding to the
recommendation of item z to user u.

6: For each J ∈ B(ℓ), compute µ̃J as in equation (5).
// Estimate avg. determinant

7: Compute B(ℓ+1) to be {J ∈ B(ℓ) | µ̃J ≥
maxJ ′∈B(ℓ) µ̃J ′ − 2 · 2−ℓ}.

8: Update dℓ+1 ← 4dℓ. // End of a phase
9: end for

A is largest - hence, det2(VA) > det2(VA′) for any r-
column A′ ̸= A (see for eg. (Kveton et al., 2017)) and
therefore, we must have that det2(RI,A) > det2(RI,A′)
for any r-row I. This property is exploited crucially by our
proposed algorithm DETERMINANTELIM to gradually elim-
inate sub-optimal r-columns for this setting and converge
to the hott item indices A. Moreover, for any r-column
A′ ̸= A, we define sub-optimality gap of the r-column A′

to be det2(VA)− det2(VA′).

Algorithm DETERMINANTELIM is initialized with the set
of all possible r-columns. The algorithm runs in phases
of exponentially increasing length and gradually eliminates
r-columns that are sub-optimal in every phase. At the be-
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ginning of ℓth phase, suppose B(ℓ) is the set of surviving
r-columns. Consider the following quantity which will be
central to our algorithm design:

µJ ≜
1(
M
r

) ∑
I⊂[M]||I|=r

det2(RI,J )

For a fixed set of r items J , µJ is the average of deter-
minant of all

(
M
r

)
r × r sub-matrices of R formed by the

r-column J and each of the
(
M
r

)
r-rows of R. Clearly, we

have µJ ≤ µA. Hence our next goal will be to estimate µJ
for each r-column J ∈ B(ℓ) and eliminate r-columns in
B(ℓ) that have low estimated values. By doing so we hope
to gradually identify the r-column defined by A.

Denote the set of columns that belongs to some surviving
r-column in B(ℓ) to be Y ≜ ∪J∈B(ℓ)J . To compute an
estimate µ̃J of µJ for all J ∈ B(ℓ), for every user, a set
T (ℓ)
u ⊆ Y of dℓ distinct items are uniformly sampled at ran-

dom from Y . Then, throughout the phase of length 2σ2dℓ,
we recommend items in T (ℓ)

u to user u and construct two
independent estimates R̃(ℓ,1), R̃(ℓ,2) of the reward matrix
R (Lines 3-5). Finally, for a fixed set of r surviving items
J ∈ B(ℓ), let HJ ⊆ [M] be the set of users for which
J ⊂ T (ℓ)

u i.e., the items in J are present in the sampled
items T (ℓ)

u for every user u ∈ HJ , We compute estimate
µ̃J of µJ as (Line 3):

µ̃J ≜
1(
nJ
r

) ∑
I⊂HJ ||I|=r

det(R̃
(ℓ,1)
I,J ) · det(R̃(ℓ,2)

I,J ) (5)

We prove that in phase ℓ, it suffices to choose the scaled
length of the phase dℓ = O(NM−1/rC(r)22ℓ) where
C(r) = 2r+1r1+r/2. Based on our estimates, we can elimi-
nate r-columns from B(ℓ) as shown in Line 3.

Note that the quality of the estimate µ̃J improves as
|HJ |increases. One of the key insights is to show that
|HJ | ≥ nℓ for a fixed nℓ if dℓ satisfies the condition in the
following lemma.

Lemma 2. Fix nℓ > 0, 0 ≤ δ ≤ 1. For each user u ∈ [M],
suppose dℓ items are chosen for recommendation (as in Line
3 of Alg. 3) in phase ℓ. With probability at least 1− δ, for
every r-column inB(ℓ), we obtain noisy observations from at
least nℓ distinct users provided dℓ

N−dℓ
≥

(
M−1(12 log δ−1+

r logN+ 2nℓ)
)1/r

.

We choose nℓ = Õ(C(r)22ℓ) where C(r) =
2r+1r1+r/2. That implies that a sufficient value of dℓ =
O(NM−1/rC(r)22ℓ) for which the high probability event in
Lemma 2 holds true. Once, we have computed an estimate
µ̃J of µJ for all surviving sets of r-columns J ∈ B(ℓ),
we can eliminate r-columns from B(ℓ) to compute B(ℓ+1)

based on a high probability confidence width ϵℓ (Line 3 in
Alg. 3). More precisely, at the end of the ℓth phase, we have

B(ℓ+1) = {J ∈ B(ℓ) | µ̃J ≥ max
J ′∈B(ℓ)

µ̃J ′ − 2ϵℓ}

where ϵℓ = 2−ℓ with high probability, we can show that
the set of hott items A always survive and furthermore,
the sub-optimality gap of surviving r-columns decreases
exponentially in every phase. Our argument can also be
associated with the regret incurred by each user at every
round. More precisely, we have for any user u ∈ [M]:

Ruπu(1) −max
j∈[r]

Ruρu(t,j)

≤ 6r5/2
(det2(VA)− det2(VJ )

det2(VA)

)
.

Thus we can bound the regret incurred by the users at each
phase as we keep eliminating sub-optimal r-columns. Since
sub-optimal r-columns are eliminated in each phase, we can
also show the regret to decrease exponentially with phase
index. Combining all the arguments, we obtain the regret
guarantee provided in Theorem 2.

5. Conclusion and Future Works
In this work we studied online low rank matrix completion
under the hott item assumption. Our framework is a signif-
icant relaxation of the settings studied in prior works that
derive theoretical guarantees. We provide two novel algo-
rithms with theoretical guarantees that exploit the hott items
in distinct ways. The bounds in this paper often improve
or closely compare with bounds that are derived in much
restrictive setups. Though our main focus was on the statis-
tical rate, we seek to improve the computational complexity
of our methods in future (see for example Remark 3).

Impact Statement
The work is of theoretical nature and we do not see any
negative societal consequences.
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Algorithm 4 PHASEDELIMSIMPLIFIED (A simplified version of Alg. PHASEDCLUSTERELIM)

Require: Number of users M, number of items N. Input parameter B. Number of hott item vectors d, Gap Parameter ∆.
1: For B rounds, for each user u ∈ [M], recommend a random item in [N]. Compute an estimate P̃ of P.
2: For each user u ∈ [M], compute Tu = {j′ ∈ [N] | maxj∈[N] P̃uj − P̃uj′ ≤ ∆}.
3: Run k-means algorithm on the set of users [M] where each user u is assigned the embedding P̃[u][∪u∈[M]Tu] i.e. the

corresponding rewards estimate restricted to the items in ∪u∈[M]Tu.
4: For each cluster of users Ci obtained, we computeN (i,0) = ∩u∈CiTu (or a robust version where an item needs to survive

in 70% of Tu’s for u ∈ Ci to survive in N (i,0)).
5: for ℓ = 1, 2, . . . , do
6: Set B← 3B and ∆ = ∆/3
7: For B rounds, for each i ∈ [d] and for each user u ∈ Ci, recommend a random item in N (i,ℓ−1).
8: For each cluster of users Ci , use a standard matrix completion method to compute an estimate P̃(i,ℓ) ∈ RM×N.
9: For each cluster Ci and for each user u in Ci, compute Tu = {j′ ∈ Ci | maxj∈N (i) P̃uj − P̃uj′ ≤ ∆}

10: For each i ∈ [d], compute N (i,ℓ) = Pu∈Ci
Tu.

11: end for

A. Other Related Work
There are several other loosely related works/results that we briefly survey in this section.

The problem of multi-dimensional bandit optimization where the goal is to assume a structure among the items (such as a
matrix or tensor with low rank) was introduce in (Katariya et al., 2017b;a; Trinh et al., 2020). In the simplest version of
this problem, in the rank-1 setting at each round t ∈ [T], an agent selects one row and one column and receives a reward
corresponding to the entry of a rank-1 matrix. The regret in this setting is defined with respect to the best (row,column)
pair, which corresponds to the best item. Since then, this setting has been extended to include rank r (Kveton et al., 2017;
Stojanovic et al., 2024) which is most relevant to our setting in terms of techniques. Furthermore, this line of work also
extends to rank 1 multi-dimensional tensors (Hao et al., 2020), bilinear bandits (Jun et al., 2019; Huang et al., 2021), and
generalized linear bandits (Lu et al., 2021). However, these guarantees cannot be applied to our problem directly in most
cases. Note that our goal is to minimize the regret for all users (rows of R) jointly. In our problem, it is crucial to identify the
entries (columns) of R with high rewards for each user (row), in contrast to the multi-dimensional online learning problem,
where only the entry with the highest reward needs to be inferred.

A related line of work is the theoretical model for User-based Collaborative Filtering (CF) studied in (Bresler et al., 2014;
2016; Heckel & Ramchandran, 2017; Bresler & Karzand, 2019; Huleihel et al., 2021). To the best of knowledge, these papers
first motivated and theoretically analyzed the collaborative framework with the practically relevant restriction that the same
item cannot be recommended more than once to the same user. Here, similar to (Pal et al., 2023), a latent cluster structure
is assumed to exist across users such that users in same cluster have identical expected rewards. These models are quite
restrictive in a theoretical sense as they provide guarantees only on a very relaxed notion of regret (termed pseudo-regret).

In the offline setting, several papers have studied the problem of low rank matrix completion with partially observed entries
(Negahban & Wainwright, 2012; Chen et al., 2019; Deshpande & Montanari, 2012; Abbe et al., 2020; Jain et al., 2013; Jain
& Kar, 2017) and also in the presence of side information such as social graphs or similarity graphs (Ahn et al., 2018; 2021;
Elmahdy et al., 2020; Jo & Lee, 2021; Zhang et al., 2022). Some of these results can be converted into greedy algorithms for
the online problem (as has been done in (Jain & Pal, 2023)) - we can solve the offline problem in a particular number of
rounds and subsequently commit to the computed estimate of the reward matrix.

B. Experiments
We conduct synthetic experiments to demonstrate the efficacy of our PHASEDCLUSTERELIM algorithm that runs in phases.
All experiments have been conducted on Colab Machines with a system RAM of 12GB and hard disk space of 23.7GB.

Simplified Algorithm: Having practical considerations, we propose a simplified version of our PHASEDCLUSTERELIM
algorithm (denoted as Algorithm PHASEDELIMSIMPLIFIED - ALg. 4). There are two main advantages of Algorithm
4 from implementation point of view - 1) the runtime is polynomial in the rank of the reward matrix 2) the number of
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hyperparameters to tune is much small. At a high level, in Algorithm 4, we proposed a simplification where the clustering
step is decoupled (Step 3) from the exploration/exploitation step (Steps 6-11). In other words, the clustering step is done
only once at the beginning. Note that such an algorithm (Algorithm 3) is simplified (easy to understand and implement) and
hyperparameter-scarce. On the other hand, because of the decoupling step, it will not share the near optimal regret guarantees
of Algorithm 1. Nevertheless, Algorithm 4 is expected to be significantly better than the standard greedy algorithm because
of the initial clustering step.

Let us elaborate. In Algorithm PHASEDELIMSIMPLIFIED, the overall idea is to first recommend random items to every
user in the first few rounds and then compute an initial estimate of the low rank matrix. Based on this initial estimate, we
run k-means with k = d and cluster the set of users into d clusters. For each cluster of users, we find a small active set of
items that are good for all users in the same cluster. The main workhorse is that users in the same cluster have the same
hott item as the best item. Next, Algorithm PHASEDELIMSIMPLIFIED runs in phases of exponentially increasing length
where for each cluster of users, we again recommend random items (from the active set) to every user in the same cluster.
Next, we run low rank matrix completion to compute an estimate of the sub-matrix restricted to each cluster of users and its
corresponding good items. Based on this estimate, we prune the set of good items further. The goal is to converge to the best
item for every cluster of users.

Baselines for Comparison: We compare with two distinct baselines 1) Alternating Minimization (AM) - This algorithm
was proposed for online low rank matrix completion in (Dadkhahi & Negahban, 2018) based on an alternating minimization
recipe. Here, assuming the reward matrix to be of low rank i.e. P = UVT, estimates of U,V are improved gradually.
However, it is important to note that no theoretical guarantees were provided in (Dadkhahi & Negahban, 2018). 2) Explore
Then Commit (ETC) Algorithm - This greedy algorithm was proposed in (Jain & Pal, 2023). In this algorithm, we
recommend random items to every user for an initial few rounds (say m - exploration rounds) and compute an estimate of
the expected reward matrix. Based on the low rank estimate, we recommend the estimated best item for every user in the
remaining rounds.

We consider an instance with M = 200 users, N = 200, items, rank r = 4 across T = 300 rounds. Here, we consider the
expected reward matrix P = UVT constructed in the following way: 1) For every i ∈ [M], in the ith row of U, there is a 1
in the (i%C)th position and 0 elsewhere in the row. 2) The first N− r columns of V are obtained by generating each entry
from N (0, 1) independently and subsequently, the negative entries are trimmed to zero. Suppose the maximum positive
entry in the first N− r columns of V is α. In that case, the final r columns are an identity matrix multiplied by a factor of
2α. This ensures the hott item property - every column in V can be written as a convex combination of the final r columns.
Now, with this reward matrix, at each round, we recommend one item to every user such that a noisy reward is obtained (eq.
(1)) with gaussian noise having variance σ2 = 0.25.

We run Algorithm PHASEDELIMSIMPLIFIED (Alg. 4 - the simplified version of Alg. PHASEDCLUSTERELIM) in this set-up
(with an initial exploration period of 25) along with the AM algorithm and the ETC algorithm. The number of exploration
rounds in ETC is a hyper-parameter and we run the ETC algorithm with number of exploration rounds m = 25, 50, 75. For
the AM algorithm, we use the same hyper-parameters as suggested in (Dadkhahi & Negahban, 2018) for the setting when
U,V have entries sampled independently from N (0, 1).

Results and Insights: All algorithms have been run 5 times and the average regret has been reported across the 5 runs
in Figures 1a and 1b. Note that from Figure 1a our algorithm incurs a much lower cumulative regret compared to the
Alternating Minimization algorithm and the ETC (greedy) algorithm with different exploration periods (small and large).
The picture is clearer in 1b - both the ETC algorithms and our algorithm have an initial exploratory period but our algorithm
is able to make use of the exploration period significantly better. Note that the ETC algorithm with exploration period=25
rounds has a higher regret per round than our algorithm with a similar exploration period=25 rounds. ETC algorithms with
higher exploration period have smaller exploitation regret per round but their exploration cost is larger. The AM algorithm
also has a similarly large regret.

C. Missing Algorithmic Modules and Proofs
The missing algorithmic modules from Section 3 are preseneted in Algorithms 5, 6 and 7.
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(a) Regret accrued by Alg. 4, Explore-Then-Commit algorithm
(Jain & Pal, 2023) for exploration periods (25, 50, 75), Alternat-
ing Minimization (AM) algorithm (Dadkhahi & Negahban, 2018)
when T = 300. The cumulative regret is plotted with number of
rounds.

(b) Comparison of the regret incurred in each round
(M−1 ∑

u∈[M] Puπu(1) − 1
M

∑
u∈[M] P

(t)

uρu(t)) by Algorithm 4
and compared with Explore-Then-Commit algorithm (Jain & Pal,
2023) for exploration periods (25, 50, 75), Alternating Minimiza-
tion (AM) algorithm (Dadkhahi & Negahban, 2018).

Figure 1: Comparison of regret incurred by Algorithm 4 (a simplified version of our proposed phased elimination algo-
rithm namely Algorithm PHASEDCLUSTERELIM) with baselines such as Explore-Then-Commit (Greedy) algorithm and
Alternating Minimization (AM) algorithm. Clearly, Algorithm 4 outperforms the other baselines significantly.

Algorithm 5 CheckIndependentSet: Algorithm to check existence of an independent set of size d

Input: A graph G
1: for any combination of d vertices (u1, . . . , ud) from the graph do
2: if there is no edge between any pair ui and uj then
3: return (True , (u1, . . . , ud))
4: end if
5: end for
6: return False

Algorithm 6 ExpanditemSets: Algorithm to update the items sets of users that are connected to multiple clusters
Input: A graph G(V,E); Candidate item sets T ℓ

u for every user; Seed users u1, . . . , ud, suboptimality level cℓ−1, estimated
reward matrix R̃ℓ

1: for each user u that is connected to more than one user in u1:d do
2: Let C ← {ui : T ℓ

ui
∩ T ℓ

u ̸= Φ}
//Expanding the item set for users in D slightly

3: Set T ℓ
u ← {x : R̃ℓ

u,π̃u(1)
− R̃ℓ

u,x ≤ 12kℓ−1 and x ∈ T ℓ
Ci

for some i ∈ C}
4: end for
5: return the updated item sets

C.1. Proofs for generalized regret setting (Setting 1 from Section 2)

Throughout the proofs, we suppose that the reward matrix satisfies the assumptions detailed in Section 2 for Setting 1.
However, we generalise Assumption 1 as below so that we allow d number of hott-topics where d ≥ r. All the results of
Setting 1 can be recovered by setting d = r, where recall that r is the rank of the reward matrix.

Assumption 5 (B1 Hott items and vectors). We assume that there exists a set of d unknown distinct ordered indices
A ⊆ [N], |A| = d such that all the item embedding vectors {Vi}i∈[N] lie within the convex hull of {Vi}i∈A ∪ {0}. We will
call the items corresponding to indices in A hott items and the rows in VA to be hott vectors. Further, we suppose that
r = O(1).

Thus moving forward, the reward matrix is assumed to satisfy Assumptions 5, 2 and 3.

We have the following mtarix completion guarantee for Algorithm 7 which is a direct consequence of Remark 6 from (Jain
& Pal, 2023).

Proposition 5 (Matrix completion guarantee). Let d1 = max(M,N) and d2 = min(M,N). Set p = Cµ2d−1
2 log3 d2,
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Algorithm 7 ESTIMATE from (Jain & Pal, 2023)

Require: Set of users U ⊆ [M], set of items V ⊆ [N], sub-optimality level η, sampling probability p, regularization
parameter λ, rounds control parameter s, candidate item sets of users Tu for all u ∈ [M ]. Index of round t is relative to
the first round when the algorithm is invoked; hence t = 1, 2, . . . ,m.

1: For each tuple of indices (i, j) ∈ U × V , independently set δij = 1 with probability p and δij = 0 with probability
1− p.

2: Denote Ω = {(i, j) ∈ U × V | δij = 1} and b = maxi∈[U ] | |j ∈ [V] | (i, j) ∈ Ω| to be the maximum number of index
tuples in a particular row.

3: Set b = |V| and m = bs.
4: for ℓ = 1, 2, . . . ,m/b do
5: For all (i, j) ∈ Ω, set Maskij = 0.
6: for ℓ′ = 1, 2, . . . , b do
7: for each user u ∈ U in round t = (ℓ− 1)b+ ℓ′ do
8: Recommend an item ρu(t) in {j ∈ V | (u, j) ∈ Ω,Maskuj = 0} and set Maskuρu(t) = 1. If not possible then

recommend any item ρu(t) in V s.t. (u, ρu(t)) ̸∈ Ω. Observe R
(t)
uρu(t)

.
9: end for

10: for each user u /∈ U in round t = (ℓ− 1)b+ ℓ′ do
11: Recommend an item randomly from its candidate item set Tu and observe its noisy reward.
12: end for
13: end for
14: end for
15: For each (u, j) ∈ Ω, compute Zuj to be average of ⌊m/b⌋ observations corresponding to user u being recommended

item j i.e. Zuj = avg{R(t)
uρu(t)

for t ∈ [m] | ρu(t) = j}. Discard all other observations corresponding to indices not in
Ω.

16: Without loss of generality, assume |U| ≤ |V|. For each i ∈ V , independently set δi to be a value in the set [⌈|V|/|U|⌉]
uniformly at random. Partition indices in V into V(1),V(2), . . . ,V(k) where k = ⌈|V|/|U|⌉ and V(q) = {i ∈ V | δi = q}
for each q ∈ [k]. Set Ω(q) ← Ω ∩ (U × V(q)) for all q ∈ [k]. #If |U| ≥ |V|, we partition the indices in U .

17: for q ∈ [k] do
18: Solve convex program

min
Q(q)∈R|U|×|V(q)|

1

2

∑
(i,j)∈Ω(q)

(
Q

(q)
iπ(j) − Zij

)2

+ λ∥Q(q)∥⋆,

where ∥Q(q)∥⋆ denotes nuclear norm of matrix Q(q) and π(j) is index of j in set V(q).
19: end for
20: return Q̃ ∈ R|U|×|V| s.t. Q̃U,V(q) = Q(q) for all q ∈ [k] and for every (i, j) ̸∈ U × V , Q̃ij = 0.

s =
⌈(

cσr
√
µ

kℓ log d2

)2⌉
and λ = Cλσ

√
d2p for a suitable constants c, C,Cλ > 0. Let R̂ = ESTIMATE(M,N, kℓ, p, λ, s).

Then with probability at-least 1− δ, we have that

∥R̂−R∥∞ ≤ kℓ

Further the total number of rounds Algorithm 7 runs is bounded by Õ
(
max(1,N/M)/k2ℓ

)
, where Õ hides multiplicative

factors of log(1/δ).

Remark 5. Note that the matrix completion guarantee in Proposition 5 implies that a reasonable estimate of the reward
matrix R can be obtained if we have Õ(NMsp) randomly sampled observations. Intuitively, every entry of R is used with
probability p - if used, then s noisy observations are made corresponding to that entry and the average of those observations
is taken to reduce the variance. The bottom-line is that we do not need to see all the entries of the reward matrix - usually
p is set to be of the order of 1/min(M,N) and therefore only a small number of entries are actually sufficient for us to
compute an estimate of the reward matrix.

Remark 6. In our algorithm, it will be often necessary to estimate sub-matrices of the reward matrix. To do so, the
sub-matrix like the entire reward matrix R needs to satisfy certain incoherence and condition number guarantees - they
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need to be small. In this regard, Assumption 3 ensures that the incoherence and condition number of all sub-matrices of a
reasonable size are bounded by at most a constant multiplicative factor of the incoherence and condition number of the
original reward matrix R (see (Pal et al., 2023) for example).

First we proceed to bound the regret of stage 1 in Algorithm 1

Lemma 3. Let the phase ℓ be such that the Algorithm 1 is operating in Stage 1. Then with probability at-least 1− δ, we
have that πu(1) ∈ T ℓ+1

u for all users u.

Proof. Consider a user u. We have

R̃ℓ+1
u,π̃u(1)

− R̃ℓ+1
u,πu(1)

= R̃ℓ+1
u,π̃u(1)

−Ru,π̃u(1) +Ru,πu(1) − R̃ℓ+1
u,πu(1)

+Ru,π̃u(1) −Ru,πu(1)

≤ 2kℓ,

with probability at-least 1− δ where in the last line we used Proposition 5 and the fact that Ru,π̃u(1) −Ru,πu(1) ≤ 0.

Lemma 3 implies that with high probability, in any epoch that belongs to Stage 1, the best item for each user survives in its
candidate set.

The following terminology will be central to the arguments in the proofs.

Terminology: We use the terms phase and epoch interchangeably. For the rest of the proof, we fix the quantities. Let ℓ0
be the value of epoch ℓ in Algorithm 1 when the control reaches line 7. For epochs ℓ < ℓ0, we fix kℓ := 2−ℓ for ℓ ≤ ℓ0;
kℓ0 = kℓ0−1/10; kℓ = kℓ−1/2 for ℓ ≥ ℓ0 + 1. Let cℓ = 3kℓ used in Algorithm 1. Stage 1 runs from epochs 0 to ℓ0; All
epochs greater than or equal to ℓ0 + 1 belongs to Stage 2. For notational simplicity we take the hott-topic set A = [d].

The following Proposition is a direction consequence of Definition 1.

Proposition 6. There exists d opinionated users v1:d such that for any vi, any hott-topic x ̸= πvi(1) is well separated:

Rvi,πvi
(1) −Rvi,x ≥ ∆hott.

We call the users v1:d as opinionated users. We remark that both v1:d and ∆ need not be known ahead of time.

Lemma 4. Consider an item x ∈ [M], a user u and epoch ℓ ≤ ℓ0. Suppose x /∈ T ℓ+1
u . Then with probability at-least 1− δ,

we have that

Ru,πu(1) −Ru,x > kℓ.

Proof. Since x /∈ T ℓ+1
u ,

3kℓ < R̃u,π̃u(1) − R̃u,x

≤(a) R̃u,π̃u(1) −Ru,π̃u(1) +Ru,x − R̃u,x +Ru,πu(1) −Ru,x

≤(b) 2kℓ +Ru,πu(1) −Ru,x,

where in line (a) we used the fact that Ru,πu(1) ≥ Ru,π̃u(1) and in line (b) we used Proposition 5.

Thus if an item x gets eliminated by the end of epoch ℓ, we are guaranteed with high probability that

Ru,πu(1) −Ru,x > kℓ.

Lemma 5. Consider an epoch ℓ such that x ∈ T ℓ+1
u for a user u. Then with probability at-least 1− δ, it holds that

Ru,πu(1) −Ru,x ≤ 5kℓ.
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Proof. We have

Ru,πu(1) −Ru,x = Ru,πu(1) − R̃ℓ+1
u,πu(1)

+ R̃ℓ+1
u,x −Ru,x + R̃ℓ+1

u,πu(1)
− R̃ℓ+1

u,π̃u(1)
+Rℓ+1

u,π̃u(1)
− R̃ℓ+1

u,x

≤ 2kℓ + 3kℓ

= 5kℓ,

with probability at-least 1− δ, where we used Proposition 5 and the fact that x ∈ T ℓ+1
u

Lemma 6. Consider an epoch ℓ0 such that the call to Algorithm 5 in Line 2 of Algorithm 1 returns True for the first time.
Let u1:d be the users returned by Algorithm 5. Then it holds with probability at-least 1− δ that:

1. Best item for user ui is different from the best item for user uj , j ̸= i.

2. ℓ0 ≤ ⌈log
(

40
∆hott

)
⌉, where ∆hott is as in Proposition 6.

Proof. By Lemma 3, the best item for any user u survives in its candidate set T ℓ0
u with probability at-least 1− δ. Then if

two users ui and uj have the same best item, then there will be an edge between them. This is a contradiction to the fact that
u1:d forms an independent set. This proves the first statement.

Consider opinionated users V := {v1, . . . , vd} as per Proposition 6. Epoch ℓ0 is the first time Line 2 of Algorithm 1 returns
True. So at epoch ℓ0 − 1 there must exist a user u ∈ V and a hott-topic x ̸= πu(1) such that x ∈ T ℓ0−1

u . Now combining
Proposition 6 and Lemma 5 we have

∆hott ≤ Ru,πu(1) −Ru,x

≤ 5kℓ0−2,

with probability at-least 1− δ. Rearranging the last display yields the second statement of the lemma.

Next, we provide a crude upper bound on Stage 1 regret of Algorithm 1

Lemma 7 (Stage 1 regret bound). Let ℓ0 be the number of epochs until the completion of Stage 2. Then with probability
at-least 1− δ, the average regret incurred by Algorithm 1 during Stage 1 is bounded by

RegStage 1 = Õ(max(1,N/M)/∆2
hott + 1),

with probability at-least 1− δ. Here ∆hott is as in Proposition 6.

Proof. Due to Proposition 5, the total number of rounds Stage 1 operates can be bounded by

ℓ0∑
l=1

Õ
(
max(1,N/M)/k2ℓ

)
=

ℓ0∑
l=1

Õ
(
max(1,N/M)22ℓ

)
= Õ

(
max(1,N/M)22ℓ0 + 1

)
= Õ(max(1,N/M)/∆2

hott + 1),

where the last line uses Lemma 6.

In Stage 1, the algorithm incurs O(1) regret for any user since the rewards are assumed to be bounded. This concludes the
lemma.
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Lemma 8. Suppose before the call to Algorithm 6, the best item of every user belongs to its corresponding candidate sets.
Then the best item for each user survives in the candidate item sets created by the end of Algorithm 6.

Consider the seed users ui:d given as input to the algorithm. Since they form an independent set, the best item of these users
must be different. WLOG we assume that user ui has hott-topic i as its best item.

Further consider a user u that is connected to more than one user in u1:d at Line 1 of Algorithm 6. Let ui be one such user
that the user u is connected to. Then in the final item set T ℓ

u maintained by the algorithm (Line 3), it is guaranteed that the
hott-topic item i ∈ T ℓ

u .

Proof. The first time Algorithm 6 gets called within Algorithm 1 is the epoch ℓ0 + 1. So the current epoch must obey
ℓ ≥ ℓ0 + 1.

Let u1, . . . , ud be the set of users maintained at Line 7 of Algorithm 1. These are basically given as the “seed users” to
Algorithm 6. Let the current epoch be ℓ. Since the best item was not eliminated before the call to Algorithm 6, we have that
i ∈ T ℓ

ui
.

Note that we are in in stage 2. The independent set of users were first discovered before the start of epoch ℓ0. (i.e based on
the items sets T ℓ0

· ). Then due to Lemma 4, we conclude that for any hott-topic j ∈ [d] \ {i}

Rui,i −Rui,j > kℓ0−1 (6)

Next, we are going to show that for the user u, the expansion step at Line 3 ensures that the hott-topic i belongs to the
updated item set of the user u.

Let the itemset for the user u before invoking Algorithm 6 be denoted as T̃ ℓ
u . By the premise of the lemma, T̃ ℓ

u ∩ T ℓ
ui
̸= Φ.

In the first case where i ∈ T̃ ℓ
u , we can surely say that i ∈ T ℓ

u as well since in Line 3 we are only setting the acceptable
sub-optimality level to be 12 times the sub-optimality level used to create T̃ ℓ

u in the first place.

So in the rest of the proof we consider the case when i ̸∈ T̃ ℓ
u . Since T̃ ℓ

u ∩ T ℓ
ui
̸= Φ, there must exist an item x such that

x ∈ T̃ ℓ
u ∩ T ℓ

ui
. Note that this item x cannot be a hott-topic because T ℓ

ui
does not contain any other hott-topic j ̸= i.

Let j ̸= i be the best item for user u. Then by Lemma 5, we conclude that

Rui,i −Rui,x ≤ 5kℓ−1, (7)

and

Ru,j −Ru,x ≤ 5kℓ−1. (8)

Note that due to our low rank reward matrix assumption, the reward of any user v for an item k, denoted by Rv,k can be
represented as Rv,k = e(v)T e′(k) where e, e′ denotes the latent embedding of user and item respectively.

Hence the previous equations can be restated as

e(ui)
T e′(i)− e(ui)

T e′(x) ≤ 5kℓ−1,

and

e(u)T e′(j)− e(u)T e′(x) ≤ 5kℓ−1. (9)

Adding the last two displays yields that
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e(ui + u)T e′(x− j) ≥ e(ui)
T e′(i− j)− 10kℓ−1

>(a) kℓ0−1 − 10kℓ−1

≥ kℓ0−1 − 10kℓ0

= 0,

where in line (a) we used Eq.(6) and in the following lines we used the fact that the current epoch ℓ ≥ ℓ0 + 1 since we are in
stage 2 and hence kℓ ≤ kℓ0 = kℓ0−1/10 (Line 8 of Algorithm 1).

Thus we conclude that for a hypothetical user defined by the embedding e(ui + u), the item x is strictly better than the
hott-topic j.

For any hott-topic p /∈ {i, j}, since Ru,p ≤ Ru,j we have that e(u)T e′(p)− e(u)T e′(x) ≤ 5kℓ due to Eq.(9).

Hence by proceeding similarly as before we conclude that for the user defined by the embedding e(ui + u), the item x is
strictly better than any hott-topic in [d]− {i}.

So the best item for this user cannot be any hott-topic in [d]− {i}. Consequently we conclude that the best item for the user
defined by the embedding e(ui + u) must be i.

Now we look at how much the item i is suboptimal for the user u.

Ru,j −Ru,i = Ru,j −Ru,x +Ru,x −Ru,i

≤ 5kℓ−1 +Ru,x −Ru,i

= 5kℓ−1 + e(ui + u)T e′(x− i) +Rui,i −Rui,x

≤ 10kℓ−1 + e(ui + u)T e′(x− i)

≤ 10kℓ−1, (10)

where we used Eq. (7) and (8) and the fact that item i is best for the user defined by the embedding e(ui + u).

To make further progress, we assume the following: |R̃ℓ
u,i −Ru,i| ≤ kℓ−1 with probability at-least 1− δ.

This is trivially true for the first epoch in stage 2 which is ℓ0+1. Because at epoch ℓ0+1 we have that |R̃ℓ0+1
y,h −Ry,h| ≤ kℓ0

for all users y and all items h. This follows from the fact that until epoch ℓ0, we estimate the entire reward matrix globally.

We will proceed to show that |R̃ℓ+1
u,i −Ru,i| ≤ kℓ as well.

Recall that πu(1) = j. We have

R̃ℓ
u,π̃u(1)

− R̃ℓ
u,i = R̃ℓ

u,π̃u(1)
−Ru,π̃u(1) +Ru,π̃u(1) −Ru,πu(1) +Ru,πu(1) −Ru,i +Ru,i − R̃ℓ

u,i

≤ R̃ℓ
u,π̃u(1)

−Ru,π̃u(1) +Ru,πu(1) −Ru,i +Ru,i − R̃ℓ
u,i

≤ 2kℓ−1 +Ru,πu(1) −Ru,i

≤ 12kℓ−1,

where in the last line we used Eq.(10).

Thus we conclude that the expansion step in Line 3 of Algorithm 6 ensures that i ∈ T ℓ
u .

Now to prove the induction hypothesis that |R̃ℓ+1
u,i −Ru,i| ≤ kℓ, we look at the for loop in Line 15 of Algorithm 1 when

processing the cluster i and during the epoch ℓ. Note that u ∈ U by virtue of the expansion step. Consequently in the matrix
estimation step in Line 17 of Algorithm 1, we end up estimating the entry Ru,i with errror at-most kℓ. This proves the
induction hypothesis.

The best item for user u was already present in its candidate item set before the start of the Algorithm 6. This candidate item
set was constructed by accumulating all items with empirical sub-optimality level of 3kℓ−1. Now noting that the expansion
step cannot eliminate the best item of the user u concludes the proof.
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Lemma 9. (stage 2 best item survival) Consider an epoch ℓ within stage 2 (so ℓ ≥ ℓ0 + 1). Suppose for any user u,
πu(1) ∈ T ℓ

u . Then with probability at-least 1− δ we have that πu(1) ∈ T ℓ+1
u .

Proof. Updating the candidate item set in Stage 2 happens at two places. In Line 13 of Algorithm 1 via call to
ExpanditemSets as well as in Line 11. In Lemma 8, we showed that the call to Algorithm 6 does not eliminate
the best item of any user.

So we only need to argue that the step in Line 11 of Algorithm 1 also does not eliminate the best item of any user. To do this,
consider a user v with πv(1) = i. This implies that the user v is connected to ui and v ∈ U in Line 16 of Algorithm 1 (when
processing cluster i) since the best item is not eliminated prior to epoch ℓ. Since by Lemma 8, the users that are connected
to user ui have the item i in their candidate item set, we conclude that i ∈ T ℓ

Ci
at Line 14 of Algorithm 1. This implies that

after the call to ESTIMATE in Line 17, we must have that |Rℓ+1
u,i −Ru,i| ≤ kℓ via Proposition 5.

Now putting it all together yields,

R̃ℓ+1
u,π̃u(1)

− R̃ℓ+1
u,πu(1)

= R̃ℓ+1
u,π̃u(1)

−Ru,π̃u(1) +Ru,πu(1) − R̃ℓ+1
u,πu(1)

+Ru,π̃u(1) −Ru,πu(1)

≤ 2kℓ,

with probability at-least 1− δ where the last line follows by Proposition 5. Hence the best item is not eliminated with high
probability within Stage 2.

Lemma 10. (instantaneous regret in Stage 2) Consider an epoch ℓ withing Stage 2 of Algorithm 1. Then with probability
at-least 1− δ, we have that for any user u,

Ru,πu(1) −Ru,ρu(t) ≤ kℓ−1,

where t is a time in epoch ℓ and ρu(t) is the item recommended to user u as per Algorithm 7.

Proof. Let T ℓ
u be the item set maintained by Algorithm 1 before the call in Line 17. We know from Lemma 9 that

πu(1) ∈ T ℓ
u with probability at-least 1− δ. Further due to Line 11 in Algorithm 1 and Line 3 in Algorithm 6, we have that

R̃ℓ
u,πu(1)

− R̃ℓ
u,x ≤ 12kℓ−1 for any x ∈ T ℓ

u .

So

Ru,π(1) −Ru,ρu(t) = Ru,π(1) − R̃ℓ
u,π(1) + R̃ℓ

u,ρu(t)
−Ru,ρu(t) + R̃ℓ

u,π(1) − R̃ℓ
u,π̃(1) + R̃ℓ

u,π̃(1) − R̃ℓ
u,ρu(t)

≤ Ru,π(1) − R̃ℓ
u,π(1) + R̃ℓ

u,ρu(t)
−Ru,ρu(t) + R̃ℓ

u,π̃(1) − R̃ℓ
u,ρu(t)

≤ 2kℓ−1 + 12kℓ−1

= 14kℓ−1,

with probability at-least 1− δ where we used the matrix completion guarantee from proposition 5.

The following result is a direct consequence of Assumption 2.

Proposition 7. For each hott-topic i ∈ [d] there is at-least κM users that have their best item as i, where κ = O(1).

Lemma 11. Consider an epoch ℓ in Stage 2. Then Algorithm 7 when called in Line 17 of Algorithm 1 executes for a total of
Õ(max(1,N/M)/k2ℓ ) rounds.
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Proof. Consider a hott-topic i ∈ [d]. By Lemma 9, the best item for each user survives in its candidate item set. Hence we
have that |U| ≥ κM by Proposition 7, where U is as in Line 16 of Algorithm 1 while processing cluster Ci.

Next, we proceed to bound the number of rounds run by ESTIMATE when it is called at Line 17 of Algorithm 1.

Here we have |U| ≥ κM and |T ℓ
Di
| ≤ N. In the case where min(|U|, |T ℓ

Di
|) = |T ℓ

Di
|, then by Proposition 5 we have that

the number of rounds run by ESTIMATE is Õ(1/k2ℓ ). In the other case where min(|U|, |T ℓ
Di
|) = |U|, then the number of

rounds is Õ((N/|U|)/k2ℓ ) = Õ((N/M)/k2ℓ ) since |U| ≥ κM. This concludes the proof.

Definition 8. The minimum sub-optimality gap is defined as:

∆ := min
u∈[M]

min
j∈[N],j ̸=πu(1)

Ru,πu(1) −Ru,j .

Lemma 12 (Stage 2 regret bound). Assume ∆ is as defined in Definition 8. Then the total regret incurred in Stage 2 is
bounded by Õ(max(1,N/M)/∆) with probability at-least 1− δ log T .

Proof. Due to Lemma 5, with probability at-least 1− δ, the candidate item sets will only contain the best item for each user
whenever 5kℓ ≤ ∆ (see Definition 8. Consequently we can say that for epochs ℓ ≥ log(1/(5∆)) the algorithm do not suffer
any regret at all.

So we only need to bound the regret till the epoch ℓ∗ := log(1/(5∆)). Again by Lemma 5 and Lemma 11, the regret
incurred in an epoch ℓ within stage 2 is bounded by Õ(max(1,N/M)/kℓ) with probability greater than 1− δ. Thus the total
regret across all epochs in stage 2 is

Rstage 2 =

ℓ∗∑
ℓ=ℓ0+1

Õ(max(1,N/M)/kℓ)

= Õ(max(1,N/M)/kℓ∗)

= Õ(max(1,N/M)/∆),

where line 2 is due to the halving progression of kℓ. Taking a union bound of the failure probability across all epochs
concludes the proof.

We are now ready to present the proof of the main result in Setting 1.

Proof of Theorem 1 The proof of the theorem is an immediate consequence of Lemmas 7 and 12. With probability at-least
1− 2δ log T , we can bound the total regret by Õ

(
max

(
1,NM−1

)(
∆−2

hott +∆−1
)
+ 1

)
. Now doing a change of variables

from 2δ log T to δ yields the theorem.

C.2. Proof of Lemma 1

Proof of Lemma 1. Let us fix a particular user u ∈ [M]. Assume without loss of generality that v(1) is the item in C with
the highest reward i.e. ⟨u,v(1)⟩ ≥ ⟨u,v⟩ for all v ∈ C \ {v(1)} In that case for any item vector z =

∑
v∈C αvv ∈ V \ C

(non-negative coefficients {αv}v∈Csatisfying
∑

v∈C αv = 1 and αv > 0 for some v ∈ C \ {v(1)}), we must have that
⟨u,v(1)⟩ > ⟨u, z⟩. Hence, argmaxj∈[N]Ruj ∈ A and a similar argument also shows argminj∈[N]Ruj ∈ A.

C.3. Proof of Theorem 2

Recall that our goal is to gradually eliminate columns from Πr([N]) and converge to the set of hott items induced by A
in as few rounds as possible. We propose a successive elimination algorithm (Algorithm DETERMINANTELIM) where
at each phase indexed by ℓ, we will maintain a surviving set of r columns denoted by B(ℓ) ⊆ Πr([N]) (initialized by
A(1) = Πr([N])). Since at each round, we need to recommend items to every single user, we will design a recommendation
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scheme such that in phase ℓ, with high probability, we can ensure that for every r-column in B(ℓ), we have noisy observations
corresponding to at least nℓ users that are sampled uniformly from [M]. Concurrently, we also need to ensure that the
number of sufficient rounds in phase ℓ satisfies the condition in equation (11). We now prove our key lemma using the
probabilistic method:

Lemma 13. Fix nℓ > 0, 0 ≤ δ ≤ 1. Let B =
⋃

J∈B(ℓ) J be the set of columns that are surviving in phase ℓ. For each
user u ∈ [M], suppose we map dℓ distinct items in B sampled uniformly at random for recommendation in phase ℓ. With
probability at least 1− δ, for every r-column in B(ℓ), we obtain noisy observations from at least nℓ distinct users provided

dℓ
N− dℓ

≥
(
M−1(12 log δ−1 + r logN+ 2nℓ)

)1/r

(11)

Proof of Lemma 13. The items sampled for user u is denoted by T (ℓ)
u ⊆ B. Fix a particular r-column J ∈ B(ℓ). Suppose

s = |B|. The probability that for any user u ∈ [M], all items in J have been sampled i.e. J ⊆ T (ℓ)
u is

pℓ ≜ Pr(J ⊆ T (ℓ)
u ) =

(
s−r
dℓ−r

)(
s
dℓ

) ≤ (
s

dℓ−r

)(
s
dℓ

) ≤ ( dℓ
s− dℓ

)r

.

Notice that the expected number of users for which J ⊆ T (ℓ)
u is Mpℓ. Suppose pℓ is set such that Mpℓ ≥ 2nℓ. Since the d

items sampled for each user are independent, the probability of the event E(ℓ)J that J is not a subset of T (ℓ)
u for at least nℓ

users is given by (let us denote the random variable corresponding to the number of users in [M] for which J ∈ T (ℓ)
u by X)

Pr(X ≤ nℓ) ≤ Pr(|X − EX| ≥ Mpℓ − nℓ) ≤ Pr(|X − EX| ≥ Mpℓ
2

) ≤ 2 exp(−Mpℓ/12)

Hence, the probability that EJ (ℓ) is true for some J ∈ B(ℓ) is given by

Pr
( ⋃

J∈B(ℓ)

E(ℓ)J

)
≤ 2

∣∣∣B(ℓ)∣∣∣ exp(−Mpℓ/12) ≤ 2Nr exp(−Mpℓ/12).

Therefore, for some value of 0 < δ < 1, if we have

Mpℓ ≥ 12 log δ−1 + r logN+ 2nℓ

then with probability 1− δ, the event
⋂

J∈B(ℓ) E(ℓ)J is true. Hence, the above condition is satisfied if

dℓ
s− dℓ

≥
(
M−1(12 log δ−1 + r logN+ 2nℓ)

)1/r

We define the event E(ℓ) which is true when for dℓ satisfying eq. (11), for every r-column J in B(ℓ), there will exist at least
nJ ≥ nℓ users u ∈ [M] for which J ∈ T (ℓ)

u . From Lemma 13, we know that E(ℓ) is true with probability at least 1 − δ.
Furthermore, due to our sampling approach being invariant to a permutation of the users, conditioned on the value of nJ ,
the corresponding nJ users are sampled uniformly at random from [M]. In Alg. DETERMINANTELIM, in phase ℓ, once
the sets T (ℓ)

u have been sampled, every item in T (ℓ)
u is recommended to user u at least 2σ2 times (See Step 4). From our

recommendation strategy, the total number of rounds sufficient in phase ℓ to make all the recommendations necessary in our
scheme is 2σ2dℓ. Now, for any r-column J in [N]r, define

µJ ≜
1(
M
r

) ∑
I⊂[M]||I|=r

det2(RI,J ) <
1(
M
r

) ∑
I⊂[M]||I|=r

det(RI,A) ≜ µA.

Recall cavg ≜ 1

(Mr)

∑
I⊂[M]||I|=r det

2(UI) is the average of determinants of the user features taken r at a time - implying

that µJ = cavgdet
2(VJ ). Moreover, cmax = det2(VA) corresponds to the matrix of hott vectors that has the largest
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unsigned determinant. For J ∈ B(ℓ), let HJ be the set of users for which items in J were recommended in phase ℓ
according to our sampling scheme in the first and second components respectively. We compute an estimate µ̃J of µJ in
the following way:

µ̃J ≜
1(
nJ
r

) ∑
I⊂HJ ||I|=r

det(R̃
(ℓ,1)
I,J ) · det(R̃(ℓ,2)

I,J )

where the matrices R̃(ℓ,1), R̃(ℓ,2) are described in Step 5 of Alg. DETERMINANTELIM. We can now characterize the
concentration property of the estimate µ̃J for all J ∈ B(ℓ):
Lemma 14. Fix nℓ and condition on E(ℓ). Then, in phase ℓ of Alg. DETERMINANTELIM, we must have that for all

J ∈ B(ℓ), µ̃J ∈ [µJ − ϵℓ, µJ + ϵℓ] for ϵℓ =
√
(2r+1r1+r/2) log(NrT)n−1

ℓ with probability at least 1−O(T−2).

Proof of Lemma 14. We also condition on the event F (ℓ) that the random variables corresponding to the mean noise for

all rounds t in phase ℓ is bounded within [−10σ
√
b−2
ℓ log(MT), 10σ

√
b−2
ℓ log(MT)] - event F (ℓ) is true with probability

at least 1− T10 (sub-gaussian concentration properties). We set b2ℓ = 100σ2 logMT such that noise random variables are
bounded within [−1, 1] with probability at least 1− T−10.

Note that there are two sources of randomness in µ̃J - the first source of randomness is due to the noise added in the
observations and the second source is due to the randomness inHJ . Note that

Eµ̃J | E(ℓ),F (ℓ) = EHJ

1(
nJ
r

) ∑
I⊂HJ ||I|=r

E
[
det(R̃

(ℓ,1)
I,J ) · det(R̃(ℓ,2)

I,J ) | HJ , E(ℓ),F (ℓ)
]

= EHJ

1(
nJ
r

) ∑
I⊂HJ ||I|=r

E
[
det(R̃

(ℓ,1)
I,J ) | HJ , E(ℓ),F (ℓ)

]
· E

[
det(R̃

(ℓ,2)
I,J ) | HJ , E(ℓ),F (ℓ)

]
= EHJ

[ 1(
nJ
r

) ∑
I⊂HJ ||I|=r

det2(RI,J ) | E(ℓ)
]
.

We use the fact that conditioning on E(ℓ) only modifies the distribution of nJ . Here, we also used the fact that Edet(Z) =
det(EZ) for zero mean independent noise which is the case even after conditioning on F (ℓ) (due to symmetricity of the
sub-gaussian random variables). Recall that conditioned on nJ , the setHJ is sampled uniformly at random from ΠnJ [M]
i.e. sets of all distinct users of size nJ . Therefore, we can simplify to conclude that Eµ̃J | E(ℓ),F (ℓ) = µJ . By the same
set of arguments, we can show that Eµ̃J = µJ - hence, we prove that conditioning on the events E(ℓ),F (ℓ) do not change
the expected value of the estimate µ̃J .

Next, we show that conditioned on the events E(ℓ),F (ℓ) and on nJ , the estimate µ̃J is concentrated around its mean µJ -
for which we are going to use McDiarmid’s inequality (Vershynin, 2020)[Theorem 2.9.1]. The lemma that we state below is
a minor modification of the standard McDiarmid’s inequality for uniform sampling without replacement.

Lemma 15 (McDiarmid’s inequality for sampling without replacement). Consider a function f : Xn → R which satisfies
the bounded difference property i.e. there exists a constant c > 0 such that for all x,y ∈ Xn satisfying for some i ∈ [n] 1)
yj = xj for j ̸= i and 2) yi ̸= xi, we have

|f(x)− f(y)| ≤ c.

In that case, for random variables x1,x2, . . . ,xn ∈ X sampled uniformly at random without replacement, we must have for
x = (x1,x2, . . . ,xn),

Pr
(
|f(x)− Ex| ≥ ϵ

)
≤ 2 exp

(
− 2ϵ2

nc2

)
.

Remark 7. Note that the proof of Lemma 15 is a trivial modification of the proof to the standard McDiarmid’s inequality.
For the standard McDiarmid’s inequality, the random variables x1,x2, . . . ,xn are sampled independently from X - this is
used crucially for the fact that the probability of any instantiation of the random variables xi+1, . . . ,xn does not depend on
the values assigned to the random variables x1, . . . ,xi. In fact this is the only (but crucial) use of the independence. For the
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uniform sampling without replacement case, the independence does not hold - yet, the probability of any instantiation of the
random variables xi+1, . . . ,xn is simply 1/

(|X |−i
n−i

)
and therefore does not depend on the values assigned to the random

variables x1, . . . ,xi. Therefore all remaining steps hold true.

In our setting, we letHJ (with |HJ | = nJ ≥ nℓ) be the set of users sampled for items in J . In that case, we define the
function of the observations corresponding to the items in J and users inHJ to be the RHS in eq. (5). Note that because
of how we set the value of σ2, conditioned on the event F (ℓ), each entry of R̃(ℓ,1), R̃(ℓ,2) are bounded between [−1, 2].
Therefore the maximum determinant detmax(r) of an r × r sub-matrix of either of R̃(ℓ,1), R̃(ℓ,2) must be bounded from
above by 2rrr/2 (Hadamard’s determinant inequality). Therefore, on altering the set of observations corresponding to a
particular user inHJ by a different set of observations, conditioned on the event F (ℓ), the change in RHS in eq. (5) is at
most (

nJ

r − 1

)
(

(
nJ

r

)
)−12rrr/2 ≤ 2rr1+r/2(nJ − r)−1 ≤ 2r+1r1+r/2n−1

J

where we use the fact that nJ ≥ nℓ ≥ 2r. Hence, we can conclude by application of McDiarmid’s inequality

Pr
(
|µ̃J − µJ | ≥ ϵℓ | E(ℓ),F (ℓ)

)
≤ 2 exp

(
− 2nJ ϵ2ℓ

2r+1r1+r/2

)
.

Therefore, by setting

ϵℓ =

√
(2r+1r1+r/2) log(NrT)

nℓ
,

with probability at least 2N−rT−2, the estimate µ̃J must belong to the interval [µJ − ϵℓ, µJ + ϵℓ]. Therefore, conditioning
on events E(ℓ),F (ℓ) by taking a union bound over all possible r-columns of [N], we can conclude that for all surviving
r-columns J in B(ℓ), with our algorithm, the estimates µ̃J will be within ϵℓ of their mean µJ for our choice of ϵℓ. Since
the event (F (ℓ))c happens with an order-wise smaller probability (O(T−10) in particular), we can ignore the conditioning
on F (ℓ).

Let us define G(ℓ) if µ̃J ∈ [µJ − ϵℓ, µJ + ϵℓ] in phase ℓ for our choice of ϵℓ in Lemma 14. Next, we show the following
lemma (slightly modified from (Kveton et al., 2017)) to characterize instantaneous regret:

Lemma 16. Suppose for a user u ∈ [M], we recommend a set of r distinct items at round t (denoted by J ≡ {ρu(t, j)}j∈[r]).
In that case, we will have

Ruπu(1) −max
j∈[r]

Ruρu(t,j) ≤ 6r5/2
(det2(VA)− det2(VJ )

det2(VA)

)
.

Proof of Lemma 16. Consider any permutation ν : [r]→ [r]. We denote the r-dimensional basis vectors by {ei}i∈[r]. Also,
let VA be the matrix whose rows are formed by the hott vectors {v(aj)}j∈[r]. Then any item vector v′ can be written as
VT

As where s is a vector with non-negative entries that sum up to at most 1. For the jth item, we will have v(j) = VT
As

(j).
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Note that we have for a user u,

Ruπu(1) −max
j∈[r]

Ruρu(t,ν(j)) = (u(u))Tv(πu(1)) −max
j∈[r]

(u(u))Tv(ρu(t,ν(j)))

= max
j∈[r]

(u(u))Tv(aj) −max
j∈[r]

(u(u))Tv(ρu(t,ν(j)))

≤ max
j∈[r]

∣∣∣∣(u(u))Tv(aj) −max
j∈[r]

(u(u))Tv(πu(t,ρ(j)))

∣∣∣∣
≤

∑
j∈[r]

∣∣∣(u(u))Tv(aj) − (u(u))Tv(ρu(t,ν(j)))
∣∣∣

=
∣∣∣∣∣∣(u(u))TVT

A

∣∣∣∣∣∣
2

∑
j∈[r]

∣∣∣∣∣∣(ei − sρu(t,ν(j))
)∣∣∣∣∣∣

2

≤ 2r
∑
j∈[r]

∣∣∣∣∣∣ei − sρu(t,ν(j))
∣∣∣∣∣∣
2
.

At this point, we can simply use the lemma in (Kveton et al., 2017) which says the following:

Lemma 17 (Lemma 4 in (Kveton et al., 2017)). There must exist a permutation ν : [r]→ [r] such that

∑
j∈[r]

∣∣∣∣∣∣ei − sρu(t,ν(j))
∣∣∣∣∣∣
2
≤ 6r3/2

(det2(VA)− det2(VJ )

det2(VA)

)

Combining the two statements above, we obtain the desired result.

Now we are ready to prove Thm 2 using the intermediate Lemmas 13, 14 and 16.

Proof of Theorem 2. Recall that in the first phase ℓ = 1, we initialize the set of r-columns by Πr([N]). In each phase ℓ, we
eliminate subsets of r-columns. Suppose at beginning of phase ℓ, we have B(ℓ) to be the set of surviving r-columns and for
each J ∈ B(ℓ), we compute µ̃J , an estimate of µJ . For the subsequent phase ℓ+ 1, we compute B(ℓ+1) in the following
way:

B(ℓ+1) = {J ∈ B(ℓ) | µ̃J ≥ max
J ′∈B(ℓ)

µ̃J ′ − 2ϵℓ}.

First, we show that if A, the set of hott item vectors belong to B(ℓ), then A should also belong to B(ℓ+1) conditioned
on the event G(ℓ). To see this, note that µA > µJ for all J ̸= A. Since, conditioned on the event G, we have
µ̃J ∈ [µJ − ϵℓ, µJ + ϵℓ], by triangle inequality, it must happen that A ∈ B(ℓ+1). Furthermore, for all J ∈ B(ℓ+1), it must
happen that (Lemma 14)

µJ ≥ µA − 2ϵℓ =⇒ det2(VJ ) ≥ det2(VA)−
2ϵℓ
cavg

.

Hence, in all rounds t in phase ℓ, the regret incurred by user u (Lemma 16) is bounded by

Ruπu(1) −max
j∈[r]

Ruρu(t,ρ(j)) ≤
12r5/2ϵℓ
cavgcmax

In phase ℓ ≥ 1, we set ϵℓ = 2−ℓ and ϵ0 = 1. Hence, we have nℓ = C(r)22ℓ where C(r) = 2r+1r1+r/2. Thus, a sufficient
value for dℓ and the number of rounds in phase ℓ is (Lemma 13)

dℓ = O
( N

M1/r
· C(r)22ℓ

)
and 2σ2dℓ = O

(σ2N log(MT)

M1/r
· C(r)22ℓ

)
respectively.
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Hence, if the total number of phases is m = O(logT) within which all sub-optimal r-columns are eliminated by the
algorithm, then by combining the above statements, the regret can be computed as

RegSimplified(T) ≤
m∑
ℓ=1

2σ2dℓϵℓ + TPr(∪ℓ(E(ℓ))c ∪ℓ (F (ℓ))c ∪ℓ (G(ℓ))c)

= O
(
1 +

σ2N log(MT)

M1/r
· 2

r+1r(r+7)/2

cavgcmax∆det

)
.

D. Discussion on Feasibility of Assumptions
Note that the proof analysis of Theorem 1 generalizes easily (without almost any changes) if the number of hott items is
d > r as well. We stress that only for ease of exposition, we have considered the number of hott vectors to be r.

In this section we are going to show evidence that Assumptions 1 and 3 are true together for a large number of rank-r reward
matrices R ∈ RM×N with the number of hott topics to be d = 2r. In particular, suppose we decompose R = XTY where
X ∈ Rr×M, Y ∈ Rr×N are the transposes of user and item embedding matrices respectively. We consider the generative
model where

1. All entries of X are independently generated from N (0, 1).
2. The first r columns of Y are the identity matrix multiplied by a factor of 10 log(rN). The second r columns of Y

are the identity matrix multiplied by a factor of −10 log(rN). All entries in the remaining N− 2r columns of Y are
uniformly generated from the interval [0, 1].

For the first part of our proof, we will show guarantees on the SVD of X = UΣVT where U ∈ Rr×r,V ∈ RM×r are
orthonormal matrices (singular vectors) and Σ ∈ Rr×r is a diagonal matrix corresponding to the singular values of X.
More specifically, we have the following lemmas from (Pal et al., 2023) - however, we include the proofs for the sake of
completeness. We will denote X|S to be the matrix X restricted to the columns in S and similarly, we denote XS to denote
the matrix X restricted to the rows in S. For a matrix X, we will write λj(X) to denote the jth singular value of X.

Lemma 18. [(Pal et al., 2023)] Fix γ > 0. If xTX|SX
T
|Sx ≥ αγrλ2

1/M for a subset S ⊆ [M], |S| = γr for all unit vectors
x ∈ Rr, then the minimum eigenvalue of VT

SVS ≥ αγr/M.

Proof. If xTX|SX
T
|Sx ≥ αγrλ2

1/M for a subset S ⊆ [M], |S| = γr for all unit vectors x ∈ Rr, then the minimum
eigenvalue of VT

SVS ≥ αγr/M. To see this, note X|S = UΣVT
S implying that VT

S = (UΣ)−1X|S . Hence, VT
SVS =

(UΣ)−1X|SX
T
|S(UΣ)−T implying that (VT

SVS)
−1 = (UΣ)T(X|SX

T
|S)

−1(UΣ). Taking the operator norm on both

sides, we have λmin(V
T
SVS) ≥ λ−2

1 λmin(X|SX
|T
S ) implying that xTVT

SVSx ≥ αγr/M.

Lemma 19. Suppose r ≪ M and further, the entries of X are generated independently according to N (0, 1). In that case,
it must happen that with high probability that (for γ = 16 logM)

1. λ1(X)/λr(X) = O(1)

2. Hence ||V||2,∞ ≤ 16
√

r logM
M

3. λr(VS) ≥ β for some constant β > 0 where S corresponds to a nice subset of users.

Proof. We must have
√
M −

√
r − t ≤ λr(X) ≤ λ1(X) ≤

√
M +

√
r + t w.p. at least 1 − 2e−t2/2 implying that√

M/2 ≤ λr ≤ λ1 ≤ 2
√
M; hence we must have λ1/λr = O(1) w.p. at least 1 − O(e−M). Moreover, we have

XTX = VΣ2VT. Clearly, we must have ||X||∞,2λ
−1
r ≤ ||V||2,∞ ≤ ||X||∞,2λ

−1
1 . For any column X|i, we have

∣∣∣∣X|i
∣∣∣∣2
2

is a chi-squared random variable with r degrees of freedom. Using standard concentration inequalities for chi-squared
random variables, we have

∣∣∣∣X|i
∣∣∣∣
2
≤ 8
√
r logM with probability at least 1 −M−2. By taking a union bound over all

i ∈ [M], we have ||X||∞,2 ≤ 8
√
r logM w.p. at least 1 −M−1. Hence ||V||2,∞ ≤ 16

√
r logM

M . Therefore, when X is a
random Gaussian matrix, the first part of Lemma holds true and the second part of Lemma holds true with µ = O(logM)
with high probability.
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On the other hand, for a subset S ⊆ [M] such that S corresponds to a nice subset of users we must have that |S| ≥ cM for
some constant c > 0 (with Assumption 2 being true). In that case, we have the minimum singular value of X|S to be at least√
cM−

√
r− t w.p. at least 1− 2e−t2/2. Taking t =

√
4r logM, we must have the minimum singular value of X|S to be at

least
√
cM/2 with probability at least 1− 2e−2r logM. Taking a union bound over all nice subsets (at most 2C of them where

C is the number of clusters), we must have for all unit norm vectors x ∈ Rr

xTX|SX
T
|Sx ≥

c2M

4
=

c2M · 4M
16M

≥ c2λ2
1

16

with probability at least 1−O(e−M) implying that α ≥ 1/16. Combining with Lemma 18, we can prove the final conclusion
of the lemma.

Conjecture: We will have that the minimum singular value of any sub-matrix Y|S restricted to the columns in S of size
|S| = γr to be at least rγ

4 . An open problem to a similar effect has been stated in (Bhojanapalli & Jain, 2014).

Discussion: We take γ = 16 logN. Again, for a subset S ⊆ [N], |S| = γr, we must have the minimum singular value of
Y|S to be at least

√
r(
√
γ− 1)− t with probability at least 1− 2e−t2/2. Taking t = 2

√
r logN, we must have the minimum

singular value of Y|S to be at least
√
rγ/2 with probability at least 1− 2e−2r logN.

Taking a union bound over all such subsets S of [M] with size |S| = γr, we have the failure probability to be(
N

16r logN

)
e−2r logN which becomes large - more precisely

(
N

16r logN

)
≈ er log2 N that is, the factor in the exponent is

larger by a multiplicative factor of logN than the tail probability. At this point we conjecture that such an analysis is weak as
the union bound does not capture the dependencies among the sets due to non-empty intersections. In fact, even theoretically,
for most sets, the minimum singular value is going to be large. We leave a tight analysis of this case as a future work.
However, if the failure probability for this event is indeed smaller than 1, then we must have for all unit norm vectors x ∈ Rr

xTY|SY
T
|Sx ≥

rγ

4
=

rγ · 4N
16N

≥ rγλ2
1

16N

with high probability at least implying that α ≥ 1/16. Combining with Lemma 18, we can conclude that if the conjecture is
true, then λr(V̂S) ≥

√
rγ
16N .

Recall that P = XTY = VΣUTÛΣ̂V̂. We take a further SVD of ΣUÛΣ̂ = ŨΣ̃Ṽ. Therefore, we get that P =
VŨΣ̃ṼV̂. Note that VŨ and ṼV̂ are orthonormal matrices and therefore VŨΣ̃ṼV̂ is a valid SVD of P. The
properties of Lemmas 19 and 20 are preserved in the modified singular value matrices VŨ and ṼV̂ respectively. Since
the condition numbers of both X,Y are constants, therefore the condition number of P is also a constant. Moreover, the∣∣∣∣∣∣VŨ

∣∣∣∣∣∣
2,∞
≤ ||V||2,∞ and

∣∣∣∣∣∣ṼV̂
∣∣∣∣∣∣
2,∞
≤

∣∣∣∣∣∣V̂∣∣∣∣∣∣
2,∞

. Finally, for any set S ⊆ [M], we will have λr(VSŨ) = λr(V) and a

similar property also holds for V̂.
Lemma 20. Assume that the above conjecture is true. Suppose r ≪ N and further, the entries of last N− 2r columns of Y
are generated independently according to N (0, 1). In that case, it must happen with high probability that (suppose SVD of
Y = ÛΣ̂V̂)

1. λ1(Y)/λr(Y) = O(1).

2. Hence
∣∣∣∣∣∣V̂∣∣∣∣∣∣

2,∞
≤ 16

√
r logM

M

We move on to a analysis for the matrix Y which is very similar to the matrix X. Note that Lemma 18 holds true for the
matrix Y as well with M replaced by the number of items N. We now show the following lemma:

First of all, we have that the eigen-spectrum of Y is same as the eigen-spectrum of YT. Notice that for any unit vector z, we
have that

N∑
i=1

zTYiY
T
i z = 20 log(rN) +

N∑
i=2r

zTYiY
T
i z.

Combining with the analysis of Lemma 19, we must have that, with probability at least 1− 2e−t2/2,
√
N−
√
r − t+

√
20 log(rN) ≤ λr(Y) ≤ λ1(Y) ≤

√
N+
√
r + t+

√
20 log(rN).
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Therefore, we can again conclude that that λ1(Y)/λr(Y) = O(1) with probability at least 1−O(e−M). Furthermore, we
also have that ||Y||∞,2 ≤ 8

√
r logN with probability at least 1− N−1. Again, if the SVD of the matrix Y = ÛΣ̂V̂ where

Û, V̂ are orthonormal matrices, then
∣∣∣∣∣∣V̂∣∣∣∣∣∣

2,∞
≤ ||Y||∞,2λ1(Y)−1. Since λ1(Y) ≥

√
N
4 with probability at least 1− e−N,

we have that
∣∣∣∣∣∣V̂∣∣∣∣∣∣

2,∞
≤ 32

√
r logN

N .

Consider some N′ = cN for a suitable constant c > 1 which will be decided later. Suppose we randomly generate N′

r-dimensional vectors y1,y2, . . . ,yN′
such that every entry of each of these vectors is independently generated from

N (0, 1). Now, for some fixed ϵ > 0, consider an ϵ-net of the r-dimensional unit ball Sr,ϵ such that for any unit vector
x ∈ Rr, there must exist z ∈ Sr,ϵ such that ||x− z||2 ≤ ϵ. Now, for any unit fixed vector z ∈ Sr,ϵ and any i ∈ [N′], we
have that the random variable zTyi ∼ N (0, 1). Further note that the random variables {zTyi}N′

i=1 are independent. Now,
for any X ∼ N (0, 1), we must have that for any constant γ < 1

Pr(|X| ≤ γ) ≤
√

2

π
· γ.

Therefore, for a fixed γ > 0, consider the random variables J1, J2, . . . , JN′ where Ji = 1[
∣∣zTyi

∣∣ ≤ γ]. Clearly, we have
that ∑

i∈[N′]

EJi =
√

2

π
· γN′

Since the variables {Ji}i are indicator random variables, we can directly use Chernoff bound to conclude that with probability

at least 1 − exp(−N), we have
∑

i Ji ≤
√

8
π · γN

′. We will choose ϵ = 1/3 and it is well-known that there exists an
ϵ−net Sr,ϵ satisfying |Sr,ϵ| ≤ 9r. Therefore, if we take a union bound over all 9r vectors in Sr,ϵ, then we must have with
probability 1− 2r exp(−N),

∑
z∈Sr,1/3

∑
i∈[N′]

1[
∣∣zTyi

∣∣ ≤ γ] ≤
√

2

π
· 9r · γN′

Recall that r is a small constant and therefore, 9r is a constant as well. Hence, we choose the constant γ > 0 such that√
2
π · 9

r · γ ≤ 10−1. Therefore, we have a subset T ⊆ {y1, . . .yN′} of least 9N′/10 vectors such that for all y ∈ T , we
have for the constant γ > 0 and ϵ = 1/3 ∣∣zTy∣∣ ≥ γ for all z ∈ Sr,ϵ.

We will use the vectors in T to be the set of vectors for constructing the last N− 2r columns of Y.

Now, consider any set S ⊆ T . Consider the matrix H whose columns are given by the vectors in S. In that case, we have
for all z ∈ Sr,ϵ,

zT(I− yyT)z ≤ 1− γ.
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