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Abstract
In this work, we develop a new Quantum-based
Matching Kernel (QBMK) for un-attributed
graphs, by computing the kernel-based similar-
ity between the quantum Shannon entropies of
aligned vertices through the Continuous-time
Quantum Walk (CTQW). The theoretical anal-
ysis reveals that the proposed QBMK kernel
not only addresses the shortcoming of neglect-
ing the structural correspondence information be-
tween graphs arising in existing R-convolution
graph kernels, but also overcomes the problem
of neglecting the structural differences between
pairs of aligned vertices arising in existing vertex-
based matching kernels. Moreover, the proposed
QBMK kernel can simultaneously capture both
global and local structural characteristics through
the quantum Shannon entropies. Experimental
evaluations on standard graph datasets demon-
strate that the proposed QBMK kernel is able
to outperform state-of-the-art graph kernels and
graph deep learning approaches.

1. Introduction
There are increasing interests in employing graph kernel-
s associated with specified kernel machines (e.g., the C-
Support Vector Machine (C-SVM), etc) for graph classifi-
cation (Gärtner et al., 2003; Jebara et al., 2004).

Generally speaking, graph kernels are defined as the sim-
ilarity measure between graph structures. Most state-of-
the-art graph kernels essentially fall into the concept of R-

1School of Artificial Intelligence, Beijing Normal Univer-
sity, Beijing 100875, China. 2School of Information, Central
University of Finance and Economics, Beijing 100081, China.
3Zhejiang Institute of Optoelectronics, Jinhua 321004, China.
4Zhejiang Key Laboratory of Intelligent Education Technology
and Application, Zhejiang Normal University, Jinhua 321004,
China. 5Department of Computer Science, University of York,
YO10 5GH York, UK.. Correspondence to: Lixin Cui <cuilix-
in@cufe.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024
by the author(s).

convolution (Haussler, 1999). This is a generic manner of
defining new graph kernels based on measuring the sim-
ilarity between decomposed substructures of graphs, e.g.,
the R-convolution graph kernels based on the decomposed
paths (Borgwardt & Kriegel, 2005), cycles (Aziz et al.,
2013), walks (Sugiyama & Borgwardt, 2015), subgraph-
s (Kriege & Mutzel, 2012), subtrees (Azaı̈s & Ingels,
2020), etc. With the scenario of R-convolution, Kalo-
folias et al., (Kalofolias et al., 2021) have introduced a
Structural Similarity Random Walk Kernel by measur-
ing the similarity between random walks. Costa and
Grave (Costa & Grave, 2010) have introduced a Pairwise-
Distance Expansion Subgraph Kernel based on layer-
wise expansion subgraphs around pairwise rooted vertices,
that have specified distance between each other. Sher-
vashidze et al., (Shervashidze et al., 2010) have introduced
a Weisfeiler-Lehman Subtree Kernel based on the subtree
invariants, that are extracted by the classical Weisfeiler-
Lehman Isomorphism Test Method (Weisfeiler & Lehman,
1968). Other classical R-convolution graph kernels al-
so include: the Wasserstein Weisfeiler-Lehman Subtree
Kernel (Togninalli et al., 2019), the Pyramid-Quantized
Shortest-Path Kernel (Gkirtzou & Blaschko, 2016), the Iso-
lation Graph Kernel (Xu et al., 2021a), the Graph Filtration
Kernel (Schulz et al., 2022), etc.

Unfortunately, most of the above R-convolution graph k-
ernels suffer from some common drawbacks, influencing
the effectiveness. First, to guarantee the computational effi-
ciency, the R-convolution graph kernels tend to utilize the
local substructures of small sizes. Thus, the R-convolution
graph kernels fail to capture characteristics of the global
graph structures. Second, the R-convolution graph kernel-
s only focus on whether a pair of substructures are iso-
morphic, ignoring the structural correspondence informa-
tion between the substructures. For example, Fig. 1 ex-
hibits two Delaunay graphs, that are both extracted from
the same house object through different viewpoints. Since
the two triangle-based substructures are isomorphic, the R-
convolution graph kernels will directly add one unit kernel
value, no matter whether the substructures are structural-
ly aligned to each other in terms of the vision background.
As a result, the R-convolution graph kernels can not reflect
precise similarity measures between graphs.

To address the drawback of ignoring global structure in-
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Figure 1. Delaunay graphs extracted with different viewpoints.

formation that arising in R-convolution graph kernels, a
number of global-based graph kernels based on the glob-
al graph structures have been developed. For instance, Jo-
hansson et al., (Johansson et al., 2014) have introduced a
Global Geometric Embedding Kernel associated with the
Lovász numbers as well as their orthonormal representa-
tions, that are computed through the adjacency matrix. X-
u et al., (Xu et al., 2018) have introduced a Global-based
Reproducing Graph Kernel by measuring the Basic Repro-
ducing Kernel between the approximated von Neumann en-
tropies of global graph structures. On the other hand, Bai et
al., (Bai et al., 2015a) have developed a family of quantum-
inspired global-based graph kernels, namely the Quantum
Jensen-Shannon Graph Kernels, by measuring the Quan-
tum Jensen-Shannon Divergence (QJSD) between the den-
sity operators of the Continuous-Time Quantum Walk (C-
TQW) (Emms et al., 2009) evolved on global graph struc-
tures. Since the CTQW can not only better discriminate
different graphs, but also reflect intrinsic structural charac-
teristics. The resulting Quantum Jesen-Shannon Graph K-
ernels can capture more complicated intrinsic structure in-
formation residing on global graphs. Unfortunately, these
global-based graph kernels focus more on the global char-
acteristics, and ignore the inherent characteristics resid-
ing on local structures. Furthermore, similar to the R-
convolution kernels, these global-based graph kernels can-
not identify the structural correspondence information be-
tween pairwise graphs, influencing the effectiveness.

To address the drawback of overlooking the correspon-
dence information that arises in both the R-convolution
graph kernels and the global-based graph kernels, Bai and
Xu et al., (Bai et al., 2015b; Xu et al., 2021b) have devel-
oped a family of vertex-based matching kernels by count-
ing the pairs of aligned vertices, that are identified by e-
valuating the distance between the vectorial Depth-based
Representations (Bai & Hancock, 2014) of vertices. More-
over, they show that these matching kernels are theoretical-
ly equivalent to Aligned Subgraph Kernels, that calculate
the number of pairwise structurally-aligned subgraphs, en-
capsulating the structural correspondence information be-
tween graphs. However, similar to the R-convolution ker-
nels, these matching kernels cannot capture global structure
information through the local aligned vertices, influencing
the effectiveness of the kernel measures. Furthermore, s-

ince each pair of aligned vertices will dedicate the same
one unit kernel value, the matching kernels cannot identi-
fy structural differences between different pairs of aligned
vertices in terms of global graph structures, influencing the
precise kernel measure. Finally, these matching kernels on-
ly identify the correspondence information based on spec-
ified dimensional vectorial vertex representations, lacking
multilevel alignment information between graphs.

The main objective of this work is to resolve the theoretical
problems of the existing graph kernels discussed above. To
this end, we develop a novel Quantum-based Matching Ker-
nel (QBMK) for un-attributed graphs. One key innovation
of the proposed QBMK kernel is to compute the kernel val-
ue by measuring the similarity between the quantum Shan-
non entropies of aligned vertices, through the Average Mix-
ing Matrix (AMM) of the CTQW. Since these vertex-based
entropies are usually different, the QBMK kernel can dis-
criminate the structural difference between different pairs
of aligned vertices based on the entropic similarity. Overal-
l, the contributions of this work are summarized as follows.

First, for each pair of graphs, we commence by performing
the CTQW on each of the graph structures. More specif-
ically, we utilize the AMM matrix to describe the evolu-
tion of the CTQW. The reason of using the AMM matrix
is due to the fact that it can not only reflect richer graph
topological information in terms of the CTQW, but also as-
sign each vertex an individual probability distribution that
investigates how the CTQW visit all vertices when it de-
parts from the vertex (see details in Section 3.1). Further-
more, we show how the AMM matrix allows us to com-
pute a quantum Shannon entropy for each vertex, that not
only reflects local structural information residing on the lo-
cal vertex, but also captures complicated intrinsic structural
characteristics of global graph structures.

Second, for pairwise graphs we compute a family of dif-
ferent h-level entropic correspondence matrices to reflec-
t the multilevel alignment information between vertices.
With the entropic correspondence matrices and the quan-
tum Shannon entropies of vertices to hand, the proposed
QBMK kernel is defined by computing the kernel-based
similarities between the entropies over all pairs of aligned
vertices. We theoretically demonstrate that the QBMK ker-
nel not only encapsulates the structural correspondence in-
formation between graphs, but also identifies the structural
differences between pairs of aligned vertices. Moreover,
the QBMK kernel not only reflects multilevel alignment
information through the entropic correspondence matrices,
but also simultaneously captures both global and local char-
acteristics through the quantum Shannon entropies. These
advantages explain the effectiveness of the QBMK kernel.

Third, we experimentally demonstrate the graph classifi-
cation performance of the proposed QBMK kernel asso-
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ciated with the C-SVM on ten standard graph datasets.
The QBMK kernel significantly outperforms state-of-the-
art graph kernels and graph deep learning approaches.

This paper organizes as follows. Section 2 reviews related
works. Section 3 defines the proposed kernel. Section 4
gives empirical evaluations. Section 5 gives conclusions.

2. Quantum Backgrounds and Related Works
In this section, we introduce the concept of the CTQW that
will be used in this work. Moreover, we review the classical
Depth-based Matching Kernel that is related to this work.

2.1. The Continuous-time Quantum Walks

One objective of this work is to explore the structural in-
formation and compute the entropy-based representations
of graphs through the CTQW (Emms et al., 2009), that is
the quantum analogy of the classical Continuous-time Ran-
dom Walk (CTRW) (Watrous, 2001). Unlike the classical
CTRW, the state vector of the CTQW is complex-valued
rather than real-valued, and its evolution is governed by an
unitary matrix rather than a stochastic matrix. Thus, the
CTQW evolution is reversible, reducing the tottering prob-
lem arising in the CTRW. Moreover, since the evolution of
the CTQW is not determined by the Laplacian spectrum
with low frequency components, the CTQW can better dis-
criminate different graph structures than the CTRW.

In this subsection, we introduce the concept of the C-
TQW (Emms et al., 2009). For the CTQW evolving on a
sample graph G(V,E), its state space is defined over the
vertex set V , and the corresponding basis state at each ver-
tex v ∈ V is defined as |v⟩ based on the Dirac notation.
Here, |.⟩ is a |V |-dimensional orthonormal vector in a com-
plex valued Hilbert space. Since the state |ψ(t)⟩ at time t
is defined as a complex linear combination of these basic
state vectors |v⟩, |ψ(t)⟩ can be written as

|ψ(t)⟩ =
∑
v∈V

αv(t) |v⟩ , (1)

where αv(t) ∈ C is the complex amplitude. Unlike the
classical counterpart, the evolution of the CTQW is based
on the Schrödinger equation, i.e.,

∂ |ψt⟩
∂t

= −iH̄ |ψt⟩ , (2)

where H represents the system Hamiltonian and accounts
for the total energy of the system, and one can adopt the
adjacency matrix as the Hamiltonian.

Remarks: In quantum mechanics, the state |ψ(t)⟩ is the
pure state. To further explore intrinsic complex structural
information of a graph, a statistical ensemble (i.e., the

mixed density matrix) of the pure states is computed as
ρ =

∑
t pt |ψt⟩ ⟨ψt|. Specifically, the density matrix can

be viewed as the structural matrix representation of the
global graph strcture. For a pair of graphs, by measuring
the QJSD between their density matrices, Bai and Rossi et
al., (Bai et al., 2015a; Rossi et al., 2015) have developed a
family of Quantum Jensen-Shannon Kernels (QJSK) that
can reflect the intrinsic complex structural information for
graphs at a global level in terms of the CTQW. However,
these QJSK kernels focus more on global structures, ignor-
ing the structural information on local structures.

2.2. The Classical Depth-based Matching Kernels

In this subsection, we review the definition of the classical
Depth-based Matching Kernel (DBMK) (Bai et al., 2014a),
that computes the kernel value by calculating the number
of pairwise aligned vertices between graphs. For each pair
of graphsGp(Vp, Ep) andGq(Vq, Eq), assume Rh(vi) and
Rh(vj) are the h-dimensional vectorial representations of
their vertices vi ∈ Vp and vj ∈ Vq . We first compute the
Euclidean distance as the affinity measure between vi and
vj , and the (i, j)-th entry R(i, j) of the resulting affinity
matrix R ∈ R|Vp||Vq| between Gp and Gq is

R(i, j) =∥ Rh(vi)−Rh(vj) ∥ . (3)

If R(i, j) is the smallest one in both i-th row and j-th col-
umn, there is a one-to-one correspondence between vi ∈
Vp and vj ∈ Vq , i.e., vi and vj are aligned. Specifically, we
record the alignment information between Gp and Gq in
the correspondence matrix C ∈ {0, 1}|Vp||Vq| that satisfies

C(i, j) =

 1 if R(i, j) is the smallest in both
i−th row and j−th column;

0 otherwise.
(4)

Eq.(4) indicates that the vertices vi ∈ Vp and vj ∈ Vq are
aligned if C(i, j) = 1. To construct effective alignmen-
t information between Gp and Gq , Bai et al., (Bai et al.,
2014a) suggest to employ Depth-based (DB) Representa-
tions as the h-dimensional vectorial vertex representations.
Specifically, the DB representations are defined by gauging
the entropy-based complexity on a family of h̄-layer expan-
sion subgraphs rooted at vertices (Bai & Hancock, 2014),
where h̄ varies from 1 to h (i.e., h̄ = 1, 2, . . . , h) and the
larger layer subgraph completely encapsulates the smaller
layer one. Thus, the DB representation significantly encap-
sulates rich entropic content flow from each local vertex to
the global graph structure, as a function of depth. Fig.2
shows the computation procedure of the DB representation.
Finally, note that, the vertex of a graph may be aligned to t-
wo or more vertices of the other graph, and one can random-
ly preserve one correspondence entry (Bai et al., 2014a).

For the pair of graphs Gp and Gq and their associated cor-
respondence matrix C defined by Eq.4, the DBMK kernel
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Figure 2. The procedure of constructing the DB representations. For a sample graph Gp(Vp, Ep) and the associated i-th vertex vi ∈ Vp

(marked with the color red), we commence by computing the h̄-th order neighborhood set as N h̄
p;i = {vj ∈ Vp | d(vi, vj) ≤ 1}, where

d(vi, vj) represents the length of the shortest path between the j-th vertex vj ∈ Vp and the i-th vertex vi ∈ Vp. Then, the h̄-layer
expansion subgraph HS(G

h̄
p;i) rooted at vi ∈ Vp is defined as the substructure associated with the vertices in N h̄

i and their original
topological structures in Gp, e.g., the 1-layer, 2-layer and 3-layer expansion subgraphs G1

p;i, G
2
p;i and G3

p;i surrounded by the red, green
and blue broken line, respectively. Clearly, we can construct a family of h̄-layer expansion subgraphs, if we vary h̄ from 1 to h (i.e.,
h̄ = 1, 2, . . . , h). The resulting h-dimensional DB representation of vi is defined as DBh

p;i = [HS(G
1
p;i), HS(G

2
p;i), · · · ,HS(G

h
p;i)]

T ,
where HS(·) is the Shannon entropy based on Steady State Random Walks (Bai & Hancock, 2014).

between Gp and Gq is formulated as

KDBMK(Gp, Gq) =

|Vp|∑
i=1

|Vq|∑
j=1

C(i, j), (5)

that counts the number of pairwise aligned vertices.

Remarks: Indeed, the DBMK kernel is theoretically re-
lated to a classical R-convolution kernel, namely the All
Subgraph Kernel (ASK) (Gärtner et al.), explaining the ef-
fectiveness of the DBMK kernel. Specifically, for the pair
of graphs Gp and Gq , the ASK kernel is defined as

KASK(Gp, Gq) =
∑

Sp⊑Gp

∑
Sq⊑Gq

δ(Sp, Sq), (6)

where Sp and Sq are pairwise subgraphs ofGp andGq, and

δ(Sp, Sq) =

{
1 if Sp ≃ Sq,
0 otherwise.

(7)

Here, δ is a Dirac kernel, and δ(Sp, Sq) = 1 if Sp and Sq

are isomorphic (i.e., Sp ≃ Sq), and 0 otherwise. Since the
h-dimensional DB representation DBh

p;i of vertex vi ∈ Vp
can be theoretically considered as the vectorial represen-
tation of the associated h-layer expansion subgraph Gh

p;i

rooted at vi ∈ Vp (Bai et al., 2014a). Moreover, Eq.(3) and
Eq.(4) indicate that DBh

p;i and DBh
q;i are closest to each

other (i.e., DBh
p;i and DBh

q;i are structurally similar), if the
the vertices vi ∈ Vp and vj ∈ Vq are aligned to each other.
Hence, the DBMK kernel can be rewritten as

Kh
DBMK(Gp, Gq) =

∑
Sp⊑Gp

∑
Sq⊑Gq

δ(Sp, Sq), (8)

where

δ(Sp, Sq) =


1 if Sp = Gh

p;i and Sq = Gh
q;j ,

and v and u are aligned,
0 otherwise.

(9)

Clearly, the DBMK kernel can be theoretically considered
as an Aligned Subgraph Kernel that calculates the num-
ber of pairwise isomorphic h-layer expansion subgraphs
around aligned vertices, i.e., the DBMK kernel integrates
the local correspondence information between the isomor-
phic subgraphs, addressing the shortcoming of classical R-
convolution kernels that tend to overlook the structural cor-
respondence information between substructures. Unfortu-
nately, the DBMK kernel still suffers from some drawbacks.
First, similar to the R-convolution kernels, the DBMK ker-
nel cannot reflect global graph characteristics based on lo-
cal aligned vertices. Second, the DBMK kernel cannot dis-
criminate the structural differences between different pairs
of aligned vertices in terms of the global graph structures,
since any pair of aligned vertices will contribute the same
kernel-based similarity value (i.e., the one unit value).

3. The Quantum-based Matching Kernel
In this section, we propose the Quantum-based Matching
Kernel (QBMK) for un-attributed graphs. Moreover, we
theoretically explain how the proposed kernel overcomes
the drawbacks of aforementioned classical graph kernels.

3.1. Quantum Shannon Entropies through the CTQW

In this subsection, we define the quantum Shannon entropy
based on the CTQW. We employ the AMM matrix (Godsil,
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Figure 3. An example of computing the AMM matrix.

2013) to describe the behavior of the CTQW evolving on
the graph G(V,E) at time t, and the matrix is defined as

QM(t) = U(t) ◦ U(−t) (10)

= eiH̄t ◦ e−iH̄t,

where ◦ represents the Schur-Hadamard product operation
between eiH̄t and e−iH̄t. Since U is an unitary matrix,
QM(t) denotes a doubly stochastic matrix and each of its
entryQM(t)uv corresponds to the probability of the CTQW
visiting vertex v ∈ V at time t and departing from vertex
u ∈ V . To ensure the convergence for QM(t), we compute
the time-averaged AMM matrixQ for the CTQW by taking
the Cesàro mean, i.e.,

Q = lim
T→∞

ˆ T

0

QM (t)dt, (11)

where each entry Qvu of Q corresponds to the time-
averaged probability of the CTQW arriving in u ∈ V and
departing from v ∈ V . Because each entry of Q is a ra-
tional number (Godsil, 2013), we can directly calculate Q
based on the Hamiltonian spectrum. Assume the adjacen-
cy matrix A is the Hamiltonian H̄, λ1, λ2, . . . , λ|V | be it-
s eigenvalues, and Pj be its orthogonal projection on the
eigenspace in association with λj (i.e., H̄ =

∑|V |
j=1 λjPj),

the AMM matrix Q of the CTQW is defined as

Q =

|V |∑
j=1

Pj ◦ Pj , (12)

where the v-th row or column of Q corresponds to a prob-
ability distribution of the CTQW visiting all vertices when
it departs from the vertex v ∈ V .

Definition 3.1 (The Quantum Shannon Entropy of Ver-
tices): With the AMM matrix Q of the graph G(V,E) to
hand, we define a quantum Shannon entropy HQS(v) for
each vertex v ∈ V associated with the v-th row of Q, i.e.,

HQ(v) = −
∑
u∈V

Qvu logQvu, (13)

where HQ(v) is the structural characteristics of each local
vertex v ∈ V in terms of the CTQW departing from v. 2

Remarks: The proposed quantum Shannon entropy com-
puted through the AMM matrix has some important theoret-
ical properties. First, as we have discussed in Section 2.1,
the CTQW can reflect the complicated intrinsic structural
information of graph structures. Thus, the quantum Shan-
non entropy can well characterize the graph topological in-
formation through the AMM matrix of the CTQW. Second,
since each v-th row of the AMM matrix corresponds to an
individual probability distribution of the CTQW visiting
all vertices when the CTQW departs from each vertex v.
The quantum Shannon entropy computed through the AM-
M matrix not only encapsulates the global structure infor-
mation through the CTQW probability distribution visiting
all vertices, but also reflects the local structural informa-
tion in terms of each local starting vertex. Fig.3 exhibits an
example, it is clear that the probability distributions of the
CTQW departing from different local vertices tend to be
different, excluding the vertices v1 and v3 having the sym-
metric structural relationship. Thus, the quantum Shannon
entropies of different vertices tend to be distinctive, simulta-
neously reflecting discriminative global and local informa-
tion over different vertices. Overall, the quantum entropy
provides an elegant way to develop novel entropic graph
kernels, by measuring the similarity between the entropies.

3.2. The Proposed QBMK Kernel

In this subsection, we define the proposed QBMK kernel.
To reflect multilevel vertex correspondence information be-
tween graphs, unlike the original DBMK kernel discussed
in Section 2.2, we compute a family of different-level cor-
respondence matrices rather than a single-level correspon-
dence matrix between graphs. Specifically, for the pair
of graphs Gp(Vp, Ep) and Gq(Vq, Eq), assume DBh

p;i and
DBh

q;j are the associated h-dimensional DB representation-
s of their vertices vi ∈ Vp and vj ∈ Vp (i.e., the vectorial
vertex representations), respectively. The h-level affinity
matrix Rh between Gp and Gq is defined as

Rh(i, j) =∥ DBh
p;i −DBh

q;j ∥ . (14)

To identify the vertex correspondence information through
Rh, we not only request the entry Rh(i, j) to be the small-
est one in both row i and column j, but also request both
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Table 1. Properties of the Proposed HAQJSK Kernels
Kernel Properties QBMK R-convolution Kernels Matching-based Kernels Global-based Kernels

Structural Alignment Yes No Yes No
Capture Local Information Yes Yes Yes No
Capture Global Information Yes No No Yes
Reflect Multilevel Alignments Yes No No No
Discriminate Different Alignments Yes No No No

the h-layer expansion subgraphs Gh̄
p;i and Gh̄

q;j for DBh
p;i

and DBh
q;j to exist (i.e., |N h̄

p;i| > 0 and |N h̄
q;j | > 0).

Thus, unlike the previous correspondence matrix C de-
fined by Eq.(4), the h-level correspondence matrix Ch ∈
{0, 1}|Vp||Vq| recording the vertex correspondence informa-
tion between Gp and Gq based on Rh needs to satisfy

Ch(i, j) =


1 if Rh(i, j) is the smallest entry

in both row i and column j, and

|N h̄
p;i| > 0 and |N h̄

q;j | > 0;
0 otherwise.

(15)
When vary the parameter h from 1 to H (e.g., the greatest
value of H), we can compute a family of different h-level
correspondence matrices as C = {C1, . . . , Ch, . . . , CH},
reflecting multilevel vertex correspondence information.

Definition 3.2 (The Quantum-based Matching Kernel):
For the graphs Gp and Gq , and the associated h-level cor-
respondence matrix set C, the QBMK kernel is defined as

KQBMK(Gp, Gq) =
H∑

h=1

∑
vi∈Vp

∑
vj∈Vq

Ch(i, j)Kr(vi, vj),

(16)

where Kr(vi, vj) is defined as the Basic Reproducing K-
ernel (Xu et al., 2018) associated with the quantum Shan-
non entropies HQ(vi) and HQ(vj) of vertices vi ∈ Vp and
vj ∈ Vp defined by Eq.(14), i.e.,

Kr(vi, vj) =
1

2
e−[HQ(vi)−HQ(vj)]. (17)

Clearly, the proposed QBMK kernel computes the sum of
the reproducing kernel based similarities between the quan-
tum Shannon entropies over all pairs of aligned vertices. 2

Note that, Fröhlich et al., (Fröhlich et al., 2005) have point-
ed out that the transitivity between the aligned vertices is
the necessary condition to guarantee the positive definite-
ness for a vertex-based matching kernel, i.e., if the vertices
u and v are matched, the vertices v and w are matched,
then the vertices u and w should also be matched. Since
the required vertex correspondence information identified
by the proposed QBMK kernel is evaluated between each
individual pair of graphs, the proposed QBMK kernel can-
not guarantee the transitive alignment and the positive def-
initeness. Nonetheless, Ong et al., (Ong et al., 2004) have

proven that the non-positive definite kernels are still effec-
tive, and this is not necessarily a big issue for the use of
these kernels in practice. In Section 4, we will indicate that
the proposed QBMK kernel still significantly outperforms
state-of-the-art methods, demonstrating the above theoreti-
cal statements in (Ong et al., 2004).

3.3. Theoretical Linkage to the QBMK Kernel

In this subsection, we theoretically indicates the advantages
of the new QBMK kernel, by revealing the theoretical link-
age to the classical DBMK kernel defined in Section 2.2.
To this end, we commence by redefining the h-level corre-
spondence matrixCh described by Eq.(16) as a new h-level
entropic correspondence matrix Ch

E, i.e.,

Ch
E(i, j) =


Kr(vi, vj) if Rh(i, j) is the smallest one

both in row i and in column j,

and |N h̄
p;i| > 0 and |N h̄

q;j | > 0;
0 otherwise.

(18)
For the pair of graphs Gp(Vp, Ep) and Gq(Vq, Eq), we say
that their vertices vi ∈ Vp and vj ∈ Vq are aligned to each
other, if the entry Ch

E(i, j) > 0. With the matrix Ch
E to

hand, the QBMK kernel can be rewritten as

KQBMK(Gp, Gq) =
H∑

h=1

∑
vi∈Vp

∑
vj∈Vq

Ch
E(i, j). (19)

As a result, the proposed QBMK kernel defined by Eq.(20)
is similar with that of the classical DBMK kernel defined by
Eq.(5), and can also be theoretically seen as a vertex-based
matching kernel. Indeed, this theoretical linkage reveals
the advantages of the proposed QBMK kernel, explaining
the effectiveness. Specifically, the theoretical advantages
are shown in Table 1 and briefly discussed as follows.

First, unlike the classical DBMK kernel that simply counts
pairs of aligned vertices based on the correspondence ma-
trix C defined by Eq.(4), the proposed QBMK kernel is
able to discriminate the structural differences between dif-
ferent pairs aligned vertices through the entropic correspon-
dence matricesCh

E. This is because the associated quantum
Shannon entropies of different vertices tend to be differen-
t (see details in Section 3.1). By contrast, for the DBMK
kernel, Eq.(4) indicates that any pair of aligned vertices
will contribute the same one unit kernel value, ignoring the
structural differences between the aligned vertices.
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Table 2. Statistical Information of the Benchmark Datasets.
Datasets MUTAG D&D PTC PPIs CATH2 BAR31 BSPHERE31 GEOD31 Shock GatorBait

Max # vertices 28 5748 109 218 568 220 227 380 33 545
Min # vertices 10 30 2 3 143 41 43 29 4 239
Mean # vertices 17.93 284.4 25.60 109.63 308.03 95.43 99.83 57.42 13.16 348.70
# graphs 188 1178 344 219 190 300 300 300 150 100
# classes 2 2 2 5 2 15 15 15 10 30
Description BIO BIO BIO BIO BIO CV CV CV CV CV

Second, similar to the classical DBMK kernel, the pro-
posed QBMK kernel can also be re-written as the similar
manners of Eq.(8) and Eq.(9). In other words, the QBMK
kernel can also be seen as the Aligned ASK kernel men-
tioned in Section 2.2, and is able to identify the isomor-
phism between pairs of h-layer expansion subgraphs Gh

p;i

and Gh
q;j rooted at aligned vertices vi ∈ Vp and vi ∈ Vq .

However, unlike the classical DBMK kernel that is based
on the single-level correspondence matrix C defined by E-
q.(4) and can only identify the isomorphism between spec-
ified h-layer expansion subgraphs, the proposed QBMK k-
ernel is based on the different h-level entropic correspon-
dence matrices Ch

E defined by Eq.(19) and can identify
the isomorphism between more different-level h-layer ex-
pansion subgraphs (1 ≤ h ≤ H). Thus, the proposed
QBMK kernel not only addresses the problem of ignoring
the correspondence information arising in aforementioned
R-convolution kernels, but also reflects more multi-level
structural information than the classical DBMK kernel.

Third, the proposed QBMK kernel is able to address the
shortcoming of only focusing on local or global graph struc-
ture information that arises in existing R-convolution ker-
nels, vertex-based matching kernels, and global-based ker-
nels discussed in Section 1. This is because the QBMK ker-
nel is based on measuring the similarity between the quan-
tum Shannon entropies of aligned vertices, that can simul-
taneously reflect the global and local graph characteristics
through the AMM matrix of the CTQW.

3.4. The Computational Complexity

For a pair of graphs each having n vertices, the computa-
tional complexity of the proposed QBMK kernel is mainly
dominated by the procedure of computing the AMM matrix
of the CTQW, that relies on the spectrum decomposition of
the adjacency matrix. Thus, the whole time complexity of
the QBMK kernel is O(n3), indicating a polynomial time.

4. Experiments
We evaluate the classification performance of the proposed
QBMK kernel on ten benchmark graph datasets extract-
ed from bioinformatics (BIO) (Kersting et al., 2016) and
computer vision (CV) (Biasotti et al., 2003; Escolano et al.,
2011), respectively. Table.2 shows the detailed statistical
information of these CV and BIO datasets.

4.1. Comparisons with Graph Kernels

Experimental Setups: We empirically compare the
proposed QBMK kernel against some state-of-the-
art graph kernels, including: the Quantum Jensen-
Shannon Kernel (QJSK) (Bai et al., 2015a), the Graphlet
Counting Graph Kernel (GCGK) (Shervashidze et al.,
2009) associated with the graphlets of size 4, the
Jensen-Tsallis q-difference Kernel (JTQK) (Bai et al.,
2014b), the Weisfeiler-Lehman Subtree Kernel (WL-
SK) (Shervashidze et al., 2011), the Shortest Path
Graph Kernel (SPGK) (Borgwardt & Kriegel, 2005),
the Depth-based Matching Kernel (DBMK) (Bai et al.,
2014a), the Extended Depth-based Matching Kernel
(EDBMK) (Xu et al., 2021b), the Jensen-Shannon Sub-
graph Kernel (JSSK) (Bai & Hancock, 2016), and the
Entropic Isomorphic Kernel (ISK) (Bai & Hancock, 2016).
Detailed properties of these alternative graph kernels are
shown in Table 3. For the proposed QBMK kernel, we
set the parameter H as 10, this is because the required
10-layer expansion subgraphs rooted at each vertex for the
QBMK kernel is able to cover most of the graph topolog-
ical structures. For each kernel, we perform the 10-fold
cross-validation to calculate the classification accuracy
associated with the standard C-SVM (Chang & Lin, 2011).
For each dataset, we utilize the optimal C-SVM parameters
and run the experiment for 10 times, and calculate the
averaged classification accuracies (± standard errors) in
Table 4. Note that, since the alternative kernels were eval-
uated with the same setup, we directly use the accuracies
from the corresponding literatures.

Experimental Results and Analysis: Table 4 indicates
that the proposed QBMK kernel can significantly outperfor-
m all competing graph kernels on seven of the ten dataset-
s. Although, the QBMK kernel is not the best one on the
D&D, PTC and PPIs datasets, the QBMK kernel is still
competitive to most of the alternative graph kernels. The
reasons for the effectiveness are threefold.

First, the proposed QBMK kernel not only encapsulates
the structural correspondence information between graph
structures, but also simultaneously reflects both and local
structural characteristics through the quantum Shannon en-
tropies, reflecting more comprehensive and complicated
intrinsic structural information through the AMM matrix
of the CTQW. By contrast, the alternative R-convolution,
global-based, and local-global based kernels tend to over-
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Table 3. Graph Kernels for Comparisons.
Kernel Methods QBMK QJSK JTQK GCCK WLSK

Framework Matching Global R-convolution R-convolution R-convolution
Based on CTQW Yes Yes Yes No No
Capture Alignment Information Yes No No No No
Capture Local Information Yes No Yes Yes Yes
Capture Global Information Yes Yes No No No
Discriminate Aligned Vertices Yes No No No No

Kernel Methods SPGK EDBMK DBMK JSSK ISK

Framework R-convolution Matching Matching Local-Global R-convolution
Based on CTQW No No No No No
Capture Alignment Information No Yes Yes No No
Capture Local Information Yes Yes Yes Yes Yes
Capture Global Information No No No Yes No
Discriminate Aligned Vertices No No No No No

Table 4. Comparisons with Different Graph Kernels.
Datasets MUTAG D&D PTC PPIs CATH2

QBMK 88.55 ± .43 77.60 ± .47 59.38 ± .36 84.47 ± .56 84.36 ± .65
QJSK 82.72 ± .44 77.68 ± .31 56.70 ± .49 65.61 ± .77 71.11 ± .88
JTQK 85.50 ± .55 79.89 ± .32 58.50 ± .39 88.47 ± .47 68.70 ± .69
GCGK 82.04 ± .39 74.70 ± .30 55.41 ± .59 46.61 ± .47 73.68 ± 1.09
WLSK 82.88 ± .57 79.78 ± .36 58.26 ± .47 88.09 ± .41 67.36 ± .63
SPGK 83.38 ± .81 78.45 ± .26 55.52 ± .46 59.04 ± .44 81.89 ± .63
EDBMK 86.35 78.19 56.79 84.13 83.58
DBMK 85.27 ± .69 77.85 55.91 83.23 82.42
JSSK 83.77 ± .74 76.32 ± .46 56.94 ± .43 45.04 ± .88 75.42 ± .76
ISK 84.66 ± .56 75.32 ± .35 60.26 ± .42 79.47 ± .32 67.55 ± .67

Datasets BAR31 BSPHERE31 GEOD31 Shock GatorBait

QBMK 73.66 ± .57 62.63 ± .41 47.63 ± .45 46.26 ± .74 15.00 ± .89
QJSK 30.80 ± .61 24.80 ± .61 23.73 ± .66 40.60 ± .92 9.00 ± .89
JTQK 60.56 ± .35 46.93 ± .61 40.10 ± .46 37.73 ± .42 9.60 ± .87
GCGK 22.96 ± .65 17.10 ± .60 15.30 ± .68 26.63 ± .63 8.40 ± .83
WLSK 58.53 ± .53 42.10 ± .68 38.20 ± .68 36.40 ± 1.00 10.10 ± .61
SPGK 55.73 ± .44 48.20 ± .76 38.40 ± .65 37.88 ± .93 9.00 ± .75
EDBMK 70.08 57.36 43.57 33.24 14.40
DBMK 69.40 ± .56 56.43 ± .69 42.83 ± .50 26.73 13.76
JSSK 52.76 ± .47 43.33 ± .40 32.03 ± 1.02 37.66 ± .80 9.20 ± .65
ISK 62.80 ± .47 52.50 ± .74 39.76 ± .43 39.86 ± .68 11.40 ± .52

look the structural alignment information between graph-
s. Moreover, the alternative R-convolution, global-based,
and vertex-based matching kernels only focus on one of
the global and local structural information, reflecting lim-
ited structural information. Second, although the alterna-
tive EDBMK and DBMK kernels can integrate the struc-
tural alignment information, these two vertex-based match-
ing kernels focus on simply counting the number of pair-
wise aligned vertices based on the single-level correspon-
dence matrix. By contrast, the proposed QBMK kernel
not only encapsulates multilevel correspondence informa-
tion between graphs, but also discriminates the structural d-
ifferences between different pairs aligned vertices through
the AMM matrix. Third, although the local-global based
JSSK kernel can also simultaneously capture both the glob-
al and local graph structure information, by measuring the
entropy-based similarities between each pair of h-layer ex-
pansion subgraphs around the centroid vertex. However,
the JSSK kernel relies on a limited number of subgraphs
around the centroid vertex. By contrast, the QBMK ker-
nel can measure the similarities between the expansion sub-
graphs around any vertex, reflecting more structure charac-
teristics. Finally, the proposed QBMK kernel relies on the
quantum Shannon entropies through quantum walks (i.e.,

the CTQW) rather than classical random walks (i.e., the C-
TRW). Thus, the proposed QBMK kernel can reflect more
complicated intrinsic structure characteristics.

4.2. Comparisons with Graph Deep Learning

Experimental Setups: We empirically compare the
proposed QBMK kernel with some classical graph
deep learning approaches, including: the EigenPooling
based Graph Convolution Network (EigenPool) (Lee et al.,
2019), the Specified Degree-based Graph Neural Network
(DEMO-Net) (Wu et al., 2019), the Deep Graphlet Kernel
(DGK) (Yanardag & Vishwanathan, 2015), the Deep Graph
Convolution Neural Network (DGCNN) (Zhang et al.,
2018), and the Diffusion-based Convolution Neural Net-
work (DCNN) (Atwood & Towsley, 2016). Note that, all
these alternative graph deep learning approaches are eval-
uated based on the same 10-fold cross-validation strategy
with us. Thus, we straightforwardly report the accuracies
from the original literatures in Table 5.

Experimental Results and Analysis: Table 5 indicates
that the proposed QBMK kernel outperforms most of the
deep learning approaches on two of the three datasets. Al-
though the QBMK kernel is not the best on the D&D
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Table 5. Comparisons with Graph Deep Learning Methods.
Datasets MUTAG D&D PTC

QBMK 88.55 ± .43 77.60 ± .47 59.38 ± .36
EigenPool 79.50 76.60 −
DEMO-Net 81.40 70.80 57.20
DGK 82.66 ± 1.45 78.50 ± 0.22 57.32 ± 1.13
DCNN 66.98 58.09 ± 0.53 56.60
DGCNN 85.83 ± 1.66 79.37 ± 0.94 58.59 ± 2.47

dataset, it is still competitive to most of the alternative
deep learning approaches. In fact, the graph kernel as-
sociated with the C-SVM can be theoretically seen as a
shallow learning approach, that may have lower classifica-
tion performance than that of the deep learning approaches.
Moreover, unlike the deep learning approach, the kernel
computation cannot participate the end-to-end training pro-
cess for the C-SVM. However, even under this disadvan-
tageous context, the QBMK kernel still outperforms these
alternative deep learning approaches, again demonstrating
the effectiveness. The reason of the effectiveness may due
to the fact that, the proposed QBMK kernel can capture
more complicated intrinsic graph structure characteristics
through the AMM matrix of the CTQW, that can be seen
as a quantum-based graph structure representation. By con-
trast, the alternative deep learning approaches can only re-
flect graph structure information through the original graph
structure representation (i.e., the adjacency matrix). More-
over, these graph deep learning approaches cannot encap-
sulate the structural correspondence information between
graphs. This reveals that the framework of the alignment
strategy associated with the CTQW for the QBMK kernel
tremendously improves the performance of graph kernels.

5. Conclusions
In this work, we have developed a novel QBMK ker-
nel for un-attributed graphs, through the AMM matrix
of the CTQW. Theoretical analysis indicates that the pro-
posed QBMK kernel can simultaneously address differ-
ent theoretical drawbacks arising in the existing classi-
cal R-convolution, global-based, local-global based, and
vertex-based matching kernels. The experimental evalua-
tion demonstrates the effectiveness of the proposed kernel.
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