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Abstract

Input space reconstruction is an attractive rep-

resentation learning paradigm. Despite inter-

pretability benefit of reconstruction and genera-

tion, we identify a misalignment between learning

to reconstruct, and learning for perception. We

show that the former allocates a model’s capac-

ity towards a subspace of the data explaining the

observed variance–a subspace with uninformative

features for the latter. For example, the super-

vised TinyImagenet task with images projected

onto the top subspace explaining 90% of the pixel

variance can be solved with 45% test accuracy.

Using the bottom subspace instead, accounting

for only 20% of the pixel variance, reaches 55%

test accuracy. Learning by reconstruction is also

wasteful as the features for perception are learned

last, pushing the need for long training sched-

ules. We finally prove that learning by denoising

can alleviate that misalignment for some noise

strategies, e.g., masking. While tuning the noise

strategy without knowledge of the perception task

seems challenging, we provide a solution to detect

if a noise strategy is never beneficial regardless of

the perception task, e.g., additive Gaussian noise.

1. Introduction

One of the far reaching mandate of deep learning is to pro-

vide a self-contained methodology to learn intelligible and

universal representations of data (LeCun et al., 2015). That

is, to learn a nonlinear transformation of the data producing

a parsimonious representation able to solve numerous down-

stream tasks. Significant progress has been made through

the lens of supervised learning, i.e., by learning a represen-

tation that maps the observed data to provided labels of an
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Figure 1. Features for reconstruction are uninformative for per-

ception (top): TinyImagenet ResNet9 top-1 accuracy when trained

and validated on images projected on the top-subspace (red) or

bottom subspace (blue) of explained variance, corresponding im-

ages displayed in the middle and in Fig. 10. Perception features

are learned last (bottom): training loss evolution (red to blue)

of reconstructed training images from a deep Autoencoder pro-

jected onto the eigenspace of the original data (black). The top

eigenspace (right) is learned first, and then, if training lasts long

enough, the features most useful for perception (left) are finally

learned. This explains why learning by performances on percep-

tion task keep increasing long after reconstructed samples look

appealing.
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priori known downstream task (Krizhevsky et al., 2012). La-

bels being costly and over-specialized, much progress was

also made through the lens of unsupervised learning (Bar-

low, 1989; Ghahramani, 2003) roughly falling into three

camps. First, reconstruction-based methods that produce

(compressed) latent representations of the data nonetheless

sufficient to recover most of the original data, e.g., De-

noising/Variational/Masked Auto-Encoders (Vincent et al.,

2010; Kingma & Welling, 2013; He et al., 2022) and Au-

toregressive models (Van den Oord et al., 2016; Chen et al.,

2018). Second, score matching which is often solved by set-

ting up a surrogate supervised task of classifying observed

samples from noise (Hyvärinen & Dayan, 2005). Third,

Self-Supervised Learning (SSL) (Chen et al., 2020; Zbontar

et al., 2021; Bardes et al., 2021; Balestriero et al., 2023)–

whose contrastive methods can be thought of as generalized

versions of score matching and Noise Contrastive Estima-

tion (Gutmann & Hyvärinen, 2010)–combining an invari-

ance term bringing together representations of data known

to be semantically similar, or generated to be so, and an

anti-collapse term making sure that not all representations

become similar.

In recent years, SSL emerged as the preferred solution–

regularly reaching new state-of-the-arts through careful ex-

perimental design (Garrido et al., 2023). Yet, reconstruction-

based methods maintain a large presence due to their abil-

ity to provide reconstructed samples that are human inter-

pretable, enabling informed quality assessment of a model

(Selvaraju et al., 2016; Bordes et al., 2021; Brynjolfsson

et al., 2023; Baidoo-Anu & Ansah, 2023). Despite that

benefit, reconstruction-based learning falls behind SSL as

it requires fine-tuning to reach the state-of-the-art. One

of the most popular reconstruction-based learning strategy

that emerged as the solution of choice in recent years is the

Masked-Autoencoder (He et al., 2022).

We ask the following question: Why reconstruction based

learning easily produces compelling reconstructed samples

but fails to provide competitive latent representations for

perception? We can pinpoint that observation to at least

three reasons.

R1: Misaligned. The features with most reconstructive

power are the least informative for perceptual tasks as de-

picted in Fig. 1 (top). Instead, images projected onto the

subspace least useful for reconstruction still contain suffi-

cient information for perception.

R2: Ill-conditioned. From the misalignment, the features

useful for perception are learned last for a reconstruction

task as depicted in Fig. 1 (bottom), meaning that learning

by reconstruction is wasteful as it requires long training

schedules to capture informative features for perception.

R3: Ill-posed. Due to the “irrelevance” of perception fea-

tures to affect reconstruction error, learning by reconstruc-

tion can produce drastically different representation quality

between training settings. For example, we can find a same

model with two different set of parameters that produce the

same train and test reconstruction error while exhibiting sig-

nificant performance gaps for perceptual tasks as depicted

in Fig. 7, where for a given reconstruction error the top-1

accuracy on Imagenet-10 can vary from 50% to almost 90%.

These findings provide first clues as to why learning by

reconstruction requires long training time and fine-tuning–

observations that are common knowledge within the repre-

sentation learning community but still lack theoretical justi-

fication. Those findings alone do not answer the following

question: Why Masked Autoencoders were able to provide

a significant improvement in the quality of the learned rep-

resentation for solving perception tasks? We will prove

that some denoising tasks can push back some of the limita-

tions of learning by reconstructions. In particular, we will

demonstrate that masking is provably beneficial while other

noise distributions, e.g., additive Gaussian noise, are not.

We summarize our technical contributions below

• We provide a novel measure of alignment between re-

construction and classification task from first principles

(Section 3.1, Eq. (7), and Fig. 2)

• We identify the root cause for reconstruction and per-

ceptual classification tasks to be misaligned in term

of the spectral property of the data covariance matrix

(Section 3.2 and Fig. 4). The misalignment increases

with presence of background and increased number of

objects in the images

• We prove that denoising tasks introduce a mechanism

through the noise distribution to improve alignment

between reconstruction and perception: masking pro-

vides great alignment benefits while additive Gaussian

noise is provably ineffective(Fig. 6 and Corollary 3.1)

We hope that our findings will help skew further re-

search in learning by reconstruction to explore alterna-

tive noise distributions as they are the main driver of

learning useful representations for perception. Codebase

provided at github.com/RandallBalestriero/

LearningByReconstruction.

2. Background and Notations

Notations: We denote by xn ∈ R
D, n = 1, . . . , N the

nth input sample, e.g., a (H,W,C) image flattened to a

D = H × W × C dimensional vector. The entire train-

ing set is collected into the matrix X ≜ [x1, . . . ,xN ] ∈
MD,N (R) where Mn,m(R) is the vector space of real

n×m matrices. Throughout our study, vectors will always
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be column-vectors, and matrices are built by horizontally

stacking column-vectors, i.e., they are column major. Un-

less specified otherwise, we assume that the input matrix X

is full-rank. In practice, if this is not the case, one can easily

disregard the subspace associated with 0 singular values and

apply our analysis on that filtered matrix instead.

Learning by reconstruction. Learning representations by

fitting a model’s parameters θ to produce a reconstruction

of presented inputs as in

min
θ

Ex∼px
[d (gθ (fθ(x)) ,x)] , (1)

is common (Bottou, 2012; Kingma & Ba, 2014; LeCun et al.,

2015), given some distance measure d. The reconstruction

provides a qualitative signal enabling one to easily assess

the quality of the model, and even interpret trained classi-

fication models with gθ being trained and fθ the (frozen)

pretrained classifier (Zeiler & Fergus, 2014; Mahendran

& Vedaldi, 2015; Olah et al., 2017; Shen et al., 2020). In

its simplest form, the encoder fθ : R
D 7→ R

K and the

decoder gθ : RK 7→ R
D are linear, possibly with shared

parameters. In such settings, the optimal parameters are

obtained from Principal Component Analysis (Wold et al.,

1987). Many variants of Eq. (1) have emerged, such as de-

noising and masked autoencoders (MAEs)(Vincent et al.,

2010; He et al., 2022). The objective remains similar: learn

a low-dimensional latent embedding of the data that is able

to reconstruct the original samples while being robust to

some noise perturbation added onto the samples as in

min
θ

Ex∼px

[

Ex′∼p
x′|x

[d (gθ (fθ(x
′)) ,x)]

]

, (2)

with px′|x applying some (conditional) noise transformation

to the original input, e.g., x′ ∼ N (x, ϵI), ϵ > 0.

Known limitations. Learning by reconstruction is widely

popular and thus heavily studied. Major axes of research

evolve around (i) deriving novel loss functions for specific

datasets that better align with semantic distance (Wang et al.,

2004; Kulis et al., 2013; Ballé et al., 2016; Bao et al., 2017),

(ii) explaining the learned embedding dimensions (Tran

et al., 2017; Esmaeili et al., 2019; Mathieu et al., 2019), and

(iii) imposing structure in the embedding space such as clus-

tered embeddings (Jiang et al., 2016; Dilokthanakul et al.,

2016; Lim et al., 2020; Seydoux et al., 2020). Despite the

rich literature, the current solutions of choice to learn repre-

sentation in computer vision still rely on the Mean Squared

Error loss in pixel space with the possible application of

structured noise (px′|x in Eq. (2)), e.g., as employed by

the current state-of-the-art solution of masked-autoencoders

(MAEs) (He et al., 2022). Yet, even that solution learns a

representation that needs to be fine-tuned to compete with

state-of-the-art, e.g., MAE’s performances are drastically

determined by two parameters (i) the training time, i.e.,

evaluation performance of the learned representation does

not plateau even after 1600 epochs on Imagenet, and (ii)

the need to fine tune, i.e., evaluation performance with and

without finetuning have a significant gap going from 70%

to 84% on top-1 Imagenet classification task.

Closer to our study, (Locatello et al., 2019) showed a first

possible theoretical limitation of learning disentangled rep-

resentations through reconstruction. That limitation is also

reinforced by the large empirical study of (Zamir et al.,

2018) concluding that learning by reconstruction and learn-

ing by denoising produce similar representations that are

misaligned from supervised learning.

Our study will propose some first hints as to why even

current state-of-the-art reconstruction-based solutions are

poised with slow training, and the need to finetune (Sec-

tion 3). We will conclude by proving that MAEs’s masking

strategy partially alleviates those limitations (Section 4),

showing that the most rewarding findings for learning by

reconstruction may emerge from novel denoising strategies,

hence bringing some nuance into the alignment results from

(Zamir et al., 2018).

3. Rich Features for Reconstruction are Poor

Features For Perception

This section provides the theoretical ground and empirical

validation of R1 and R2 from Section 1, namely, that learn-

ing by reconstruction learns features that are misaligned

with common perception tasks. We start by deriving a

closed form alignment measure between those two tasks

in Section 3.1 and conclude by empirically measuring that

mismatch in Section 3.2.

3.1. How To Measure The Alignment Between

Reconstruction and Supervised Tasks

As a starting point to our study, we will build intuition and

obtain theoretical results in the linear regime. As we will

see at the end of this Section 3.1, this seemingly simplified

setting turns out to be informative of practical cases.

Let’s consider an encoder mapping V ∈ MD,K(R), a

decoder mapping Z ∈ MK,D(R), and a predictor head

W ∈ MK,C(R), where C is the number of target dimen-

sions, or classes. The targets for X ∈ MD,N (R) are given

by Y ∈ MC,N (R). The combination of the supervised and

reconstruction losses is given by

L(V,W,Z)=∥W⊤
V

⊤
X−Y ∥2F + λ∥Z⊤

V
⊤
X−X∥2F ,

(3)

where the latent representation, V ⊤X , is shared between

the two losses, λ ≥ 0 controls the trade-off between the two

terms. Quantifying how the optimal parameters of Eq. (3)
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vary with λ will be key to assess how the two losses are

aligned. As a starting point, let’s formalize below the op-

timal parameters of this loss function using the notations

M = PMDMP⊤
M

for the eigendecomposition of a sym-

metric semi-definite positive matrix M . We will also denote,

to lighten notations, A ≜ X
(

Y ⊤Y + λX⊤X
)

X⊤.

Theorem 1. The loss function from Eq. (3) is minimized for

V
∗ spans PXX⊤D

− 1

2

XX⊤(PH).,1:K , (4)

W
∗ =

(

V
∗⊤

XX
⊤
V

∗
)−1

V
∗⊤

XY
⊤, (5)

Z
∗ =

(

V
∗⊤

XX
⊤
V

∗
)−1

V
∗⊤

XX
⊤, (6)

where H ≜ D
− 1

2

XX⊤P
⊤
XX⊤APXX⊤D

− 1

2

XX⊤ . (Proof in

Section 5.1, empirical validation in Fig. 9.)

We observe that the optimal solutions from Theorem 1 con-

tinuously interpolates between the standard least square

(OLS) problem (λ = 0) and the unsupervised linear au-

toencoder or Principal Component Analysis (PCA) setting

(λ → ∞). We formalize below that we recover the optimal

solutions for each of those extreme cases from Theorem 1.

Corollary 1.1. The solution from Theorem 2 recovers the

OLS solution for W ∗⊤V ∗⊤ as λ → 0, and the PCA solu-

tion for Z∗⊤V ∗⊤ as λ → ∞. (Proof in Section 5.2.)

That observation should comfort the reader that Eq. (3) ac-

curately conveys both ends of the spectrum from supervised

learning to reconstruction based learning, while continu-

ously interpolating in-between.

Condition for perfect alignment. The result from The-

orem 1 enables us to formalize the condition for perfect

alignment between the two tasks, i.e., under which condi-

tion the solution V ∗ is not impacted by λ.

Proposition 1. The supervised and reconstruction tasks are

aligned (the optimal solutions do not depend on λ) iff the

intersection of the top-K eigenspaces of X⊤X and Y ⊤Y

is of dimension K.

In other words, whenever the condition in Proposition 1

holds, the matrix PH (recall Theorem 1) will include the

same eigenvectors (up to rotation) for any λ, making the

optimal parameters (Eqs. (4) to (6)) independent of λ. In

practice, we will see that Proposition 1’s alignment condi-

tion is never fulfilled, pushing the need to define a more

precise measure of alignment between the two tasks.

Continuous measure of alignment. As we aim to measure

the tasks alignment more precisely that in a yes/no setting

(Proposition 1), we propose the following continuous mea-

sure

alignment(k) ≜
∥Y ⊤Y (PXX⊤)1:k∥

2
F

∥Y ⊤Y PXX⊤∥2F
, (7)

Figure 2. Depiction of the closed form alignment measure from

Eq. (7) measuring the minimum supervised training error achiev-

able given the optimal reconstruction parameters, as per Theorem 1

and Corollary 1.2. Top: depiction in terms of the latent dimension

K. Bottom: depiction in terms of the ratio of the latent dimension

K to the input dimension D. We clearly observe that as the dataset

becomes more realistic (going from background-free images to

CIFAR and TinyImagenet), as the alignment between the recon-

struction and supervised task lessens. In particular, when going

to TinyImagenet, we observe that the alignment only increases

linearly with respect to the latent space dimension.

where ∥Y ⊤Y PXX⊤∥2F simplifies as ∥Y ⊤Y ∥2F when

D = N . We assume that the supervised task can be at least

partially solved from X , ensuring ∥Y ⊤Y PXX⊤∥2F > ϵ.

In words, Eq. (7) is the (scaled and negated) supervised

training error achieved given the representation (V ⊤X)
minimizing the reconstruction loss, which is measured by

how much of the matrix Y ⊤Y can be reconstructed from

the top-k subspace of X⊤X , as formalized below.

Corollary 1.2. alignment(k) from Eq. (7) increases with k,

has value 0 iff the two losses are misaligned, and has value

1 iff the two losses are aligned. (Proof in Section 5.3.)

Although the measure from Eq. (7) is motivated from the

linear setting of Theorem 1, we will demonstrate at the end

of this Section 3.1 that it actually aligns well with practical
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CIFAR-DC-depth3 CIFAR-DC-depth5

CIFAR-MLP-depth3 CIFAR-MLP-depth5

Figure 3. Reprise of Fig. 1 for additional autoencoder architectures: convolutional encoder and deconvolutional decoder (top) and MLP

encoder and decoder (bottom). We clearly observe that the top subspace is learned first during training, which is the one that best

minimize the reconstruction loss but that contains the least informative features for perception, as per Fig. 4.

settings.

Findings. We now propose to evaluate the closed form align-

ment metric (Eq. (7)) on a few datasets. Note that it can

be implemented efficiently as detailed in Section 5.8. In

Fig. 2, we measure the metric of Eq. (7) for a sweep of latent

dimension K over 7 different datasets. We observe three

striking regimes. First, for images without background, re-

construction and classification tasks are very much aligned

even for small latent dimension, as low as 20% of the input

dimension. Second, when comparing datasets with same im-

age distributions but different number of classes (CIFAR10

to CIFAR100) the misalignment increases between the two

task, especially for small embedding dimension. This fol-

lows our intuition that additional budget must be devoted

to separate more classes. And as the subspace of the data

used for reconstruction and classification do not align (re-

call Proposition 1), a greater misalignment is measured.

And third, when looking at more realistic images (higher

resolution and more diverse) such as tiny-imagenet, we ob-

serve that the alignment only increases linearly with the

latent space dimension K, requiring K = D in that case

to ensure alignment. We thus conclude that the presence

of background, finer classification tasks, and higher reso-

lution images, are all factors that drastically decrease the

alignment between learning features for perception tasks

and learning features that reconstruct those images.

Linear regime results are informative. We have focused

on the linear encoder, decoder, and classification head of

Eq. (3). Albeit insightful, one might wonder how much

of those insights transfer to the more realistic setting of

employing nonlinear mappings. We note that it remains

common to keep the classification head linear therefore

leading to the following generalization of Eq. (3) as

L(W, θ, γ)=∥W⊤fθ(X)−Y ∥2F +λ∥gγ (fθ(X))−X∥2F .
(8)

The encoder is now the nonlinear mapping fθ : RD 7→ R
K

and the decoder is the nonlinear mapping gγ : RK 7→ R
D.

We formalize below a result that will reinforce the legiti-

macy of our linear regime analysis (Theorem 1, Proposi-

tion 1, and Corollary 1.2) by showing that it is (i) a correct

model during the early phase of training, and even (ii) a

correct model throughout training when the decoder being

employed is under-parametrized.
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Figure 4. We depict the classification accuracy of a ResNet9 DNN when trained and tested on images that have been projected onto the

top (red) and bottom (blue) subspace as ordered per the eigenvalues of the data covariance matrix, without data-augmentation (top) and

with data-augmentation (bottom). We clearly observe that except for datasets without background and for which reconstruction and

classification are better aligned (recall Fig. 2), the final performance is greater when employing the subspace of the data that explains the

least the pixel variation, i.e., the bottom subspace. Training was done with cross-entropy loss, Fig. 8 provides the MSE case with one-hot

labels as target showcasing the same trends.

Theorem 2. For any high-capacity encoder fθ, studying

Eq. (3) and Eq. (8) is equivalent at initialization for any

decoder, and is always equivalent when the decoder is linear.

(Proof in Section 5.6.)

Combining Theorems 1 and 2, we obtain that even with DNs,

during the early stages of learning, the encoder-decoder

mapping focuses on the principal subspace of the data, i.e.,

the space that explains most of the reconstruction error in

the linear regime. As our study strongly hinges on that

claim, we propose to empirically validate it in the following

Section 3.2.

3.2. Reconstruction and Perception Features Live In

Different Subspaces of the Data

We characterized in the previous Section 3.1 how classifi-

cation and reconstruction tasks fail to align when it comes

to learning common features. In particular, Section 3.1

and Fig. 2 validated how training focuses first on the top

subspace of the data. We now reinforce our claim by show-

ing that supervised tasks can not be solved when restricting

the images on the subspace that is learned first by recon-

struction.

Perception can not be solved from the principal subspace

of the data. We first propose a controlled experiment where

we artificially remove some of the original data subspace.

In particular, we consider two settings. First, we gradually

remove the subspace associated to the top eigenvectors of

the data covariance matrix effectively removing what is

most useful for reconstruction but also what we claim to be

least useful for perception. Second, we gradually remove

the subspace associated to the bottom eigenvectors (the one

least useful for reconstruction but that we claim to be most

useful for perception). This procedure is applied to the entire

dataset (train and test images) before any DN training occurs.

Hence the DN is only presented with the filtered images. We

report the top-1 accuracy over numerous datasets in Fig. 1

(top) and in Figs. 4 and 8 for cross-entropy and MSE loss

respectively. Recall that it has been previously observed that

cross-entropy or MSE with one-hot labels produce similar

representations (Hui & Belkin, 2020). We obtain a few

key observations. First, for any % of filtering, keeping the

bottom subspace of the data produces higher test accuracy

that when keeping the top subspace. That is, the subspace

that is most useful for reconstruction (top) is least useful for

perception. Second, the accuracy gap is impacted by the

presence of background, finer-grained classes, and higher

resolution images. This further validates our theoretical
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observations from Fig. 2 and the result from Theorem 2. We

will now focus on validating the second part of our claim

that the subspace used for perception (bottom) is learned

last, and slowly.

Useful features for perception are learned last. The

above results demonstrate that the top subspace of the data–

explaining most of the pixel variance–is not aligned with

the perception tasks. Yet, perfect reconstruction implies

capturing both the top and bottom subspace. Albeit cor-

rect, we demonstrate in Fig. 1 (bottom) and in Fig. 3 that

the rate at which the bottom subspace is learned is expo-

nentially slower than the rate at which the top subspace

is learned. This empirically validates Theorem 2. For the

reader familiar with optimization (Benzi, 2002), or power

iteration methods, this observation is akin to their converge

rate which is a function of the eigengap (Booth, 2006; Xu

et al., 2018), i.e., the difference between λi and λi+1, where

λ are the sorted eigenvalues. Because natural images have

an exponential decay of their eigenvalues (Van der Schaaf &

van Hateren, 1996; Ruderman, 1997), the rate at which the

top subspace is approximated is exponentially faster than the

bottom one, therefore making the learning of useful features

for perception occur only late during training. This finding

also resonates with previous studies on the spectral bias of

DNs in classification and generative settings (Chakrabarty

& Maji, 2019; Rahaman et al., 2019; Schwarz et al., 2021).

Combining the observations from this section supports R1

and R2 from Section 1. It remains to study R3 which states

that since features for perception lie within a negligible sub-

space (as measured by the reconstruction loss), one can find

two separate models that equally solve the reconstruction

task (same train and test loss values) but provide drastically

different perception task performances.

4. Learning By Reconstruction Needs

Guidance

We now turn to R3 stating that features for perceptions lie

within a space with negligible impact on the reconstruction

error–therefore motivating the need to add additional guid-

ance to the training, e.g., through denoising tasks. To do

so, we will show that it is possible to obtain two DNs with

same reconstruction error but one with perception capabili-

ties far greater than the other (Section 4.1). Lastly we will

prove that some guidance can be provided to the learned

representation to reduce that gap and focus towards more

useful features through careful design of the denoising task

(Section 4.2).

4.1. Learning By Reconstruction Can Produce Optimal

Representations

One interesting benefit emerging from the observations

made for R1 and R2 is that guiding a DN to focus on the

subspace containing informative features for perception has

minimal impact on the reconstruction loss–as they focus on

different subspaces. Therefore, we now propose a simple

experiment to demonstrate the above argument. We take a

resnet34 autoencoder train it with the usual reconstruction

loss (MSE) on Imagenette. This gives us a model that (as

per R1 and R2) fails to properly focus on discriminative

feature. To obtain the second DN with improved classifi-

cation performance, we simply add a classification head

on top of the embedding of the encoder. That is, the same

embedding that is fed to the decoder for reconstruction, is

also fed to the linear classifier with supervised training loss

(recall Eq. (8)). We obtain the key insight of R3 which

is that one can produce two DNs with same training loss

(reconstruction) and validation loss (reconstruction), but

with significantly different classification performance, as

reported in Figs. 5 and 7.

To further understand that observation, we can recall the

results from Theorem 1. We demonstrated that the encoder

(V ) having K dimensions at its disposal, is optimal when

selecting the top singular vectors of the data matrix X . If K

is large enough that it encompasses both the top subspace

of the data (which is learned first and has greatest impact

on the reconstruction loss) and the bottom subspace of the

data (which is useful for perception as per Figs. 1 and 4),

then both objective can coexist (recall Proposition 1) as long

as enough capacity is given to the encoder. Therefore, we

obtain the following key insight. Whenever the capacity

of the autoencoder is large, the encoder embedding can

(and will at the end of training) include features useful for

perception all while being able to reconstruct its inputs.

Again, for this to happen one requires the capacity of the

encoder to grow with the image resolution (as more and

more dimensions will be taken up by the top subspace), and

with the complexity of the image background (again taking

more dimensions in the top subspace) (recall Section 3.2).

The above observation demonstrates that learning to recon-

struct needs an additional training signal to focus towards

discriminative features. As we will prove below, learning

by denoising offers such a solution.

4.2. Provable Benefits of Learning by Denoising

Recalling the Denoising Autoencoder setting from Eq. (2),

we aim to obtain a closed form solution of the linear loss

Eq. (3) in order to find some hints as to why masking and

additive Gaussian noise produce representations of different

quality for perception.
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Figure 5. Depiction of multiple resnet34 autoencoders with varying embedding dimensions (light to dark) some trained only to reconstruct

the input samples with data-augmentations (blue) and others with an additional supervised loss signal (as per Eq. (8)) (green). We report

the test set accuracy and the relative difference (y-axis) for each of the “paired” models, i.e., the ones with every training setting identical

except for the use of the supervised signal, as a function of the train and test rec loss. We clearly observe that for any embedding dimension

and reconstruction loss, one can find two set of parameters with drastically different ability to solve perception tasks. Reconstructed

samples and training curves are provided in Fig. 7.

Figure 6. Depiction of the relative alignment difference when em-

ploying denoising tasks (recall Eq. (9)) with masking noise, with

probability of dropping ranging from 0% to 99% (cyan to pink)

for patch size of (1, 1) recovering multiplicative dropout (top),

(2, 2) (middle), and (4, 4) (bottom) on various datasets. A posi-

tive number indicates a beneficial impact of using the denoising

loss on the supervised performance of the learned representation.

We observe that for datasets such as ArabicDigits that already have

a strong alignment between the two tasks (recall Fig. 2), the use of

any form of masking is detrimental except with shape (1, 1). How-

ever for datasets such as CIFAR100 (right column) with originally

poor alignment, masking is beneficial and increases the alignment

between the two tasks. As the original alignment increases with

K, as the benefit of masking reduces.

Our goal is therefore to study the misalignment metric

(Eq. (7)) under the denoising setting which, as per Corol-

lary 1.2, is given by

alignment(k) ≜ min
W

∥W⊤
V

∗⊤
X − Y ∥2F ,

V
∗ = argmin

V

min
Z

EX′|X

[

∥Z⊤
V

⊤
X

′ −X∥2F
]

, (9)

which is the minimum supervised loss that can be attained

using the representation from V ∗ that minimizes the de-

noising loss. We ought to highlight that we can obtain a

closed form solution under the expectation over the noise

distribution (X ′|X) as formalized below, where we denote

G ≜ EX′|X

[

X ′X ′⊤
]

and S ≜ EX′|X [X ′].

Theorem 3. The closed form solution for V ∗ from Eq. (9)

is given by V ∗ spans PGD
− 1

2

G
(PH).,1:K , where H ≜

D
− 1

2

G
P⊤

G
SX⊤XS⊤PGD

− 1

2

G
. (Proof in Section 5.4.)

The above result demonstrates that even when employing de-

noising autoencoders with additive Gaussian noise or mask-

ing, we can obtain a closed form solution for V , and from

that obtain all the alignment metrics studied so far. In par-

ticular, Section 5.4 also provides the closed form solutions

for G and S. We illustrate the alignment between recon-

struction and perception tasks in the denoising autoencoder

setting (Eq. (9)) in Fig. 6 for the case of random masking, as

per the MAE setting. We clearly observe that the denoising

task has the ability to increase the alignment between the

two tasks–especially for small embedding dimension (K).

We however observe that the size of the masked patches

that provides the best gains vary with the dataset, hinging

at another challenge of denoising autoencoders: the cross-

validation of the denoising task. Another formal result we

propose below will reinforce that point.

Denoting by V ∗(σ) the optimal denoising autoencoder pa-

rameters when employing additive isotropic Gaussian noise

with standard deviation σ, we obtain the following statement

showcasing that this type of denoising task does not help

supervised tasks.

Corollary 3.1. Under the settings of Theorem 3, additive

Gaussian noise has no impact in the supervised task perfor-

mance as W ∗⊤V ∗(σ)
⊤
= W ∗⊤V ∗(0)

⊤
, ∀σ ≥ 0, regard-

less of the supervised task. (Proof in Section 5.5.)
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We therefore obtain the following insights. Denoising tasks

offer a powerful guidance to skew learned representations

to better align with perception tasks (Fig. 6) but some noise

distributions such as additive Gaussian noise are provably

unable to help. A challenge that naturally emerges is in

selecting the adequate denoising tasks, e.g., to avoid Corol-

lary 3.1 in a setting where labels are not available and the

supervised tasks to be tackled may not be known a priori.

An interesting portal that we obtained (Corollary 3.1) in our

study is that it is possible to assess if a denoising task has

any impact on the perception task without yet knowing what

is that supervised task. That alone could help in at least

focusing on denoising tasks that do have an impact, albeit it

will remain unknown if that impact will be beneficial or not.

5. Conclusion

We proposed to study the transferability of representations

learned by reconstruction towards perception tasks. In par-

ticular, we obtain that the two objectives are fundamentally

misaligned, with a degree of misalignment that grows with

the presence of complicated background, with greater num-

ber of classes for the perception task, and with higher image

resolutions. While our study focused on bringing those lim-

itations forward from a theoretical and empirical angle, we

also opened new avenues to reduce those limitations in the

future. For example, we obtained a closed form solution to

measure the impact of noise distributions to better align the

learned representation to the downstream perception task.

This novel methodology opens the door to a priori selecting

noise distribution candidates. Even when the downstream

task is unknown, we found that some noise distributions,

such as additive Gaussian noise, are effectively unable to

provide any benefit for better aligning reconstruction and

perception tasks. On the opposite, we validated that mask-

ing is a valid strategy, albeit requiring some per-dataset

tuning. That finding is in line with MAE’s performances

going from about 50% to 74% on Imagenet top-1 accuracy

when masking is employed. We hope that our study will

also open new avenues to study reconstruction methods for

other modalities such as time-series and NLP.

Impact Statement

This paper presents work whose goal is to advance the field

of Machine Learning. There are many potential societal

consequences of our work, none which we feel must be

specifically highlighted here.
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SUPPLEMENTARY MATERIALS

5.1. Proof of Theorem 1

Proof. The first part of the proof finds the optimum W ∗ and Z∗ as a function of V which is direct since we are in a

least-square style setting for each of them. The second part will consist in showing that the optimal V can be found as the

solution of a generalized eigenvalue problem. The third and final step will be to express the solution for V in close-form

that is also friendly for computations.

Step 1. Recall that our loss function is given by

L = ∥W⊤
V

⊤
X − Y ∥2F + λ∥Z⊤

V
⊤
X −X∥2F ,

recalling that ∥M∥2F = Tr(M⊤M), the above simplifies to

L =∥Y ∥2F − 2Tr
(

X
⊤
V WY

)

+Tr
(

X
⊤
V WW

⊤
V

⊤
X
)

+ λ∥X∥2F − 2λTr
(

X
⊤
V ZX

)

+ λTr
(

X
⊤
V ZZ

⊤
V

⊤
X
)

,

we are now going to find the optimal W and Z which are unique by convexity of the loss and of their domain. Recall that

we assume Y and X to be full-rank (therefore also making V full-rank). Recalling the derive of traces, we obtain

∇WL = −2V ⊤
XY

⊤ + 2V ⊤
XX

⊤
V W ,

∇ZL = −2λV ⊤
XX

⊤ + 2λV ⊤
XX

⊤
V Z,

setting it to zero (we assume here λ > 0 otherwise we can not solve for Z since its value does not impact the loss) and

solving leads

W
∗ =(V ⊤

XX
⊤
V )−1

V
⊤
XY

⊤,

Z
∗ =(V ⊤

XX
⊤
V )−1

V
⊤
XX

⊤.

We now have solved for W ,Z as a function of V , i.e., the loss is now only a function of V , which we are going to solve for

now.

Step 2. We will first proceed by plugging the values for W ∗,Z∗ back into the loss, which will now be only a function of V .

Let’s first simplify our derivations by noticing that

Tr
(

X
⊤
V W

∗
W

∗⊤
V

⊤
X

)

= Tr
(

X
⊤
V (V ⊤

XX
⊤
V )−1

V
⊤
XY

⊤
Y X

⊤
V (V ⊤

XX
⊤
V )−1

V
⊤
X
)

= Tr
(

X
⊤
V (V ⊤

XX
⊤
V )−1

V
⊤
XY

⊤
Y
)

= Tr
(

X
⊤
V W

∗
Y
)

,

and similarly

Tr
(

X
⊤
V Z

∗
Z

∗⊤
V

⊤
X

)

= Tr
(

X
⊤
V Z

∗
X
)

,

finally making the entire loss simplify as follows

L = ∥Y ∥2F − 2Tr
(

X
⊤
V W

∗
Y
)

+Tr
(

X
⊤
V W

∗
W

∗⊤
V

⊤
X

)

+ λ∥X∥2F − 2λTr
(

X
⊤
V Z

∗
X
)

+ λTr
(

X
⊤
V Z

∗
Z

∗⊤
V

⊤
X

)

= ∥Y ∥2F − Tr
(

X
⊤
V W

∗
Y
)

+ λ∥X∥2F − λTr
(

X
⊤
V Z

∗
X
)

= ∥Y ∥2F − Tr
(

X
⊤
V (V ⊤

XX
⊤
V )−1

V
⊤
XY

⊤
Y
)

+ λ∥X∥2F − λTr
(

X
⊤
V (V ⊤

XX
⊤
V )−1

V
⊤
XX

⊤
X
)

= ∥Y ∥2F + λ∥X∥2F − Tr
(

X
⊤
V (V ⊤

XX
⊤
V )−1

V
⊤
X
(

Y
⊤
Y + λX⊤

X
))

.
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Figure 7. Depiction of two resnet34 autoencoders trained on Imagenette (Imagenet-10) images, one (orange) with an additional training

signal that favors latent representations suited for classification, and the other (blue) that is only the reconstruction loss. As per R1 and

R2 the latter naturally focuses on suboptimal features as showcases in the test accuracy, both when using a linear or a nonlinear probe.

Crucially, the autoencoder with the additional signal produces representations with much greater discriminative power in both the linear

and nonlinear setting. Yet, and despite popular belief, doing so has no impact on the reconstruction losses on the train or test set, and thus

no impact on the quality of the reconstruction presented at the top. Therefore validating R3.
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Figure 8. Reprise of Fig. 4 but now with MSE loss, the same observations can be made.

First, notice that both X
(

Y ⊤Y + λX⊤X
)

X⊤ and XX⊤ are symmetric. Therefore, we can minimize the loss by

solving the following generalized eigenvalue problem:

find V ∈ MD,D(R) so that X
(

Y
⊤
Y + λX⊤

X
)

X
⊤
V = v

⊤
XX

⊤
V Λ,

where V are the eigenvectors of the generalized eigenvalue problem, and Λ the eigenvalues, then the solution to our problem

we be any rotation of any K eigenvectors, but the minimum will be achieve for the top-K ones.

Step 3. We will first demonstrate the general solution for the generalized eigenvalue problem. Given that solution, it will

be easy to take the top-K eigenvectors that solve the considered problem. Denoting A ≜ X
(

Y ⊤Y + λX⊤X
)

X⊤ and

B ≜ XX⊤, and H ≜ D
− 1

2

B
P⊤

B
APBD

− 1

2

B
, we have

APBD
− 1

2

B
PH = BPBD

− 1

2

B
PHΛ

⇐⇒ P
⊤
HD

− 1

2

B
P

⊤
BAPBD

− 1

2

B
PH = P

⊤
HD

− 1

2

B
P

⊤
BBPBD

− 1

2

B
PHΛ (P⊤

HD
− 1

2

B
P

⊤
B bijective)

⇐⇒ P
⊤
HD

− 1

2

B
P

⊤
BAPBD

− 1

2

B
PH = Λ

⇐⇒ DH = Λ,

therefore the eigenvalues are given by DH and the eigenvectors are given by PBD
− 1

2

B
PH or equivalently

(PXX⊤D
− 1

2

XX⊤PH).,1:K . So the optimal V is any rotation of the top-K eigenvectors. The above is simple to use

as-is whenever N > D, if not, then we can obtain a solution without having to compute any D×D matrix, thus making the

process more efficient. To that end, we can obtain

M ≜ Y
⊤
Y + λX⊤

X

S ≜ D
1

2

M
P

⊤
MX

⊤

PA = VS ,DA = Σ
2
S ,

that only involves D ×min(D,N) matrices instead of D ×D.

5.2. Proof of Corollary 1.1

Proof. We will start with the fully supervised (least-square) proof obtained when λ = 0. Also notice that in any case, we

have that

X = PXX⊤D
1

2

XX⊤V
⊤
X .
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Ordinary Least Square recovery. since λ = 0 we also have

A = X
(

Y
⊤
Y + λX⊤

X
)

X
⊤ = XY

⊤
Y X

⊤

when then lead to

H =D
− 1

2

XX⊤P
⊤
XX⊤APXX⊤D

− 1

2

XX⊤

=D
− 1

2

XX⊤P
⊤
XX⊤XY

⊤
Y X

⊤
PXX⊤D

− 1

2

XX⊤

=D
− 1

2

XX⊤P
⊤
XX⊤PXX⊤D

1

2

XX⊤V
⊤
XY

⊤
Y VXD

1

2

XX⊤P
⊤
XX⊤PXX⊤D

− 1

2

XX⊤

=V
⊤
XY

⊤
Y VX ,

from the above, we can simply plug those values in the analytical form for V ∗ from Eq. (4) to obtain

V = PXX⊤D
− 1

2

XX⊤PH = PXX⊤D
− 1

2

XX⊤V
⊤
XVY = X

†(VY ).,1:K

since we easily see that PH = V ⊤
X
VY . We also have the optimum for W from Eq. (5) to be

W =(V ∗⊤
XX

⊤
V

∗)−1
V

∗⊤
XY

⊤

=(V ⊤
Y VY )−1

V
⊤
Y VXD

− 1

2

XX⊤P
⊤
XX⊤XY

⊤

=V
⊤
Y VXV

⊤
XY

⊤

=ΣY U
⊤
Y

and finally the product of both matrices (which produce the supervised linear model) is obtained as

W
⊤
V

⊤ = UY ΣY (VY .,1:K)⊤(X†)⊤ = Y X
⊤(XX

⊤)−1,K ≥ C,

therefore recovering the OLS optimal solution. Note that if K < C then we have a bottleneck and we therefore obtain an

interesting alternative solution that looks at the top subspace of Y (this is however never the case in OLS settings).

Principal Component Analysis recovery.We now consider the case where we only employ the unsupervised loss (akin to

λ → ∞). In this setting we get

A = XX
⊤
XX

⊤,

and we directly obtain

H =D
− 1

2

XX⊤P
⊤
XX⊤APXX⊤D

− 1

2

XX⊤

=D
− 1

2

XX⊤P
⊤
XX⊤XX

⊤
XX

⊤
PXX⊤D

− 1

2

XX⊤

=DXX⊤ ,

therefore the optimal form for V will be

V = PXX⊤D
− 1

2

XX⊤(PH).,1:K = PXX⊤(D
− 1

2

XX⊤).,1:K ,

which will select the top-K subspace of X (recall that the eigenvalues of H are DXX⊤ and therefore its top-K eigenvectors

are selected the top-K dimension of the subspace. Then the solution for Z from Eq. (6) gives

Z =(V ∗⊤
XX

⊤
V

∗)−1
V

∗⊤
XX

⊤

=V
∗⊤

XX
⊤

=((D
1

2

XX⊤).,1:K)⊤P⊤
XX⊤ ,

and lastly the product of Z and V (which produce the final linear transformation processing X takes the form

Z
⊤
V

⊤ = PXX⊤(D
1

2

XX⊤).,1:K)((D
− 1

2

XX⊤).,1:K)⊤P⊤
XX⊤ = (PXX⊤).,1:K((PXX⊤).,1:K)⊤,

which is the projection matrix onto the top-K subspace of the data X i.e. recovering the optimal solution of Principal

Component Analysis.
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5.3. Proof of Corollary 1.2

Proof. Recall that in the λ → ∞ regime, we have that V ∗ = PXX⊤(D
− 1

2

XX⊤).,1:K and W ∗ = P⊤
XX⊤Y

⊤. We thus

develop

∥W ∗⊤
V

∗⊤
X − Y ∥2F =∥Y PXX⊤((D

− 1

2

XX⊤).,1:K)⊤P⊤
XX⊤X − Y ∥2F

=∥Y PXX⊤((D
− 1

2

XX⊤).,1:K)⊤P⊤
XX⊤PXX⊤D

1

2

XX⊤P
⊤
XX⊤ − Y ∥2F

=∥Y (PXX⊤).,1:K((PXX⊤).,1:K)⊤ − Y ∥2F

=∥Y ∥2F − 2Tr
(

Y (PXX⊤).,1:K((PXX⊤).,1:K)⊤Y ⊤
)

+ ∥Y (PXX⊤).,1:K((PXX⊤).,1:K)⊤∥2F

=∥Y ∥2F − Tr
(

Y (PXX⊤).,1:K((PXX⊤).,1:K)⊤Y ⊤
)

=∥Y ∥2F − ∥Y (PXX⊤).,1:K∥2F ,

as ∥Y ∥2F is a constant with respect to the parameters, we consider ∥Y (PXX⊤).,1:K∥2F as our alignment measure (the

greater, the better the supervised loss can be minimized from the parameters). Since this quantity lives in the range

[0, ∥Y PXX⊤∥2F ], we see that by using the reparametrization from Eq. (7) we obtain the proposed measure of alignment

rescaled to [0, 1].

5.4. Proof of Theorem 3

We need to find the optimal reconstruction solution (V ∗,Z∗) first (corresponding to the case of λ → ∞, and then plug it

into the supervised loss with optimal W .

EX′
n∼p

X′|X
∥W⊤

V
⊤
X

′ −X∥22,

from which we obtain

min
W ,V

N
∑

n=1

Ex′
n∼p

x′
n|xn

Tr
(

W
⊤
V

⊤
X

′
X

′⊤
V W

)

− 2Tr
(

W
⊤
V

⊤
X

′
X

⊤
)

+ cst,

leading to W ∗ = (V ⊤
E[X ′X ′⊤]V )−1V ⊤

E[X ′]X⊤ which we can plug back into the loss to obtain

Tr
(

XE[X ′]⊤V (V ⊤
E[X ′

X
′⊤]V )−1

V
⊤
E[X ′

X
′⊤]V (V ⊤

E[X ′
X

′⊤]V )−1
V

⊤
E[X ′]X⊤

)

− 2Tr
(

XE[X ′]⊤V (V ⊤
E[X ′

X
′⊤]V )−1

V
⊤
E[X ′]X⊤

)

+ cst,

=− Tr
(

XE[X ′]⊤V (V ⊤
E[X ′

X
′⊤]V )−1

V
⊤
E[X ′]X⊤

)

+ cst,

=− Tr
(

V
⊤
E[X ′]X⊤

XE[X ′]⊤V (V ⊤
E[X ′

X
′⊤]V )−1

)

+ cst,

whose solution is given (assuming E[X ′X ′⊤] is full-rank) by the solution of the generalized eigenvalue problem

argmax
v

v⊤
E[X ′]X⊤XE[X ′]⊤v

v⊤E[X ′X ′⊤]v
.

Given those optimum we can thus obtain the alignment measure same as before as the sueprvised loss obtain from V ∗ from

the unsupervised loss and Z∗ from the supervised one:

Z
∗ = argmin

Z

EX′
n∼p

X′|X
∥Z⊤

V
∗⊤

X
′ − Y ∥22,

whose optimum is therefore given by Z∗ = (V ∗⊤
E[X ′X ′⊤]V ∗)−1V ∗⊤

E[X ′]Y ⊤ which can then be plugged back to

produce the (unnormalized) measure. The analytical form of can be obtained (following the derivations of (Balestriero

et al., 2022)) as follows for example for the case of additive Gaussian noise which is trivial and commonly done before e.g.

showing the link between ridge regression and additive dropout E[X ′] = X and E[X ′X ′⊤] = X ′X ′⊤ + σI . The perhaps

more interesting derivations concern the masking as employed by MAE.
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5.5. Proof of Corollary 3.1

In the case of additive, centered Gaussian noise, we have E[X ′] = X and E[X ′X ′⊤] = X ′X ′⊤ + σI . Therefore the

optimal value for V , is given by solving the generalized eigenvalue problem (XX⊤XX⊤,XX⊤ + σI). Recalling the

derivations of the optimal solution for such problem from Section 5.1, we have that

V = PXX⊤+σID
− 1

2

XX⊤+σI
(PH).,1:K = PXX⊤(DXX⊤ + σI)−

1

2 (PH).,1:K ,

with

H =D
− 1

2

XX⊤+σI
P

⊤
XX⊤+σI(XX

⊤
XX

⊤)PXX⊤+σID
− 1

2

XX⊤+σI

=D
− 1

2

XX⊤+σI
P

⊤
XX⊤(XX

⊤
XX

⊤)PXX⊤D
− 1

2

XX⊤+σI

=(DXX⊤)2(DXX⊤ + σI)−1,

and the important property to notice is that the ordering of the eigenvalues of H which are given by (D⊤
XX⊤)

2(DXX⊤ +
σI)−1 are the same as the ordering of XX⊤ which are given by D⊤

XX⊤ . That is, the top-K subspace that will be picked

up by PH are the same for any noise standard deviation σ. Now given the close form for V we can obtain the close form of

the classifier weights W from Eq. (5) to be

W =(V ∗⊤
XX

⊤
V

∗)−1
V

∗⊤
XY

⊤

W =
(

((PH).,1:K)⊤(DXX⊤ + σI)−
1

2P
⊤
XX⊤XX

⊤
PXX⊤(DXX⊤ + σI)−

1

2 (PH).,1:K

)−1

× ((PH).,1:K)⊤(DXX⊤ + σI)−
1

2P
⊤
XX⊤XY

⊤

W =
(

((PH).,1:K)⊤(DXX⊤ + σI)−1
DXX⊤(PH).,1:K

)−1
((PH).,1:K)⊤(DXX⊤ + σI)−

1

2D
1

2

XX⊤V
⊤
XY

⊤

W =((PH).,1:K)⊤(DXX⊤ + σI)D−1
XX⊤(PH).,1:K((PH).,1:K)⊤(DXX⊤ + σI)−

1

2D
1

2

XX⊤V
⊤
XY

⊤

W =((PH).,1:K)⊤
(

(DXX⊤ + σI)
1

2D
− 1

2

XX⊤

)

s
V

⊤
XY

⊤,

where the s subscript indicates that only the top K ×K part of the diagonal matrix is nonzero. Lastly, the product of both

matrices (producing the supervised linear model) is obtained as

W
⊤
V

⊤ =Y VX

(

(DXX⊤ + σI)
1

2D
− 1

2

XX⊤

)

s
(PH).,1:K((PH).,1:K)⊤(DXX⊤ + σI)−

1

2P
⊤
XX⊤

=Y VX(D
− 1

2

XX⊤)sP
⊤
XX⊤

therefore recovering the OLS optimal solution Y X⊤(XX⊤)−1 whenever K ≥ D, and otherwise recovers the projection

onto the top subspace of X–in any case the final parameters are invariant to the choice of the standard deviation of the

additive Gaussian noise (σ) during the denoising autoencoder pre-training phase.

5.6. Proof of Theorem 2

Proof. We prove separately the two cases of linear and nonlinear decoder. The linear decoder setting relies on less

assumptions about the data distributions but is also the less general statement. The nonlinear decoder setting is only valid

near initialization as it assumes that the Jacobian matrix of the decoder is at random initialization, i.e., not yet aligned with

the data manifold.

Linear decoder setting. The first part of the proof is to rewrite the joint objective classification and reconstruction objective

with an arbitrary encoder network fθ

min
θ∈RP ,W∈MC,K(R),V ∈MD,K(R)

∥W fθ(X)− Y ∥2F + λ∥V fθ(X)−X∥2F ,

as the nonparametric version

min
Z∈MK,N (R),W∈MC,K(R),V ∈MD,K(R)

∥WZ − Y ∥2F + λ∥V Z −X∥2F ,

16



How Learning by Reconstruction Produces Uninformative Features For Perception

both being identical if we assume that the encoder is powerful enough to reach any representation, which is a realistic

assumption given current architectures. Given that nonparametric objective, we can now solve for both the optimal decoder

weight V and the optimal representation Z as follows

min
Z∈MK,N (R),W∈MC,K(R),V ∈MD,K(R)

∥WZ − Y ∥2F + λ∥V Z −X∥2F

= min
Z∈MK,N (R)

∥Y Z
⊤(ZZ

⊤)−1
Z − Y ∥2F + λ∥XZ

⊤(ZZ
⊤)−1

Z −X∥2F

= min
Z∈MK,N (R)

Tr
(

Z
⊤(ZZ

⊤)−1
ZY

⊤
Y Z

⊤(ZZ
⊤)−1

Z
)

− 2Tr
(

Y
⊤
Y Z

⊤(ZZ
⊤)−1

Z
)

+ ∥Y ∥2F

+ λTr
(

Z
⊤(ZZ

⊤)−1
ZX

⊤
XZ

⊤(ZZ
⊤)−1

Z
)

− 2λTr
(

X
⊤
XZ

⊤(ZZ
⊤)−1

Z
)

+ λ∥X∥2F

= min
Z∈MK,N (R)

Tr
(

(ZZ
⊤)−1

ZY
⊤
Y Z

⊤
)

− 2Tr
(

Y
⊤
Y Z

⊤(ZZ
⊤)−1

Z
)

+ ∥Y ∥2F

+Tr
(

(ZZ
⊤)−1

ZX
⊤
XZ

⊤
)

− 2λTr
(

X
⊤
XZ

⊤(ZZ
⊤)−1

Z
)

+ λ∥X∥2F

= min
Z∈MK,N (R)

−Tr
(

Y
⊤
Y Z

⊤(ZZ
⊤)−1

Z
)

+ ∥Y ∥2F − λTr
(

X
⊤
XZ

⊤(ZZ
⊤)−1

Z
)

+ λ∥X∥2F

= min
Z∈MK,N (R)

−Tr
((

Y
⊤
Y + λX⊤

X
)

Z
⊤(ZZ

⊤)−1
Z
)

+ ∥Y ∥2F + λ∥X∥2F

= min
Z∈MK,N (R):Z⊤Z=I

−Tr
((

Y
⊤
Y + λX⊤

X
)

Z
⊤
Z
)

+ ∥Y ∥2F + λ∥X∥2F

which is solved by Z being any orthogonal matrix in the subspace of the top-K eigenvectors of
(

Y ⊤Y + λX⊤X
)

.

Now as λ → ∞ as the encoder will become more and more linear, ultimately converging to fθ(x) = Ux with U ∈
span{eigvec(X⊤X)1, . . . , eigvec(X

⊤X)K}

Nonlinear decoder setting. To prove the result in the nonlinear decoder setting, our argument will look at the contribution

of the data principal subspace to the gradient norm used to learn the encoder network parameters. In short, we will see that

most of the gradient energy comes from the principal subspace of the data, effectively forcing the autoencoder model to

focus on that subspace first. Let’s first derive the gradient of the loss with respect to the encoder output

∇L(f(xn)) =
N
∑

n=1

Jg(f(xn))
⊤(g(f(xn))− xn)

=

N
∑

n=1

Jg(f(xn))
⊤g(f(xn))−

N
∑

n=1

Jg(f(xn))
⊤
xn

=
N
∑

n=1

Jg(f(xn))
⊤g(f(xn))−

N
∑

n=1

K
∑

k=1

⟨xn,vk(X)⟩Jg(f(xn))
⊤
vk(X)

=

N
∑

n=1

Jg(f(xn))
⊤g(f(xn))−

K
∑

k=1

σk(X)

(

N
∑

n=1

Jg(f(xn))
⊤
Un,k(X)

)

vk(X),

where we recall that vk(X) is a unit-norm vector (right singular vector of X), and we have singular values in descending

order, σi ≥ σi, ∀i ≤ j. As a result, we first notice that the gradient will involve the sum of backpropagated right singular

vector of X weighted by the corresponding singular values. Since we know that

σ2
min

(

N
∑

n=1

Jg(f(xn))Un,k(X)

)

≤

∥

∥

∥

∥

∥

(

N
∑

n=1

Jg(f(xn))
⊤
Un,k(X)

)

vk(X)

∥

∥

∥

∥

∥

2

2

≤ σ2
max

(

N
∑

n=1

Jg(f(xn))Un,k(X)

)

we can guarantee that the amount of information coming from the first principal singular vector of X is greater than the

information coming form the last singular vector as soon as

σ2
1(X)

σ2
K(X)

≥
σ2
max

(

∑N
n=1 Jg(f(xn))Un,K(X)

)

σ2
min

(

∑N
n=1 Jg(f(xn))Un,1(X)

) .
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Given that U is a unitary matrix, and that (at initialization) Jg(f(xn)) is well-behaved, we conclude that the above is always

true at initialization in most practical settings where σ2
1(X) ≫ σ2

K(X). Lastly, the fact that the principal subspace of X

impacts the gradient of the loss with respect to f(x) is sufficient since training is done through backpropagation. Hence, any

bias that ∇L(f(xn)) has towards the principal subspace of the data will naturally flow through the backpropagation steps to

all the internal parameters of f .

5.7. Eigendecomposition

Given a matrix X ∈ MD,N (R) with D > N , computing the eigendecomposition of

XX⊤, a D × D matrix is O(D3) which instead can be obtained in O(N3 + DN2) as
def fast_gram_eigh(X, major="C", unit_test=False):

"""

compute the eigendecomposition of the Gram matrix:

- XX.T using column (C) major notation

- X.T@X using row (R) major notation

"""

if major == "C":

X_view = X.T

else:

X_view = X

if X_view.shape[1] < X_view.shape[0]:

# this case is the usual formula

U, S = np.linalg.eigh(X_view.T @ X_view)

else:

# in this case we work in the tranpose domain

U, S = np.linalg.eigh(X_view @ X_view.T)

S = X_view.T @ S

S[U>0] /= np.sqrt(U[U>0])

# ensuring that we have the correct values

if unit_test:

Uslow, Sslow = np.linalg.eigh(X_view.T @ X_vew)

assert np.allclose(U, Uslow)

assert np.allclose(S, Sslow)

return U, S
since we have the relation

XX
⊤
v = λv ⇐⇒ X

⊤
X(X⊤

v) =
λ

∥X⊤v∥22
(X⊤

v),

and thus we can simply compute the eigenvectors of the K ×K matrix X⊤X and get the eigenvectors of the N ×N matrix

XX⊤ by left-multiplying them by X⊤, and their corresponding eigenvalues are rescaled by 1
∥X⊤v∥2

2

.

5.8. Fast Implementation of Alignment Metric (Eq. (7))

We want to sweep over the latent dimension K. As such, we can avoid recomputing the metric for each value and get them

all at once as below. We again use the column-major notations as per Section 2:
def alignment_sweep(X, Y, major="C"):

U, S, Vh = np.linalg.svd(X, full_matrices=False)

if major == "C":

denom = np.square(np.linalg.norm(Y @ Y.T))

numer = np.linalg.multi_dot([Y.T, Y, Vh.T])

else:

denom = np.square(np.linalg.norm(Y.T @ Y))

numer = np.linalg.multi_dot([Y,Y.T, U])

numer = np.linalg.norm(numer, axis=0)**2

return np.cumsum(numer) / denom

5.9. Additional figures
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Figure 9. Empirical validation of Theorem 1 comparing the loss value at the optimum (from Eqs. (4) to (6)) against the one minimized

with gradient descent (Adam optimizer) (y-axis) during gradient steps (t, x-axis). We expect that different to get close to 0 as the gradient

updates converge to the minimum value of the loss. Although that quantity (loss(optimum) - loss(t)) is nonnegative in theory, we observe

that its minimum value (reported in the title of each subplot) is sometimes negative with negligible value due to round off error. We

compare numerous values of K,D,N as given in the titles of each row, and different values of λ ∈ {0.0, 0.1, 1, 10} (column).
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Figure 10. Depiction of Imagenet images (top) projected onto different subspaces obtained from Principal Component Analysis corre-

sponding to the subspace explaining the top 75% of pixel variance (middle) and bottom 25% of pixel variance (bottom). We clearly

observe that the image representation preserved after projection onto the bottom subspace makes the perception tasks (classification)

easier to solve that if projected onto the top subspace, where the lower frequency information is insufficient to classify what is the object

depicted (recall the classification performances of DNs applied onto those different projections from Figs. 1 and 4).
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