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Abstract
Machine learning techniques often lack for-
mal correctness guarantees, evidenced by the
widespread adversarial examples that plague most
deep-learning applications. This lack of formal
guarantees resulted in several research efforts that
aim at verifying Deep Neural Networks (DNNs),
with a particular focus on safety-critical applica-
tions. However, formal verification techniques
still face major scalability and precision chal-
lenges. The over-approximation introduced dur-
ing the formal verification process to tackle the
scalability challenge often results in inconclusive
analysis. To address this challenge, we propose a
novel framework to generate Verification-Friendly
Neural Networks (VNNs). We present a post-
training optimization framework to achieve a bal-
ance between preserving prediction performance
and verification-friendliness. Our proposed frame-
work results in VNNs that are comparable to
the original DNNs in terms of prediction per-
formance, while amenable to formal verification
techniques. This essentially enables us to estab-
lish robustness for more VNNs than their DNN
counterparts, in a time-efficient manner.

1. Introduction
The state-of-the-art machine learning techniques suffer from
lack of formal correctness guarantees. It has been demon-
strated by a wide range of “adversarial examples” in the deep
learning domain (Moosavi-Dezfooli et al., 2016; Kurakin
et al., 2018; Liang et al., 2022) and presents a major chal-
lenge in the context of safety-critical applications (Huang
et al., 2020). To address this challenge, several verification
frameworks for DNNs have been proposed in the state of the
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art (Katz et al., 2017; Tjeng et al., 2017; Huang et al., 2017;
Singh et al., 2019b). However, the majority of state-of-the-
art verification techniques suffer from poor scalability. As
a result, there have been several excellent initiatives to im-
prove the scalability of the existing verification frameworks
for DNNs (Katz et al., 2019; Singh et al., 2019a; Baninajjar
et al., 2023).

In contrast to the majority of the state-of-the-art verification
techniques, here, we propose a new generation of DNNs that
are amenable to verification, or simply verification-friendly.
Verification-Friendly Neural Networks (VNNs) allow more
efficiency, in terms of time, and more verified samples,
while maintaining on-par prediction performance with their
DNN counterparts. The key observation is that most veri-
fication frameworks are based on over-approximation and
this over-approximation accumulates/amplifies along the
forward pass. To reduce the over-approximation, we de-
fine an optimization problem to obtain VNNs by enforcing
sparsity on the DNNs, constrained to satisfy/guarantee per-
formance/robustness requirements. As such, our framework
allows verification tools to establish robustness for a wider
range of samples. While the main goal of VNNs is to be
verification-friendly, our proposed framework also plays a
regularization role, leading to more robust VNNs owing to
their sparsity.

We evaluate our proposed framework based on the classical
MNIST image dataset (LeCun, 1998) and demonstrate that
VNNs are indeed amenable to verification, while maintain-
ing accuracy as their DNN counterparts. The verification
time of VNNs is always less than the original DNNs (up to
one-third in some cases) due to the sparsity of the VNNs. At
the same time, and more importantly, we observe that VNNs
allow verification of up to 76 times more samples, besides
their advantage in terms of verification time efficiency.

To evaluate our framework on real-world safety-critical ap-
plications, we consider two datasets from medical domain,
namely, CHB-MIT (Shoeb, 2010), and MIT-BIH (Gold-
berger et al., 2000), for real-time epileptic seizure detection
and real-time cardiac arrhythmia detection, respectively.
Failure to detect an epileptic seizure or a cardiac arrhythmia
episode in time may have irreversible consequences and
potentially lead to death (Panelli, 2020; Stroobandt et al.,
2019). For such safety-critical applications, we demonstrate
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that the number of verified samples with VNNs is up to 24
and 34 times more than DNNs, considering the CHB-MIT
and MIT-BIH datasets, respectively.

Finally, we compare the performance of VNNs with
two state-of-the-art techniques, namely, Magnitude-
Based Pruning (MBP) and Sparse Optimization Pruning
(SOP) (Manngård et al., 2018). MBP and SOP approaches
aim at introducing sparsity, without taking the robustness
requirements into consideration. As a result, the sparse
network is not guaranteed to satisfy the robustness require-
ments. The experiments confirm this explanation and show
that VNNs are up to 46, 19, and 27 times more verification-
friendly than MBP models on DNNs trained on MNIST,
CHB-MIT, and MIT-BIH datasets, respectively. Moreover,
VNNs are up to 51 times more verification-friendly than
SOP models trained on the MNIST dataset.

2. Verification-Friendly Neural Networks
In this section, we discuss our proposed framework to gen-
erate VNNs. The framework comes with an optimization
problem that takes a trained model as input (i.e., the original
DNN) and results in a VNN. In the following, we introduce
the optimization problem and explain the formulation of the
objective function and constraints.

2.1. Deep Neural Networks

Let us first formalize our notation for DNNs. A DNN is
a series of linear transformations and nonlinear activation
functions to generate outputs using trained weights and
biases. We consider fk(.) : Rnk−1 → Rnk as the function
that generates values of the kth layer from its previous layer,
where nk shows the number of neurons in the kth layer.
Therefore, the values of the kth layer, x(k), are given by
x(k) = fk(x

(k−1)) = act(W (k)x(k−1) + b(k)), such that
W (k) and b(k) are the weights and biases of the kth layer
and act is the activation function.

2.2. Layer-Wise Optimization Problem

Our optimization problem to obtain a VNNs is performed
layer-by-layer. Therefore, here, we focus on the lth layer of
an N -layer DNN. To obtain a VNN, our aim is to minimize
the number of non-zero elements of weight W̃ (l) and bias
b̃(l) of the lth layer of an N -layer DNN to have a model
that is more sparse while still accurate. To minimize the
number of non-zero elements of W̃ (l) and b̃(l), we consider
the L0 norm ∥.∥0, also known as the sparse norm, as the
objective function. The L0 norm counts the number of non-
zero elements in a vector or matrix. Therefore, the objective
function is ∥W̃ (l)∥0,0 + ∥b̃(l)∥0, to find the minimum num-
ber of non-zero elements in W̃ (l) and b̃(l). In the following,
we outline our proposed constrained optimization problem

to obtain a VNN:

min
W̃ (l),b̃(l)

∥W̃ (l)∥0,0 + ∥b̃(l)∥0, (1)

s.t. x(k) = fk(x
(k−1)), ∀k ∈ {1, . . . , N} (2)

x̃(l) = f̃l(x
(l−1)), (3)

x̃(m) = fm(x̃(m−1)),∀m ∈ {l + 1, . . . , N}, (4)

∥x̃(l) − x(l)∥∞ ≤ ϵ, (5)

argmaxx(N) = argmax x̃(N) = y, (6)

∀x(0) ∈ Dval. (7)

Consider the constraints presented in Equations (2)–(7).
Equation (2) establishes the neurons’ values of the original
DNN with the trained weights and biases. For setting up
the neurons’ values after optimization, we define f̃l(.) :
Rnl−1 → Rnl as a new nonlinear function that transfers
neurons’ values of the (l − 1)th layer to the target layer
l using the optimized weights and biases. Therefore, x̃(l)

is given by x̃(l) = f̃l(x
(l−1)) = act(W̃ (l)x(l−1) + b̃(l))

in Equation (3). The change of neurons’ values in layer l
may result in different values for the neurons of the next
layers, hence we introduce Equation (4). Equation (4)
computes updated values for neurons in layers from l + 1
to the end of the DNN, which is layer N , using the new
values of neurons in layer l. Equation (5) ensures that x̃(l)

takes a value within the neighborhood of ϵ around x(l) to
avoid extreme changes and an excessive loss of accuracy. If
ϵ = 0, the value of each neuron is not allowed to change
after optimization, i.e., x̃(l) = x(l). If ϵ > 0, then x̃(l)

can be different from x(l) and the optimization has more
freedom to find a more sparse VNN.

In Equation (6), the optimization problem is constrained to
keep the same class as the one derived by the DNN prior
to the optimization. Consider that the input x(0) belongs
to class c. It means x

(N)
c > x

(N)
i for all neurons i ̸= c

in the last layer l = N . To obtain the same class after
optimization, the same holds for x̃(N)

i , i.e., x̃(N)
c > x̃

(N)
i

for all neurons i ̸= c, which is formulated in the context of
our linear optimization problem. Moreover, introducing a
constant robustness margin M to this inequality converts
it to x̃

(N)
c > x̃

(N)
i + M to provide hard guarantees for

enhancing the robustness of the DNN. However, for the
simplicity of the presentation, we adopt the compact form
of this constraint in Equation (6) in the remainder of this
paper. In Equation (6), y is the label of each x(0) in the
validation set Dval. All constraints need to hold for all
inputs in the validation set Dval (Equation (7)). In the
optimization problem, we consider the validation set instead
of the training set to avoid over-fitting in the VNN.
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2.3. Relaxation of Objective Function

The L0 norm is expressed in the form of an Lp norm, but
to be precise, it is not a norm (Chou et al., 2022). However,
optimizing the L0 norm poses significant challenges due to
the non-convex nature of the L0 norm. Here, we elaborate
on how to overcome this difficulty.

The L1 norm also referred to as the Manhattan norm, is
the tightest convex relaxation of the L0 norm in convex
optimization (Zass & Shashua, 2006). While the L0 norm
counts the number of non-zero elements of a matrix, the
L1 norm sums the absolute values of the elements. Be-
ing a convex function, the L1 norm can be used in convex
optimization problems, which is not possible with the L0

norm. Therefore, the optimization objective is reformulated
as follows to be convex:

min
W̃ (l),b̃(l)

∥W̃ (l)∥1,1 + ∥b̃(l)∥1. (8)

2.4. Reformulation of Constraints

The constraints of the optimization problem are nonlinear,
which is caused by the activation functions in f̃l(.) and
fm(.). Henceforth, we perform the analysis on the ReLU
activation function, which is the most popular activation
function in DNNs, but our framework can be extended to
any nonlinear activation function that can be presented in a
piece-wise linear form.

Performing function ReLU(x) = max(0, x) results in
two possible states for each neuron x

(l)
i . Suppose fl,i(.)

generates the output of fl(.) for neuron x
(l)
i ; The neu-

ron either remains continuously active if fl,i(x
(l−1)) =

W
(l)
i,: x

(l−1) + b
(l)
i > 0, or becomes permanently inactive

when fl,i(x
(l−1)) = 0 or W (l)

i,: x
(l−1) + b

(l)
i ≤ 0. It reflects

that the ReLU function is a combination of linear segments,
creating a piece-wise linear function. If we constrain the
neuron to remain within one of these linear segments, the
ReLU function behaves linearly, making it possible to han-
dle the proposed optimization. Therefore, the neurons in the
target layer l must remain in the same state (or in the same
linear segment). It is formulated as follows for x̃(l)

i :

{
W̃

(l)
i,: x

(l−1) + b̃
(l)
i ≥ 0 if fl,i(x(l−1)) > 0,

W̃
(l)
i,: x

(l−1) + b̃
(l)
i ≤ 0 otherwise.

(9)

The above introduces a new constraint for each neu-
ron x̃

(l)
i , where if the neuron has been originally active

(fl,i(x(l−1)) = W
(l)
i,: x

(l−1) + b
(l)
i > 0), we constrain the

new weights and bias to also remain active (W̃ (l)
i,: x

(l−1) +

b̃
(l)
i ≥ 0); otherwise (if the neuron has originally been in-

active, i.e., fl,i(x(l−1)) = 0 or W (l)
i,: x

(l−1) + b
(l)
i ≤ 0), we

constrain the new weights and bias to also remain inactive
(W̃ (l)

i,: x
(l−1) + b̃

(l)
i ≤ 0).

In this framework, the values of the neurons in layers k < l
remain unchanged during the optimization process, but the
output of layer l may change. Changing neurons’ values of
layer l may cause an alteration in the values of any neuron
of the following layers m > l, which could potentially
influence the classification result. Ensuring the consistency
of the assigned class for each sample involves capturing
the entire DNN. To do so, we leverage on the piece-wise
linearity of the ReLU function once more. Suppose fm,j(.)

produces the output of fm(.) for neuron x̃
(m)
j . We formulate

the updated value of neuron x̃
(m)
j in layer m > l as follows:

{
W

(m)
j,: x̃(m−1) + b

(m)
j ≥ 0 if fm,j(x̃

(m−1)) > 0,

W
(m)
j,: x̃(m−1) + b

(m)
j ≤ 0 otherwise.

(10)

2.5. Reformulated Layer-Wise Optimization Problem

After relaxing the objective function and the constraints,
we state our proposed layer-wise optimization problem as a
linear program:

min
W̃ (l),b̃(l)

∥W̃ (l)∥1,1 + ∥b̃(l)∥1,

subject to:

x(k) = fk(x
(k−1)), ∀k ∈ {1, . . . , N}{

x̃
(l)
i = W̃

(l)
i,: x

(l−1) + b̃
(l)
i ≥0 if fl,i(x(l−1))>0,

x̃
(l)
i = 0, W̃

(l)
i,: x

(l−1) + b̃
(l)
i ≤0 otherwise

∀i ∈ {1, . . . , nl},{
x̃
(m)
j =W

(m)
j,: x̃(m−1) + b

(m)
j ≥0 if fm,j(x̃

(m−1))>0,

x̃
(m)
j =0,W

(m)
j,: x̃(m−1) + b

(m)
j ≤0 otherwise

∀j ∈ {1, . . . , nm},∀m ∈ {l + 1, . . . , N}, (11)

∥x̃(l) − x(l)∥∞ ≤ ϵ,

argmaxx(N) = argmax x̃(N) = y,

∀x(0) ∈ Dval.

2.6. End-to-End Optimization Problem

The optimization problem in Equation (11) only targets a
single layer l. Here, we propose an end-to-end process to
generate all layers of VNNs iteratively. We initiate the pro-
cess with an already-trained model along with a validation
set. The process proceeds layer-by-layer to obtain sparse
weights and biases for the DNN. To find a verification-
friendly model within our framework, we start from the
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first hidden layer, l = 1, and run the optimization problem
in Equation (11) to find the sparse matrix of weights and
vector of biases such that the outcome of the classification
on the validation set remains unchanged. Then, the weights
and biases of the first hidden layer, W̃ (1) and b̃(1), remain
unaltered, while the optimization is performed on the sec-
ond hidden layer to detect the sparse W̃ (2) and b̃(2). This
process continues until the last layer of the DNN.

3. Evaluation
In this section, we assess the performance of our proposed
framework to generate VNNs compared to state-of-the-
art techniques. Our framework is implemented using the
Gurobi solver (Gurobi Optimization, LLC, 2023) on a Mac-
Book Pro with an 8-core CPU and 32 GB of RAM1.

3.1. Datasets

We consider three public datasets for evaluation of VNNs,
namely, the MNIST dataset (LeCun, 1998) and two datasets
from safety-critical medical applications. The first one is
about epileptic seizure detection based on the CHB-MIT
Scalp EEG database (Shoeb, 2010) and the second one
concerns cardiac arrhythmia detection based on the MIT-
BIH Arrhythmia database (Goldberger et al., 2000).

MNIST image dataset (LeCun, 1998) is composed of gray-
scale handwritten digits such that each digit is represented
by a 28×28 pixel image. Similar to (Singh et al., 2019b),
we consider the first 400 images of the test set and equally
split them into validation and test sets for the optimization
and evaluation of DNNs, respectively.

CHB-MIT dataset (Shoeb, 2010) comprises 23 individuals
diagnosed with epileptic seizures. This dataset is recorded
in the international 10-20 system of EEG electrode positions
and nomenclature. We utilize two electrode pairs, namely
F7-T7 and F8-T8, which are frequently employed in seizure
detection research (Sopic et al., 2018). The recordings are
sampled at a rate of 256 Hz. For each patient, we consider
60%, 20%, and 20% of the dataset for the training, valida-
tion, and test sets, respectively. The set sizes vary among
patients, and each patient’s entire dataset consists of 44 to
1009 samples, with an average of 252 samples.

MIT-BIH dataset (Goldberger et al., 2000) contains ECG
signals that have been digitized with a sampling rate of 360
Hz. To be able to formulate a classification problem, we
select the 14 subjects with at least two distinct types of
heartbeats. Similar to the CHB-MIT dataset, each model
is trained using a training set, optimized with a validation
set, and evaluated using a test set. The training set includes

1The code is available on https://github.com/
anahitabn94/VNN.

75% of the entire dataset. The remaining 25% are equally
partitioned among the test set and the validation set. The
size of the datasets may differ among the patients and each
patient’s entire set consists of 400 to 1800 samples, with an
average of 957 samples.

3.2. Deep Neural Networks

We consider Fully-connected Neural Networks (FNNs) and
Convolutional Neural Networks (CNNs) to investigate the
performance of our proposed framework.

FNNs. We adopt FNNs trained by (Singh et al., 2019b)
and (Ugare et al., 2022) on MNIST to explore the perfor-
mance of our framework. In this paper, the notation of
n×m is used for the architecture of a FNN comprising n
hidden layers, each containing m neurons. We examine six
FNNs with 2× 50, 2× 100, 5× 100, 5× 200, 8× 100, and
8 × 200 architectures generated by (Singh et al., 2019b),
where each dense layer is followed by a ReLU activation
function. Besides, we consider three FNNs with 6 × 500
architectures, two of which are generated using Projected
Gradient Descent (PGD) adversarial training, i.e., defended
against adversarial attacks (Singh et al., 2019b). Moreover,
a set of pruned FNNs with 7× 200 architecture, developed
by (Ugare et al., 2022), is employed in our study. The input
and output layers of all the FNNs have 784 and 10 neurons,
respectively.

CNNs. We train CNNs on CHB-MIT and MIT-BIH datasets
to study the compatibility of our framework with CNNs.
For the CHB-MIT dataset, we train 23 personalized CNNs,
one for each patient. Each model consists of three hidden
layers, including two convolutional layers with 3 and 5
filters and kernel sizes of 100 and 200, respectively, each
followed by a max-pooling layer, as well as a dense layer
with 40 neurons. The input layer has 2048 neurons. For
the MIT-BIH dataset, we train 14 individual CNNs, each
with an input layer of 320 neurons, a convolutional layer
including 3 filters with a kernel size of 64, and a dense
layer with 40 neurons. The output layer of all CNNs has
two output neurons to classify the input into negative (non-
seizure/normal) or positive (seizure/arrhythmia) classes.

3.3. Robustness Properties

The robustness property is formulated in terms of the L∞
norm and parameterized by a constant δ. The adversarial
region includes all perturbed inputs such that each input neu-
ron has a maximum distance of δ from the corresponding
neuron’s value of the original input. The range of pertur-
bation is considered differently for different datasets, as it
depends on the robustness of each DNN w.r.t. its structure.
The maximum studied perturbations for MNIST, CHB-MIT,
and MIT-BIH are 0.1, 0.01, and 0.2, respectively.
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Table 1: Verified robustness (%) and average processing time (s) of original DNNs and VNNs (ϵ = 0) on the MNIST dataset
for six FNNs with different network structures using ERAN and SafeDeep. VNNs are optimized models that are more
verification-friendly and time-efficient than their corresponding original DNNs.

ERAN (Singh et al., 2019b) SafeDeep (Baninajjar et al., 2023)
δ = 0.01 δ = 0.02 δ = 0.03 δ = 0.05 δ = 0.07 δ = 0.01 δ = 0.02 δ = 0.03 δ = 0.05 δ = 0.07

Model Org VNN Org VNN Org VNN Org VNN Org VNN Org VNN Org VNN Org VNN Org VNN Org VNN

R
ob

us
tn

es
s

(%
)

2× 50 90.5 92.5 68.5 85.5 22.5 75.5 1 32 0.5 9.5 91.5 93 78 87.5 41 79.5 3 45 1 13
2× 100 85 92.5 33.5 85 3.5 70 0 16.5 0 2 90.5 92.5 67.5 86.5 15.5 77.5 0 33.5 0 7
5× 100 75.5 92 13.5 74.5 0.5 38 0 2 0 0 87 92.5 45 86 8 67.5 0 14.5 0 1.5
5× 200 27 84 0.5 29.5 0 4.5 0 0 0 0 76 90 7 73 0 27 0 1 0 0
8× 100 67 85 17.5 60.5 0.5 28 0 3.5 0 0 84 90 40 79 11.5 56 0 16.5 0 1.5
8× 200 22.5 80 0.5 22 0 3 0 0.5 0 0 73 90 5.5 69 0.5 23 0 1.5 0 0

A
ve

ra
ge

Ti
m

e
(s

) 2× 50 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.3 0.2 0.8 0.6 1.2 0.7 1.9 0.7 2.2 1.1 2.2 1.1
2× 100 0.5 0.4 0.6 0.5 0.7 0.5 0.8 0.6 0.8 0.7 2.7 1.7 7.6 1.9 7.6 2.6 10 4.2 10 4.2
5× 100 1.7 1.5 2.3 1.6 2.5 1.9 2.5 2.2 2.5 2.2 16 9 36 13 44 19 48 29 48 30
5× 200 8 6 9 7 9 8 9 8 9 8 106 35 180 68 180 88 180 94 180 94
8× 100 3 3 4 3 5 4 5 4 5 5 46 21 93 31 111 51 123 60 123 87
8× 200 16 11 19 15 20 17 20 17 20 17 240 94 325 140 335 165 335 173 335 173
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(a) Verified robustness (%) using ERAN.
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(b) Verified robustness (%) using SafeDeep.

Figure 1: Verified robustness (%) of the MNIST dataset w.r.t. different values of perturbations for original DNNs and their
corresponding VNNs using ERAN and SafeDeep.

3.4. Verification Frameworks

We consider ERAN (Singh et al., 2019b) and
SafeDeep (Baninajjar et al., 2023) to evaluate the ef-
fectiveness of our proposed framework in this paper. ERAN
and SafeDeep are over-approximation-based frameworks
designed to verify the robustness of DNNs. ERAN, or more
specifically DeepPoly, works based on the principles of
abstract interpretation. SafeDeep, on the other hand, works
based on incremental refinement of convex approximations.

3.5. Results and Analysis

In this section, we evaluate our proposed framework in terms
of the provability of robustness. We shall first assess the
proposed VNNs considering the MNIST dataset.

3.5.1. MNIST.

We start by evaluating the VNNs generated by our proposed
framework against pre-trained original DNNs on the MNIST
dataset. Table 1 illustrates the verified robustness and av-
erage processing time of FNNs evaluated by ERAN and
SafeDeep. Here, we show five different perturbation values,
δ, covering a broad range of perturbations. Based on the
results in Table 1, the number of samples whose robustness
could be established is considerably larger for the VNNs
than that of the original DNNs Moreover, as the perturbation
increases, the difference in the number of verified samples
becomes even more significant. Furthermore, the average
processing time of VNNs is up to three times less than their
corresponding original DNNs.

In Figure 1 we select three FNNs with 2× 50, 5× 100, and
8× 200 architectures as representatives of small, medium,
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Figure 2: Comparison with state of the art: MBP and
SOP (Manngård et al., 2018).
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Figure 3: Comparison with state of the art: MBP (Ugare
et al., 2022).

and large FNNs, respectively, to study a wider range of
perturbation. Based on the results in Figures 1a and 1b
using ERAN and SafeDeep, we observe that the accuracy
of VNNs is within the same range as their corresponding
original DNNs, which is shown in the absence of perturba-
tion δ = 0. In addition, the verification tools consistently
demonstrate the robustness of a greater number of samples
and for larger perturbations in the case of VNNs.

Comparison with State-of-the-Art Pruning. Here, we
compare our framework with two state-of-the-art pruning
approaches in terms of compatibility with the verification
techniques: (1) Magnitude-Based Pruning (MBP) is widely
used to enhance the scalability of DNNs by forcing small
values of weights and biases to become zero (Guidotti et al.,
2020), and (2) Sparse Optimization Pruning (SOP) aims to
enhance sparsity of DNNs during training while preserving
accuracy (Manngård et al., 2018).

Figure 2 shows the verified robustness for three FNNs with
2×50, 5×100, and 8×200 architectures pruned by the MBP
and SOP compared to our proposed VNNs. Accuracy is
depicted on the y-axis where δ = 0. The results demonstrate
that the accuracy of the MBP and SOP models are within
the same range as VNNs. However, the VNNs offer sub-
stantially higher verified robustness than the corresponding
MBP and SOP models.

Next, we conduct another experiment using the publicly
available pruned DNNs proposed by (Ugare et al., 2022)
using MBP method. The authors shared an original and 9
pruned FNNs with 7× 200 architecture. The pruned DNNs
are made by discarding the smallest weights at each layer
with pruning rates ranging from 10% to 90%. The findings
in Figure 3 indicate that, despite their impressive accuracy
shown on the y-axis where δ = 0, these models do not
demonstrate higher verification-friendliness compared to
the original one.

Investigating Robustness of VNNs. Here, we investigate
the robustness of VNNs using the exact verification tool
Marabou, an SMT-based tool (Katz et al., 2019). Exact
verification frameworks, which are sound and complete,
suffer from poor scalability. To overcome this issue, we
only consider the FNN with 2× 50 architecture and opt for
an extended timeout of 600 seconds per sample. Table 2
presents the results of the FNN and its corresponding VNN.
For larger FNNs, over 75% of cases exceeded the timeout.

Table 2: Robustness of the DNN and VNN.

VNN

Robust Not Robust Timeout

D
N

N

Robust 41 0 0

Not Robust 269 275 261

Timeout 927 0 27

The study involves a total of 1800 states, corresponding to
200 samples in the test set, each potentially misclassified
among 9 classes, as MNIST has 10 classes. The number
of timeout cases in the DNN is three times more than that
in the VNN, which implies the VNN is more verification-
friendly. On the other hand, in 269 out of the total 1800
cases, the VNN is guaranteed to be robust, while the DNN
lacks robustness in these specific cases. Finally, no cases
are identified where the DNN exhibits robustness while the
VNN does not.

Hyperparameter. Next, we investigate how changing the
hyperparameter ϵ impacts verification-friendliness on FNNs
characterized by different structures. Note that here, we
employ a multiplicative perturbation. The outcomes ob-
tained through SafeDeep are depicted in Figure 4, where
the x-axis and y-axis represent perturbation δ and veri-
fied robustness, respectively. Note that the y-axis captures
accuracy in the absence of a perturbation, which means
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(a) 2× 50 VNNs.
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(b) 8× 200 VNNs.

Figure 4: The effect of ϵ for different network structures.

δ = 0. The key idea is to relax the constraints, which
leads to an optimization problem with a larger solution
space, to obtain a sparser VNN in the optimization problem
with fewer non-zero weights/biases. For example, when
ϵ = 0.1, the value of each neuron x̃

(l)
i can change in the

range of [0.9x(l)
i , 1.1x

(l)
i ], and the freedom of choices al-

lows for sparser VNNs that are easier to handle by the over-
approximation-based verification techniques. However, a
validation set with inadequate size, in comparison to the
size of the model, may lead to a decrease in the model’s
prediction performance.

Figure 4a displays the verification results obtained for VNNs
of a small network with two dense layers each with 50 hid-
den neurons. As the DNN is small in comparison to the size
of the validation set, which contains 200 samples, the accu-
racy of its corresponding VNNs remains within the same
range, while the verified robustness increases up to 13%.
On the other hand, Figure 4b, which illustrates the results
of a large network with 9× 200 architecture, shows a slight
decrease in accuracy when ϵ increases. This trade-off be-
tween accuracy and verification-friendliness rises due to the
small size of the validation set in relation to the sizes of the
VNNs. When ϵ = 0 or ϵ = 0.1, the accuracy is above 90%
and the model is more robust against small values of pertur-
bation, while with ϵ = 0.3, the accuracy slightly decreases
to 80%. Our experiments show that increasing the size of
the validation set increases the prediction performance.

VNN for Adversarially-Trained Models. Our proposed
framework can be applied in combination with state-of-the-
art adversarial training techniques, which defend against
adversarial attacks, such as PGD, and still further improve
verification-friendliness.

Figure 5 illustrates the verified robustness for six FNNs, all
with 6 × 500 architectures. We consider two adversarial-
trained models, trained via PGD adversarial training with

δ values of 0.1 and 0.3, as outlined in (Singh et al., 2019b),
denoted as PGD1 and PGD3, respectively. For each model,
there are two corresponding VNNs with ϵ = 0 and ϵ = 0.1.
They are denoted as VNN0(PGD1) and VNN1(PGD1) for
PGD1 and VNN0(PGD3) and VNN1(PGD3) for PGD3.
The accuracy is shown on the y-axis when δ = 0 in Figure 5.
More concretely, Figure 5 shows that the accuracy values
of VNN0(PGD1) and VNN1(PGD1) are comparable to that
of PGD1, while exhibiting higher verification-friendliness.
The same pattern exists for the PGD-trained model with
δ = 0.3, denoted as PGD3, and its corresponding VNNs,
namely, VNN0(PGD3) and VNN1(PGD3).

Number of Optimized Layers. Our proposed framework
optimizes the entire DNN layer by layer. The number of
optimized layers is, therefore, another parameter that affects
the performance of VNNs. Figure 6 shows the results of
robustness verification for a VNN with 8× 200 architecture
and ϵ = 0.2 using SafeDeep. The x-axis shows the number
of layers that are optimized using our framework, e.g., 3
means the first 3 hidden layers of the VNN are optimized.
Each curve shows the robustness verification results w.r.t. a
specific value of perturbation δ to be able to compare the
effect of increasing the number of optimized layers of VNNs.
Figure 6 demonstrates that as the number of optimized layers
increases, shown on the x-axis, the proportion of verified
cases increases. This phenomenon arises as increasing the
number of optimized layers leads to decreasing the number
of non-zero neurons and over-approximation of each neuron;
thus VNNs become more verification-friendly.

Time Complexity. Our proposed framework to generate
VNNs has a polynomial time complexity, since for each
layer one linear program is solved. The end-to-end process
of generating VNNs also has linear time complexity with
the number of layers. Experimentally, the processing time
of FNNs with 2× 50, 2× 100, 5× 100, 5× 200, 8× 100,
and 8× 200 architecture is 40, 101, 147, 463, 195, and 618
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Figure 5: Comparison of PGD-trained networks (Singh
et al., 2019b) with VNN-enhanced networks.
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Figure 6: Increasing the number of optimized layers in
an FNN with 8× 200 architecture and ϵ = 0.2.

seconds, respectively, when ϵ = 0. However, increasing the
value of ϵ leads to a decrease in processing time.

Next, we evaluate our proposed framework in the context
of two safety-critical medical applications, namely, epilep-
tic seizure detection and cardiac arrhythmia detection, to
demonstrate its relevance.

3.5.2. CHB-MIT.

Here, we analyze our proposed framework based on the
CHB-MIT dataset. Figures 7a and 7b show the verified
robustness curves using ERAN and SafeDeep, where pertur-
bation δ is in the range of [0.0001, 0.01]. The y-axis depicts
accuracy under conditions of zero perturbation δ = 0. The
curves demonstrate the average ratio of samples for which
robustness is verified and the shaded areas represent the
variance w.r.t. the patients. The verified robustness of 23
individualized CNNs is evaluated on the patients in the
CHB-MIT dataset to investigate their behavior for different
perturbations. The accuracy (µ± σ2) of the original CNNs
and VNNs is 85.7%±3.8% and 82.5%±4.2%, respectively,
while the VNNs are substantially more verification-friendly.
Our framework generates VNNs with ϵ = 0 that have up to
9 and 24 times more verified robustness using ERAN and
SafeDeep, respectively.

Moreover, we look into MBP models, where the 10% small-
est weights and biases of the original DNNs are set to zero
(Guidotti et al., 2020). By setting this threshold, 40% to 50%
of all weights and biases became zero for each CNN, while
higher rates significantly decrease the accuracy of the MBP
models. Although MBP improves verification exploring by
established over-approximation-based methods, it is not as
effective as our proposed optimization framework. Indeed,
using a fixed threshold to disregard weights not only does
not minimize the number of non-zero elements but also
ignores the model’s accuracy. Our proposed framework,
on the other hand, actively looks for weights and biases

that maintain accuracy while forcing as many as possible
to become zero. For the CHB-MIT dataset, the accuracy of
the MBP models is 84.1% ± 4.1%, which is only slightly
higher than VNNs, but our framework is up to one order of
magnitude more verification-friendly. This slight difference
in accuracy is because VNNs are approximately 40% more
sparse. However, the accuracy of the MBP models drops
to 68.4% ± 4.3%, if we enforce the MBP models to have
similar sparsity as our VNNs.

3.5.3. MIT-BIH.

Next, we explore the performance of our framework consid-
ering the MIT-BIH dataset using ERAN and SafeDeep. As
shown in Figures 7c and 7d, VNNs generated by our frame-
work have a higher rate of verified robustness. Moreover,
VNNs demonstrate superior performance when subjected
to higher levels of perturbation. Figures 7c and 7d show
the verified robustness of original DNNs, MBP models, and
VNNs, with the accuracy of 91.5%± 3.1%, 90.7%± 3.4%,
and 92.0% ± 3.0%, respectively. Note that MBP models
are created using the same conditions as CHB-MIT mod-
els, wherein a threshold is applied to set the lowest 10% of
weights and biases to zero. The experiments show that our
proposed framework generates VNNs with ϵ = 0 that have
up to 34 and 30 times more verified robustness compared to
the original CNNs using ERAN and SafeDeep, respectively.
Furthermore, the performance of VNNs is significantly bet-
ter than MBP models.

4. Related Work
DNNs are known for their vulnerability to adversarial ex-
amples (Szegedy et al., 2013). Adversarial examples are
obtained by a slight modification of inputs, essentially lead-
ing to inputs that are misclassified by the DNN despite their
extreme similarity to the original correctly classified inputs.
Below, we review several studies aiming at improving the
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Figure 7: Mean and variance of verified robustness (%) for the CHB-MIT and MIT-BIH datasets. MBP models are generated
by a threshold to force small weights to become zero, and VNNs are generated using our proposed framework.

scalability of robustness verification of DNNs against adver-
sarial examples.

One prominent research direction in this domain aims at
enhancing the scalability of verification techniques for es-
tablishing robustness properties for DNNs. Here, the state-
of-the-art techniques for verification robustness of DNNs
can be categorized as either precise (Tjeng et al., 2017;
Huang et al., 2017; Katz et al., 2017) or based on over-
approximation (Singh et al., 2019b; Weng et al., 2018; Bunel
et al., 2018; Baninajjar et al., 2023). The exact techniques
face fundamental challenges in scalability due to their ex-
haustive exploration of all potential behaviors, often leading
to exponential complexity (Katz et al., 2017). On the other
hand, the over-approximation-based approaches prioritize
scalability over precision, but are still limited by the inherent
trade-off between scalability and precision.

Other studies have sought to establish links between ro-
bustness and the architecture of DNNs. Lin et al. (2019)
demonstrated that binarization enhances robustness by keep-
ing the noise magnitude small. Another study revealed
that quantized DNNs exhibit greater scalability, but their
accuracy is compromised as they disregard floating-point
values (Henzinger et al., 2021). In (Sietsma & Dow, 1988),
it was also shown that robustness against adversarial at-
tacks improves if redundant neurons are eliminated. Guidotti
et al. (2020) utilized pruning to reduce the size of DNNs by
eliminating non-crucial portions that do not significantly
impact their performance, but without any hard perfor-
mance/robustness guarantees. Tao et al. (2023) presented an
approach for architecture-preserving, provable V-polytope
repair of DNNs. However, as opposed to the state-of-the-art
studies above, our main focus in this paper is not on tar-
geting specific properties, e.g., robustness; rather, the main
goal of VNNs is to enhance verifiability, while guaranteeing
prediction performance/robustness requirements.

Manngård et al. (2018) aimed at enhancing sparsity using
the Lagrange multiplier and regularizing the loss function
with robustness requirements. However, when a constrained
optimization problem is reformulated as an unconstrained

optimization problem using the Lagrange multiplier, the
final solution obtained may violate the original hard con-
straints. Leofante et al. (2023) introduced parametric ReLU
to reduce over-approximation and improve verification-
friendliness, however, this method does not provide any
guarantees to generate more verification-friendly DNNs nor
does it provide guarantees to satisfy performance/robustness
requirements. Hu et al. (2024) introduces a new residual
architecture tailored for training neural networks with ro-
bustness certification but, similar to the previous work, it
lacks any guarantees.

5. Conclusions
The state-of-the-art verification tools currently face major
challenges in terms of scalability. In this paper, we presented
an optimization framework to generate a new class of DNNs,
referred to as VNNs, that are guaranteed to be accommo-
dating to formal verification techniques. VNNs are more
time-efficient and verification-friendly while maintaining
on-par prediction performance with their DNN counterparts.
We formulate an optimization problem on pre-trained DNNs
to obtain VNNs while maintaining on-par prediction per-
formance. Our experimental evaluation based on MNIST,
CHB-MIT, and MIT-BIH datasets demonstrates that the ro-
bustness of our proposed VNNs is established substantially
more often and in a more time-efficient manner than their
DNN counterparts, without any major loss in terms of pre-
diction performance. In addition, our experiments show that
VNNs are not only more verification-friendly, but also more
robust compared to their peer DNNs.
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Impact Statement
This paper presents work whose goal is to investigate the
important task of providing formal guarantees for DNNs,
which presents a significant challenge in the AI/ML do-
main. This is particularly important in the context of
safety-critical medical applications, e.g., epileptic seizure
detection and real-time cardiac arrhythmia detection, as we
show in this paper. Failure to detect an epileptic seizure
or a cardiac arrhythmia episode in time may have irre-
versible consequences and potentially lead to death. In
response to this challenge, this study introduces a frame-
work designed to produce DNNs that align with verifica-
tion techniques, thereby enhancing the trustworthiness of
these networks without sacrificing the prediction perfor-
mance/robustness. Finally, we would like to highlight that
there are no potential ethical impacts and future societal
implications/consequences to be highlighted here.
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