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Abstract
Despite the rich line of research works on out-
of-distribution (OOD) detection on images, the
literature on OOD detection for interdependent
data, e.g., graphs, is still relatively limited. To
fill this gap, we introduce TopoOOD as a prin-
cipled approach that accommodates graph topol-
ogy and neighborhood context for detecting OOD
node instances on graphs. Meanwhile, we enrich
the experiment settings by splitting in-distribution
(ID) and OOD data based on distinct topological
distributions, which presents new benchmarks for
a more comprehensive analysis of graph-based
OOD detection. The latter is designed to thor-
oughly assess the performance of these discrim-
inators under distribution shifts involving struc-
tural information, providing a rigorous evaluation
of methods in the emerging area of OOD detec-
tion on graphs. Our experimental results show
the competitiveness of the proposed model across
multiple datasets, as evidenced by up to a 15%
increase in the AUROC and a 50% decrease in the
FPR compared to existing state-of-the-art meth-
ods.

1. Introduction
Recognizing out-of-distribution (OOD) input perturbations
to improve the robustness of machine learning models is cru-
cial for real-world applications, particularly in safety-critical
and high-stakes domains. Currently, the susceptibility to
OOD samples remains a pivotal concern in developing reli-
able AI systems. For example, for large language models,
plenty of work has been attempted to evaluate model ro-
bustness under the threats of confusing synonyms as well
as typographical errors in prompts (Zhu et al., 2023), ad-
versarial contents (Nie et al., 2019; Zhuo et al., 2023), and
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noisy inputs (Wang et al., 2023), demonstrating the lack of
adequate robustness to uncertain outliers.

A similar challenge is also critical yet relatively under-
explored when it comes to graph-structured data. Graph
Neural Networks (GNNs) typically operate under the as-
sumption that training and testing datasets share the same
distribution, which does not mirror real-world scenarios
where distribution shifts of various types widely exist (Koh
et al., 2021; Wu et al., 2022; Zhu et al., 2021; Yang et al.,
2022). More importantly, this assumption causes the classi-
fiers to provide over-confidence predictions for OOD sam-
ples and hampers the reliability of GNN models. Simultane-
ously, compared to other types of data, the difficulty of OOD
detection for graphs at the node level is further exacerbated
by the interdependence within the neighborhood.

The current methods for node-level OOD detection either
model uncertainty predominantly on the predicted cate-
gorical distribution but sideline the node feature embed-
dings (Hasanzadeh et al., 2020; Rong et al., 2020; Stadler
et al., 2021; Zhao et al., 2020) or over-rely on the features of
individual nodes, concurrently operating under the assump-
tion that connected nodes predominantly tend to be sampled
from similar distributions (Wu et al., 2023). Yet, while
IDs and OODs intermingle in the neighborhood, GNNSafe
fails to provide a discriminative energy score, as illustrated
via the toy example given in Fig. 1. Such unsatisfactory
performance highlights that, unlike vision data, node OOD
detection requires the appropriate assessment of each node’s
neighborhood information.

In this paper, we start from the neighborhood topology,
combining it with interdependent node features to develop
a robust OOD detector, TopoOOD, for graph structural data.
Inspired by the well-established Dirichlet energy (Zhou
& Schölkopf, 2005), we adopt a comprehensive outlook,
introducing a generalized node-wise Dirichlet energy as the
confidence score. We further propose new experimental
benchmarks by partitioning ID and OOD instances based
on different topological distributions to enrich the limited
dataset collection. In summary, the contributions are:

1) An Innovative Detection Metric: We design the node-
wise k-hop Dirichlet energy (raw kHDE) to measure the
level of turbulence in a node’s neighborhood and quantify
it as the confidence score. We demonstrate the superiority
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of raw kHDE and provide theoretical justification for its
effectiveness in the discrimination of IDs and OODs.

2) Principled Detector Design: In response to the energy
convergence issue identified with raw kHDE in large-scale
graphs, we introduce the Generalized node-wise Dirichlet
Energy (GDE), which improves the raw kHDE by incorpo-
rating a weighting mechanism for each node within each
k-hop subgraph, based on their structural proximity to the
central node. Significantly, TopoOOD, our proposed detec-
tor, employs GDE as a robust core component and can be
seamlessly integrated with various GNN backbones.

3) A New Evaluation Setting: We craft a topology-aware
setting for splitting ID and OOD instances based on struc-
tural information including triangleness, squareness, and
cliqueness of graphs, contributing to enrich the benchmark
settings of graph-structural data’s OOD detection.

4) Practical Efficacy: Comprehensive experiments across
numerous benchmarks, including ours, validate that our
simple yet effective method achieves up to an approximately
15% enhancement in AUROC and a 50% reduction in FPR
over SOTA models.

2. Preliminaries
2.1. Graph Notation and Node Classification

For a graph G = (V,E), we consider V = {i|1 ≤ i ≤ N}
denotes the node set and E = {eij} denotes the edge set
where eij represents an edge from i to j. The adjacency
matrix of G is A = aij ∈ RN×N . We define the out-
degree of each node di =

∑
j∈V aij . Let Ã := A + In

and D̃ := D + In be the adjacency and degree matrix
of the graph augmented with self-loops. The augmented
normalized Laplacian is then given by ∆̃ := In − P̃ , where
P̃ := D̃− 1

2 ÃD̃− 1
2 is an augmented normalized adjacency

matrix for the neighborhood aggregation in GNNs.

Each instance i has an input feature vector xi ∈ RM and a
label yi ∈ {1, ..., C} where M denotes the dimension of the
input feature and C is the class number. The N instances
are partially labeled and we define Ilb as the labeled node
set and Iunlb as the unlabeled node set, i.e., I = Ilb∪Iunlb.
The goal of standard (semi-)supervised learning on graphs is
to train a node-level classifier f with Ŷ = f(X,A), where
X = [xi]i∈I and Ŷ = [ŷi]i∈I , that predicts the labels for
in-distribution instances in Iunlb.

2.2. OOD Nodes Detection on Graphs

Graph Neural Networks (GNNs) (Scarselli et al., 2009) use
message passing to aggregate features from neighboring
nodes to update the central node’s representations. The
GNN models can be denoted as h with parameters θ, such

that hθ(xi,Gxi) = xL
i , where Gxi = (xj∈Ni

, Ai) represents
the ego-graph centered at xi, Ni signifies the set of nodes
within a designated distance from node i on the graph, and
Ai is the corresponding adjacency matrix.

To enable the model’s awareness of OOD instances, in line
with the popular treatment in literature, such as (Sun et al.,
2022; Wu et al., 2023), we integrate a detection mechanism
for uncertainty alongside the primary classification model h
to accurately classify ID instances while also recognizing
OOD inputs as ”unknown”. Generally, the goal is to formu-
late an optimal decision function, F associated with model
h that can evaluate any provided input xi:

F (xi,Gxi ;h) =

{
1, if i is an ID instance,
0, if i is an OOD instance,

(1)

Provided this framework, node OOD detection should de-
pend on both individual node feature embeddings and their
neighborhood context.

2.3. Dirichlet Energy

Dirichlet energy is designed to measure the embedding
smoothness with the weighted node pair distance at the
graph level as an effective training guide for GNNs (Zhou &
Schölkopf, 2005). Formally, given the node embedding ma-
trix X l =

[
xl
1, · · · ,xl

N

]⊤ ∈ RN×M learned from GNNs
at the l-th layer, the Dirichlet energy is

tr
(
Xl⊤∆̃Xl

)
=

1

2

∑
aij

∥∥∥∥∥ xl
i√

1 + di
−

xl
j√

1 + dj

∥∥∥∥∥
2

2

, (2)

where tr(·) denotes the matrix trace, aij ∈ A, and di rep-
resents the node degree as the i-th diagonal element of the
matrix. Given that the aggregation step commonly postu-
lates nodes with analogous properties are likely to cluster
densely after gradient optimization (Stadler et al., 2021),
eventually, ID instances will closely knit within the em-
bedding space whereas the OOD instances will be more
dispersed. This rationally lends to the potential application
of Dirichlet energy in the area of graph OOD detection.

3. Methodology
To apply the classic Dirichlet energy for OOD node detec-
tion, we require a refined transformation to the node level. In
this section, we first propose several assumptions to formu-
late the scenarios. We then propose the raw k-hop Dirichlet
energy and theoretically prove its ability to differentiate be-
tween ID and OOD interdependent data. Subsequently, we
elucidate the problem of convergence which is the primary
limitation of raw kHDE. This then motivates our refinement
into the generalized node-wise Dirichlet energy.
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Figure 1. A toy example to visualize the limitation of
GNNSafe++ (Wu et al., 2023). This example depicts a
simple six-node graph (Left), with nodes 0 and 1 as OOD and 2-5
as IDs in class 1. Despite initial differences in logits (Right), node
0’s final score, influenced by neighbor propagation in GNNSafe++,
aligns closely with ID nodes, leading to potential misidentification
as ID by GNNSafe++.

3.1. Assumptions

We first put forth a set of assumptions related to the prop-
erties of OOD detection in graph structural data. For suc-
cinctness in exposition, we use xi to denote the logits of a
node i, and νid (resp. νood) to denote the ID (resp. OOD)
instances in G. We assume the logits of ID nodes xid are
in a probability distribution Pid(x), i.e. xid ∼ Pid(x), and
xood ∼ Pood(x). Lastly, without further specification, E
denotes Eν∈G .

1) IDs’ Density in Neighborhoods: Let p denote the ex-
pected number of ID instances within Nk(νid), and q signify
the expected number of ID instances within Nk(νood). We
posit that IDs are more densely populated in the ID-centered
subgraphs on average, i.e., p > q.

2) Uniformity in Subgraph Sizes: The sizes of ID-centered
and OOD-centered k-hop subgraphs are postulated to main-
tain a similar scale on average. Formally:

E[|Nk(νid)|] = E[|Nk(νood)|].

3) Uniformity in Logit Scale: Extracted from well-
supervised Graph Neural Networks, the logits of ID and
OOD samples are expected to exhibit uniform scale on aver-
age. Mathematically, this can be expressed as:

Exi∼Pid
[∥xi∥22] = Exi∼Pood

[∥xi∥22].

4) Class-based Clustering vs. Dispersal: In the feature
embedding space, ID logits are conjectured to cluster by
class, while OOD logits disperse after passing through well-
trained GNNs. Hence, we have

Ex1,x2∼Pid(x)[x
T
1 x2] > Ex3,x4∼Pood(x)[x

T
3 x4].

Remarks. In the context of multi-graph scenarios, where
IDs and OODs originate from distinct graph domains, we
assume that the graph structure of Gid bears a structural
resemblance to that of Good. Consequently, all assumptions
can still be preserved. Further, it is essential to emphasize
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Figure 2. Logits of nodes from the Amazon-Photo dataset. ID
and OOD instances are split based on the Triangleness. Label 8
(yellow) represents the OOD nodes and labels 0 to 7 (in different
colors) represent ID instances from 8 classes. After the training
phase, OOD data spread randomly over the embedding space,
whereas ID instances are clustered based on their labels.

that the formalization of these assumptions is primarily for
the clarity and comprehensibility of proofs. Importantly, the
implementation of TopoOOD DOES NOT technically rely
on any of these assumptions.

3.2. Modeling the Level of Disorganization in
Neighborhood

After passing through a well-supervised GNN encoder, ID
instances tend to cluster based on classes in the embedding
space whereas OOD instances tend to disperse randomly
over the entire space (visualized in Fig. 2). To capture
such dissimilarity, for each node i, we define the Dirichlet
energy of its k-hop subgraph, Nk(i) as the node’s raw k-
hop Dirichlet energy (raw kHDE), to model the embedding
smoothness of this i-centered neighborhood. Raw kHDE
is denoted by Er(Nk(ν)), and the formal definition is as
follows:

Er(Nk(ν)) =
1

2

∑
i,j∈Nk(ν)

aij ·

∥∥∥∥∥ xL
i√

1 + di
−

xL
j√

1 + dj

∥∥∥∥∥
2

2

, (3)

where i and j are two different nodes in Nk(ν) and aij ∈ A.
xL
i denotes the logits of node i, and we call ν the central

node of Nk(ν). Based on the definition, the expectation of a
node ν’s raw kHDE for an arbitrary k, E[Er(Nk(ν))] =

E[
(
xL

i

)⊤
xL

i ] ·E[|Nk(ν)|]−E[
(
xL

i

)⊤
xL

j ] ·E[|Nk(ν)|] · t, (4)

where i, j ∈ Nk(ν), and t is a subgraph-structure related
coefficient (details in Appendix A).

Theorem 3.1 (Expectation Gap of kHDE Between ID and
OOD Instances). For interdependent data in graphs, the
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Figure 3. The visualization of weights for each node in calculating
raw kHDE (right) and GDE (left). The central node is node 8.
Deeper colors represent larger weights assigned.

expectation of ID instances’ raw kHDE is smaller than that
of OOD instances, i.e.,

E[Er(Nk(νid))] < E[Er(Nk(νood))].

The proof is provided in Appendix A. This theorem aligns
with the intuition that OOD instances with haphazard neigh-
borhoods are likely to manifest elevated raw kHDE values
compared to IDs. Such an expectation gap naturally em-
powers raw kHDE to undertake OOD detection. The ra-
tionale behind the mechanism of raw kHDE is to expand
the estimation of node uncertainty to a subgraph domain,
and such expansion essentially reinforces the confidence
in node OOD detection compared to the score mechanism
focusing on individual nodes. However, as k increases, the
neighborhoods, Nk(νid) and Nk(νood), start to exhibit strong
resemblance, particularly in the single-graph scenario, i.e.,
νid, νood ∈ G due to overlapping.

Theorem 3.2 (Energy Convergence). For an arbitrary
node ν ∈ G, as k increases, Er(Nk(ν)) will converge to
the energy of the largest connected subgraph Gν contain-
ing ν, namely Er(Nk(ν)) = Er(Gν); if G is connected,
Er(Nk(ν)) will converge to the classic Dirichlet energy of
G, i.e. Er(Nk(ν)) = Er(G).

Proof is shown in Appendix A. This theorem indicates that
the continuous expansion of ν-centered subgraphs tremen-
dously diminishes the discriminative power of raw kHDE.
This reveals a fundamental limitation: raw kHDE assigns
equal importance to all nodes in the subgraph, irrespective
of their structural proximity to the central node.

3.3. Node-Wise Generalized Dirichlet Energy

To address this issue, we introduce a straightforward but
potent weighting scheme to apply weights to ω ∈ Nk(ν)
step by step, based on i’s structural proximity to the central
node ν. Such k-hop Dirichlet energy with central-node-
specific weights is termed as generalized Dirichlet energy
(GDE), denoted by E(Nk(ν)). Namely, at the first step,
we define E(N1(ν)) as the node ν’s raw 1-hop Dirichlet

energy; for each step k > 1, we have

E(Nk(ν)) = αE(Nk−1(ν))+
1− α

dν

∑
ωaνωE(Nk−1(ω)),

(5)
where node ω is a neighbor of node ν. Evidently, after k
steps, information from all nodes in Nk(ν) is aggregated,
with nodes farther from the central node assigned a smaller
weight (visualized in Fig. 3).

GDE of each node ν can be reformulated as:

E(Nk(ν)) =
1

2

∑
i,j∈Nk(ν)

aij · bi ·

∥∥∥∥∥ xL
i√

1 + di
−

xL
j√

1 + dj

∥∥∥∥∥
2

2

,

(6)
where bi denotes the weight of each node i in Nk(ν).

Theorem 3.3 (Preserved Capability of Discrimination).
Given the same assumption of Theorem 1, the expectation
of ID nodes’ GDE is smaller than that of OOD nodes, i.e.,
E[E(Nk(νid))] < E[E(Nk(νood))]

Proof is in Appendix A. The theorem asserts that integrat-
ing weights through our aggregation scheme does not com-
promise the discrimination between ID and OOD samples.
Hence, opting for GDE over raw kHDE in Nk(ν) is prudent
for two reasons. First, even two nodes with identical k-hop
subgraphs now yield disparate energy scores, since the ag-
gregation weights of neighbors are contingent on the central
nodes. Such distinction solves the problem of convergence.
Second, adding aggregation through such a propagation
scheme will not interfere with the capability of discriminat-
ing the ID and OOD instances compared to raw kHDE.

3.4. Dirichlet Energy induced OOD Detector

Inspired by the Dirichlet energy, TopoOOD combine logits
extracted from a GNN encoder and neighborhood topology
structure to measure GDE of each node as the confidence
score for detection, lower for IDs whereas higher for OODs.
Concurrently, in line with the popular treatment in litera-
ture (Hendrycks et al., 2018; Wu et al., 2023),

In line with previous literature (Hendrycks et al., 2018; Wu
et al., 2023), we investigate a scenario that more closely
mirrors real-world conditions by incorporating a training
dataset with outlier exposure, wherein OOD instances are
also present within the training sets. This is achieved by inte-
grating a regularization loss that operates under the assump-
tion of OOD exposure during training, thereby instructing
the network on improved data representation methodolo-
gies. Further elaboration on this approach is provided in
Sec. 4.3. Overall, the decision function for OOD detection
is formulated as:

F (xν ,Nk(ν);h) = 1 {−E(Nk(ν)) ≥ τ} ,

where τ is the threshold and the return of 1 indicates the
identification for ID.
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Remarks Despite the implications of its nomenclature,
Dirichlet energy provides a mechanism to measure the
weighted node pair distance within a graph or, in our scenar-
ios, a subgraph. Hence, TopoOOD pioneers the exploration
of distance-based approaches for OOD detection concerning
graph-structured data in this nascent domain.

4. Experiments
In this section, we first introduce a novel metric, leveraging
graph topological data to generate synthetic distribution
shifts. Subsequently, we present an extensive experimental
assessment of TopoOOD, examining the impact of critical
hyper-parameters on our detector’s efficacy.

4.1. A Topology-Aware Evaluation Metric for More
Challenging Distribution Shift

Limitation of Current Metrics. Studies largely rely on real
distribution shifts in datasets to assess the robustness and ef-
ficacy of OOD detectors for graph data (Stadler et al., 2021;
Wu et al., 2023). Typically, these scenarios encompass
domain-based distribution shifts in multi-graph datasets,
where nodes are separated based on the graphs they orig-
inate from, and feature-based distribution shifts in single-
graph datasets, where nodes are divided according to their
temporal attributes, for instance. Though important, the
availability and diversity of real shifts in graph datasets can
be limited. Metrics have been introduced to generate syn-
thetic distribution shifts to fully examine the OOD detectors.
Some opt for data-splitting in the original graph datasets
based on individual node classes (label leave-out) (Stadler
et al., 2021), while others turn to data-generation, creating
new OOD graphs through random node feature interpola-
tion or structural modification (Wu et al., 2023). Such meth-
ods oversimplify the task by transferring it to the existing
domain- or feature-based problem.

OOD Data Splitting from Topological Distribution. In
this work, we propose that nodes within a graph can be
segregated based on their structural information and term
these settings as topological distribution shifts. We delin-
eate three settings generated via such topological split as
examples for illustration, which collectively cover a wide
range of graph properties—from small-scale interactions
(Triangleness) to medium-scale structures (Squareness) and
large-scale cohesiveness (Cliqueness). Such broad coverage
not only ensures that experimental settings capture various
aspects of graph topology to provide a holistic evaluation
of OOD detectors but also demonstrates relevance to phe-
nomena commonly observed in real-world networks (See
Appendix for more details).

i) Triangleness. We follow the definition of the clustering
coefficient (Saramäki et al., 2007) and define a parameter

called triangleness, which measures the density of the 1.5-
degree egocentric graph for each node. Namely, when a
node is deeply embedded within tight-knit groups in the
graph and connects densely with its neighbors, the trian-
gleness would be high. We here define the nodes with
higher triangleness as having higher importance and being
in-distribution instances:

tri =
2T (i)

di(di − 1)
, (7)

where T (i) is the number of triangles through node i.

ii) Squareness. Beyond small groups in graphs, a node’s
inclination towards longer-range connections within the
graph’s small-world structure is also important. Utilizing the
C4 coefficient (Zhang et al., 2008), we introduce the square-
ness to measure the fraction of feasible squares around node
i, essentially assessing the likelihood that a pair of i’s neigh-
bors have a distinct shared neighbor. Nodes with higher
squareness usually have access to different small groups or
clusters and are defined as ID instances. See the definition
in Appendix B.

iii) Cliqueness. We here use cliqueness of node i to denote
the number of maximal cliques in graph G which contain
the node i. Since nodes involved in many maximal cliques
usually belong to various fully connected groups in the
graph, we assign higher importance to them and define them
as ID instances.

These settings are crafted to highlight the complexity inher-
ent in graph structures, particularly emphasizing the topo-
logical long-tail phenomenon where a minority of nodes,
characterized by significant structural importance includ-
ing triangleness, squareness, and cliqueness dominate the
interaction dynamics. This focus on structural significance
as the basis for splitting introduces a novel perspective on
distribution shifts, emphasizing the disparities in node con-
nectivity and interaction patterns as critical factors. Through
this approach, we aim to tackle the challenges presented by
structural long-tail distributions in detecting and analyzing
topological distribution shifts, thereby offering a refined
framework for understanding and addressing the complex-
ities of graph-based data analysis in the context of out-of-
distribution detection. Additional topological distribution
shift settings are further provided in the Appendix B.3.

4.2. Datasets and Splits

We ground our experiments on six prominent real-world
datasets, frequently employed in node classification bench-
marks: Twitch-Explicit (Rozemberczki & Sarkar, 2021),
ogbn-Arxiv (Hu et al., 2020), Amazon-Photo (McAuley
et al., 2015), Coauthor-CS (Sinha et al., 2015), Coauthor-
Physics (Shchur et al., 2018), and Cora (Sen et al., 2008).
The detailed information is introduced below.
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Table 1. Out-of-distribution detection by AUROC (↑) / AUPR (↑) / FPR95 (↓) on Twitch and Arxiv dataset based on the standard for data
splitting mentioned in the previous section. The in-distribution testing accuracy is reported for calibration. For each column, the highest
value is in red and the second highest value is in blue. Detailed results on each OOD dataset (i.e., sub-graph or year) are presented in
Appendix D.4. GPN reports out-of-memory issue on Arxiv with a 24GB GPU.

Model Twitch Arxiv
AUROC (↑) AUPR(↑) FPR (↓) ID ACC(↑) AUROC(↑) AUPR(↑) FPR(↓) ID ACC(↑)

MSP (2016) 33.59 49.14 97.45 68.72 63.91 75.85 90.59 53.78
Mahalanobis (2018b) 55.68 66.42 90.13 70.51 56.92 69.63 94.24 51.59

OE (2018) 55.72 70.18 95.07 70.73 69.80 80.15 85.16 52.39
ODIN (2020) 58.16 72.12 93.96 70.79 55.07 68.85 100.0 51.39
KNN (2022) 64.43 71.18 88.24 72.13 43.16 61.12 98.23 53.77

GKDE (2020) 46.48 62.11 95.62 67.44 58.32 72.62 93.84 50.76
GPN (2021) 51.73 66.36 95.51 68.09 - - - -

GNNSafe++ (2023) 95.36 97.12 33.57 70.18 74.77 83.21 77.43 53.50
TopoOOD 99.72 99.99 0.00 71.19 87.11 87.61 32.10 52.80

Twitch. We use the multi-graph dataset Twitch to test our
model’s capability of handling the cross-domain distribution
shift, with subgraph DE as ID data, EN as the OOD exposure
for training, and other subgraphs as OOD data for testing.

Arxiv. We use this large-scale single-graph dataset to exam-
ine TopoOOD on temporal distribution shift with the papers
published before 2015 as in-distribution data, those pub-
lished in 2015 and 2016 as OOD exposure during training,
and those published after 2017 for OOD testing.

Amazon-Photo, Coauthor-CS, Coauthor-Physics. We
create synthetically topological distribution shifts according
to the parameters defined in Sec. 4.1. The data-splitting
details are in Appendix B.

Cora. We include a label leave-out setting, distinguishing
certain classes as IDs and others as OODs, as previous
work (Wu et al., 2023; Stadler et al., 2021). This approach
is applied to Cora in addition to the three datasets.

4.3. Setup

Our implementation is based on Ubuntu 16.04, Cuda 11.0,
Pytorch 1.13.0, and Pytorch Geometric 2.3.1. Most of the
experiments run with an NVIDIA 2080Ti with 11GB mem-
ory, except for cases where the model requires larger GPU
memory, for which we use an NVIDIA 3090 with 24GB
memory for experiments.

Implementation details. We set the number of propagation
steps k according to the size of the graph datasets, namely,
k equal to 5 or 10 for most settings, and the propagation
coefficient α = 0.5. For fair comparison, the GCN model
with layer depth 2 and hidden size 64 is used as the backbone
encoder for all the OOD discriminators.

Loss design. We generally assume that detectors will be
exposed to OOD data during their training phase in all sce-
narios, and such an OOD exposure (Hendrycks et al., 2018)
allows to impose constraints on the disparity between GDE

for ID and OOD nodes for supervision. We introduce a reg-
ularization loss, Lreg , which narrows the GDE of ID nodes
down to a range while pushing that of OOD ones further
apart. The final objective is:

L = Lsup + λLreg, (8)

where Lsup denotes the classic negative log-likelihood
(NLL) loss utilized for node classification, Lreg denotes
the regularization loss for OOD detection, and λ represents
a trading weight. There is much design flexibility for the
regularization term Lreg, and here we have

Lreg =
1

|Is|
∑
ν∈Is

(ReLU(E(Nk(ν)− ein))
2

+
1

|Io|
∑
ν∈Io

(ReLU(eout − (E(Nk(ν))))
2.

(9)

The instances we have in the training phase are I = Is∪Io,
where Is represents the set of in-distribution training data,
and Io represents some unwanted OOD training instances
from a distinct distribution which were exposed to the model
during the training phase. We set the values of ein and eout
through grid search.

Evaluation metrics. We report the performance based on
the metrics: (1) the area under the receiver operating char-
acteristic curve (AUROC); (2) the area under the Precision-
Recall curve (AUPR); (3) the false positive rate (FPR95)
of OOD samples when the true positive rate of ID samples
is at 95% and (4) ID classification accuracy (ID ACC).

Competitors. We mainly contrast our detector with eight
baselines from two categories. The initial category en-
compasses those traditionally aligned with the OOD de-
tection task for images, and we substitute the conven-
tional CNN backbone with a GCN encoder, including
MSP (Hendrycks & Gimpel, 2016), ODIN (Liang et al.,
2020), Mahalanobis (Lee et al., 2018b), OE (Hendrycks
et al., 2018), and KNN (Sun et al., 2022). The subsequent
category encapsulates OOD detectors designed for inter-
dependent data, including the Graph Posterior Network,

6



Graph Out-of-Distribution Detection Goes Neighborhood Shaping

0 25 50 75 100 125 150 175 200
Energy Score

0.00

0.01

0.02

0.03

0.04

0.05

Fr
eq

ue
nc

y

1-Hop Generalized Dirichlet Energy (Twitch)
in-distribution
out-of-distribution

0 25 50 75 100 125 150 175 200
(Energy Score)

0.00

0.01

0.02

0.03

0.04

0.05

Fr
eq

ue
nc

y

10-Hop Generalized Dirichlet Energy (Twitch)
in-distribution
out-of-distribution

0 5 10 15 20 25 30 35 40
Energy Score

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

1-Hop Generalized Dirichlet Energy (Coauthor-Triangleness)
in-distribution
out-of-distribution

0 5 10 15 20 25 30 35 40
Energy Score

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

10-Hop Generalized Dirichlet Energy (Coauthor-Triangleness)
in-distribution
out-of-distribution

Figure 4. Distribution of 1-hop GDE of ID and OOD instances from Twitch (top right) and Coauthor-triangleness (bottom left), and the
distribution of 10-hop GDE of ID and OOD instances from Twitch (top right) and Coauthor (bottom right).

termed GPN (Stadler et al., 2021), the Graph-based Ker-
nel Dirichlet GCN method, termed GKDE (Zhao et al.,
2020), and the established free-energy grounded baseline
GNNSafe++ (Wu et al., 2023).

4.4. Experimental Results

Excellent Performance Compared to Competitors. In
Tab. 1, we present the experimental results of TopoOOD on
the Twitch and Arxiv datasets, juxtaposed against all the
baselines discussed earlier. It is observed that TopoOOD
consistently surpasses all competitors. Remarkably, even
against the highly performing GNNSafe++ on Twitch, our
model still exhibits superior performance, diminishing the
average FPR95 by 33.57% and elevating the average AU-
ROC by 4.36%. Moreover, TopoOOD considerably excels
on Arxiv, improving the average AUROC by 16.58% and
decreasing the average FPR95 by 51.1%. With these ad-
vancements, our detector consistently maintains classifica-
tion accuracy for IDs. Collectively, these results reinforce
the strong power of TopoOOD within real distribution shifts.

Concurrently, in Tab. 2, we can observe that TopoOOD also
constantly performs outstandingly on synthetic topological
distribution shifts compared to the aforementioned competi-
tors. Particularly, in detecting OOD nodes split based on
triangleness, TopoOOD exhibits a pronounced advantage,
ameliorating the average AUROC on three datasets respec-
tively by 20.56%, 40.9%, and 31.63% over GNNSafe++,
and 4.37%, 9.67%, and 1.1% over the runner-ups. In con-
texts beyond triangleness, TopoOOD either parallels the
best-performing competitor while greatly outperforming the
others or significantly surpasses all baseline models. The
full experimental results as well as the results for additional
topological distribution shift settings are displayed in Ap-
pendix B. Overall, the results experimentally validate our
insight: utilizing the neighborhood disorganization level to
make OOD detection can provide a more accurate awareness

Table 2. Out-of-distribution detection performance measured
by AUROC (↑) on datasets Amazon-Photo, Coauthor-CS,
and Coauthor-Physics with three OOD types (Triangleness,
Squareness, Cliqueness). For each column, the highest value
is in red and the second highest is in blue. Other results for AUPR,
FPR95, and in-distribution accuracy are deferred to Appendix B.

Model Amazon-Photo Coauthor-CS Coauthor-Physics
T S C T S C T S C

MSP (2016) 80.29 87.40 87.63 71.31 78.33 64.44 56.97 65.74 83.98
Mahalanobis (2018b) 82.21 75.28 29.72 86.06 79.41 60.29 87.50 87.06 41.87

OE (2018) 86.66 91.58 87.37 73.42 75.87 69.96 79.74 80.23 92.49
ODIN (2020) 19.33 49.43 11.86 49.23 49.25 49.55 49.95 32.20 41.32
KNN (2022) 48.49 70.59 72.56 61.17 63.75 51.92 40.35 47.06 72.07

GKDE (2020) 74.94 66.23 63.91 70.07 74.60 57.12 52.33 58.86 79.39
GPN (2021) 62.98 61.75 52.64 57.47 89.09 65.49 39.95 55.00 74.24

GNNSafe++ (2023) 70.47 80.41 95.87 54.83 70.91 93.36 56.97 76.41 95.49
TopoOOD 91.03 89.05 93.57 95.73 97.94 99.96 88.60 96.09 100.0

of OOD nodes in all scenarios.

Additionally, Tabs 11 and 12 illustrate the superior efficacy
of TopoOOD in the label leave-out scenario. On both the
Coauthor-Physics and Amazon-Photo datasets, TopoOOD
surpasses all baseline models across the three evaluation
metrics. For the Coauthor-CS and Cora datasets, our ap-
proach achieves a reduction in FPR by 8.51% and 13.2%
respectively, compared to the nearest competing model.

Backbone-Agnostic and Outstanding Performance. In
Fig. 5, we evaluate the performance of TopoOOD against
GNNSafe++ using various GNN encoders as backbones,
including GCN, GAT (Veličković et al., 2018), JKNet (Xu
et al., 2018), and MixHop (Abu-El-Haija et al., 2019).
It turns out that TopoOOD consistently outperforms
GNNSafe++ across all backbone types in diverse settings,
underscoring its robust performance. These results experi-
mentally highlight the model-agnostic nature of TopoOOD
and affirm the efficacy of using GDE over free energy solely
based on individual node features for the OOD discrimina-
tion over graph data.

Effectiveness of Propagation. Next, we experimentally
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Figure 5. Study of the relationship between backbone types and model performance. We plot the AUROC and FPR of our approach and
GNNSafe++ for Twitch, Arxiv, and Coauthor-CS-Squareness with four types of common GNN encoders. Red (dotted) lines present the
AUROC (FPR) of TopoOOD whereas yellow ones represent that of GNNSafe++.

investigate the efficacy of our propagation scheme. In Fig. 4,
we contrast the distribution of 1-hop GDE (without propa-
gation) with the k-hop GDE (with k-step propagation) in
multiple settings. Our findings reveal that, firstly, even at
its base, the GDE for individual nodes possesses the inher-
ent ability to differentiate between ID and OOD instances,
experimentally supporting the idea that OOD instances are
likely to deviate more from their neighbors in feature embed-
ding space compared to IDs. Secondly, proper propagation
with k in a reasonable range can minimize the overlap be-
tween the GDE distributions of IDs and OODs and provide a
stronger capability of discrimination. Fig. 6 in Appendix B
further supports such findings by displaying variation in
AUROC of TopoOOD for propagation steps ranging from
0 to 20. Enhancement brought by the propagation plateaus
beyond a threshold (e.g., t = 8 for Twitch), indicating
beyond a certain subgraph size, including additional node
information does not improve performance.

Effectiveness of Regularization Loss. We further investi-
gate our detection-regularized training’s efficacy by varying
parameters ein, eout, and λ. As shown in Fig. 8, increas-
ing λ within reasonable bounds bolsters OOD awareness
without compromising node classification. Given a fixed
λ, enlarging the gap between ein and eout can promote the
performance of TopoOOD to a certain extent.

5. Related Works
We discuss the related works in the OOD area based on
neural networks, which are mainly concerned with vision.
Until very recently, OOD methods emerged in the graph
domain.

OOD detection on Euclidean data. Extensive research
has been conducted in recent literature to detect out-of-
distribution samples. Recent works (Hendrycks & Gimpel,
2016; Hendrycks et al., 2018; Liang et al., 2020; Hsu et al.,
2020) propose leveraging the softmax probability score to
detect OOD samples, while other works (Lee et al., 2018b;a;
Ren et al., 2019) incorporate generative methods to model

the underlying data distribution and hence distinguish the
samples from different distributions. Moreover, previous
works (Malinin & Gales, 2018; 2019; Charpentier et al.,
2020) employ Dirichlet-based uncertainty models to esti-
mate the uncertainty and show outstanding performance
in OOD detection compared to softmax-based confidence.
Note that the Dirichlet-based uncertainty models fit the
Dirichlet distribution, which is a different concept from
the Dirichlet energy that we use. In particular, energy-based
methods (Liu et al., 2020) propose the use of energy values
instead of softmax scores to mitigate overconfident predic-
tions for OOD samples. These methods mainly concentrate
on scenarios where samples are independently generated
(e.g. images), neglecting the common scenario where data
samples exhibit inter-dependencies in graphs.

OOD detection on graphs. OOD detection on graph data
can be broadly divided into two categories: graph-level and
node-level detection. At the graph level, previous works (Li
et al., 2022; Bazhenov et al., 2022) address OOD detection
for graph classification where instances are independent
graphs without inter-dependencies. To address OOD detec-
tion at the node level, previous works (Zhao et al., 2020;
Stadler et al., 2021) propose Bayesian GNN models capa-
ble of detecting OOD nodes within graphs, while recent
research GNNSafe++ (Wu et al., 2023) exploits the energy
values extracted directly from predicted logits of standard
GNNs to identify OOD nodes in graphs and adds an energy
propagation based on a strong assumption that neighbors
are likely from one distribution. Unlike graph-level OOD
detection, the inter-dependencies between nodes (i.e. the
topological context of the node) play a significant role in
characterizing the node itself. However, the energy lever-
aged in (Wu et al., 2023) is solely based on the prediction
on the node, neglecting the topological context of the node.
We introduce a node-level OOD detection method that incor-
porates both node feature embeddings and the topological
context.

8



Graph Out-of-Distribution Detection Goes Neighborhood Shaping

6. Discussion
We would like to emphasize the potential novelty of this
work: 1) Dirichlet Energy Adaptation: We have devised
a node-wise Dirichlet energy model, a significant advance-
ment over the classical graph-level Dirichlet energy, to ad-
dress the OOD node detection task. This adaptation out-
performs previous models by capturing the disorganization
levels of neighborhoods and integrating feature embeddings
with graph topology, without the restrictive assumption of
distribution homogeneity. 2) Neighborhood Disorganiza-
tion: We are the first to suggest that a node’s in-distribution
(ID) or out-of-distribution (OOD) identity can be detected
by the disorganization level of its neighborhood—a shift
from the traditional node feature level analysis. 3) First
Exploration of Distance-based Methods: We innovate in
the graph domain by adopting the essence of distance-based
methods, typically used for image data OOD detection (mea-
suring the relative difference between entities to determine
their confidence scores (Sun et al., 2022)), thus pioneering
their use in graph-structured data for node OOD detection.
4) Experimental Frameworks Expansion: Our research
enhances the experimental landscape for node OOD detec-
tion by first introducing topology distribution shift scenarios.
This expansion is particularly relevant to phenomena com-
monly observed in real-world networks and enables us to
fully assess the capabilities of detectors, as detailed in the
following sections.

Overall, the research motivation is that we aim to bolster the
robustness of GNNs, enabling them to accurately validate
predictions within their learned domain or cautiously signal
inputs originating from out-of-distribution. This effort seeks
to expand the operational domain and reliability of GNNs,
promoting their wider application.

7. Conclusion
We have shown the intrinsic efficacy of making OOD node
detection in graphs by using neighborhood disorganization
information. We designed an OOD detector, TopoOOD,
that leverages the generalized node-wise Dirichlet energy
with a simple propagation scheme. Given the nature of the
Dirichlet energy, TopoOOD can be viewed as pioneering
a distance-based detection method for graph data. We fur-
ther introduce novel experimental settings where OODs are
split via our topology-related metrics. Experiments show
that TopoOOD displays model-agnosticism, ease of use,
and superior performance on both real and our challenging
synthetic distribution shifts.

Impact Statement
Out-of-distribution (OOD) detection at the node level plays
a vital role in a wide array of real-world applications, ensur-

ing the reliability and safety of trustworthy AI systems han-
dling graph-structural data. Specifically, our proposed node
detector potentially benefits high-stake or safety-related do-
mains including healthcare and medical diagnosis (Kukar,
2003), and autonomous driving (Dai & Van Gool, 2018).
In all these applications, node OOD detection reduces the
system’s susceptibility to unknown or unexpected samples
in test sets and improves the models’ knowledge about what
they do not know, thereby improving decision-making and
system robustness.
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A. Theoretical Proof
In this section, we delve into the theoretical foundations
supporting the three theorems presented in Section 3. Given
the under-developed state of OOD detection pertaining to
graph-structured data, we commence by introducing a set
of assumptions as Stadler et al. did in the work of GPN.
Following this, we provide rigorous proofs underscoring the
theoretical efficacy of our methodologies. We shall follow
the notations and assumptions provided in Section 3.

A.1. Expectation of Raw kHDE

Initially, we elucidate the rationale behind the expected
value of a node ν’s raw k-hop Dirichlet energy, denoted as
E[Er(Nk(ν))]. According to the definition of raw kHDE
(given in Eq. 3), E[Er(Nk(ν))]

=
1

2
E

 ∑
i,j∈Nk(ν)

aij

∥∥∥∥∥ xi√
1 + di

− xj√
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∥∥∥∥∥
2

2


=

1

2
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As we can see,
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and,
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i,j∈Nk(ν)
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(1 + di)(1 + dj)
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 ∑
i,j∈Nk(ν)
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(1 + di) + (1 + dj)


≥ E

 ∑
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1 + Ei∈Nk(ν)[di]
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]
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(12)

For easy writing, we set tν for each Nk(ν), such that

1 + Ei∈Nk(ν)[di]

1 + maxi∈Nk(ν)(di)
≤ tν ≤ 1.

Collectively, we have E[Er(Nk(ν))] =

E[x⊤
i xi] · E[|Nk(ν)|]− E[x⊤

i xj] · E[|Nk(ν)|] · t, (13)

where t = E[tν ], and, i, j ∈ Nk(ν). Note that Eq. 13 is
identical to Eq. 4 in Sec. 3.

A.2. Proof of Theorem 1

Lemma 1: Consider two arbitrary vectors u and v in space
V . For a given vector k from a subspace U of V , the
expected angle between u and v is identical to the expected
angle between k and v, namely:

Eu,v∼V [θ(u,v)] = Ev∼V,k∼U [θ(k,v)].

Theorem 1: The expectation of ID instances’ raw kHDE is
smaller than that of OOD instances, i.e.,

E[Er(Nk(νid))] < E[Er(Nk(νood))]

.

Proof. In order to facilitate the comparison between
E[Er(Nk(νid))] and E[Er(Nk(νood))], we introduce a set
of notations pertaining to the dot product of logits.

Exi∼Pid(x)[x
⊤
i xi] = Eid

xi,xi
,

Exi∼Pood(x)[x
⊤
i xi] = Eood

xi,xi
,

Exi,xj∼Pid(x)[x
⊤
i xj] = Eid

xi,xj
,

Exi,xj∼Pood(x)[x
⊤
i xj] = Eood

xi,xj
,

Exi∼Pid(x),xj∼Pood(x)[x
⊤
i xj] = Eio

xi,xj
.

(14)

With these notations in place, the expressions
E[Er(Nk(νid))] and E[Er(Nk(νood))] can be reformulated
as follows:
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E[Er(Nk(νid))] = (p · Eid
xi,xi + (1− p) · Eood

xi,xi) · E[|Nk(νid)|]

+ (p2 · Eid
xi,xj + 2p(1− p) · Eio

xi,xj

+ (1− p)2 · Eood
xi,xj) · E[|Nk(νid)|] · E[tνid ],

(15)

E[Er(Nk(νood))] = (q · Eid
xi,xi + (1− q) · Eood

xi,xi) · E[|Nk(νood)|]

+ (q2 · Eid
xi,xj + 2q(1− q) · Eio

xi,xj

+ (1− q)2 · Eood
xi,xj) · E[|Nk(νood)|] · E[tνood ].

(16)
In single-graph scenario, as k increases, Nk(νid) shares

strong resemblance with Nk(νood) due to overlapping; in
multi-graph scenario, Nk(νid) and Nk(νood) have similar
graph structure. Thus, we have

E[tνid
] = E[tνood

] = t.

Given Assumption 3, we have

Eid
xixi

= Eood
xi,xi

.

Given Assumption 2, we have

E[|Nk(νid)|] = E[|Nk(νood)|] = E[|Nk(ν)|]

.

Hence,

E[Er(Nk(νid))]− E[Er(Nk(νood))]

= −t · E[|Nk(ν)|] · ((p2 − q2) · Eid
xi,xj

+ (2p(1− p)− 2q(1− q))Eio
xi,xj

+ ((1− p)2 − (1− q)2) · Eood
xi,xj)

= −t · E[|Nk(ν)|] · (p− q) · ((p+ q)(Eid
xi,xj − Eio

xi,xj)

+ (2− p− q) · (Eio
xi,xj − Eood

xi,xj))

(17)

Given Assumption 4, we have Eid
xi,xj

> Eio
xi,xj

.

Given the Lemma 1, we have Eio
xi,xj

= Eood
xi,xj

.

Thus Eq. 17 < 0

A.3. Proof of Theorem 2

Theorem 2: For an arbitrary node ν in a graph G, as
k increases, Er(Nk(ν)) will converge to the energy of
the largest connected subgraph Gν containing ν, namely
Er(Nk(ν)) = Er(Gν); if G is connected, Er(Nk(ν))
will converge to the classic Dirichlet energy of G, i.e.
Er(Nk(ν)) = Er(G).

Proof. This theorem is intuitively evident. To ensure rigor-
ousness, we present a proof by contradiction.

Case 1: when G is a connected graph. We assume
Er(G) ̸= Er(Nk(ν)) when k is sufficiently large.

If Er(G) > Er(Nk(ν)), there is a node ν′ such that ν′ ∈ G
but ν′ /∈ Nk(ν), contradictory to k is sufficiently large.

If Er(G) < Er(Nk(ν)), there is a node ν′ such that ν′ /∈ G
but ν′ ∈ Nk(ν), contradictory to Nk(ν) ⊆ G.

Case 2: when G is not a connected graph. We assume
Er(Nk(ν)) ̸= Er(Gν) when k is sufficiently large.

If Er(Gν) > Er(Nk(ν)), there is a node ν′ such that ν′ ∈
Gν but ν′ /∈ Nk(ν), contradictory to k is sufficiently large.

If Er(Gν) < Er(Nk(ν)), there is a node ν′ such that ν′ /∈
Gν but ν′ ∈ Nk(ν), contradictory to Nk(ν) ⊆ Gν .

A.4. Proof of Theorem 3

Proof. First, the expected GDE of a node ν is E[E(Nk(ν))]

=
1

2
· E[

∑
i,j∈Nk(ν)

aijbi||
xi√
1 + di

− xj√
1 + dj

||22]

= E[
∑

i∈Nk(ν)

bi] · E[x⊤
i xi]−

E[
∑

i,j∈N (ν)

x⊤
i xj] · E[

∑
i,j∈N (ν)

aijbi√
(1 + di)(1 + dj)

]

(18)

Similar to the raw kHDE, we have

E

 ∑
i,j∈Nk(ν)

aijbi√
(1 + di)(1 + dj)


≤ E

 ∑
i,j∈Nk(ν)

aijbi
2

·
(

1

1 + di
+

1

1 + dj

)
=

1

2

E

 ∑
i,j∈Nk(ν)

aijbi
1 + di

+ E

 ∑
i,j∈Nk(ν)

aijbi
1 + dj


(19)

As

E

 ∑
i,j∈Nk(ν)

aijbi
1 + di


= E

 ∑
i∈Nk(ν)

bi


= E[|Nk(ν)|] · E

[
Ei∈Nk(ν)[bi]

]
,

(20)

13
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and,

E

 ∑
i,j∈Nk(ν)

aijbi
1 + dj


= E

 ∑
i∈Nk(ν)

bi ·
∑

j∈Nk(ν)

aij

1 + dj


= E

( ∑
i∈Nk(ν)

∑
j∈Nk(ν)

aij

1 + dj
) · Ei∈Nk(ν)[bi]


= E[|Nk(ν)|] · E

[
Ei∈Nk(ν)[bi]

]
.

(21)

We have Eq. 19

= E[|Nk(ν)|] · E
[
Ei∈Nk(ν)[bi]

]
. (22)

For the lower bound, we have

E

 ∑
i,j∈Nk(ν)

aijbi√
(1 + di)(1 + dj)


≥ E

 ∑
i,j∈Nk(ν)

2aijbi
(1 + di) + (1 + dj)


≥ E

 ∑
i,j∈Nk(ν)

aijbi
1 + maxi∈Nk(ν)(di)


= E

 1

1 + maxi∈Nk(ν)(di)

∑
i∈Nk(ν)

bi · (1 + di)


≥ E

 1

1 + maxi∈Nk(ν)(di)

∑
i∈Nk(ν)

bi · (1 + mini∈Nk(ν)(di))


= E[|Nk(ν)|] · E

[
Ei∈Nk(ν)[bi]

]
· E
[
1 + mini∈Nk(ν)(di)

1 + maxi∈Nk(ν)(di)

]
.

(23)

For easy writing, we use E[bi] to denote Eν∈GEi∈Nk(ν)[bi].
Accordingly, similar to Eq. 13, we have E[E(Nk(ν))] =

E[x⊤
i xi]·E[|Nk(ν)|]·E[bi]−E[x⊤

i xj]·E[|Nk(ν)|]·E[bi]·t, (24)

where t = E[tν ] and

1 + mini∈Nk(ν)(di)

1 + maxi∈Nk(ν)(di)
≤ tν ≤ 1. (25)

As weights for nodes in Nk(νid) and Nk(νood) are assigned
via the identical propagation scheme, E[

∑
i∈Nk(νid

) bi] =

E[
∑

i∈Nk(νood

) bi] = b.

Hence,

E[E(Nk(νid))]− E[E(Nk(νood))]

= −t · b · E[|Nk(ν)|] · ((p2 − q2) · Eid
xi,xj

+ (2p(1− p)− 2q(1− q))Eio
xi,xj

+ ((1− p)2 − (1− q)2) · Eood
xi,xj

)

= −t · b · E[|Nk(ν)|] · (p− q) · ((p+ q)(Eid
xi,xj

− Eio
xi,xj

)

+ (2− p− q) · (Eio
xi,xj

− Eood
xi,xj

))
(26)

The subsequent steps align with the proof of Theorem 1.
Consequently, based on the preceding derivations and estab-
lished results, we can deduce that

E[E(Nk(νid))] < E[E(Nk(νood))]. (27)

B. Experimental Details
B.1. Data Splitting

In Sec. 4.1, we provided the formula to calculate triangle-
ness. For a more comprehensive understanding, we now
present the formulas for squareness and cliqueness.

Squareness. We apply the definition of C4 (Zhang et al.,
2008) and define the squareness of a node i as follows,

sqi =

∑d
i

m=1

∑d
i

n=m+1 qi(m,n)∑d
i

m=1

∑d
i

n=m+1 [Bi(m,n) + qi(m,n)]
, (28)

where Bi(m,n) =

(dm−(1+qi(m,n)+amn))+(dn−(1+qi(m,n)+amn)). (29)

qi(m,n) represents the number of common neighbors of
m and n other than i, and amn represents the adjacency
between neighbors m and n.

Cliqueness. We define the cliqueness of each node i to
be the number of maximal cliques in the graph G that pass
through the node i. Specifically, we utilize the classic algo-
rithm to find the maximal cliques MC in a graph (Bron &
Kerbosch, 1973), and

cqi = MC(i), (30)

where MC(i) represents the number of maximal cliques
through node i.

B.2. Thresholds for Topological-Related Metrics

In our experiments, we defined specific thresholds, detailed
in Tab. 3, to split nodes into ID instances, OOD instances
for training (denoted by OOD tr), and OOD instances for
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testing (denoted by OOD te) based on values of correspond-
ing metrics. For clear illustration, we use triangleness and
the Amazon-Photo dataset as an example:

Nodes for which tr(i) > 0.47 are categorized as IDs. Nodes
fulfilling 0.28 < tr(i) ≤ 0.47 are designated as OODs for
training. Nodes where tr(i) ≤ 0.28 are designated as OODs
for testing.

Remark. These thresholds in Tab. 3 were chosen to en-
sure the ratio of ID/OOD tr/OOD te in each dataset to be
approximately 1:1:1.

B.3. Additional Topology Distribution Shifts Settings

We further provide three additional experiment settings,
where the other three structural attributes are used for
IDs/OODs splitting.

Average Neighbor Degree: The average neighborhood
degree of a node i is

ANDi =
1

|N (i)|
∑

j∈N (i)

Dj

where N (i) are the 1-hop neighbors of node i and Dj is
the degree of node j which belongs to N (i). A high AND
for a node indicates that, on average, the node’s immediate
neighbors are highly connected within the network. This
suggests that the node is part of a dense part of the graph.

Closeness Centrality: Closeness centrality (Freeman,
1978) of a node i is the reciprocal of the average shortest
path distance to i over all n− 1 reachable nodes.

CC(i) =
n− 1∑n−1

j=1 d(j, i)

where d(j, i) is the shortest-path distance between j and i,
and n − 1 is the number of nodes reachable from i. The
closeness is defined so that if a node is close to every other
node, then the value is larger than if the vertex is not close
to everything else (Metcalf & Casey, 2016).

Core Number: Lastly, we adopt the core number of each
node for data-splitting. Mathematically, a k-core of a graph
is a maximal connected subgraph in which all vertices have
a degree of at least k. The core number of a node is then
defined as the highest integer k for which that node is a
part of the corresponding k-core. A high core number for a
node typically implies that it is embedded within a highly
interconnected community.

The thresholds to split IDs, OOD tr, and OOD te are pro-
vided in Tab. 4.

C. Datasets and Preprocessing
All datasets employed in our study are publicly accessible,
serving as standard benchmarks for graph learning model
evaluations. We used different sources for data loading,
specifically relying on the OGB package for ogbn-Arxiv
and the Pytorch Geometric package for the others.

• Amazon-Photo (McAuley et al., 2015):

– Description: An item co-purchasing network on
Amazon. Nodes symbolize products and edges
represent that the two products are frequently pur-
chased together. Node labels represent the cate-
gories of products.

– Specifications: 7,650 nodes, 238,162 edges, 745
features, and 8 classes.

– Data Preparation: We split IDs, OODs for train-
ing, and OODs for testing according to three met-
rics based on Tab. 3. For ID data, we employed
the conventional random splits method (1:1:8 for
training/validation/testing) as suggested by Kipf
& Welling.

• Coauthor-CS (Sinha et al., 2015):

– Description: A coauthor network for the com-
puter science domain. Nodes represent authors
and are connected by an edge if the two co-
authored a paper. Node features represent paper
keywords. The objective is to predict authors’
fields of study using paper keyword features.

– Specifications: 18,333 nodes, 163,788 edges,
6,805 features, and 15 classes.

– Data Preparation: Similar to Amazon-Photo, we
employed three methods via different thresholds
to split OOD data. The ID data adheres to the
1:1:8 random splits convention.

• Coauthor-Physics (Shchur et al., 2018):

– Description: A coauthor network for the physics
domain. Nodes represent authors and edges in-
dicate co-authorship. Features represent paper
keywords and the class denotes authors’ fields of
study.

– Specifications: 34,493 nodes, 247,962 edges,
8,415 features, and 5 classes.

– Data Preparation: Similar to Coauthor-CS, we
employed three metrics to split OOD data via
different thresholds. The ID data adheres to the
1:1:8 random splits convention.

• Twitch-Explicit (Rozemberczki & Sarkar, 2021):

– Description: A multi-graph dataset of Twitch
gaming networks by region. Nodes denote Twitch
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Table 3. Thresholds to split ID, OOD for training, and OOD
for testing. Thresholds were chosen to ensure the ratio of
ID/OOD tr/OOD te in each dataset to be approximately 1:1:1.

Dataset
Triangleness Squareness Cliqueness

ID Bar OOD Bar ID Bar OOD Bar ID Bar OOD Bar
Coauthor-CS 0.39 0.18 0.06 0.02 5 3

Amazon-Photo 0.47 0.28 0.14 0.08 52 9
Coauthor-Physics 0.40 0.20 0.07 0.04 8 3

players, and edges show user follow relationships.
Node features are embeddings of games played
by the users.

– Specifications: Node count varies from 1,912 to
9,498 per subgraph. Edge numbers range from
31,299 to 153,138, with a consistent feature di-
mension of 2,545. Nodes belong to 2 classes.

– Data Preparation: Subgraph DE is chosen for
in-distribution data with the familiar 1:1:8 split.
Subgraphs ENGB, ES, FR, and RU are used as
OOD data.

• Ogbn-Arxiv (Hu et al., 2020):

– Description: A relatively large-scale citation net-
work capturing data from 1960 to 2020. Nodes
are papers and labels represent their subject areas.
Edges represent citation relationships. Node fea-
tures are 128-dimensional vectors extracted from
titles and abstracts. 40 classes in total.

– Data Preparation: As the way for data-splitting
in (Hu et al., 2020) is disabled since we use
temporal information for splitting the OOD in-
stances, we adopted a 1:1:8 random split for the
in-distribution segment in line with (Wu et al.,
2023).

• Cora (Sen et al., 2008):

– Description: A citation network where nodes
represent scientific publications and edges denote
citation links. The goal is to classify each paper
into one of several predefined topics.

– Specifications: 2,708 nodes, 5,429 edges, 1,433
features, and spans 7 distinct classes.

– Data Preparation: This dataset is only used in
leave-out settings. The in-distribution data splits
for training, validation, and testing follow the
semi-supervised setting of Kipf & Welling (2017),
using the provided standard splits.

Table 4. Thresholds to split ID, OOD for training, and OOD for
testing for additional topology distribution shift settings.

Core (Coauthor-Physics) AND (Amazon-Photo) CC(Coauthor-CS)

ID Bar 6 60 0.17
OOD bar 4 30 0.14

D. Implementation Details
D.1. Encoder Architectures.

As highlighted in Section 4.1, we predominantly utilize the
GCN as our backbone encoder. However, for a more com-
prehensive insight, we’ve also incorporated other models,
including GAT, JKNet, and MixHop. Below, we outline
the specific configurations for each encoder used in our
research:

• GCN (Kipf & Welling, 2017):

– Layers: Two GCNConv layers
– Dimensions: Hidden size 64
– Activation: ReLU
– With self-loop and batch normalization

• GAT (Veličković et al., 2018):

– Layers: Two GATConv layers
– Dimensions: Hidden size 64
– Activation: ELU
– Head numbers configured as [2, 1]
– With batch normalization

• MixHop (Abu-El-Haija et al., 2019):

– Layers: Two MixHop layers with hop number 2
– Dimensions: Hidden size 64
– Activation: ReLU
– With batch normalization

• JKNet (Xu et al., 2018):

– Layers: Two GCNConv layers
– Dimensions: Hidden size 64
– Activation: ReLU
– With self-loop, batch normalization, and using

max-pooling in the jumping knowledge module

D.2. Evaluation Metrics

In our experiment, we assess OOD data detection perfor-
mance utilizing three established metrics from the literature.

The AUROC (Area Under the Receiver Operating Charac-
teristic curve) measures the area beneath the ROC curve and
quantifies a model’s ability to distinguish between positive
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and negative classes. The ROC curve is plotted by juxta-
posing the true positive rate against the false positive rate
across various thresholds ranging from 0 to 1. In OOD de-
tection tasks, the AUROC denotes the likelihood that, given
a randomly selected ID-OOD pair, the ID sample will have
a higher estimation score than the OOD one.

The AUPR (Area Under the Precision-Recall curve) is an-
other critical metric, especially illustrative when dealing
with class imbalances. It is defined as the area under the
Precision-Recall curve. A model that makes perfect predic-
tions has an AUPR of 1.

The FPR95 is also a prevalent metric which indicates the
False Positive Rate when the true positive rate (TPR) is fixed
at 95%. In the OOD detection task, this metric captures the
likelihood of mistakenly categorizing an out-of-distribution
sample as in-distribution, given a 95% TPR.

D.3. Hyper-parameter Configurations.

We detail the default hyper-parameters utilized across all
scenarios, as delineated in Tab. 5. These hyper-parameters
were determined through a systematic grid search. Notably,
for all scenarios, the propagation coefficient, denoted by
α, was consistently set to 0.5, and the number of training
epochs was set to 200.

D.4. Additional Experiments Results

We further provide additional experimental outcomes to
complement our results in Sec. 4.3.

Real Distribution Shifts. For a more comprehensive analy-
sis, we provide detailed results of TopoOOD in each OOD
dataset for real distribution shifts. This includes different
subgraphs for Twitch and distinct years for Arxiv, as illus-
trated in Tab. 6 and 7. The average values for AUROC,
AUPR, and FPR of TopoOOD on Arxiv should be 87.11,
87.61, and 32.10, respectively. As a result, TopoOOD im-
proves the average AUROC by 12.34%, and reduces the
average FPR by 45.33% in Arxiv dataset compared to other
GNNSafe++, significantly surpassing GNNSafe++ and all
other baseline methods (displayed in Tab. 7).

Topological Distribution Shifts. First, for Triangleness,
Squareness, and Cliqueness, we present the results of
Amazon-Photo, Coauthor-CS, and Coauthor-Physics based
on performance metrics of AUROC/AUPR/FPR95 along-
side the in-distribution testing accuracy. These details can be
gleaned from Tabs 8, 9 and 10. They serve as a supplement
to the insights presented in Tab. 2.

Additionally, we further provided experimental results for
three additional topology distribution shift settings, Average
Neighbor Degree, Core Number, and Closeness Centrality.
In Table 13

Label Distribution Shifts Detailed Experimental results
for the label leave-out setting as been provided in Tabs 12
and 11.

Ablation Studies Hyper-parameter evaluations are incorpo-
rated in Figs. 6 and 8. For k, ein, eout, and λ, we discuss
their influence on TopoOOD in the main text.

Additionally, we investigate the relationship between AU-
ROC and the learning rate, lr by conducting experi-
ments on the Arxiv dataset as well as three synthetic
settings of the Coauthor-CS dataset. Specifically, we
varied the learning rate, lr, across a set of values:
{0.001, 0.003, 0.01, 0.03, 0.1}. The outcomes, as depicted
in Fig. 7, suggest that the performance of TopoOOD remains
robust across a reasonable range of learning rates.
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Table 5. Hyper-parameters of TopoOOD in our experiments. As mentioned in the maintext, k denotes the propagation steps; ein and ein
denote the constraints for regularization loss; λ denotes the regularization weight in the final objective function; lr is the learning rate.

Dataset k ein eout λ lr

Twitch 10 0 5 1 0.01
Arxiv 20 0 20 0.003 0.003
Amazon-Triangleness 17 0 1 5 0.003
Amazon-Squareness 5 0 3 1 0.01
Amazon-Cliqueness 10 0 1 5 0.003
Coauthor-Triangleness 10 0 1 5 0.01
Coauthor-Squareness 10 0 1 5 0.01
Coauthor-Cliqueness 10 0 5 5 0.003
Coauthor-Physics-Triangleness 5 0 1 10 0.01
Coauthor-Physics-Squareness 50 0 3 5 0.01
Coauthor-Physics-Cliqueness 50 0 3 5 0.01

Table 6. OOD detection performance by AUROC(↑)/AUPR(↑)/FPR95(↓) on OOD sub-graphs ES, FR and RU of Twitch dataset.

Model Twitch-ES Twitch-FR Twitch-RU

AUROC AUPR FPR95 AUROC AUPR FPR95 AUROC AUPR FPR95

MSP 37.72 53.08 98.09 21.82 38.27 99.25 41.23 56.06 95.01
ODIN 83.83 80.43 33.28 59.82 64.63 92.57 58.67 72.58 93.98
Mahalanobis 45.66 58.82 95.48 40.40 46.69 95.54 55.68 66.42 90.13
GKDE 48.70 61.05 95.37 49.19 52.94 95.04 46.48 62.11 95.62
GPN 53.00 64.24 95.05 51.25 55.37 93.92 50.89 65.14 99.93
OE 55.97 69.49 94.94 45.66 54.03 95.48 55.72 70.18 95.07
KNN 80.95 86.03 73.26 56.75 60.46 96.46 55.58 67.06 95.01
GNNSafe++ 94.54 97.17 44.06 93.45 95.44 51.06 98.10 98.74 5.59
TopoOOD 99.73 99.89 0.00 99.21 99.38 0.14 99.97 99.99 0.00

Table 7. Out-of-distribution detection performance measured by AUROC(↑)/AUPR(↑)/FPR95(↓) on OOD datasets of papers pub-
lished in 2018, 2019 and 2020, respectively, on Arxiv. GPN reports the out-of-memory issue with a 24GB GPU.

Model Arxiv-2018 Arxiv-2019 Arxiv-2020

AUROC AUPR FPR95 AUROC AUPR FPR95 AUROC AUPR FPR95

MSP 61.66 70.63 91.67 63.07 66.00 90.82 67.00 90.92 89.28
ODIN 53.49 63.06 100.0 53.95 56.07 100.0 55.78 87.41 100.0
Mahalanobis 57.08 65.09 93.69 56.76 57.85 94.01 56.92 85.95 95.01
GKDE 56.29 66.78 94.31 57.87 62.34 93.97 60.79 88.74 93.31
GPN - - - - - - - - -
OE 67.72 75.74 86.67 69.33 72.15 85.52 72.35 92.57 83.28
GNNSafe++ 70.4 78.62 81.47 72.16 75.43 79.33 81.75 95.57 71.50
KNN 43.76 55.27 98.09 44.27 48.40 97.84 41.44 79.69 98.77
TopoOOD 80.95 79.28 41.30 89.14 86.09 28.71 91.25 97.47 26.30

18



Graph Out-of-Distribution Detection Goes Neighborhood Shaping

Table 8. Evaluation results for different OOD detection baselines on Amazon-Photo datasets.

Model Amazon-Photo-Triangleness Amazon-Photo-Squareness Amazon-Photo-Cliqueness

AUROC AUPR FPR95 ID ACC AUROC AUPR FPR95 ID ACC AUROC AUPR FPR95 ID ACC

OE 86.66 82.35 52.03 75.15 91.58 88.94 46.08 84.91 87.37 84.53 43.73 87.14
GNNSafe++ 70.47 79.48 99.73 66.40 80.41 85.31 98.94 88.80 95.87 91.23 9.09 92.69
MSP 80.29 70.64 67.02 84.60 87.40 82.27 50.69 91.60 87.63 82.26 50.61 92.74
KNN 48.49 47.37 98.44 86.80 70.59 71.32 89.87 92.12 72.56 67.29 82.70 92.99
GPN 62.98 59.64 94.52 87.69 61.75 54.30 88.53 92.60 52.64 50.48 97.25 48.71
Mahalanobis 82.21 70.79 43.74 84.28 75.28 63.29 60.62 89.70 29.72 36.69 99.80 92.30
ODIN 19.33 30.42 96.99 82.55 49.43 45.29 100.00 91.31 11.86 28.66 99.51 92.55
GKDE 74.94 64.55 69.52 74.17 66.23 56.92 85.49 42.57 63.91 58.67 89.85 49.00
TopoOOD 91.03 84.93 19.68 82.87 89.05 80.83 52.15 84.34 93.57 79.63 6.43 91.82

Table 9. Evaluation results for different OOD detection baselines on Coauthor-CS datasets.

Model Coauthor-CS-Triangleness Coauthor-CS-Squareness Coauthor-CS-Cliqueness

AUROC AUPR FPR95 ID ACC AUROC AUPR FPR95 ID ACC AUROC AUPR FPR95 ID ACC

OE 73.42 68.79 79.07 78.10 75.87 73.17 76.34 84.13 69.96 70.09 84.19 89.18
GNNSafe++ 54.83 63.60 100.00 83.54 70.91 75.70 99.89 83.79 93.36 89.57 21.64 88.36
MSP 71.31 64.23 84.97 85.95 78.33 74.26 75.04 91.04 64.44 64.59 86.30 90.69
KNN 61.17 55.51 93.38 89.48 63.75 58.96 94.38 92.05 51.92 49.66 91.57 90.75
GPN 57.47 53.00 96.09 84.51 89.09 90.75 65.12 89.26 65.49 58.35 78.94 76.59
Mahalanobis 86.06 82.74 52.56 82.89 79.41 77.39 70.16 90.53 60.29 63.07 95.65 58.23
ODIN 49.23 44.34 100.00 84.55 49.25 46.52 100.00 90.73 49.55 49.13 100.00 90.14
GKDE 70.07 59.19 80.86 86.27 74.60 68.22 76.04 90.63 57.12 57.22 92.19 88.12
TopoOOD 95.73 97.11 27.56 88.29 97.94 98.42 3.93 92.17 99.96 99.89 0.10 86.72

Table 10. Evaluation results for different OOD detection baselines on Coauthor-Physics datasets.

Model Coauthor-Physics-Triangleness Coauthor-Physics-Squareness Coauthor-Physics-Cliqueness

AUROC AUPR FPR95 ID ACC AUROC AUPR FPR95 ID ACC AUROC AUPR FPR95 ID ACC

MSP 56.97 55.96 90.61 93.58 65.74 55.17 88.30 94.97 83.98 88.47 77.72 96.32
KNN 40.35 48.05 97.14 93.74 47.06 42.98 97.15 95.01 72.07 78.21 89.39 96.28
GPN 39.95 51.32 100.00 93.93 55.00 51.99 97.18 94.06 74.24 72.20 61.02 95.35
ODIN 49.95 54.84 100.00 93.57 32.20 50.63 100.00 96.33 41.32 40.08 100.00 94.75
GKDE 52.33 51.61 87.85 94.32 58.86 47.38 87.72 95.53 79.39 84.36 75.58 95.90
Mahalanobis 87.50 86.87 42.39 92.10 87.06 82.02 44.31 88.67 41.87 55.35 99.16 95.30
OE 79.74 85.27 79.27 75.50 80.23 80.90 79.07 84.26 92.49 93.79 33.62 95.62
GNNSafe++ 56.97 72.57 100.00 92.30 76.41 81.63 100.00 88.46 95.49 93.11 14.12 96.05
TopoOOD 88.60 93.45 88.15 92.28 96.09 97.75 0.00 88.31 100.00 100.00 0.00 95.74

Table 11. Evaluation results for different OOD detection baselines measured by AUROC(↑) / AUPR(↑) / FPR95(↓) on
Cora (Sen et al., 2008) and Amazon-Photo with the OOD type label leave-out.

Model Cora Amazon
AUROC AUPR FPR95 ID ACC AUROC AUPR FPR95 ID ACC

MSP 91.36 78.03 34.99 88.92 93.97 91.32 26.65 95.76
ODIN 49.80 24.27 100.0 88.92 65.97 57.80 90.23 96.08
KNN 94.68 93.47 19.87 88.91 83.88 87.23 68.84 94.07

Mahalanobis 67.62 42.31 90.77 88.92 73.25 66.89 74.30 95.76
GKDE 57.23 27.50 88.95 89.87 65.58 65.20 96.87 89.37
GPN 90.34 77.40 37.42 91.46 92.72 90.34 37.16 90.07
OE 89.47 77.01 46.55 87.97 95.39 92.53 17.72 95.72

GNNSAFE++ 92.75 82.64 34.08 91.46 97.51 97.07 6.18 95.84
TopoOOD 93.50 93.09 6.67 89.25 100.00 100.00 0.00 94.45
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Table 12. Evaluation results for different OOD detection baselines measured by AUROC(↑) / AUPR(↑) / FPR95(↓) on Coauthor-CS and
Coauthor-Physics with the OOD type label leave-out.

Model Coauthor-CS Coauthor-Physics
AUROC AUPR FPR95 ID ACC AUROC AUPR FPR95 ID ACC

MSP 94.88 97.99 23.81 95.18 93.06 98.78 38.22 98.00
ODIN 51.44 74.79 100.0 95.15 50.56 86.63 100.00 98.02

Mahalanobis 85.36 93.61 45.41 95.19 39.64 86.87 100.00 74.89
GKDE 61.15 81.39 94.60 89.05 83.24 96.48 60.78 98.00
GPN 93.24 97.55 34.78 91.68 80.68 95.78 67.12 97.80
OE 96.04 98.50 18.17 95.10 92.58 98.66 37.57 98.00

KNN 86.05 90.58 48.73 93.25 85.13 97.04 59.62 98.02
GNNSAFE++ 97.89 99.24 9.43 95.24 97.24 99.44 11.57 98.04

TopoOOD 99.32 98.94 0.92 92.86 99.92 99.99 0.14 97.69

AND (Amazon-Photo) CC (Coauthor-CS) Core Number (Coauthor-Physics)

AUROC↑ AUPR↑ FPR↓ ID ACC AUROC↑ AUPR↑ FPR↓ ID ACC AUROC↑ AUPR↑ FPR↓ ID ACC

TopoOOD 87.56 85.12 12.88 84.01 97.35 99.79 4.91 89.92 99.99 99.99 0.06 96.21
GNNSafe++ 93.96 97.91 74.46 86.60 95.51 99.71 15.13 91.03 94.83 95.94 18.52 96.14
GPN 56.56 74.11 91.16 81.21 50.46 94.84 85.48 74.83 64.87 73.69 91.87 83.29
ODIN 32.11 57.95 98.73 86.17 38.58 93.00 95.71 91.66 12.21 43.89 99.98 96.31
GKDE 58.04 72.55 94.46 64.25 43.14 94.66 82.21 90.47 76.70 83.46 69.93 96.21
Mahalanobis 38.28 64.00 98.05 85.94 25.27 92.71 100.00 91.64 38.55 57.23 98.74 96.31
KNN 71.61 86.42 95.58 89.17 68.15 97.71 89.57 91.92 72.31 81.54 95.61 96.34
MSP 70.07 81.15 75.88 88.44 58.45 96.58 78.73 91.74 87.31 91.91 59.00 96.37
OE 85.55 90.42 42.25 84.24 90.77 99.51 37.01 89.56 95.26 96.93 22.82 95.49

Table 13. Evaluation results for different OOD detection baselines measured by AUROC(↑) / AUPR(↑) / FPR95(↓) on three additional
topology distribution shifts.
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Figure 6. Hyper-parameter study for propagation steps k. The per-
formance of TopoOOD on Twitch, Arxiv, and the three OOD types
of Amazon-Photo are plotted as the propagation steps increase.
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Figure 7. Hyper-parameter study for the model learning rate
lr. The results for the Arxiv and the three OOD types
of Coauthor-CS are plotted as the learning rate equal to
0.001, 0.003, 0.01, 0.03, 0.1.
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Figure 8. Impact of margin hyper-parameters ein, eout (the upper
one) and regularization weight λ (the lower one). We use the
Twitch dataset to display the influence of λ, and the Arxiv dataset
to show how ein and eout influence performance.
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