
Subgraphormer: Unifying Subgraph GNNs and Graph Transformers
via Graph Products

Guy Bar-Shalom 1 Beatrice Bevilacqua 2 Haggai Maron 3 4

Abstract

In the realm of Graph Neural Networks (GNNs),
two exciting research directions have recently
emerged: Subgraph GNNs and Graph Trans-
formers. In this paper, we propose an archi-
tecture that integrates both approaches, dubbed
Subgraphormer, which combines the en-
hanced expressive power, message-passing mech-
anisms, and aggregation schemes from Subgraph
GNNs with attention and positional encodings, ar-
guably the most important components in Graph
Transformers. Our method is based on an intrigu-
ing new connection we reveal between Subgraph
GNNs and product graphs, suggesting that Sub-
graph GNNs can be formulated as Message Pass-
ing Neural Networks (MPNNs) operating on a
product of the graph with itself. We use this for-
mulation to design our architecture: first, we de-
vise an attention mechanism based on the connec-
tivity of the product graph. Following this, we
propose a novel and efficient positional encoding
scheme for Subgraph GNNs, which we derive
as a positional encoding for the product graph.
Our experimental results demonstrate significant
performance improvements over both Subgraph
GNNs and Graph Transformers on a wide range
of datasets.

1. Introduction
Due to their scalability and elegant architectural design,
Message Passing Neural Networks (MPNNs) have become
the most popular type of Graph Neural Networks (GNNs).
Nonetheless, these architectures face significant limitations,

1Department of Computer Science, Technion - Israel Institute of
Technology 2Department of Computer Science, Purdue University
3Department of Electrical & Computer Engineering, Technion - Is-
rael Institute of Technology 4NVIDIA Research. Correspondence
to: Guy Bar-Shalom <guy.b@cs.technion.ac.il>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

particularly in terms of expressive power (Morris et al.,
2019; Xu et al., 2018), resulting in underwhelming perfor-
mances in certain tasks. Over the past few years, multiple
GNN architectures have been proposed to mitigate these
problems (Morris et al., 2021).

In this paper, we focus on two different enhanced GNN
architecture families: Subgraph GNNs and Graph Trans-
formers. In Subgraph GNNs (Zhang and Li, 2021; Cotta
et al., 2021; Zhao et al., 2022; Bevilacqua et al., 2022;
Frasca et al., 2022; Zhang et al., 2023b), a GNN is applied
to a bag (multiset) of subgraphs, which is generated from
the original graph (for example, the multiset of subgraphs
obtained by deleting one node in the original graph). No-
tably, these architectures are provably more expressive than
the traditional message passing algorithms applied directly
to the original graph. In parallel, Transformers (Vaswani
et al., 2017) have demonstrated outstanding performance
across a wide range of applications, including natural lan-
guage processing (Vaswani et al., 2017; Kalyan et al., 2021;
Kitaev et al., 2020), computer vision (Khan et al., 2022;
Dosovitskiy et al., 2020; Li et al., 2022b), and, more re-
cently, graph-based tasks (Ying et al., 2021; Zhang et al.,
2023b; Rampášek et al., 2022). Two of the most important
components of Graph Transformers are their attention mech-
anism and their positional encoding scheme, which captures
the graph structure. Graph Transformers have achieved
impressive empirical performance, demonstrated by their
state-of-the-art results on molecular tasks (Li et al., 2022a).

This work aims to integrate Subgraph GNNs and Graph
Transformers into a unified architecture, which we call
Subgraphormer, to leverage the benefits of both ap-
proaches. In order to define this hybrid approach, we de-
velop two main techniques specifically adapted to subgraphs:
(1) A subgraph attention mechanism, dubbed Subgraph At-
tention Block (SAB); and (2) A subgraph positional encod-
ing scheme, which we call product graph PE. We derive
these two mechanisms through a key observation: Subgraph
GNNs can be naturally interpreted as MPNNs operating
on a new product graph. This product graph is defined on
2-tuples of nodes and encodes both the subgraph structure
and their inter-subgraph aggregation schemes.

Our approach builds on the recent maximally expressive

1

Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via Graph Products

(node-based) Subgraph GNN by Zhang et al. (2023a). The
product graph of this architecture has two main types of
edges. First, internal edges, that connect each vertex v
in subgraph s to neighbors of v within s. Second, exter-
nal edges, which are similarly constructed to connect v to
copies of v itself across different subgraphs s′ when the
node generating subgraph s′ is a neighbor of the node gener-
ating subgraph s. Those are illustrated in Section 3.1. These
external edges enable the exchange of information between
subgraphs, like the aggregation schemes used in existing
Subgraph GNNs, which have been shown to improve per-
formance and expressivity (Zhang et al., 2023a). Our SAB
implements both internal and external attention-based aggre-
gation methods, based on the edges defined above, thereby
allowing individual nodes to refine their representations by
selectively attending to nodes within the same or from differ-
ent subgraphs. Importantly, as Subgraph GNNs are already
computationally expensive, we restrict the attention to the
product graph connectivity, similarly to sparse transform-
ers (Choromanski et al., 2022; Shirzad et al., 2023).

Our Positional Encoding (PE) scheme, product graph PE, is
tailored to the new product graph connectivity that emerges
from the architecture defined above. Interestingly, this con-
nectivity stems from the Cartesian product of the original
graph with itself, which is a well-known type of graph prod-
uct. We define our positional encoding as the Laplacian
eigenvectors (Rampášek et al., 2022; Dwivedi et al., 2023;
Kreuzer et al., 2021) of the adjacency matrix associated
with this Cartesian product. Crucially, although the vertex
set of the new graph comprises n2 nodes, in contrast to
n nodes in the original graph, the special structure of the
Cartesian product graph allows us to compute positional
encodings with time complexity equivalent to calculating
positional encodings on the original, smaller graph. We
demonstrate that those subgraph-positional encodings offer
a performance boost for Subgraphormer, particularly in
the case of larger graphs where stochastic subgraph sam-
pling is used. We also describe how product graph PE, and
Subgraphormer in general, can be generalized to other
higher-order GNNs that operate on k-tuples of nodes.

An extensive experimental analysis over a variety of eight
different datasets confirms that our architecture leads to
significant performance improvements over both Subgraph
GNNs and Graph Transformers, yielding outstanding re-
sults on multiple datasets, including ZINC-12K (Sterling
and Irwin, 2015; Gómez-Bombarelli et al., 2018; Dwivedi
et al., 2023) and the long-range benchmark PEPTIDES-
STRUCT (Dwivedi et al., 2022). Furthermore, we address the
potential computational burden of operating on large bags of
subgraphs, demonstrating that the performance of stochas-
tic bag sampling improves when using Subgraphormer
compared to other Subgraph GNNs. In particular, we show
that our positional encodings play a key role in this case.

Original Graph Subgraphs

s

vv

Original Graph

Subgraphs

s

v

v
Figure 1: An example of generating sub-
graphs from the original graph. We de-
note by v the index used for the node di-
mension, and by s the one employed for
the subgraph dimension. Each subgraph
is generated by marking a single node
in the original graph, with the marked
node represented in black. We refer to
the marked node as the root of the corre-
sponding subgraph.

To summarize, the main contributions of this paper are (1)
Subgraphormer, a novel architecture that combines the
strengths of both transformer-based and subgraph-based ar-
chitectures; (2) A novel observation connecting Subgraph
GNNs to product graphs; (3) A novel positional encod-
ing scheme tailored to subgraph methods; and (4) An em-
pirical study demonstrating significant improvements of
Subgraphormer compared to existing baselines in both
full bag and stochastic bag sampling setups.

2. Related Work
Subgraph GNNs. Subgraph GNNs (Zhang and Li, 2021;
Cotta et al., 2021; Papp et al., 2021; Bevilacqua et al., 2022;
Zhao et al., 2022; Papp and Wattenhofer, 2022; Frasca et al.,
2022; Qian et al., 2022; Huang et al., 2022; Zhang et al.,
2023a; Bevilacqua et al., 2023) represent a graph as a col-
lection of subgraphs, obtained by a predefined generation
policy. For example, each subgraph can be generated by
marking exactly one node in the original graph, an approach
commonly referred to as node marking (Papp and Watten-
hofer, 2022) – which is also the generation policy on which
we focus in this paper. Since a node v of the original graph
belongs to multiple subgraphs, we use the tuple (s, v) to
refer to node v in subgraph s. Following the literature, we
denote node s in subgraph s as the root of the subgraph. An
example of this concept is illustrated in Figure 1. The suc-
cess of Subgraph GNNs can be attributed to the enhanced
expressive capabilities of these models, which surpass those
of MPNNs working directly on the original graph.

Graph Transformers. Transformers have achieved no-
table success in natural language processing (Vaswani et al.,
2017; Kalyan et al., 2021; Kitaev et al., 2020) and com-
puter vision (Khan et al., 2022; Dosovitskiy et al., 2020; Li
et al., 2022b), largely owing to their key component, the
attention mechanism (Vaswani et al., 2017), often coupled
with positional encoding schemes. Building on this, the
GNN community has introduced Graph Transformers (Ying
et al., 2021; Zhang et al., 2023b; Rampášek et al., 2022;
Park et al., 2022; Chen et al., 2022), a specialized variant
for graph-structured data. Graph Transformers incorporate
either global attention (Kreuzer et al., 2021; Mialon et al.,

2

Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via Graph Products

2021; Ying et al., 2021), which operates on fully-connected
data, or make use of sparse attention (Shirzad et al., 2023;
Choromanski et al., 2022; Brody et al., 2021), tailored to
leverage the graph structure. Given the quadratic nature of
Subgraph GNNs, we focus on sparse attention methods.

3. From Subgraph GNNs to Product Graphs
This section serves a dual purpose. Firstly, we demonstrate
that the most expressive version of Subgraph GNNs (Zhang
et al., 2023a), which serves as a main motivation in our pa-
per, can be implemented by applying an MPNN to a newly
constructed graph. Second, we explore the relationship
between this new graph and the graph Cartesian product op-
eration. Both of those aspects will be used in the following
sections to develop our Subgraphormer architecture.

3.1. Subgraph GNNs as MPNNs

Notation. Let G = (A,X) denote an undirected graph
with node features.1 The adjacency matrix A ∈ Rn×n

represents the graph connectivity while the feature matrix,
X ∈ Rn×d, represents the node features. We denote the
sets of nodes and edges as V and E, respectively, with
|V | = n. Additionally, we denote neighbors in G by ∼G,
that is v1 ∼G v2 denotes that v1 and v2 are neighbors in G.
We denote the (usually highly sparse) adjacency and feature
matrices of all subgraphs of a graph with calligraphic letters
as, A ∈ Rn2×n2

and X ∈ Rn2×d, respectively. Notably,
we index X and A using the tuple (s, v), where X (s, v) is
the feature of node v in subgraph s, and A((s, v), (s′, v′))
denotes the edge between node v in subgraph s and node v′

in subgraph s′.

GNN-SSWL+. We build upon the construction of the maxi-
mally expressive Subgraph GNN proposed in Zhang et al.
(2023a), which employs the Node Marking generation policy
for generating the subgraphs, and updates the representation
of node (s, v) according to the following formula:

X (s, v)t+1 = f t
(
X (s, v)t,X (v, v)t,

{X (s, v′)t}v′∼Gv, {X (s′, v)t}s′∼Gs,
)
, (1)

for an appropriate parameterized learnable function f t,
where the superscript t represents the layer number. Es-
sentially, in each step, a node is updated using its representa-
tion, X (s, v)t, its representation in the subgraph it is root of,
X (v, v)t, and two multisets of its neighbors’ representations.
The first multiset encompasses horizontal neighbors within
the same subgraph, represented as {X (s, v′)t}v′∼Gv, and
the second multiset consists of vertical neighbors between
the subgraphs, denoted by {X (s′, v)t}s′∼Gs.

1The consideration of edge features is omitted for simplicity.

Product Graph Definition. In what follows, we construct
an adjacency matrix of the form A ∈ Rn2×n2

to represent
each one of the updates in Equation (1); we note that in all
cases, this matrix, although in Rn2×n2

, is extremely sparse.
We define the product graph to be the heterogeneous graph2

defined by these adjacency matrices, together with a node
feature matrix X ∈ Rn2×d. Each adjacency we construct is
visualized for the specific case where the original graph is
the one given in Figure 1.

s

v

s

vInternal subgraph connectivity. We
start by introducing AG ∈ Rn2×n2

(see
inset on the left), which corresponds
to {X (s, v′)t}v′∼Gv and maintains the
connectivity of each subgraph separately.
Formally,

AG

(
(s, v), (s′, v′)

)
=

{
δss′ if v ∼G v′;

0 otherwise,
(2)

where δ is the Kronecker delta.

s

v

s

v External subgraph connectivity. The
adjacency AGS ∈ Rn2×n2

corresponds
to {X (s′, v)t}s′∼Gs (see inset) and con-
tains edges across different subgraphs;
hence denoted by the superscript S for
G. In particular, these edges connect the
same node in different subgraphs when-

ever the root nodes of these subgraphs are neighbors in the
original graph. Formally,

AGS

(
(s, v), (s′, v′)

)
=

{
δvv′ if s ∼G s′;

0 otherwise.
(3)

Original Graph Subgraphs

s

vv

s

v

s

Point-wise updates. The adjacency
corresponding to X (v, v)t, denoted as
Apoint, allows a node v in subgraph s to
receive its root representation. Those
updates are visualized inset by the grey
arrows pointing from root nodes to other
nodes in the same column. This adja-

cency matrix can be written as,

Apoint

(
(s, v), (s′, v′)

)
=

{
1 if s′ = v′ = v;

0 otherwise.
(4)

To conclude our discussion on the relationship between
GNN-SSWL+ and the product graph we constructed, we
state and prove the following proposition showing that GNN-
SSWL+ can be simulated by running an MPNN on the
product graph:

2With a single node type and multiple edge types.

3

Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via Graph Products

Proposition 3.1 (GNN-SSWL+ as an MPNN on the product
graph). Consider a graph G = (A,X). Applying a stacking
of RGCN layers (Schlichtkrull et al., 2018), interleaved with
ReLU activations, on the product graph, as defined via the
adjacencies in Equations (2) to (4), can implement the GNN-
SSWL+ update in Equation (1).

The proof is in Appendix E. This idea can be easily extended
to other Subgraph GNN types. We note that the general idea
of viewing GNNs as MPNNs operating on a new graph was
recently proposed by Bause et al. (2023); Jogl et al. (2022;
2023), and a preliminary discussion on simulating Subgraph
GNNs with MPNNs also appeared in Veličković (2022).

3.2. Connection to the Graph Cartesian Product

In the previous section, we described how to build a prod-
uct graph for simulating a maximally expressive Subgraph
GNN. Next we demonstrate that the connectivity of this
particular product graph is tightly related to the concept of
Graph Cartesian Product (Vizing, 1963; Harary, 2018).

Graph Cartesian Product. In simple terms, the Cartesian
product of two graphs G1 and G2, denoted G1□G2, is a
graph whose vertex set is the Cartesian product of V (G1)
and V (G2), with two vertices (u1, u2) and (v1, v2) being
adjacent if either u1 = v1 and u2 is adjacent to v2 in G2,
or u2 = v2 and u1 is adjacent to v1 in G1; we denote the
adjacency matrix of this new product graph as AG1□G2

. In
this paper, we mainly focus on a specific scenario where
G1 = G2, namely, the Cartesian product of a graph with
itself. For a formal definition, we refer the reader to Defini-
tion A.1 in Appendix A.

Given a graph G = (A,X), the adjacency matrix corre-
sponding to G□G can be expressed as:

AG□G ≜ A⊗ I + I ⊗A, (5)

with ⊗ the Kronecker product and I the identity matrix.
We can now establish a direct connection between the prod-
uct graph we have built for GNN-SSWL+ in the previous
subsection and the Cartesian product graph.

Proposition 3.2 (Internal and External Connectivities give
rise to the Cartesian Product Graph). The edges induced
by the internal and external subgraph connectivities, repre-
sented by AG and AGS (Equations (2) and (3)) represent
the connectivity ofAG□G. This implies the relationship:

AG□G = AGS +AG. (6)

In particular, we have AGS = A⊗ I,AG = I ⊗A.

The proof is given in Appendix E.

General Subgraph GNNs as Product Graphs. Different
Subgraph GNNs differ in their aggregation schemes. While

the aggregations defined by the adjacencies in Equations (2)
to (4) are sufficient for maximal expressivity among known
subgraph architectures, additional aggregation schemes,
that may be important for certain tasks, have been pro-
posed (Frasca et al., 2022). For instance, global updates
enable nodes to refine their representations by incorporating
information from other nodes, irrespective of their connec-
tivity in the original graph. For example, a node (s, v), can
aggregate information from all nodes within the same sub-
graph, (s, v′), for each v′ ∈ V . Similarly, it can refine its
representation by considering its copies in all subgraphs,
(s′, v), for each s′ ∈ V . Both of these aggregations can
be derived from the adjacency matrices of the Cartesian
product Gc□Gc. Here, Gc denotes the clique graph, whose
adjacency matrix is 1⃗⃗1T − I . For a comprehensive dis-
cussion on the connection between Subgraph GNNs and
Cartesian product graphs, refer to Appendix A.

4. Subgraphormer
Having established the relationship between Subgraph
GNNs and product graphs, we can now use it to define our ar-
chitecture: Subgraphormer. Subgraphormer is com-
posed of a subgraph-specific positional encoding layer, node
marking, a stacking of Subgraph Attention Blocks (SABs),
and a final pooling layer, as depicted in Figure 2. In this
section, we delve into the specifics of these components.

4.1. Subgraph Attention Block

In this subsection, we introduce the structure of the Sub-
graph Attention Block (SAB), designed to update the repre-
sentation of each node v in subgraph s, denoted by X (s, v).
In the SAB, the adjacency matrices defined above serve
as sparsification functions, effectively biasing the attention
mechanism to focus on the neighbors of each node in the
product graph.

Implementing internal and external subgraph attentions.
We implement two attention mechanisms - dubbed internal
and external subgraph attention. These mechanisms are
governed by the adjacency matrices AG and AGS , respec-
tively. In general, we employ a sparse attention approach
that computes Query (Qt), Key (Kt), and Value (Vt) trans-
formations from the node features X t ∈ Rn2×d1 , according
to the following equations:

Qt = X tWt
Q, Kt = X tWt

K, Vt = X tWt
V , (7)

where Wt
Q,W

t
K,W

t
V ∈ Rd1×d2 are learned linear projec-

tions. The attention weights αt(Qt,Kt|A) ∈ Rn2×n2

are
computed from Qt and Kt (e.g., by computing their outer
product) only for the non-zero entries of the adjacency ma-
trix A ∈ {AG,AGS}. The resulting node representation

4

Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via Graph Products

Subgraph SE & PE
block SABB SABB SABB Pooling…

Product Graph PE

Subgraph Attention Block Pooling

Node Marking

X
X

X
X

X X X X

X X X
X X X

X X X
X X X

Internal External Point

Product Graph PE
& Node Marking Subgraph Attention Block Pooling

v

s

Pool

Pool

v

s

× $Product Graph
Construction

Product Graph
Construction

Figure 2: An overview of Subgraphormer. Given an input graph, we first construct the product graph and compute a
subgraph-specific positional encoding. Then, we apply a stacking of Subgraph Attention Blocks, followed by a pooling layer
to obtain a graph representation. A more comprehensive depiction of this figure can be found in Figure 3 of Appendix F.

are then computed employing the following equations:

αt
AG

(Qt
AG

,Kt
AG

|AG)Vt
AG

, αt
AGS

(Qt
AGS

,Kt
AGS

|AGS)Vt
AGS

,

where we use different parameters (denoted by subscripts)
to compute the attention coefficients of AG,AGS . Impor-
tantly, our formulation of Subgraph GNNs as MPNNs on
a product graph (Section 3) allows us to leverage exist-
ing optimized attention-based MPNNs to implement the
Subgraphormer architecture. This avoids the need to
build complex custom Subgraph GNN models from scratch.
In particular, our implementation follows the Graph Atten-
tion Network (GAT) approach proposed by Veličković et al.
(2017), which is implemented efficiently by accounting only
for the non-zero entries in α(Qt,Kt|A). We note that our
approach can leverage any sparse attention model.

Implementing pointwise updates. For pointwise updates
we do not use any attention mechanism, since every node
has only a single neighbor. To additionally include the “self”
(self loop) component from Equation (1) in this update,
namely, X (s, v), we follow Zhang et al. (2023a) and employ
a GIN encoder (Xu et al., 2018), that is,

pointt(X t,APoint) = MLPt((1+ ϵt)X t+(ApointX t)). (8)

Final update step. Putting it all together, a single SAB is
defined as an application of an MLP (applied to the feature
dimension) to the concatenation of all the updates:

SABt(X t,AG,AGS ,APoint) =

MLPt(αt
AG

(Qt
AG

,Kt
AG

|AG)Vt
AG

⊕
αt
AGS

(Qt
AGS

,Kt
AGS

|AGS)Vt
AGS

⊕pointt(X t,APoint)),

where ⊕ represents feature concatenation.

We remark that one way of looking at a SAB update is by
taking inspiration from Proposition 3.1 and extending the
message passing within RGCN to further include different
attention weights for each edge type, enabling nodes to
attend differently to nodes connected via various edge types.

Pooling. After a stacking of SAB layers, we employ a
pooling layer to obtain a graph representation, that is,

ρ(X T) = MLPT
(n∑

s=1

(n∑
v=1

X T (s, v)
))

, (9)

where T denotes the final layer.

We note that a stacking of SABs followed by an invariant
pooling layer as described above, guarantees invariance to
node permutations. This is because each block in our model
maintains equivariance to node permutations, while the final
pooling layer ensures invariance to such permutations.

Complexity. SAB matches GNN-SSWL+ in time and space
complexity, with both at O(|V |2 + |V ||E|) for an original
graph of |V | nodes and |E| edges. See Appendix D for a
detailed complexity analysis of each aggregation.

4.2. Subgraph Positional Encodings

Positional encodings for graphs have been well stud-
ied (Dwivedi et al., 2021; Wang et al., 2022; Lim et al.,
2022), and were shown to provide valuable information for
both message-passing based GNNs and graph transformers.

A prominent approach that we follow in this work makes use
of the eigendecomposition of the graph Laplacian matrix.
More specifically, given a graph G = (A,X), the Laplacian
is defined as L = D − A, where D = diag(A1⃗) is the
degree matrix. The positional encoding is calculated by an
eigendecomposition of the Laplacian, L = UTΛU , as

p:k
v ≜ [Uv1, . . . , Uvk], (10)

as the encoding for node v, where k is a hyperparameter
denoting the number of eigenvectors we consider, k ≤ n.
We note that the eigenvectors are sorted (in ascending order)
according to their eigenvalues.

Unfortunately, directly applying this approach to Subgraph
GNNs is not straightforward for two reasons: (1) Unclear
adjacency structure: For the Laplacian to be computed, it
is necessary to determine the relevant symmetric adjacency
matrix. Specifically, Subgraph GNNs, in general, operate
over a collection of subgraphs rather than on a graph struc-
ture. It is not clear what type of connectivity we should
use for the Laplacian of this structure. (2) Efficiency con-
cerns: The adjacency matrix for Subgraph GNNs is of size
n2 × n2. Consequently, computing its Laplacian’s k eigen-
vectors results in a computational complexity of O(k · n4),
as opposed to O(k · n2)(Lanczos, 1950; Lehoucq et al.,
1998; Lee et al., 2009) for a graph with n nodes, rendering
it impractical in many scenarios.

In the following, we design a positional encoding scheme
that addresses these two challenges. We start with the ad-
jacency challenge. A natural solution to (1) is to employ

5

Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via Graph Products

the adjacencies AG, AGS in Equations (2) and (3), exclud-
ing Apoint since it is asymmetrical and the connectivity it
represents is not related to the original graph. These adja-
cencies correspond to the main connectivity employed by
Subgraphormer. Consequently, our proposed positional
encoding method will primarily focus on the symmetric con-
nectivity defined by AG and AGS only. This choice brings
us to the challenge (2).

To address point (2), we utilize Proposition 3.2 that estab-
lished a relationship between the adjacency matrices AGS ,
AG, and the Cartesian product graph, expressed as,

AG□G = AGS +AG = A⊗ I + I ⊗A. (11)

Surprisingly, Equation (11) simplifies the computation of
eigenvectors for the Laplacian LG□G, by leveraging the
eigenvectors and eigenvalues of the original graph G, as
detailed in the following proposition (Barik et al., 2015).
Proposition 4.1 (Product Graph eigendecomposition). Con-
sider a graph G = (A,X).3 The eigenvectors and eigen-
values of the Laplacian matrix of G□G, namely, LG□G,
are {(vi ⊗ vj , λi + λj)}n

2

i,j=1, where {(vi, λi)}ni=1 are the
eigenvectors and eigenvalues of the Laplacian matrix of G.

We refer to Appendix E for the proof. The implications of
this observation are profound. It reveals that, despite the fact
that Subgraphormer processes product graphs with n2

nodes, computing the positional encodings only requires an
eigendecomposition of the original smaller graph. Specifi-
cally, for an undirected graph G = (A,X) with n vertices
and its Cartesian product graph G□G, calculating the first
k eigenvectors, k ≤ n, has a time complexity of O(k · n2)
(Lanczos, 1950; Lee et al., 2009) – the same as computing k
eigenvectors for the Laplacian of G. A proof for this claim is
also given Appendix E. We refer to our subgraph-positional
encodings as product graph PE, or simply PE.

Visualizing product graph PE. To illustrate the benefits
of our product graph PE, we visualize in different col-
ors the entries of the first non-trivial eigenvector of both
the original graph (upper) and the product graph (lower).

0 1 2 3 4

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4)

(1, 0) (1, 1) (1, 2) (1, 3) (1, 4)

(2, 0) (2, 1) (2, 2) (2, 3) (2, 4)

(3, 0) (3, 1) (3, 2) (3, 3) (3, 4)

(4, 0) (4, 1) (4, 2) (4, 3) (4, 4)

It is readily apparent that the
eigenvector on the product
graph conveys more informa-
tion than the one on the origi-
nal graph. This distinction is
particularly evident by observ-
ing the color diversity, with the
product graph featuring ten dis-
tinct colors as opposed to the
four in the original graph.

Concatenation PE. We briefly introduce another subgraph
positional encoding method, concatenation PE. Given the

3We assume A has no self loops.

Laplacian matrix L = UTΛU , of a graph G, the concate-
nation PE for a node (s, v) is given by the output of an
MLP on the concatenated vectors p:k

s = [Us1, . . . , Usk] and
p:k
v = [Uv1, . . . , Uvk]; we highlight that those two vec-

tors corresponds to the eigenvectors when considering each
of the connectivities, AG,AGS , independently. Notably,
concatenation PE can approximate (up to an ordering) the
product graph PE. This is because the product graph PE
multiplies specific elements from the concatenation PE, a
process that can be approximated using a MLP by using
the Universal Approximation Theorem (Hornik, 1991; Cy-
benko, 1989). However, we use the product graph PE in
this study due to its superior performance, as shown in the
comparison over the ZINC-12K dataset in Appendix C.3.1.

Node Marking. Motivated by existing Subgraph GNNs,
we leverage an additional “special mark”, defined as node
marking, which we concatenate to each node’s positional
encoding. Following the approach of Zhang et al. (2023a),
we hold a lookup table, and assign a learnable embedding
to each node, represented as zdist(s,v) ∈ Rd. The embed-
ding assigned to node (s, v) is indexed by the shortest path
distance between them in the original graph G – dist(s, v).4

4.3. Scaling up Subgraphormer

Given a graph G with n nodes, Subgraphormer operates
on a transformed graph with n2 nodes. Even though this
transformed graph is extremely sparse, this is a well-known
drawback of Subgraph GNNs (Qian et al., 2022; Kong
et al., 2023; Bevilacqua et al., 2023) when considering large
graphs, since processing the new graph might be infeasible.

s

v

✓

✓

✓
!

!

s

v

No sampling

Sampling

Thus, in this section we adopt
the idea of stochastic sam-
pling (Bevilacqua et al., 2022;
Cotta et al., 2021; Zhao et al.,
2022). Specifically, we adapt
Subgraphormer to stochastic
sampling by adding sparsifications
to the adjacencies based on the
sampling (see inset). We sample
rows (subgraphs) uniformly at
random and include an edge if
and only if both of its endpoints
are part of the sampled graph.

Formally, we introduce a sampling mask, Amask, defined as,

Amask

(
(s, v), (s′, v′)

)
=

{
1 if s and s′ are sampled;
0 otherwise.

Given an adjacency matrix A and a generated sampling
mask Amask, we perform an element-wise logical AND oper-

4We assign a unique mark if the two nodes are unreachable
from each other, i.e., dist(s, v) = ∞.

6

Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via Graph Products

ation between them. Consequently, A is adjusted to preserve
only edges that connect node pairs in sampled subgraphs.

Importantly, our product graph PE (Section 4.2) can be
computed independently from the sampling process. This
feature allows them to retain information from the complete,
unsampled graph. As demonstrated in the experimental sec-
tion, this attribute of product graph PE proves advantageous,
as it appears to effectively compensate for the information
loss incurred due to sampling.

4.4. Generalization to Higher-Order Graph Networks

While our current derivation considers product graphs con-
taining 2-tuples of nodes, both the SAB and the product
graph PE can be naturally extended to define similar high-
order architectures operating on k-tuples of nodes (Mor-
ris et al., 2019; Maron et al., 2018). This extension is
grounded in our understanding that Subgraph GNNs are
connected to the Cartesian product of graphs. Accord-
ingly, this product can be generalized to be applied k
times, rather than being limited to k = 2. This general-
ization leads to the formation of k distinct adjacency matri-
ces, each representing different “Internal/External” aggre-
gations. To elaborate, the i-th adjacency matrix is defined
as I ⊗ I ⊗ · · · ⊗ I ⊗A⊗ I ⊗ · · · ⊗ I ⊗ I︸ ︷︷ ︸

with A exclusively positioned in the i-th slot

. Similarly, the

positional encodings can also be extended to any k-tuple,
with the eigenvectors obtained by the tensor product of k
eigenvectors of G, and the eigenvalues by the sum of the
respective eigenvalues. More specifically, for each sequence
of indices {i1, i2, . . . , ik}, where ij ∈ {1, 2, . . . , n} for
each j, there exists an eigenvector-eigenvalue pair given
by (vi1 ⊗ vi2 ⊗ . . . ⊗ vik , λi1 + λi2 + . . . + λik). Here,
{(vi, λi)}ni=1 represent the eigenvectors and eigenvalues of
the Laplacian matrix of G. Appendix B presents a detailed
derivation of SABs and PEs for k-tuples, for any given k.

Additionally, we note that the high-order positional encod-
ing discussed here may be useful for other high-order GNNs.

5. Experiments
We conducted an extensive set of experiments over eight dif-
ferent datasets to answer the following questions: (Q1) Can
Subgraphormer outperform Subgraph GNNs and Graph
Transformers in real-world benchmarks? (Q2) Does the
attention mechanism prove advantageous? (Q3) Does
our product graph positional encoding scheme boost per-
formance, and in which contexts? (Q4) How well does
Subgraphormer perform when using stochastic sam-
pling? (Q5) Can Subgraphormer offer competitive per-
formance on long-range benchmarks when compared to
Graph Transformers?

All experiments were conducted using PyTorch, and the

Table 1: On the ZINC datasets, Subgraphormer outper-
forms Graph Transformers and Subgraph GNNs . The
top three results are reported as First, Second, and Third.

Model ↓ / Dataset → Param. ZINC-12K ZINC-FULL
(MAE ↓) (MAE ↓)

GSN (Bouritsas et al., 2022) 500k 0.101±0.010 -
CIN (small) (Bodnar et al., 2021) 100k 0.094±0.004 0.044±0.003

GIN (Xu et al., 2018) 500k 0.163±0.004 -
PPGN++(6) (Puny et al., 2023) 500k 0.071±0.001 0.020±0.001

SAN (Kreuzer et al., 2021) 509k 0.139±0.006 -
URPE (Luo et al., 2022) 492k 0.086±0.007 0.028±0.002

GPS (Rampášek et al., 2022) 424k 0.070±0.004 -
Graphormer (Ying et al., 2021) 489k 0.122±0.006 0.052±0.005

Graphormer-GD (Zhang et al., 2023b) 503k 0.081±0.009 0.025±0.004

K-Subgraph SAT (Chen et al., 2022) 523k 0.094±0.008 -

NGNN (Zhang and Li, 2021) 500k 0.111±0.003 0.029±0.001

DS-GNN (Bevilacqua et al., 2022) 100k 0.116±0.009 -
DSS-GNN (Bevilacqua et al., 2022) 100k 0.102±0.003 0.029±0.003

GNN-AK (Zhao et al., 2022) 500k 0.105±0.010 -
GNN-AK+ (Zhao et al., 2022) 500k 0.091±0.002 -
SUN (Frasca et al., 2022) 526k 0.083±0.003 0.024±0.003

OSAN (Qian et al., 2022) 500k 0.154±0.008 -
DS-GNN (Bevilacqua et al., 2023) 500k 0.087±0.003 -
GNN-SSWL (Zhang et al., 2023a) 274k 0.082±0.003 0.026±0.001

GNN-SSWL+ (Zhang et al., 2023a) 387k 0.070±0.005 0.022±0.001

Subgraphormer 293k 0.067±0.007 0.020±0.002

Subgraphormer + PE 293k 0.063±0.001 0.023±0.001

Table 2: On the OGB datasets, Subgraphormer outper-
forms Graph Transformers and Subgraph GNNs . The
top three results are reported as First, Second, and Third.

Model ↓ / Dataset → MOLHIV MOLBACE MOLESOL
(ROC-AUC ↑) (ROC-AUC ↑) (RMSE ↓)

GCN (Kipf and Welling, 2016) 76.06±0.97 79.15±1.44 1.114±0.036

GIN (Xu et al., 2018) 75.58±1.40 72.97±4.00 1.173±0.057

PNA (Corso et al., 2020) 79.05±1.32 - -
GSN (Bouritsas et al., 2022) 80.39±0.90 - -
CIN (Bodnar et al., 2021) 80.94±0.57 - -

SAN (Kreuzer et al., 2021) 77.85±0.24 - -
GPS (Rampášek et al., 2022) 78.80±1.01 - -

NGNN (Zhang and Li, 2021) 78.34±1.86 - -
Recon. GNN (Cotta et al., 2021) 76.32±1.40 1.026±0.033 -
DS-GNN (Bevilacqua et al., 2022) 77.40±2.19 - -
DSS-GNN (Bevilacqua et al., 2022) 76.78±1.66 - -
GNN-AK+ (Zhao et al., 2022) 79.61±1.19 - -
SUN (Frasca et al., 2022) 80.03±0.55 - -
OSAN (Qian et al., 2022) - 72.30±6.60 0.980±0.086

DS-GNN (Bevilacqua et al., 2023) 76.54±1.37 78.41±1.94 0.847±0.015

GNN-SSWL+ (Zhang et al., 2023a) 79.58±0.35 82.70±1.80 0.837±0.019

Subgraphormer 80.38±1.92 81.62±3.55 0.832±0.043

Subgraphormer + PE 79.48±1.28 84.35±0.65 0.826±0.010

corresponding code is publicly available for replicating our
results5.

In the following, we present our main results and refer to
Appendix C for additional experiments.

Real-world data. On the ZINC-12K and ZINC-FULL
datasets (Sterling and Irwin, 2015; Gómez-Bombarelli et al.,
2018; Dwivedi et al., 2023), Subgraphormer outper-
forms both Subgraph GNNs and Graph Transformers by a

5https://github.com/BarSGuy/Subgraphormer

7

https://github.com/BarSGuy/Subgraphormer

Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via Graph Products

Table 3: Ablation Study over our product graph PE. For each dataset, the best result for each sampling ratio is in Bold.

Dataset ↓ / Sampling Ratio → Subgraphormer / Subgraphormer + PE

100% 50% 20% 5%

ZINC-12K (MAE ↓) 0.067±0.007 0.063±0.001 0.084±0.002 0.084±0.002 0.121±0.007 0.120±0.002 0.200±0.017 0.175±0.006

MOLHIV (ROC-AUC ↑) 80.38±1.92 79.48±1.28 79.66±0.79 79.61±1.30 76.48±2.38 76.68±1.07 70.87±0.90 71.02±0.79

MOLBACE (ROC-AUC ↑) 81.62±3.55 84.35±0.65 79.49±2.38 83.82±2.62 75.27±5.63 78.77±4.10 63.05±8.70 67.73±5.50

MOLESOL (RMSE ↓) 0.832±0.043 0.826±0.010 0.829±0.013 0.812±0.001 1.093±0.009 1.041±0.030 1.266±0.019 1.270±0.007

Table 4: Results on the PEPTIDES datasets demon-
strate the effectiveness of the stochastic variant of
Subgraphormer in tasks where Graph Transformers ex-
cel. Graph Transformers and Subgraph GNNs are high-
lighted in gray and light blue. The top three results are
reported as First, Second, and Third.

Model ↓ / Dataset → PEPTIDES-FUNC PEPTIDES-STRUCT
(AP ↑) (MAE ↓)

GCN (Kipf and Welling, 2016) 0.5930±0.0023 0.3496±0.0013

GIN (Xu et al., 2018) 0.5498±0.0079 0.3547±0.0045

GatedGCN (Bresson and Laurent, 2017) 0.5864±0.0077 0.3420±0.0013

GatedGCN+RWSE (Dwivedi et al., 2022) 0.6069±0.0035 0.3357±0.0006

Transf.+LapPE (Dwivedi et al., 2022) 0.6326±0.0126 0.2529±0.0016

SAN+LapPE (Kreuzer et al., 2021) 0.6384±0.0121 0.2683±0.0043

SAN+RWSE (Kreuzer et al., 2021) 0.6439±0.0075 0.2545±0.0012

GPS (Rampášek et al., 2022) 0.6535±0.0041 0.2500±0.0005

GNN-SSWL+ (Zhang et al., 2023a) 30% 0.5847±0.0050 0.2570±0.0006

Subgraphormer 30% 0.6415±0.0052 0.2494±0.0020

Subgraphormer + PE 30% 0.6373±0.0110 0.2475±0.0007

significant margin, while using a smaller number of parame-
ters (Table 1). Importantly, the attention mechanism proves
advantageous, as Subgraphormer always outperforms
GNN-SSWL+ (Zhang et al., 2023a), on which it builds on
by integrating attention blocks. Remarkably, our product
graph PE boosts the performance of Subgraphormer on
ZINC-12K, where it is the top-performing method. A simi-
lar trend is observed on the OGB datasets (Hu et al., 2020)
in Table 2. Notably, on the MOLBACE dataset, the inclusion
of the PE improves the performance by 3%. Additional
results on ALCHEMY-12K are reported in Appendix C.3.

Efficacy of stochastic sampling on long-range data.
We experimented on the PEPTIDES-FUNC and PEPTIDES-
STRUCT datasets (Dwivedi et al., 2022), evaluating the abil-
ity of Subgraphormer to scale to larger graphs and to
capture long-range dependencies, a notoriously hard task for
MPNNs (Dwivedi et al., 2022). We considered a sampling
ratio of 30%, which allows us to run Subgraphormer
though typical full-bag Subgraph GNNs cannot be applied.
The results are summarized in Table 4. Despite the re-
duced number of subgraphs, Subgraphormer achieves
the best performance on PEPTIDES-STRUCT, outperforming
all Graph Transformers, which excel on tasks of this kind,
and offer comparable results over PEPTIDES-FUNC.

Ablation Study: Product Graph PE. We assess the
impact of our product graph PE on the performance of
the stochastic variant of Subgraphormer under com-
mon sampling rates (Bevilacqua et al., 2022) (100%, 50%,
20%, 5%) across four datasets. Table 3 shows that the in-
clusion of our product graph PE improves the results of
Subgraphormer in 13 out of 16 dataset-sampling com-
binations. Its effectiveness is especially noticeable when
combined with 20% and 5% ratios, indicating its role in
compensating information loss due to low sampling rates.

Discussion. In what follows, we address research ques-
tions Q1 to Q5.

A1. Tables 1 and 2 show Subgraphormer outperform-
ing all transformer-based and subgraph-based baselines. A
similar trend is observed on the ALCHEMY-12K dataset in
Table 7 in Appendix C.3.

A2. Tables 1 and 4 clearly demonstrate the importance of the
attention, as Subgraphormer always outperforms GNN-
SSWL+, from which it is built by adding SABs. On the
OGB (Table 2) the attention mechanism proves particularly
beneficial when coupled with the product graph PE.

A3. Table 3 demonstrates the effectiveness of the PE, espe-
cially when considering lower sampling regimes.

A4. The stochastic variant of Subgraphormer proves
particularly advantageous in settings where full-bag Sub-
graph GNNs cannot be otherwise applied, such as in Ta-
ble 4. Additional results can be found in Tables 8 to 10 in
Appendix C.

A5. Table 4 demonstrates the ability of Subgraphormer
to capture long-range dependencies, as it outperforms all
baselines on the PEPTIDES-STRUCT dataset, and performs
comparably over PEPTIDES-FUNC.

6. Conclusions
In this work, we introduce Subgraphormer, a novel ar-
chitecture that merges the capabilities of Subgraph GNNs
and Graph Transformers. Building upon our observation
that views Subgraph GNNs as MPNNs operating on prod-
uct graphs, we propose: (1) a subgraph-based attention
mechanism, which can be implemented by leveraging op-
timized sparse attention blocks operating on the product

8

Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via Graph Products

graph; and (2) a positional encoding scheme capturing the
connectivity of the product graph computed in a time com-
plexity equivalent to computing positional encodings on
the original, small graph. Empirically, we demonstrate
that Subgraphormer outperforms Subgraph GNNs and
Graph Transformers over a wide range of datasets. We
also investigated the capabilities of the stochastic variant
of our approach, demonstrating impressive performance on
long-range datasets, where Graph Transformers excel, and
full-bag Subgraph GNNs cannot be applied.

Acknowledgements
HM is the Robert J. Shillman Fellow and is supported by
the Israel Science Foundation through a personal grant (ISF
264/23) and an equipment grant (ISF 532/23).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References
Sasmita Barik, Ravindra B Bapat, and Sukanta Pati. On the

laplacian spectra of product graphs. Applicable Analysis
and Discrete Mathematics, pages 39–58, 2015.

Franka Bause, Fabian Jogl, Patrick Indri, Tamara Drucks,
David Penz, Nils Kriege, Thomas Gärtner, Pascal Welke,
and Maximilian Thiessen. Maximally expressive gnns
for outerplanar graphs. In NeurIPS 2023 Workshop: New
Frontiers in Graph Learning, 2023.

Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasub-
ramaniam Srinivasan, Chen Cai, Gopinath Balamurugan,
Michael M Bronstein, and Haggai Maron. Equivariant
subgraph aggregation networks. International Confer-
ence on Learning Representations, 2022.

Beatrice Bevilacqua, Moshe Eliasof, Eli Meirom, Bruno
Ribeiro, and Haggai Maron. Efficient subgraph gnns
by learning effective selection policies. International
Conference on Learning Representations, 2023.

Lukas Biewald. Experiment tracking with weights and bi-
ases, 2020. URL https://www.wandb.com/. Soft-
ware available from wandb.com.

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang
Wang, Pietro Lio, Guido F Montufar, and Michael Bron-
stein. Weisfeiler and lehman go cellular: Cw networks.
Advances in Neural Information Processing Systems, 34:
2625–2640, 2021.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and
Michael M Bronstein. Improving graph neural network
expressivity via subgraph isomorphism counting. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 45(1):657–668, 2022.

Xavier Bresson and Thomas Laurent. Residual gated graph
convnets. arXiv preprint arXiv:1711.07553, 2017.

Shaked Brody, Uri Alon, and Eran Yahav. How atten-
tive are graph attention networks? arXiv preprint
arXiv:2105.14491, 2021.

Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt.
Structure-aware transformer for graph representation
learning. In International Conference on Machine Learn-
ing, pages 3469–3489. PMLR, 2022.

Guangyong Chen, Pengfei Chen, Chang-Yu Hsieh, Chee-
Kong Lee, Benben Liao, Renjie Liao, Weiwen Liu,
Jiezhong Qiu, Qiming Sun, Jie Tang, et al. Alchemy:
A quantum chemistry dataset for benchmarking ai mod-
els. arXiv preprint arXiv:1906.09427, 2019.

Krzysztof Choromanski, Han Lin, Haoxian Chen, Tianyi
Zhang, Arijit Sehanobish, Valerii Likhosherstov, Jack
Parker-Holder, Tamas Sarlos, Adrian Weller, and Thomas
Weingarten. From block-toeplitz matrices to differential
equations on graphs: towards a general theory for scalable
masked transformers. In International Conference on
Machine Learning, pages 3962–3983. PMLR, 2022.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro
Liò, and Petar Veličković. Principal neighbourhood ag-
gregation for graph nets. Advances in Neural Information
Processing Systems, 33:13260–13271, 2020.

Leonardo Cotta, Christopher Morris, and Bruno Ribeiro.
Reconstruction for powerful graph representations. In
Advances in Neural Information Processing Systems, vol-
ume 34, 2021.

George Cybenko. Approximation by superpositions of a
sigmoidal function. Mathematics of control, signals and
systems, 2(4):303–314, 1989.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, et al. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Mohammed Haroon Dupty and Wee Sun Lee. Graph repre-
sentation learning with individualization and refinement.
arXiv preprint arXiv:2203.09141, 2022.

9

https://www.wandb.com/

Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via Graph Products

Mohammed Haroon Dupty, Yanfei Dong, and Wee Sun Lee.
Pf-gnn: Differentiable particle filtering based approxima-
tion of universal graph representations. In International
Conference on Learning Representations, 2021.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent,
Yoshua Bengio, and Xavier Bresson. Graph neural net-
works with learnable structural and positional representa-
tions. International Conference on Learning Representa-
tions, 2021.

Vijay Prakash Dwivedi, Ladislav Rampášek, Michael
Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu, and Do-
minique Beaini. Long range graph benchmark. Advances
in Neural Information Processing Systems, 35:22326–
22340, 2022.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu,
Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Benchmarking graph neural networks. Journal of Ma-
chine Learning Research, 24(43):1–48, 2023.

Matthias Fey and Jan Eric Lenssen. Fast graph represen-
tation learning with pytorch geometric. arXiv preprint
arXiv:1903.02428, 2019.

Fabrizio Frasca, Beatrice Bevilacqua, Michael Bronstein,
and Haggai Maron. Understanding and extending sub-
graph gnns by rethinking their symmetries. Advances
in Neural Information Processing Systems, 35:31376–
31390, 2022.

Rafael Gómez-Bombarelli, Jennifer N Wei, David Duve-
naud, José Miguel Hernández-Lobato, Benjamı́n Sánchez-
Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre,
Timothy D Hirzel, Ryan P Adams, and Alán Aspuru-
Guzik. Automatic chemical design using a data-driven
continuous representation of molecules. ACS central
science, 4(2):268–276, 2018.

Frank Harary. Graph Theory (on Demand Printing Of
02787). CRC Press, 2018.

Kurt Hornik. Approximation capabilities of multilayer feed-
forward networks. Neural networks, 4(2):251–257, 1991.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong,
Hongyu Ren, Bowen Liu, Michele Catasta, and Jure
Leskovec. Open graph benchmark: Datasets for ma-
chine learning on graphs. Advances in neural information
processing systems, 33:22118–22133, 2020.

Yinan Huang, Xingang Peng, Jianzhu Ma, and Muhan
Zhang. Boosting the cycle counting power of graph neu-
ral networks with i2-gnns. In The Eleventh International
Conference on Learning Representations, 2022.

Fabian Jogl, Maximilian Thiessen, and Thomas Gärtner.
Weisfeiler and leman return with graph transformations.
In 18th International Workshop on Mining and Learning
with Graphs, 2022.

Fabian Jogl, Maximilian Thiessen, and Thomas Gärtner.
Expressivity-preserving gnn simulation. In Thirty-seventh
Conference on Neural Information Processing Systems,
2023.

Katikapalli Subramanyam Kalyan, Ajit Rajasekharan, and
Sivanesan Sangeetha. Ammus: A survey of transformer-
based pretrained models in natural language processing.
arXiv preprint arXiv:2108.05542, 2021.

Salman Khan, Muzammal Naseer, Munawar Hayat,
Syed Waqas Zamir, Fahad Shahbaz Khan, and Mubarak
Shah. Transformers in vision: A survey. ACM computing
surveys (CSUR), 54(10s):1–41, 2022.

Thomas N Kipf and Max Welling. Semi-supervised classifi-
cation with graph convolutional networks. International
Conference on Learning Representations, 2016.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Re-
former: The efficient transformer. arXiv preprint
arXiv:2001.04451, 2020.

Lecheng Kong, Jiarui Feng, Hao Liu, Dacheng Tao, Yixin
Chen, and Muhan Zhang. Mag-gnn: Reinforcement learn-
ing boosted graph neural network. In Thirty-seventh Con-
ference on Neural Information Processing Systems, 2023.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent
Létourneau, and Prudencio Tossou. Rethinking graph
transformers with spectral attention. Advances in Neural
Information Processing Systems, 34:21618–21629, 2021.

Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and
In Kwon Choi. Asam: Adaptive sharpness-aware mini-
mization for scale-invariant learning of deep neural net-
works. In International Conference on Machine Learning,
2021.

Cornelius Lanczos. An iteration method for the solution of
the eigenvalue problem of linear differential and integral
operators1. Journal of Research of the National Bureau
of Standards, 45(4), 1950.

Jongwon Lee, Venkataramanan Balakrishnan, Cheng-Kok
Koh, and Dan Jiao. From o (k 2 n) to o (n): A fast
complex-valued eigenvalue solver for large-scale on-chip
interconnect analysis. In 2009 IEEE MTT-S International
Microwave Symposium Digest, pages 181–184. IEEE,
2009.

10

Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via Graph Products

Richard B Lehoucq, Danny C Sorensen, and Chao Yang.
ARPACK users’ guide: solution of large-scale eigen-
value problems with implicitly restarted Arnoldi methods.
SIAM, 1998.

Han Li, Dan Zhao, and Jianyang Zeng. Kpgt: knowledge-
guided pre-training of graph transformer for molecular
property prediction. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data
Mining, pages 857–867, 2022a.

Yanghao Li, Chao-Yuan Wu, Haoqi Fan, Karttikeya Man-
galam, Bo Xiong, Jitendra Malik, and Christoph Feichten-
hofer. Mvitv2: Improved multiscale vision transformers
for classification and detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4804–4814, 2022b.

Derek Lim, Joshua Robinson, Lingxiao Zhao, Tess Smidt,
Suvrit Sra, Haggai Maron, and Stefanie Jegelka. Sign
and basis invariant networks for spectral graph represen-
tation learning. The Eleventh International Conference
on Learning Representations, 2022.

Shengjie Luo, Shanda Li, Shuxin Zheng, Tie-Yan Liu, Li-
wei Wang, and Di He. Your transformer may not be as
powerful as you expect. Advances in Neural Information
Processing Systems, 35:4301–4315, 2022.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron
Lipman. Invariant and equivariant graph networks. arXiv
preprint arXiv:1812.09902, 2018.

Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien
Mairal. Graphit: Encoding graph structure in transform-
ers. arXiv preprint arXiv:2106.05667, 2021.

Christopher Morris, Martin Ritzert, Matthias Fey, William L
Hamilton, Jan Eric Lenssen, Gaurav Rattan, and Martin
Grohe. Weisfeiler and leman go neural: Higher-order
graph neural networks. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 33, pages 4602–
4609, 2019.

Christopher Morris, Gaurav Rattan, and Petra Mutzel. Weis-
feiler and leman go sparse: Towards scalable higher-order
graph embeddings. Advances in Neural Information Pro-
cessing Systems, 33:21824–21840, 2020.

Christopher Morris, Yaron Lipman, Haggai Maron, Bas-
tian Rieck, Nils M Kriege, Martin Grohe, Matthias
Fey, and Karsten Borgwardt. Weisfeiler and leman go
machine learning: The story so far. arXiv preprint
arXiv:2112.09992, 2021.

Christopher Morris, Gaurav Rattan, Sandra Kiefer, and
Siamak Ravanbakhsh. Speqnets: Sparsity-aware
permutation-equivariant graph networks. In International

Conference on Machine Learning, pages 16017–16042.
PMLR, 2022.

Pál András Papp and Roger Wattenhofer. A theoretical
comparison of graph neural network extensions. In Inter-
national Conference on Machine Learning, pages 17323–
17345. PMLR, 2022.

Pál András Papp, Karolis Martinkus, Lukas Faber, and
Roger Wattenhofer. Dropgnn: Random dropouts increase
the expressiveness of graph neural networks. Advances
in Neural Information Processing Systems, 34:21997–
22009, 2021.

Wonpyo Park, Woonggi Chang, Donggeon Lee, Juntae
Kim, and Seung-won Hwang. Grpe: Relative posi-
tional encoding for graph transformer. arXiv preprint
arXiv:2201.12787, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:
An imperative style, high-performance deep learning li-
brary. Advances in neural information processing systems,
32, 2019.

Omri Puny, Derek Lim, Bobak Kiani, Haggai Maron, and
Yaron Lipman. Equivariant polynomials for graph neu-
ral networks. In International Conference on Machine
Learning, pages 28191–28222. PMLR, 2023.

Chendi Qian, Gaurav Rattan, Floris Geerts, Mathias Niepert,
and Christopher Morris. Ordered subgraph aggregation
networks. Advances in Neural Information Processing
Systems, 35:21030–21045, 2022.

Ladislav Rampášek, Michael Galkin, Vijay Prakash
Dwivedi, Anh Tuan Luu, Guy Wolf, and Dominique
Beaini. Recipe for a general, powerful, scalable graph
transformer. Advances in Neural Information Processing
Systems, 35:14501–14515, 2022.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne
Van Den Berg, Ivan Titov, and Max Welling. Modeling
relational data with graph convolutional networks. In The
Semantic Web: 15th International Conference, ESWC
2018, Heraklion, Crete, Greece, June 3–7, 2018, Proceed-
ings 15, pages 593–607. Springer, 2018.

Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam,
Danica J Sutherland, and Ali Kemal Sinop. Exphormer:
Scaling graph transformers with expander graphs. Inter-
national Conference on Machine Learning, 2023.

Teague Sterling and John J Irwin. Zinc 15–ligand discov-
ery for everyone. Journal of chemical information and
modeling, 55(11):2324–2337, 2015.

11

Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via Graph Products

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and
Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

Petar Veličković. Message passing all the way up. arXiv
preprint arXiv:2202.11097, 2022.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph
attention networks. International Conference on Learn-
ing Representations, 2017.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Evgeni
Burovski, Pearu Peterson, Warren Weckesser, Jonathan
Bright, Stéfan J. van der Walt, Matthew Brett, Joshua
Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew
R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J
Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake Van-
derPlas, Denis Laxalde, Josef Perktold, Robert Cimr-
man, Ian Henriksen, E. A. Quintero, Charles R. Har-
ris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pe-
dregosa, Paul van Mulbregt, and SciPy 1.0 Contributors.
SciPy 1.0: Fundamental Algorithms for Scientific Com-
puting in Python. Nature Methods, 17:261–272, 2020.
doi: 10.1038/s41592-019-0686-2.

Vladim G Vizing. The cartesian product of graphs. Vycisl.
Sistemy, 9(30-43):33, 1963.

Haorui Wang, Haoteng Yin, Muhan Zhang, and Pan Li.
Equivariant and stable positional encoding for more pow-
erful graph neural networks. International Conference on
Learning Representations, 2022.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka.
How powerful are graph neural networks? International
Conference on Learning Representations, 2018.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng,
Guolin Ke, Di He, Yanming Shen, and Tie-Yan Liu. Do
transformers really perform badly for graph representa-
tion? Advances in Neural Information Processing Sys-
tems, 34:28877–28888, 2021.

Chulhee Yun, Suvrit Sra, and Ali Jadbabaie. Small relu
networks are powerful memorizers: a tight analysis of
memorization capacity. Advances in Neural Information
Processing Systems, 32, 2019.

Bohang Zhang, Guhao Feng, Yiheng Du, Di He, and Liwei
Wang. A complete expressiveness hierarchy for subgraph
gnns via subgraph weisfeiler-lehman tests. International
Conference on Machine Learning, 2023a.

Bohang Zhang, Shengjie Luo, Liwei Wang, and Di He.
Rethinking the expressive power of gnns via graph bicon-
nectivity. International Conference on Learning Repre-
sentations, 2023b.

Muhan Zhang and Pan Li. Nested graph neural networks.
In Advances in Neural Information Processing Systems,
volume 34, 2021.

Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah.
From stars to subgraphs: Uplifting any GNN with lo-
cal structure awareness. In International Conference on
Learning Representations, 2022.

12

Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via Graph Products

A. Subgraph GNNs as Cartesian Product Graphs
In this section, we delve into the relationship between the Cartesian product graph and Subgraphormer (Appendix A.1).
Additionally, we explore the broader connection between Cartesian product graphs and Subgraph GNNs in general (detailed
in Appendix A.2).

A.1. The Cartesian Product Graph and its Application for Subgraphormer

Definition A.1 (Cartesian Product Graph). Given two graphs G1 and G2, their Cartesian product G1□G2 is defined as:

• The vertex set V (G1□G2) = V (G1)× V (G2).

• Vertices (u1, u2) and (v1, v2) in G1□G2 are adjacent if:

– u1 = v1 and u2 is adjacent to v2 in G2, or
– u2 = v2 and u1 is adjacent to v1 in G1.

Thus, we observe the following,

Corollary A.1. Let G be a given graph, defined by an adjacency A, and assume A doesn’t include self loops. The adjacency
matrix of the Cartesian product of G with itself; namely, G□G, is given by

AG□G ≜ A⊗ I + I ⊗A, (12)

where by ⊗ we denote the Kronecker product.

Therefore, we claim,

Proposition 3.2 (Internal and External Connectivities give rise to the Cartesian Product Graph). The edges induced by
the internal and external subgraph connectivities, represented by AG and AGS (Equations (2) and (3)) represent the
connectivity ofAG□G. This implies the relationship:

AG□G = AGS +AG. (6)

In particular, we have AGS = A⊗ I,AG = I ⊗A.

The proof is available in Appendix E.

Thus, given Proposition 3.2, our objective is to diagonalize the Laplacian of G□G, which is defined by,

LG□G = diag
(
AG□G1⃗n2

)
−AG□G (13)

= diag
(
(A⊗ I + I ⊗A)⃗1n2

)
−A⊗ I + I ⊗A,

where by 1⃗n2 we refer to a vector of n2 ones.

The eigendecomposition of LG□G, is given in the following proposition,

Proposition 4.1 (Product Graph eigendecomposition). Consider a graph G = (A,X).6 The eigenvectors and eigenvalues
of the Laplacian matrix of G□G, namely, LG□G, are {(vi ⊗ vj , λi + λj)}n

2

i,j=1, where {(vi, λi)}ni=1 are the eigenvectors
and eigenvalues of the Laplacian matrix of G.

The proof is available in Appendix E.

We conclude with the following result, stating the complexity of our product graph PE.

Proposition A.1 (Product Graph PE Complexity). Let G = (A,X) be an undirected graph with n vertices, and consider its
Cartesian product graph G□G.

1. The time complexity for diagonalizing the Laplacian matrix of G□G is O(n4).

6We assume A has no self loops.

13

Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via Graph Products

2. For calculating k eigenvectors, where k ≤ n, the time complexity is O(k · n2). This is equivalent to the complexity of
computing k eigenvectors for the original graph G.

The proof is available in Appendix E.

A.2. Establishing the General Relationship Between Cartesian Product Graphs and Subgraph GNNs

In this section we develop the connection between Subgraph GNNs and the Graph Cartesian Product (GCP); the results
are summarized in Table 5. We focus specifically on the node-based (Node-Marking) generation policy, over an original
graph G = (A,X), and specify the formulation of the following four main connectivities: Internal Subgraph connectivity,
External Subgraph connectivity, Global Internal Subgraph connectivity, Global External Subgraph connectivity.

Before delving into the derivation details, we define two graphs, Gs and Gc, corresponding to the “set graph” and the “clique
graph”, respectively. The “set graph” corresponds to a graph with no edges, thus:

AGs
= 0⃗⃗0T , (14)

and the “clique graph” corresponds to a graph where every pair of nodes is connected by an edge, hence:

AGc = 1⃗⃗1T − I. (15)

Recalling the definition of the Cartesian product graph (Definition A.1), we introduce a relevant corollary:

Corollary A.2 (Adjacency of Cartesian Product Graph). Consider two distinct graphs, G1 = (A1, X1) and G2 = (A2, X2),
with n and m vertices, respectively. The adjacency matrix of their Cartesian product, denoted as G1□G2, is given by:

AG1□G2
= AG1

⊗ Im + In ⊗AG2
, (16)

where ⊗ denotes the Kronecker product, and In and Im are identity matrices in Rn×n and Rm×m, respectively.

In this subsection, as our focus is on graphs each containing n nodes, we will omit the subscripts n/m from the identity
matrix for simplicity.

Internal Subgraph Connectivity. The adjacency matrix corresponding to the internal subgraph connectivity, AG, arises
from the Cartesian product of the graphs Gs and G, that is,

AG ≜ AGs□G = AGs
⊗ I + I ⊗A. (17)

By substituting Equation (14), we obtain:

AGs□G = I ⊗A. (18)

This results is in line with Proposition 3.2.

External Subgraph Connectivity. Similarly, the adjacency matrix for external subgraph connectivity, AGS , results from
the Cartesian product of the graphs G and Gs, that is,

AGS ≜ AG□Gs
= A⊗ I + I ⊗AGs

. (19)

After substituting Equation (14), we find:

AG□Gs
= A⊗ I. (20)

We note that this is also in line with Proposition 3.2.

As derived in Section 3.2 in the main paper, the connectivity that combines both Internal and External updates can be given
by the Cartesian product of G with itself, as given in Equation (5).

Global Internal Subgraph Connectivity. Following the literature (Zhang et al., 2023a; Frasca et al., 2022), assuming no
self loops, the adjacency matrix corresponding to the global internal subgraph connectivity is defined as follows:

AGlobal
G

(
(s, v), (s′, v′)

)
= δss′ , (21)

14

Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via Graph Products

where δ denotes the Kronecker delta.

This matrix results from the Cartesian product of Gs and Gc:

AGlobal
G ≜ AGs□Gc

= AGs
⊗ I + I ⊗AGc

. (22)

Substituting Equations (14) and (15), we obtain:

AGs□Gc
= 0⃗⃗0T ⊗ I + I ⊗ (⃗1⃗1T − I) = I ⊗ (⃗1⃗1T − I). (23)

Global External Subgraph Connectivity. Again, assuming no self loops, the adjacency matrix for global external subgraph
connectivity is defined by:

AGlobal
GS

(
(s, v), (s′, v′)

)
= δvv′ . (24)

This matrix can be obtained from the Cartesian product of Gc and Gs:

AGlobal
GS ≜ AGc□Gs

= AGc ⊗ I + I ⊗AGs . (25)

Upon substituting Equations (14) and (15), we get:

AGs□Gc
= (⃗1⃗1T − I)⊗ I + I ⊗ 0⃗⃗0T = (⃗1⃗1T − I)⊗ I. (26)

Analogously to the adjacency that unifies the internal and external aggregations, we also show that the following Cartesian
Graph product results in a unifying adjacency for the global internal connectivity and the global external connectivity. This
Cartesian product graph is given by Gc□Gc, and therefore, its corresponding adjacency is,

AGc□Gc
= (⃗1⃗1T − I)⊗ I + I ⊗ (⃗1⃗1T − I). (27)

Table 5: Table summarizing the connection between Cartesian Product Graphs and Subgraph GNNs.

Connectivity type GCP Adjacency Visualization GCP – unified Adjacency – unified Visualization – unified

Internal Subgraph Connectivity Gs□G AGs□G ≜ AG = I ⊗ A s

v

s

v

G□G AG□G = A ⊗ I + I ⊗ A s

v

s

v

s

v
External Subgraph Connectivity G□Gs AG□Gs

≜ AGS = A ⊗ Is

v

s

v

Global Internal Subgraph Connectivity Gs□Gc AGs□Gc
= I ⊗ (⃗11⃗T − I)

s

v

s

v

s

v

s

v

Gc□Gc AGc□Gc
= (⃗11⃗T − I) ⊗ I + I ⊗ (⃗11⃗T − I)

s

v

s

v

s

v

Global External Subgraph Connectivity Gc□Gs AGc□Gs
= (⃗11⃗T − I) ⊗ I

s

v

s

v

s

v

s

v

15

Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via Graph Products

B. Extending Subgraphormer to any k-tuple
In this section, we extend the formulation of Subgraphormer, which was given for 2-tuples of nodes, to any k-tuple.
We start in Appendix B.1, by formulating the product graph PE for any k-tuple. This sets the required exposition for
Appendix B.2, where we formulate a SAB update to by applied to k-tuples.

B.1. k-tuple Product Graph PE

In this section, we extend the concept of product graph PE to encompass any k-tuple for arbitrary values of k. This general-
ization stems from an essential observation that arises from the definition of the Cartesian Product Graph (Definition A.1).

Corollary A.2 (Adjacency of Cartesian Product Graph). Consider two distinct graphs, G1 = (A1, X1) and G2 = (A2, X2),
with n and m vertices, respectively. The adjacency matrix of their Cartesian product, denoted as G1□G2, is given by:

AG1□G2
= AG1 ⊗ Im + In ⊗AG2 , (16)

where ⊗ denotes the Kronecker product, and In and Im are identity matrices in Rn×n and Rm×m, respectively.

In this paper, our primary focus lies on a specific scenario where the Cartesian Product Graph is applied iteratively to the
same graph. For this purpose, we introduce the Cartesian product operator. This operator, when applied to an adjacency
matrix A of a graph G, yields the adjacency matrix corresponding to G□k

- the graph resulting from k-fold recursive
Cartesian product of G with itself.

Definition B.1 (Cartesian Product Operator). The Cartesian product operator is defined as:

Ck : Rnk×nk

→ Rnk+1×nk+1

, (28)

applied to an adjacency matrix A ∈ Rn×n, recursively defined as:

Ck(A) = Ck−1(A)⊗ In + Ink−1 ⊗A, (29)

with the base case being:
C1(A) = A. (30)

It is apparent that for a graph G with adjacency matrix A, applying the operator C2 to A results in C2(A) = A⊗ In+ In⊗A,
which is the adjacency matrix corresponding to the Cartesian Product of the graph with itself – Equation (11).

We propose the following proposition regarding the applicability of the Cartesian operator C across any power k:

Proposition B.1 (Adjacency matrix of G□k

). For a graph G = (A,X) with adjacency matrix A, the adjacency matrix of
G□k

—the graph formed by k-fold Cartesian product of G with itself—is given by:

A
G□k = Ck(A). (31)

The proof is given in Appendix E.

Utilizing Proposition B.1, we establish that Ck effectively constructs the adjacency matrix corresponding to the graph G□k

.

Notably, this operator functions recursively, therefore, to extend positional encoding to any k-tuple, our goal is to formulate
a closed-form expression for the adjacency matrix of G□k

; we first introduce the necessary definition.

Definition B.2 (Ak
K). Given an adjacency matrix A ∈ Rn×n and an index k ∈ [K], define Ak

K to be the tensor resulting
from the Cartesian product of K matrices, where each matrix is the identity matrix In ∈ Rn×n, except for the k-th factor
which is A. That is,

Ak
K = In ⊗ In ⊗ · · · ⊗A⊗ · · · ⊗ In, (32)

where A occupies the k-th position in the Cartesian product.

Thus, we propose the following,

16

Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via Graph Products

Proposition B.2 (Adjacency matrix of G□k

– closed form). Given a graph G = (A,X), with an adjacency matrix A, it
holds that,

CK(A) =

K−1∑
k=0

Ak
K. (33)

The proof is given in Appendix E.

Having Proposition B.1 and Proposition B.2, we straight forwardly infer the following Corollary,

Corollary B.1. For a graph G = (A,X), the adjacency matrix of G□k

—the graph formed by k-fold Cartesian product of
G with itself—is given by:

AG□K =

K−1∑
k=0

Ak
K. (34)

In what follows, we prove that the matrix A
G□k is a valid, binary adjacency matrix.

Proposition B.3 (A
G□k – Valid binary adjacency matrix). Given a graph G = (A,X) with an adjacency matrix A, with no

self loops, the matrix given by,

AG□K =

K−1∑
k=0

Ak
K, (35)

is a binary adjacency matrix.

The proof is given in Appendix E.

Having developed this closed form expression for the (binary) adjacency matrix of G□k

, we have the following Proposition,
which generalizes Proposition 4.1 to any k-tuple,

Proposition B.4 (k-tuple – Product graph eigendecomposition). Consider a graph G = (A,X) without self-loops. Define
G□k

as the Cartesian product of G repeated k times, with its adjacency matrix denoted by A
G□k . The eigenvectors and

eigenvalues of the Laplacian matrix for G□k

can be characterized as follows: for each set of indices {i1, i2, . . . , ik}, where
ij ∈ {1, 2, . . . , n} for each j, there exists an eigenvector-eigenvalue pair given by (vi1⊗vi2⊗. . .⊗vik , λi1+λi2+. . .+λik).
Here, {(vi, λi)}ni=1 represent the eigenvectors and eigenvalues of the Laplacian matrix of the original graph G.

The proof is given in Appendix E.

The above Proposition enables the computation of positional encodings for any k-tuple, offering significantly more efficiency
compared to the conventional method of directly diagonalizing a matrix in Rnk×nk

.

Theorem B.1 (k-tuple PE efficiency). Consider a graph G = (A,X) without self-loops. Define G□k

as the Cartesian
product of G repeated k ≥ 2 times.

The time complexity of computing the eigendecomposition of the Laplacian matrix of G□k

is O(n2k).

The proof is given in Appendix E.

We note that diagonalizing directly the Laplacian matrix of G□k

would instead take O(n3k).

B.2. k-tuple SAB

Building upon the derivation of the adjacency matrix obtained from the Cartesian product of graph G applied recursively k
times, as outlined in Equation (34), we can extend the node update mechanisms, initially conceptualized for 2-tuples in
Section 4.1, to support k-tuples.

Generalization of Internal/External updates. We recall the 2-tuple case, where the two matrices corresponding the Internal
and External aggregations of Subgraphormer are given in Equation (5). In our new formalism, using the Cartesian
Product Operator, we can write,

AG□G = A0
2 +A1

2, (36)

where A0
2 = AGS and A1

2 = AG. Thus the Internal and External updates are given as {A0
2,A1

2}.

17

Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via Graph Products

Table 6: Overview of the graph learning datasets.

Dataset # Graphs Avg. # nodes Avg. # edges Directed Prediction task Metric

ZINC-12K (Sterling and Irwin, 2015) 12,000 23.2 24.9 No Regression Mean Abs. Error
ZINC-FULL (Sterling and Irwin, 2015) 249,456 23.2 49.8 No Regression Mean Abs. Error
ALCHEMY-12K (Chen et al., 2019) 12,000 10.12 20.9 No 12-task Regression Mean Abs. Error
OGBG-MOLHIV (Hu et al., 2020) 41,127 25.5 27.5 No Binary Classification AUROC
OGBG-MOLBACE (Hu et al., 2020) 1513 34.1 36.9 No Binary Classification AUROC
OGBG-MOLESOL (Hu et al., 2020) 1,128 13.3 13.7 No Regression Root Mean Squ. Error

PEPTIDES-FUNC (Dwivedi et al., 2022) 15,535 150.9 307.3 No 10-task Classification Avg. Precision
PEPTIDES-STRUCT (Dwivedi et al., 2022) 15,535 150.9 307.3 No 11-task Regression Mean Abs. Error

Building on Equation (34), we can extend to a K-tuple scenario where the “Internal/External” updates correspond to a series
of adjacencies, denoted by {Ai

K}
K−1
i=0 .

Generalization of Point-wise update. As defined in Section 3, the point-wise update should allow a node v in subgraph s
to have access to the root representation, where the roots in the case of a 2-tuple are defined to be, {(v, v); v ∈ V }.

While the root nodes in the case of k-tuples can be defined as {(
k elements︷ ︸︸ ︷
v, . . . , v); v ∈ V }, the correspondence between nodes and

subgraphs is not clear.

Consequently, for a k-tuple scenario, we define the point-wise update by mapping the “subgraph” to a subset of k − 1
nodes within the tuple, and designating the “node” as the remaining element in the tuple. Take, for instance, the tuple
(s1, s2, . . . , si, v, si+1, . . . , sk): here, the “subgraph” comprises the indices (s1, s2, . . . , si, si+1, . . . , sk), while the “node”
is represented by v.

Accordingly, we establish k such point-wise updates. To be precise, for each i ∈ {1, 2, . . . , k}, we define the update as
follows:

Ai
point

(
(v1, . . . , vk), (v

′
1, . . . , v

′
k)
)
=

{
1 if v′1 = . . . = v′k and v′1 = vj for all j ̸= i;

0 otherwise.
(37)

This equation defines the function Ai
point, which evaluates the adjacency between two k-tuples of vertices, (v1, . . . , vk) and

(v′1, . . . , v
′
k). The function returns 1, indicating a specific type of adjacency, if the second tuple is a root node – all vertices

in the second tuple are identical (v′1 = v′2 = . . . = v′k), and simultaneously, all vertices in the first tuple match this root node
for all indices except i, denoted as v′1 = vj for all j ̸= i. In other instances, where these conditions are not satisfied, the
function returns 0, signifying the absence of such adjacency.

C. Extended Experimental Section
C.1. Dataset Description

In this section we overview the eight different datasets considered; this is summarized in Table 6.

ZINC-12K and ZINC-FULL Datasets (Sterling and Irwin, 2015; Gómez-Bombarelli et al., 2018; Dwivedi et al.,
2023). The ZINC-12K dataset comprises 12,000 molecular graphs, extracted from the ZINC database, which is a collection
of commercially available chemical compounds. These molecular graphs vary in size, ranging from 9 to 37 nodes each.
In these graphs, nodes correspond to heavy atoms, encompassing 28 distinct atom types. Edges in the graphs represent
chemical bonds, with three possible bond types. The primary objective when using this dataset is to perform regression
analysis on the constrained solubility (logP) of the molecules. The dataset is pre-partitioned into training, validation, and test
sets, containing 10,000, 1,000, and 1,000 molecular graphs, respectively. In its full form, namely, ZINC-FULL, it contains
approximately 250,000 molecular graphs. These graphs vary in complexity, with each graph containing again between 9 to
37 nodes, and 16 to 84 edges. The nodes in these graphs also represent heavy atoms, and the dataset includes 28 different
types of atoms. The edges, on the other hand, represent bonds between these atoms, and there are 4 distinct types of bonds
in the dataset.

18

Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via Graph Products

Table 7: Test results over the ALCHEMY-12K dataset. Subgraph-based baselines are highlighted in light blue. The top
three results are reported as First, Second, and Third.

Model ALCHEMY-12K
(MAE ↓)

GIN (Xu et al., 2018) 0.180±0.006

SignNet (Lim et al., 2022) 0.113±0.002

δ-2-GNN (Morris et al., 2020) 0.118±0.001

δ-2-LGNN (Morris et al., 2020) 0.122±0.003

SpeqNet (Morris et al., 2022) 0.115±0.001

GNN-IR (Dupty and Lee, 2022) 0.119±0.002

PF-GNN (Dupty et al., 2021) 0.111±0.010

PPGN++(6) (Puny et al., 2023) 0.109±0.001

Recon. GNN (Cotta et al., 2021) 0.125±0.001

DS-GNN (NM) (Bevilacqua et al., 2023) 0.116±0.001

GNN-SSWL+ (Zhang et al., 2023a) 0.116±0.002

Subgraphormer 0.114±0.001

Subgraphormer + PE 0.113±0.002

OGBG-MOLHIV, OGBG-MOLBACE, OGBG-MOLESOL Datasets (Hu et al., 2020). Those datasets are molecular property
prediction datasets, adopted by the Open Graph Benchmark (OGB) from MoleculeNet. These datasets employ a unified
featurization for nodes (atoms) and edges (bonds), encapsulating various chemophysical properties.

ALCHEMY-12K Dataset (Chen et al., 2019). The ALCHEMY-12K dataset includes quantum mechanical properties of
12,000 organic molecules containing up to 14 heavy atoms like Carbon (C), Nitrogen (N), Oxygen (O), Fluorine (F), Sulfur
(S), and Chlorine (Cl). These properties were computed using the Python-based Simulations of Chemistry Framework
(PySCF).

PEPTIDES-FUNC and PEPTIDES-STRUCT Datasets (Dwivedi et al., 2022). The PEPTIDES-FUNC and PEPTIDES-STRUCT
datasets consist of atomic graphs representing peptides. In PEPTIDES-FUNC, the task involves multi-label graph classification
into ten non-exclusive peptide functional classes. Conversely, PEPTIDES-STRUCT focuses on graph regression to predict
eleven three-dimensional structural properties of the peptides.

C.2. Experimental Details

Our experiments were conducted using the PyTorch (Paszke et al., 2019) and PyTorch Geometric (Fey and Lenssen, 2019)
frameworks, using a single NVIDIA L40 GPU, and for every considered experiment, we show the mean ± std. of 3 runs
with different random seeds. Hyperparameter tuning was performed utilizing the Weight and Biases framework (Biewald,
2020) – see Appendix C.5. All our MLPs feature a single hidden layer equipped with a ReLU non-linearity function. For the
encoding of atom numbers and bonds, we utilized learnable embeddings indexed by their respective numbers. An exception
was made for the ALCHEMY-12K dataset, where instead we employed a linear layer, as done in Morris et al. (2022). For all
our datasets, we used a fixed value of H = 4 attention heads.

In the case of the OGBG-MOLHIV, OGBG-MOLESOL, OGBG-MOLBACE, ALCHEMY-12K datasets, we follow Frasca et al.
(2022), therefore adding a residual connection between different layers. Additionally, for those datasets, we used linear
layers instead of MLPs inside the GIN layers. Moreover, for these four datasets, and for the PEPTIDES datasets, the following
pooling mechanism was employed, instead of the one mentioned in Equation (9) (which was used for ZINC-12K and
ZINC-FULL),

ρ(X) = MLP

(
n∑

s=1

(
1

n

n∑
v=1

X (s, v)

))
. (38)

For the PEPTIDES datasets, we also used a residual connection between layers.

C.3. Additional Results

ALCHEMY-12K. The results regarding the ALCHEMY-12K dataset (Chen et al., 2019) is summarized in Table 7, showcasing
Subgraphormer outperforming Subgraph GNNs methods.

19

Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via Graph Products

Table 8: Comparison of the stochastic variant of Subgraphormer and Subgraphormer PE to DSS-GNN, over the
ZINC-12K dataset. Best result for each sampling ratio is in Bold.

Model ZINC-12K
(MAE ↓)

DSS-GNN (EGO+) (Bevilacqua et al., 2022)

100% 0.102±0.003

50% 0.155±0.007

20% 0.166±0.005

5% 0.179±0.001

Subgraphormer

100% 0.067±0.007

50% 0.084±0.002

20% 0.121±0.007

5% 0.200±0.017

Subgraphormer + PE

100% 0.063±0.0003

50% 0.084±0.002

20% 0.120±0.002

5% 0.175±0.006

Table 9: Comparison of the stochastic variant of Subgraphormer and Subgraphormer PE to GNN-SSWL+, over
the OGBG-MOLBACE dataset. Best result for each sampling ratio is in Bold.

Model OGBG-MOLBACE
(ROC-AUC ↑)

GNN-SSWL+ (Zhang et al., 2023a)

100% 82.70±1.80

50% 79.99±0.58

20% 78.04±5.98

5% 68.52±5.73

Subgraphormer

100% 81.62±3.55

50% 79.49±2.38

20% 75.27±5.63

5% 63.05±8.70

Subgraphormer + PE

100% 84.35±0.65

50% 83.82±2.62

20% 78.77±4.10

5% 67.73±5.50

Stochastic Subgraph Sampling. The comparison of our stochastic sampling approach against the proposed method
by Bevilacqua et al. (2022) over the ZINC-12K dataset is given in Table 8.

In Tables 9 and 10 we compare our stochastic sampling approach against a stochastic version of GNN-SSWL+. The table
demonstrates that Subgraphormer + PE consistently surpasses the performance of GNN-SSWL+ across the datasets
examined (7 out of 8 combinations of sampling ratios and datasets).

C.3.1. PRODUCT GRAPH PE VS CONCATENATION PE

For completeness, we expand on the other valid choice of subgraph positional encodings, also introduced in Section 4.2 –
concatenation PE, which is a more general subgraph positional encoding scheme. Specifically, given the Laplacian matrix
of G, L, and its eigendecomposition, L = UTΛU , we define the concatenation PE for node (s, v) to be the output of an
MLP acting on the concatenation of p:k

s ≜ [Us1, . . . , Usk] and p:k
v ≜ [Uv1, . . . , Uvk].

Proposition C.1 (Concatenation PE can approximate product graph PE). The concatenation PE can approximate (up to an
ordering) the product graph PE uniformly.

The proof is given in Appendix E.

Nevertheless, in this paper, we opt for the product graph PE, as it demonstrates better performance in general. As an
example, we provide a comparison between the product graph PE and the Concatenation PE over the ZINC-12K dataset in
Table 11.

Notably, Subgraphormer + product graph PE exhibits superior performance. Interestingly, despite the theo-
retical capability of concatenation PE to implement product graph PE (as discussed in Proposition C.1), our
empirical findings reveal that concatenation PE actually reduces the effectiveness of Subgraphormer.

20

Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via Graph Products

Table 10: Comparison of the stochastic variant of Subgraphormer and Subgraphormer PE to GNN-SSWL+, over
the OGBG-MOLESOL dataset. Best result for each sampling ratio is in Bold.

Model OGBG-MOLESOL
(RMSE ↓)

GNN-SSWL+ (Zhang et al., 2023a)

100% 0.837±0.019

50% 0.886±0.026

20% 1.180±0.036

5% 1.299±0.044

Subgraphormer

100% 0.832±0.043

50% 0.829±0.013

20% 1.093±0.009

5% 1.266±0.019

Subgraphormer + PE

100% 0.826±0.010

50% 0.812±0.001

20% 1.041±0.030

5% 1.270±0.007

Table 11: A Comparison between different PE variants; including Subgraphormer alone. Best results are in Bold.

Model ZINC-12K
(MAE ↓)

Subgraphormer 0.067±0.007

Subgraphormer + concatenation PE 0.071±0.003

Subgraphormer + product graph PE 0.063±0.0003

C.4. Runtime Comparison

We estimated the training time and inference time of a single epoch (measured in seconds) for our architecture, as well as
for three representative baselines: GIN (Xu et al., 2018) (an MPNN), GNN-SSWL+ (Zhang et al., 2023a) (a Subgraph
GNN), and GPS (Rampášek et al., 2022) (A Graph Transformer). For a fair comparison, we used an NVIDIA A100 GPU
for all methods; the run-time of GPS was taken from their paper (Rampášek et al., 2022). The experiment was performed on
the ZINC-12K dataset (using a batch size of 128 for all baselines, except GPS, which used a batch size of 32), and over the
OGBG-MOLHIV dataset (using a batch size of 32 for all baselines). results are summarized in the Tables 12 and 13.

As shown in the tables, and as expected, GIN (the MPNN baseline) has the fastest run-time, while exhibiting the lowest
performance. Our method and GNN-SSWL+ both outperform GPS in terms of run-time across both datasets. Over the
ZINC-12K dataset, our method’s run-time is roughly the same when compared to GNN-SSWL+ (our architecture offers a
very modest speed advantage). On the OGBG-MOLHIV dataset, GNN-SSWL+ runs slightly faster. Finally, we note that
Subgraphormer uses fewer parameters than all baselines, on both datasets.

C.5. HyperParameters

In this section, we detail the hyperparameter search conducted for our experiments. We use the same hyperparameter
grid for both Subgraphormer and Subgraphormer + PE. The hyperparameter search configurations for the full
bag and stochastic bag settings are presented in Tables 14 and 16, respectively. Additionaly, we report the final selected
hyperparameters for Subgraphormer + PE in both settings in Tables 15 and 17. Notably, in the stochastic bag setting
with sampling ratios of 20% and 5% over the ZINC-12K dataset, our model failed to converge, leading us to extend the
training to 800 epochs.

Optimizers and Schedulers. For the ZINC-12K and ZINC-FULL datasets, we employ the Adam optimizer paired with a
ReduceLROnPlateau scheduler (factor set to 0.5, patience at 20, and a minimum learning rate of 0). A similar setup was used
for the ALCHEMY-12K dataset, except the minimum learning rate which was set to 1×10−7. For the OGBG-MOLHIV dataset,
we utilized the ASAM optimizer (Kwon et al., 2021) without a scheduler. For both OGBG-MOLESOL and OGBG-MOLBACE,
we employed a constant learning rate without any scheduler. Lastly, for the PEPTIDES-FUNC and PEPTIDES-STRUCT
datasets, the AdamW optimizer was chosen in conjunction with a cosine annealing scheduler, incorporating 10 warmup
epochs.

21

Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via Graph Products

Table 12: Comparison of training and inference times (and parameter counts) on the ZINC-12K dataset using an NVIDIA
A100 GPU. The table presents the time taken (in seconds) to train for one epoch and to perform inference on the test set.

Model Param. Train time (s) Test time (s) MAE ↓
GIN (Xu et al., 2018) 500k 1.41± 0.22 0.36± 0.02 0.163± 0.004
GPS (Rampášek et al., 2022) 424k 21± N/A N/A 0.070± 0.004
GNN-SSWL+ (Zhang et al., 2023a) 387k 9.65± 0.19 1.04± 0.03 0.070± 0.005

Subgraphormer + PE 293k 9.60± 0.10 0.95± 0.03 0.063± 0.001

Table 13: Comparison of training and inference times (and parameter counts) on the OGBG-MOLHIV dataset using an
NVIDIA A100 GPU. The table presents the time taken (in seconds) to train for one epoch and to perform inference on the
test set.

Model Param. Train time (s) Test time (s) ROC-AUC ↓
GIN (Xu et al., 2018) 1800k 12.65± 0.21 1.05± 0.08 75.58± 1.40
GPS (Rampášek et al., 2022) 558k 96± N/A N/A 78.80± 1.01
GNN-SSWL+ (Zhang et al., 2023a) 46k 51.02± 0.25 3.073± 0.03 79.58± 0.35

Subgraphormer + PE 30k 64.62± 0.16 3.200± 0.1 80.38± 1.92

D. Complexity
This section provides an analysis of the computational complexity associated with each aggregation method we presented, as
illustrated in Section 3.1. Consider a graph G = (A,X); with notes and edges denoted as V , E, respectively. Our product
graph always encompasses |V |2 nodes, and the number of edges is different for each considered aggregation as follows,

1. Internal: For AG, the number of edges is computed by
∑

s∈V

∑
v∈V

(
1 + d(v)

)
, where d(v) denotes the degree of

vertex v (in the original graph G). This simplifies to |V | · (|V |+ |E|) = |V |2 + |V | · |E|.

2. External: Similarly, for AGS , the number of edges is given by
∑

v∈V

∑
s∈V

(
1 + d(s)

)
, which also simplifies to

|V | · (|V |+ |E|) = |V |2 + |V | · |E|.

3. Point: For APoint, the number of edges is |V |2.

The complexities are summarized in Table 18.

Subgraphormer Complexity. We utilized the GAT convolution for our attention-based aggregations, as introduced
by Veličković et al. (2017). Given a graph G′ = (A′, X ′) , with nodes and edges denoted as V ′, E′, respectively, the time
complexity for a single GAT attention head7 is O(|V ′| + |E′|). Thus, the overall complexity depends on the number of
nodes |V ′| and the number of edges |E′| in the graph. Specifically, the product graph we process always has |V |2 nodes,
while the number of edges are given in Table 18. Thus, SAB exhibits the complexity of O(|V |2 + |V | · |E|).

As elaborated in Section 4.2, the computational complexity associated with calculating the product graph PE, which involves
k eigenvectors, is expressed as O(k · |V |2).

Therefore, the total complexity of Subgraphormer is O(k · |V |2 + |V | · |E|).

Run-time in Seconds. The run-time performance was evaluated on the ZINC-12K dataset, where the average run-time,
calculated over three different seeds, was 2 hours, 5 minutes, and 24 seconds, with a standard deviation of ±29 seconds. It is
important to highlight that the product graph PE computation can be executed as a preprocessing step. Notably, this process
required less than 10 minutes for the ZINC-12K dataset.

E. Proofs
Proposition 3.1 (GNN-SSWL+ as an MPNN on the product graph). Consider a graph G = (A,X). Applying a stacking
of RGCN layers (Schlichtkrull et al., 2018), interleaved with ReLU activations, on the product graph, as defined via the
adjacencies in Equations (2) to (4), can implement the GNN-SSWL+ update in Equation (1).

7The feature dimension is considered a constant.

22

Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via Graph Products

Table 14: Hyperparameters search for Subgraphormer and Subgraphormer + PE in full bag settings.

Dataset Num. layers Learning rate Embedding size Epochs Batch size Dropout Num. Eigenvectors

ZINC-12K {6} {0.001, 0.0005, 0.0003, 0.0001} {96} {400} {128} {0} {0, 1, 2, 8, 16}
ZINC-FULL {6} {0.001, 0.0005, 0.0003, 0.0001} {96} {400} {128} {0} {0, 1, 2, 8, 16}
MOLHIV {2, 3} {0.1, 0.01, 0.001} {60} {100} {32} {0.3, 0.5} {0, 1, 2, 8, 16}
MOLSOL {2, 3} {0.1, 0.01, 0.001} {60} {100} {32} {0.3, 0.5} {0, 1, 2, 8, 16}
MOLBACE {2, 3} {0.1, 0.01, 0.001} {60} {100} {32} {0.3} {0, 1, 2, 8, 16}
ALCHEMY-12K {5} {0.01, 0.001} {96} {400} {128} {0} {0, 1, 2, 8, 16}

Table 15: Best hyperparameters for Subgraphormer + PE in full bag settings.

Dataset Num. layers Learning rate Embedding size Epochs Batch size Dropout Num. Eigenvectors

ZINC-12K 6 0.0005 96 400 128 0 8
ZINC-FULL 6 0.0005 96 400 128 0 16
MOLHIV 2 0.1 60 100 32 0.3 8
MOLSOL 3 0.001 60 100 32 0.5 2
MOLBACE 3 0.001 60 100 32 0.3 16
ALCHEMY-12K 5 0.01 96 400 128 0 16

Proof. We consider an unnormalized variant of RGCN, defined as:

X t+1 = RGCNt
(
X t, {Ai}Mi=1

)
, (39)

RGCNt
(
X t, {Ai}Mi=1

)
= X tWt

0 +

M∑
i=1

AiX tWt
i . (40)

We assume the input features at the first layer, X t, are provided as 1-hot vectors, and that the parameterized function f t,
which is applied in Equation (1) also outputs 1-hot vectors.

We aim to show that any given layer t of a GNN-SSWL+, as per Equation (1), can be implemented by this RGCN model.
The proof involves the following steps:

1. Encode uniquely each of the inputs (individually) to the parameterized function f t in Equation (1),

X (s, v)t,X (v, v)t, {X (s, v′)t}v′∼Gv, {X (s′, v)t}s′∼Gs. (41)

2. Encode uniquely the input of f t as a whole,(
X (s, v)t,X (v, v)t, {X (s, v′)t}v′∼Gv, {X (s′, v)t}s′∼Gs

)
. (42)

3. Implement the parameterized function f t.

4. Ensure the output features are 1-hot features – to maintain generality across layers.

Step 1: The unique encoding of the inputs can be achieved as follows:

X (s, v)t → X (s, v)t, (43)

X (v, v)t → (ApointX t) (s, v), (44)

{X (s, v′)t}v′∼Gv → (AGX t) (s, v), (45)

{X (s′, v)t}s′∼Gs → (AGSX t) (s, v), (46)

For Equations (45) and (46), the right-hand sides effectively count the number of each element in the set, since the input
features are 1-hot vectors. For Equations (43) and (44), the right hand side is actually equal to the left hand side.

23

Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via Graph Products

Table 16: Hyperparameters search for Subgraphormer and Subgraphormer + PE in stochastic sampling settings.

Dataset Sampling Ratio Num. layers Learning rate Embedding size Epochs Batch size Dropout Num. Eigenvectors

ZINC-12K 50% {6} {0.001, 0.0005, 0.0003, 0.0001} {96} {400} {128} {0} {0, 1, 2, 8, 16}
MOLHIV 50% {2, 3} {0.1, 0.01, 0.001} {60} {100} {32} {0.3, 0.5} {0, 1, 2, 8, 16}
MOLSOL 50% {3, 6, 12} {0.1, 0.01, 0.001} {60} {100} {32} {0.3, 0.5} {0, 1, 2, 8, 16}
MOLBACE 50% {2, 3} {0.1, 0.01, 0.001} {60} {100} {32} {0.3} {0, 1, 2, 8, 16}
PEPTIDES-FUNC 30% {5} {0.005, 0.003, 0.001} {96} {200} {128} {0} {0, 1, 2, 8, 16}
PEPTIDES-STRUCT 30% {4} {0.005, 0.003, 0.001} {96} {200} {128} {0} {0, 1, 2, 8, 16}
ZINC-12K 20% {6} {0.001, 0.0005, 0.0003, 0.0001} {96} {400, 800} {128} {0} {0, 1, 2, 8, 16}
MOLHIV 20% {2, 3} {0.1, 0.01, 0.001} {60} {100} {32} {0.3, 0.5} {0, 1, 2, 8, 16}
MOLSOL 20% {3, 6, 12} {0.1, 0.01, 0.001} {60} {100} {32} {0.3, 0.5} {0, 1, 2, 8, 16}
MOLBACE 20% {2, 3} {0.1, 0.01, 0.001} {60} {100} {32} {0.3} {0, 1, 2, 8, 16}
ZINC-12K 5% {6} {0.001, 0.0005, 0.0003, 0.0001} {96} {400, 800} {128} {0} {0, 1, 2, 8, 16}
MOLHIV 5% {2, 3} {0.1, 0.01, 0.001} {60} {100} {32} {0.3, 0.5} {0, 1, 2, 8, 16}
MOLSOL 5% {3, 6, 12} {0.1, 0.01, 0.001} {60} {100} {32} {0.3, 0.5} {0, 1, 2, 8, 16}
MOLBACE 5% {2, 3} {0.1, 0.01, 0.001} {60} {100} {32} {0.3} {0, 1, 2, 8, 16}

Table 17: Best hyperparameters for Subgraphormer + PE in stochastic sampling settings.

Dataset Sampling Ratio Num. layers Learning rate Embedding size Epochs Batch size Dropout Num. Eigenvectors

ZINC-12K 50% 6 0.0005 96 400 128 0 8
MOLHIV 50% 2 0.1 60 100 32 0.3 8
MOLSOL 50% 3 0.001 60 100 32 0.5 2
MOLBACE 50% 3 0.001 60 100 32 0.3 8

PEPTIDES-FUNC 30% 5 0.003 96 200 128 0 16
PEPTIDES-STRUCT 30% 4 0.005 96 200 128 0 16

ZINC-12K 20% 6 0.0005 96 800 128 0 8
MOLHIV 20% 2 0.1 60 100 32 0.3 8
MOLSOL 20% 12 0.001 60 100 32 0.5 1
MOLBACE 20% 3 0.001 60 100 32 0.3 8

ZINC-12K 5% 6 0.0005 96 800 128 0 8
MOLHIV 5% 2 0.1 60 100 32 0.3 8
MOLSOL 5% 12 0.001 60 100 32 0.5 2
MOLBACE 5% 3 0.001 60 100 32 0.3 2

Step 2: Assuming that X ∈ Rn2×d, the RGCN that uniquely encodes the input of f t as a whole is defined as follows,

RGCNt
(
X t, {AG,AGS ,Apoint}

)
(47)

= X tWt
0 +ApointX tWt

point +AGX tWt
G +AGSX tWt

GS ,

where the weight matrices are defined as:

Wt
0 =

(
Id×d 0d×d 0d×d 0d×d

)
, (48)

Wt
point =

(
0d×d Id×d 0d×d 0d×d

)
, (49)

Wt
G =

(
0d×d 0d×d Id×d 0d×d

)
, (50)

Wt
GS =

(
0d×d 0d×d 0d×d Id×d

)
, (51)

More specifically, it holds that,

X tWt
0 =

(
X t 0d×d 0d×d 0d×d

)
, (52)

ApointX tWt
point =

(
0d×d ApointX t 0d×d 0d×d.

)
, (53)

AGX tWt
G =

(
0d×d 0d×d AGX t 0d×d

)
, (54)

AGSX tWt
GS =

(
0d×d 0d×d 0d×d AGSX t

)
. (55)

24

Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via Graph Products

Table 18: Complexity analysis of our aggregations.

Aggregation Type Number of edges

AG O(|V |2 + |V | · |E|)
AGS O(|V |2 + |V | · |E|)
APoint O(|V |2)

Thus, since RGCN is the sum of those, it holds that,

RGCNt
(
X t, {AG,AGS ,Apoint}

)
=
(
X t ApointX t AGX t AGSX t

)
.

This concatenation is a unique encoding of the input for f t.

Step 3: To prove this step, we start with the following theorem from Yun et al. (2019) about the memorization power of
ReLU networks:

Theorem E.1. Consider a dataset {xi, yi}Ni=1 ∈ Rd × Rdy , with each xi being distinct and every yi ∈ {0, 1}dy , for all i.
There exists a 4-layer fully connected ReLU neural network fθ : Rd → Rdy that perfectly maps each xi to its corresponding
yi, i.e., fθ(xi) = yi for all i.

Employing this theorem, we define the xis as all possible (distinct) rows derived from the output of Step 2, represented as:(
X t ApointX t AGX t AGSX t

)
,

with each corresponding yi being the output of the parameterized function f t over the original input that is represented by
this xi. Given the finite nature of our graph set, the input set is also finite, i.e., N is finite.

Hence, in light of Theorem E.1, a 4-layer fully connected ReLU neural network capable of implementing f t exists. This
network can be equivalently realized using four layers of RGCN. Specifically, by setting {Wt

i}i=1M to zero and utilizing
only Wt

0 for t ∈ {0, 1, 2, 3}, we effectively mimic the operation of this 4-layer fully connected ReLU network.

Step 4: Finally, employing this same logic, we can again use Theorem E.1 and map those outputs of step 3 back to 1-hot
vectors.

Proposition 3.2 (Internal and External Connectivities give rise to the Cartesian Product Graph). The edges induced by
the internal and external subgraph connectivities, represented by AG and AGS (Equations (2) and (3)) represent the
connectivity ofAG□G. This implies the relationship:

AG□G = AGS +AG. (6)

In particular, we have AGS = A⊗ I,AG = I ⊗A.

Proof. Without loss of generality, consider the matrix (I ⊗A) indexed at
(
(s, v), (s′, v′)

)
, we have,

(I ⊗A)
(
(s, v), (s′, v′)

)
≜ I(s, s′) ·A(v, v′). (56)

In this context, edges exist if and only if s = s′ and v, v′ are neighbors in the original graph G. This is in direct
correspondence with the definition of AG, as outlined in Equation (2). The proof for A⊗ I = AGS follows a similar line of
reasoning.

Proposition 4.1 (Product Graph eigendecomposition). Consider a graph G = (A,X).8 The eigenvectors and eigenvalues
of the Laplacian matrix of G□G, namely, LG□G, are {(vi ⊗ vj , λi + λj)}n

2

i,j=1, where {(vi, λi)}ni=1 are the eigenvectors
and eigenvalues of the Laplacian matrix of G.

8We assume A has no self loops.

25

Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via Graph Products

Proof. By definition,
LG□G = DG□G −AG□G, (57)

where DG□G is defined as
DG□G ≜ diag(AG□G1⃗n2), (58)

and recalling Equation (12),

DG□G = diag
(
(A⊗ I + I ⊗A)⃗1n2

)
. (59)

Using tensor product rules, we have,

DG□G ≜ diag
(
A⊗ I + I ⊗A)⃗1n2

)
= diag

(
A⊗ I + I ⊗A)(⃗1n ⊗ 1⃗n)

)
= diag

(
A1⃗n ⊗ I 1⃗n + I 1⃗n ⊗A1⃗n

)
= D ⊗ I + I ⊗D, (60)

where D = A1⃗n.

Substituting Equation (60) and Equation (12) in Equation (57) we have,

LG□G = D ⊗ I + I ⊗D −A⊗ I + I ⊗A. (61)

Therefore,

LG□G = D −A⊗ I + I ⊗D −A

= L⊗ I + I ⊗ L. (62)

Thus, the eigenspace of LG□G is given by {(vi ⊗ vj , λi + λj)}n
2

i,j=1.

Proposition A.1 (Product Graph PE Complexity). Let G = (A,X) be an undirected graph with n vertices, and consider its
Cartesian product graph G□G.

1. The time complexity for diagonalizing the Laplacian matrix of G□G is O(n4).

2. For calculating k eigenvectors, where k ≤ n, the time complexity is O(k · n2). This is equivalent to the complexity of
computing k eigenvectors for the original graph G.

Proof. The proof stems directly from the arguments established in Proposition 4.1, which states that the computation of the
eigendecomposition of LG□G primarily involves diagonalizing the Laplacian matrix of the original graph G, which incurs
a computational cost of O(n3). Additionally, to obtain the complete set of n2 eigenvectors for the graph G□G, an extra
O(n4) operations are necessary, resulting in a total complexity of O(n4).

It is important to note that when the objective is to compute only k eigenvectors, where k ≤ n, the computational complexity
is reduced to O(k · n2), since in this case we only need to obtain k eigenvectors. This is congruent with the complexity
involved in calculating the same number of eigenvectors for the original graph G, which is also O(k · n2), for example
by applying the Lanczos Algorithm (Lanczos, 1950) or the Implicitly Restarted Arnoldi Methods (Lehoucq et al., 1998;
Lee et al., 2009), as done by widely used libraries such as Scipy (Virtanen et al., 2020). Therefore, our approach offers
a computational advantage in scenarios where a subset of eigenvectors (k ≤ n) suffices; which consist of most cases in
practice.

Proposition B.1 (Adjacency matrix of G□k

). For a graph G = (A,X) with adjacency matrix A, the adjacency matrix of
G□k

—the graph formed by k-fold Cartesian product of G with itself—is given by:

A
G□k = Ck(A). (31)

26

Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via Graph Products

Proof. The proof proceeds by induction.

Base Case: For k = 2, we must show that AG□2 ≜ C2(A).

From Corollary A.1, we have:
AG□2 ≜ AG□G = A⊗ In + In ⊗A. (63)

Using Equation (29) and Equation (30), we get:

C2(A) = C1(A)⊗ In + In ⊗A = A⊗ In + In ⊗A. (64)

Thus, from Equation (63) and Equation (64) we obtain,

AG□2 = C2(A), (65)

this verifies the base case.

Inductive Assumption: Assume the proposition holds for some integer k, i.e.,

A
G□k ≜ Ck(A), (66)

then we must demonstrate its validity for k + 1:

A
G□k+1 ≜ Ck+1(A). (67)

Inductive Step: Let G1 = G□k

and G2 = G. Given that G has n nodes, G1 has nk nodes, and G2 has n nodes. Recalling
Equation (16), we deduce:

A
G□k+1 = A

G□k□G
= AG1□G2

= A
G□k ⊗ In + Ink ⊗A, (68)

where A
G□k is the adjacency of G1 and A is the adjacency of G2.

Applying the inductive assumption from Equation (66) to Equation (68), we obtain:

AG1□G2
= Ck(A)⊗ In + Ink ⊗A. (69)

The right-hand side of Equation (69) corresponds exactly to the definition of Ck+1 as specified in Equation (29).

Hence, we conclude that:
A

G□k+1 = A
G□k□G

= AG1□G2
= Ck+1(A). (70)

This concludes the proof.

Proposition B.2 (Adjacency matrix of G□k

– closed form). Given a graph G = (A,X), with an adjacency matrix A, it
holds that,

CK(A) =

K−1∑
k=0

Ak
K. (33)

Proof. We will prove by induction.

Base Case: The base case, for K = 2, is obtained straight-forwardly from the definition of Ak
K, recalling Equation (32).

Formally, by the definition of Ck – Definition B.1, we have,

C2(A) = A⊗ In + In ⊗A. (71)

We note that,

A0
2 = A⊗ In, (72)

A1
2 = In ⊗A, (73)

27

Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via Graph Products

thus, it holds that,

C2(A) = A⊗ In + In ⊗A

= A0
2 +A1

2

=

1∑
k=0

Ak
2 , (74)

which completes the base case.

Inductive Assumption: Assume the proposition holds for some integer K, i.e.,

CK(A) =

K−1∑
k=0

Ak
K, (75)

then we must demonstrate its validity for K + 1:

CK+1(A) =

K∑
k=0

Ak
K+1. (76)

Inductive Step: By the definition of the Cartesian operator – Definition B.1, it holds that,

CK+1(A) = CK(A)⊗ In + InK ⊗A. (77)

Substituting Equation (75) to Equation (77) we obtain,

CK+1(A) =
(K−1∑

k=0

Ak
K

)
⊗ In + InK ⊗A. (78)

Since the tensor product operator, ⊗, is linear, and recalling the definition of Equation (32) it holds that,

CK+1(A) =
(K−1∑

k=0

≜Ak
K+1︷ ︸︸ ︷

Ak
K ⊗ In

)
+

≜AK
K+1︷ ︸︸ ︷

≜ InK ⊗A

=

K−1∑
k=0

Ak
K+1 +AK

K+1

=

K∑
k=0

Ak
K+1. (79)

This completes the proof.

Proposition B.3 (A
G□k – Valid binary adjacency matrix). Given a graph G = (A,X) with an adjacency matrix A, with no

self loops, the matrix given by,

AG□K =

K−1∑
k=0

Ak
K, (35)

is a binary adjacency matrix.

Proof. Since for any k the matrix given by Ak
K is binary, it is sufficient to show that given k, k′, such that k ̸= k′, it holds

that,
⟨Ak

K,Ak′

K ⟩F = 0, (80)

where by ⟨·, ·⟩F we denote the Frobenius inner product.

28

Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via Graph Products

Recalling Definition B.2, we have,

⟨Ak
K,Ak′

K ⟩F = ⟨I ⊗ I ⊗ · · · ⊗A⊗ · · · ⊗ I, I ⊗ · · · ⊗A⊗ · · · ⊗ I ⊗ I⟩F

= Tr
(
(I ⊗ I ⊗ · · · ⊗A⊗ · · · ⊗ I) · (I ⊗ · · · ⊗A⊗ · · · ⊗ I ⊗ I)T

)
= Tr

(
(I ⊗ I ⊗ · · · ⊗A⊗ · · · ⊗ I) · (IT ⊗ · · · ⊗AT ⊗ · · · ⊗ IT ⊗ IT)

)
Using the the fact that k ̸= k′, we obtain that,

⟨Ak
K,Ak′

K ⟩F = Tr
(
IIT ⊗ · · · ⊗ IIT ⊗ · · · ⊗ IIT ⊗AIT ⊗ IIT ⊗ · · · ⊗ IIT ⊗ IAT ⊗ IIT ⊗ · · · ⊗ IIT

)
= Tr

(
IIT

)
· Tr
(
IIT

)
· . . . · Tr

(
AIT

)
· Tr
(
IIT

)
· . . . · Tr

(
IIT

)
· Tr
(
IAT

)
· Tr
(
IIT

)
· . . . · Tr

(
IIT

)
.

Since we assume no self loops in the original graph G, we know that the diagonal of A and AT is zero, therefore, the Trace
of both AIT and IAT is zero. Thus, for any k ̸= k′, it holds that,

⟨Ak
K,Ak′

K ⟩F = 0. (81)

Proposition B.4 (k-tuple – Product graph eigendecomposition). Consider a graph G = (A,X) without self-loops. Define
G□k

as the Cartesian product of G repeated k times, with its adjacency matrix denoted by A
G□k . The eigenvectors and

eigenvalues of the Laplacian matrix for G□k

can be characterized as follows: for each set of indices {i1, i2, . . . , ik}, where
ij ∈ {1, 2, . . . , n} for each j, there exists an eigenvector-eigenvalue pair given by (vi1⊗vi2⊗. . .⊗vik , λi1+λi2+. . .+λik).
Here, {(vi, λi)}ni=1 represent the eigenvectors and eigenvalues of the Laplacian matrix of the original graph G.

Proof. We are looking for the eigenvectors of L
G□k , defined as

L
G□k = D

G□k −A
G□k , (82)

where D
G□k can be written as

D
G□k ≜ diag (A

G□k 1⃗nk)

= diag

(K−1∑
k′=0

Ak′

K 1⃗nk

)

=

K−1∑
k′=0

diag

(
Ak′

K 1⃗nk

)
, (83)

where the last equality is obtained from the linearity of the diag operator.

Recalling Definition B.2, for a given k′, it holds that,

Ak′

K 1⃗nk = (In ⊗ In ⊗ . . .⊗ In ⊗A⊗ In ⊗ . . .⊗ In) · (⃗1n ⊗ 1⃗n ⊗ . . .⊗ 1⃗n)

= In1⃗n ⊗ In1⃗n ⊗ . . . In1⃗n ⊗A1⃗n ⊗ In1⃗n ⊗ . . . In1⃗n

= 1⃗n ⊗ 1⃗n ⊗ . . . 1⃗n ⊗A1⃗n ⊗ 1⃗n ⊗ . . .⊗ 1⃗n.

Since the degree matrix D of the original graph G satisfies D = diagA1⃗n we obtain,

diag

(
Ak′

K 1⃗nk

)
= In ⊗ In ⊗ . . .⊗ In ⊗D ⊗ In ⊗ In ⊗ . . .⊗ In. (84)

For simplicity, we will extend Definition B.2 to any calligraphic matrix; i.e., we define,

Dk′

K ≜ In ⊗ In ⊗ . . .⊗ In ⊗D ⊗ In ⊗ In ⊗ . . .⊗ In, (85)

29

Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via Graph Products

such that the matrix D occupies the k′-th slot.

Substituting Equation (85) and Equation (84) to Equation (83), we obtain,

D
G□k =

K−1∑
k′=0

Dk′

K . (86)

Plugging Equation (86) and Equation (34) to Equation (82),

L
G□k =

K−1∑
k′=0

(
Dk′

K −Ak′

K

)
. (87)

For a given k′, recalling Definition B.2 and Equation (85) it holds that,

Dk′

K −Ak′

K ≜ In ⊗ In ⊗ . . .⊗ In ⊗D ⊗ In ⊗ In ⊗ . . .⊗ In − In ⊗ In ⊗ . . .⊗ In ⊗A⊗ In ⊗ In ⊗ . . .⊗ In

= In ⊗ In ⊗ . . .⊗ In ⊗ L⊗ In ⊗ In ⊗ . . .⊗ In

≜ Lk′

K . (88)

Thus,

L
G□k =

K−1∑
k′=0

Lk′

K , (89)

which states that the eigenvector-eigenvalue pairs are given by (vi1 ⊗vi2 ⊗ . . .⊗vik , λi1 +λi2 + . . .+λik), for any ij ∈ [n],
where j ∈ [k]; given that {(vi, λi)}ni=1 represents the eigenvectors and eigenvalues of the Laplacian matrix of the original
graph G.

Theorem B.1 (k-tuple PE efficiency). Consider a graph G = (A,X) without self-loops. Define G□k

as the Cartesian
product of G repeated k ≥ 2 times.

The time complexity of computing the eigendecomposition of the Laplacian matrix of G□k

is O(n2k).

Proof. We begin by diagonalizing the Laplacian matrix of the graph G. This process requires O(n3) time complexity.

Following this, we utilize the results in Proposition B.4 to determine the eigenvectors and eigenvalues of the Cartesian power
of the graph, denoted as G□k

. The computation of these eigenvectors and their corresponding eigenvalues requires O(n2k)
operations.

Therefore, the overall computational complexity for this procedure is O(n2k + n3). However, since k ≥ 2 the dominating
term is O(n2k). Thus, we can conclude that the total complexity is O(n2k).

Proposition C.1 (Concatenation PE can approximate product graph PE). The concatenation PE can approximate (up to an
ordering) the product graph PE uniformly.

Proof. The full embedding of a node v in the graph is defined as

pv ≜ [Uv,0, . . . , Uv,n−1]. (90)

The function F prod : R2n → Rn2

is defined as follows:

F prod(ps ∥ pv)i = flatten(ps · pT
v). (91)

This function is defined over the compact set [−1, 1]2n, and maps to the compact set [−1, 1]n
2

. Thus is due to the fact that
the entries of pv′ for any node v′ are components of normalized eigenvectors.

Therefore, the function F prod is continuous and defined over a compact set, implying that it can be approximated by a MLP
via the Universal Approximation Theorem (Hornik, 1991; Cybenko, 1989) acting on the input (ps ∥ pv). This completes
the proof.

30

Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via Graph Products

Subgraph SE & PE
block SABB SABB SABB Pooling…

Product Graph PE

Subgraph Attention Block Pooling

Node Marking

X
X

X
X

X X X X

X X X
X X X

X X X
X X X

Internal External Point

Product Graph PE
& Node Marking Subgraph Attention Block Pooling

v

s

Pool

Pool

v

s

× $Product Graph
Construction

Product Graph
Construction

Subgraph SE & PE
block SABB SABB SABB Pooling…

Product Graph PE

Subgraph Attention Block Pooling

Node Marking

X
X

X
X

X X X X

X X X
X X X

X X X
X X X

Internal External Point

Product Graph PE
& Node Marking Subgraph Attention Block Pooling

v

s

Pool

Pool

v

s

× $Product Graph
Construction

Product Graph
Construction

× (

Figure 3: A deep overview of Subgraphormer. Given an input graph, the process begins with the construction of
the product graph. This is followed by the computation of product graph PE, illustrated through varying colors on the
nodes. Node-Marking is then implemented, depicted by black exes () on diagonal nodes. The process continues with the
application of K Subgraph Attention Blocks (SABs), characterized by three distinct connectivities: Internal, External, and
Point. The final stage involves the pooling layer, which initially aggregates data across the node dimension to form subgraph
representations, and subsequently across the subgraph dimension.

F. Subgraphormer Figure
We present a detailed figure illustrating the architecture of our Subgraphormer model – Figure 3. We begin with the
construction of the Product Graph. Subsequently, we apply product graph PE and node-marking, as detailed in Section 4.2.
This step is followed by stacking of K Subgraph Attention Blocks (see Section 4.1). Finally, the process concludes with the
integration of a pooling layer that returns a graph representation.

31

