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Abstract
Neural networks extract features from data using
stochastic gradient descent (SGD). In particular,
higher-order input cumulants (HOCs) are crucial
for their performance. However, extracting in-
formation from the pth cumulant of d-dimensional
inputs is computationally hard: the number of
samples required to recover a single direction
from an order-p tensor (tensor PCA) using online
SGD grows as dp−1, which is prohibitive for high-
dimensional inputs. This result raises the question
of how neural networks extract relevant directions
from the HOCs of their inputs efficiently. Here,
we show that correlations between latent variables
along the directions encoded in different input
cumulants speed up learning from higher-order
correlations. We show this effect analytically by
deriving nearly sharp thresholds for the number
of samples required by a single neuron to weakly-
recover these directions using online SGD from a
random start in high dimensions. Our analytical
results are confirmed in simulations of two-layer
neural networks and unveil a new mechanism for
hierarchical learning in neural networks.

1. Introduction
Neural networks excel at learning rich representations of
their data, but which parts of a data set are actually important
for them? From a statistical point of view, we can decom-
pose the data distribution into cumulants, which capture
correlations between groups of variables. The first cumulant
is the mean, the second describes pair-wise correlations,
and higher-order cumulants (HOCs) encode correlations
between three or more variables. In image classification,
HOCs are particularly important: on CIFAR10, removing
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HOCs from the training distribution incurs a drop in test
accuracy of up to 65 % for DenseNets, ResNets, and Vision
transformers (Refinetti et al., 2023).

While HOCs are important for the performance of neural net-
works, extracting information from HOCs with stochastic
gradient descent (SGD) is computationally hard. Take the
simple case of tensor PCA (Richard & Montanari, 2014),
where one aims to recover a “spike” u ∈ Rd from an order-p
tensor T , which could be the order-p cumulant of the inputs.
Modelling the tensor as T = βu⊗p+Z, with signal-to-noise
ratio (SNR) β > 0 and noise tensor Z with i.i.d. entries of
mean zero and variance 1, Ben Arous et al. (2021) showed
that online SGD with a single neuron requires a number of
samples n ≳ dp−1 to recover u. While smoothing the loss
landscape can reduce to n ≳ dp/2, as suggested by Cor-
relational Statistical Query bounds (CSQ) (Damian et al.,
2022; Abbé et al., 2023), a sample complexity that is ex-
ponential in p is too expensive for high-dimensional inputs
like images. For supervised learning, Székely et al. (2023)
showed that the number of samples required to strongly dis-
tinguish two classes of inputs x ∈ Rd whose distributions
have the same mean and covariance, but different fourth-
and higher-order cumulants, scales as n ≳ d2 for the wide
class of polynomial-time algorithms covered by the low-
degree conjecture (Barak et al., 2019; Hopkins et al., 2017;
Hopkins & Steurer, 2017; Hopkins, 2018). Their numer-
ical experiments confirmed that two-layer neural networks
indeed require quadratic sample complexity to learn this
binary classification task.

The theoretical difficulty of learning from HOCs is in ap-
parent contradiction to the importance of HOCs for the
performance of neural networks, and the speed with which
neural networks pick them up (Ingrosso & Goldt, 2022; Re-
finetti et al., 2023; Merger et al., 2023; Belrose et al., 2024),
lead us to the following question:

How do neural networks extract information from
higher-order input correlations efficiently?

In this paper, we show that neural networks can learn effi-
ciently from higher-order cumulants by exploiting correl-
ations between the latent variables of type u · x corres-
ponding to input cumulants of different orders.
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A B C DFigure 1. Correlated latent variables speed up learning of neural networks. A Test error of a two-layer neural network trained on the
mixed cumulant model (MCM) of Equation (1) with signal-to-noise ratios βm = 1, βu = 5, βv = 10. The MCM is a binary classification
tasks where the inputs in the two classes have a different mean, a different covariance, and different higher-order cumulants (HOCs). We
show the test error on the full data set (red) and on several “censored” data sets: a test set where only the mean of the inputs is different in
each class (blue, βm = 1, βu = βv = 0), a test set where mean and covariance are different (green, βm = 1, βu = 5, βv = 0), and a
Gaussian mixture that is fitted to the true data set (orange). The neural networks learn distributions of increasing complexity: initially,
only the difference means matter, as the blue and red curves coincide; later, the network learns about differences at the level of the
covariance, and finally at the level of higher-order cumulants. B Test loss of a two-layer neural network trained on CIFAR10 and evaluated
on CIFAR10 (red), a Gaussian mixture with the means fitted to CIFAR10 (blue) and a Gaussian mixture with the means and covariance
fitted on CIFAR10 (orange). C Same setup as in A, but here the latent variables corresponding to the covariance and the cumulants of the
inputs are correlated, leading to a significant speed-up of learning from HOCs (the red and orange line separate after ≳ 104 steps, rather
than ≳ 106 steps). Parameters: βm = 1, βu = 5, βv = 10, d = 128,m = 512 hidden neurons, ReLU activation function. Full details in
Appendix B.1.

2. Results and insights: an informal overview
2.1. The mixed cumulant model (MCM)

We illustrate how correlated latent variables speed up learn-
ing by introducing a simple model for the data, the mixed-
cumulant model (MCM). The MCM is a binary discrimina-
tion task where the signals that differentiate the two classes
are carried by different input cumulants. Specifically, we
draw n data points xµ = (xµ

i ) ∈ Rd with µ = 0, 1, . . . , n
either from the isotropic Gaussian distribution Q0 (label
yµ = −1) or from a planted distribution Qplant (label
yµ = 1). Under Q0, inputs have zero mean, an isotropic
covariance equal to the identity 1, and all HOCs are zero.
Under Qplant, the first few cumulants each carry a signal
that distinguishes the inputs from those in Q0: a non-zero
mean m ∈ Rd, a covariance which is isotropic except in the
direction u ∈ Rd, and higher-order cumulants proportional
to v⊗k, k ≥ 2.

We sample an input from Qplant by first drawing an i.i.d.
Gaussian vector zµ and two scalar latent variables, the nor-
mally distributed λµ ∼ N (0, 1) and νµ, which is drawn
from a non-Gaussian distribution. For concreteness, we will
assume that νµ = ±1 with equal probability. Both latent
variables are independent of z. Then, for yµ = 1, we have

xµ =

mean︷ ︸︸ ︷
βmm+

covariance︷ ︸︸ ︷√
βuλ

µu︸ ︷︷ ︸
Gaussian

+S(
√

βvν
µv︸ ︷︷ ︸

HOCs

+zµ). (1)

where βi ≥ 0 are the signal-to-noise ratios associated to
the three directions, or “spikes”, m,u, v. The spikes are
fixed and drawn uniformly from the unit sphere. We will
sometimes force them to be orthogonal to one another. If
βv = 0, it is easy to verify that inputs are Gaussian with
mean βmm and covariance 1+ βuuu

⊤. If βv > 0, inputs
are non-Gaussian but the presence of the whitening matrix

S = 1− βv

1 + βv +
√
1 + βv

vv⊤ (2)

removes the direction v from the covariance matrix, so that
v cannot be recovered from the input covariance if the latent
variables λν , νµ are uncorrelated.

2.2. Neural networks take a long time to learn the
cumulant spike in the vanilla MCM

We show the performance of a two-layer neural network
trained on the MCM model in Figure 1A with signal-to-
noise ratios βm = 1, βu = 5, βv = 10 and independent
latent variables λµ ∼ N (0, 1) and νµ = ±1 with equal
probability (red line). We can evaluate which of the three
directions have been learnt by the network at any point in
time by evaluating the same network on a reduced test set
where only a subset of the spikes are present. Testing the
network on a test set where the only difference between the
two classes Q0 and Qplant are the mean of the inputs (blue,
βu = βv = 0) or the mean and covariance (βv = 0), we find
that two-layer networks learn about the different directions
in a sequential way, learning first about the mean, then the
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covariance, and finally the higher-order cumulants. This is
an example of the distributional simplicity bias (Ingrosso
& Goldt, 2022; Refinetti et al., 2023; Nestler et al., 2023;
Belrose et al., 2024). However, note that the periods of
sudden improvement, where the networks discovers a new
direction in the data, are followed by long plateaus where the
test error does not improve. The plateaus notably delay the
learning of the direction v that is carried by the higher-order
cumulants. We also see an “overfitting” on the censored test
sets: as the network discovers a direction that is not present
in the censored data sets, this appears as overfitting on the
censored tests.

2.3. Correlated latent variables speed up learning
non-Gaussian directions

As it stands, the MCM with orthogonal spikes and inde-
pendent latent variables is a poor model for real data: neural
networks show long plateaus between learning the Gaussian
and non-Gaussian part of the data on the MCM, but if we
train the same network on CIFAR10, we see a smooth decay
of the test loss, see Figure 1B. Moreover, testing a network
trained on CIFAR10 on a Gaussian mixture with the means
fitted to CIFAR10 (blue) and a Gaussian mixture with the
means and covariance fitted on CIFAR10 (orange) shows
that the network goes smoothly and quickly from Gaussian
to the non-Gaussian part of the data, without a plateau.

A natural idea improve the MCM, i.e. to make the loss
curves of a neural network trained on the MCM resemble
more the dynamics observed on CIFAR10, is to correlate
the covariance and cumulant spikes: instead of choosing
them to be orthogonal to each other, one could give them
a finite overlap u · v = ρ. However, a detailed analysis
of the SGD dynamics in Section 3.2 will show that this
does not speed up learning the non-Gaussian part of the
data; instead, the crucial ingredient to speed up learning of
non-Gaussian correlations is the correlation between latent
variables. Setting for example

νµ = sign(λµ), (3)

we obtain the generalisation dynamics shown in red in Fig-
ure 1C: the plateaus have disappeared, and we get a beha-
viour that is very close to real data: a single exponential
decay of the test loss.

2.4. A rigorous analysis of a single neuron quantifies the
speed-up of correlated latents

We can make our experimental observations for two-layer
networks rigorous in the simplest model of a neural network
a single neuron f(w, x) = σ(w · x) trained using online
projected stochastic gradient descent (also known as the
spherical perceptron). At each step t of the algorithm, we
sample a tuple (xt, yt) from the MCM (1) and update the

weight wt according to the following rule:

wt =


w0 ∼ Unif

(
Sd−1

)
t = 0

w̃t = wt−1 − δ
d∇sph (L(w, (xt, yt)) t ≥ 1

wt =
w̃t

||w̃t|| .

(4)

Here, ∇sph is the spherical gradient defined by ∇sphf(w) =
(1−ww⊤)∇f(w). We follow Damian et al. (2023) in using
the correlation loss for our analysis,

L(w, (x, y)) = 1− yf(w, x). (5)

In high dimensions, the typical overlap of the weight vector
at initialisation and, say, the cumulant spike scales as w0 ·
v ≃ d−1/2. We will say we the perceptron has learnt the
direction v if we have “weakly recovered” the spike, i.e.
when the overlap αv ≡ w · v ∼ O(1). This transition
from diminishing to macroscopic overlap marks the exit of
the search phase of stochastic gradient descent, and it often
requires most of the runtime of online SGD (Ben Arous
et al., 2021).

In this setup, we can give a precise characterisation of the
sample complexity of learning a single spike (either in the
covariance or in the cumulant) and of learning in the pres-
ence of two spikes with independent or correlated latent
variables. By looking at stochastic gradient descent, we
can also make quantitative statements on the optimal learn-
ing rates to achieve weak recovery quickly. For simplicity,
our perceptron analysis does not consider the spike in the
mean, i.e. βm = 0 throughout. This assumption is mainly
to enhance the mathematical tractability of the model and
we expect most of the following to hold also in the case
βm ̸= 0. Our main theoretical results are then as follows:

Learning a single direction: If only the covariance or the
cumulant are spiked, i.e. either βu = 0 or βv = 0, the ana-
lysis of Ben Arous et al. (2021) applies directly and we find
that projected online SGD requires n ≳ d log2 d samples to
learn the covariance spike u, but n ≳ d3 samples to learn the
cumulant spike; see Proposition 1 and Proposition 2 for the
precise scaling of the learning rate δ. This result establishes
that in isolation, learning from the higher-order cumulant
has a much higher sample complexity than learning from
the covariance.

Independent latent variables: In the mixed cumulant
model with spikes in the covariance and the HOCs, Pro-
position 3 shows that if n ≤ d3, it is impossible to have
weak recovery of the cumulant spike for any learning rate
δd = o (1/d) if the latent variables λ and ν are independ-
ent – hence learning from HOCs remains hard. For larger
learning rates 1/d ≤ δd = o(1), the SGD noise becomes
dominant after d/δ2 steps and our analysis works only up to
that horizon; we discuss this in Section 3.2.
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Correlated latent variables: If instead both spikes are
present and their latent variables have a positive correla-
tion E[λµνµ] > 0 (fixed, independent of d), proposition 4
shows that n ≳ d log2 d samples are sufficient to weakly re-
cover both spikes with the optimal learning rate δ ≈ 1/log d.
Moreover, even for sub-optimal learning rates δ = o (1/d),
the time to reach weak recovery of the cumulant spike
is d2 log2 d, which is still faster that in the uncorrelated
case. Proposition 4 also shows that the speed-up in terms
of sample complexity required for weak recovery happens
even when the amount of correlation is small compared to
the signal carried by the cumulant spike. In other words, it
does not affect the minimum landscape of the loss: if the
global minimum is close to the cumulant spike, introducing
correlations between the latents will not move that minimum
to the covariance spike.

We give a full summary of the known results and our con-
tributions in Table 1. In the following, we give precise
statements of our theorems in Section 3 and discuss our
results in the context of the wider literature, and the recently
discussed “staircase phenonmenon”, in Section 4.

3. Rigorous analysis of the perceptron: the
non-Gaussian information exponent

We now present a detailed analysis of the simplest model
where correlated latents speed up learning from higher-order
cumulants in the data, the spherical perceptron. Before
stating the precise theorems, we present the main ingredients
of the analysis informally.

The key idea of our analysis is borrowed from Ben Arous
et al. (2021): during the search phase of SGD, while the
overlaps αu = u · w,αv = v · w of the weight w with the
covariance and cumulant spikes are small, i.e. o(1) with
respect to d, the dynamics of spherical SGD is driven by
the low-order terms of the polynomial expansion of the
population loss L(w) = E[L(w, (x, y)]. In our case of a
mixture classification task, it is useful to rewrite the expect-
ation using the likelihood ratio between the isotropic and
the planted distributions L(x) := dQplant/dQ0(x) such that
all averages are taken with respect to the simple, isotropic
Gaussian distribution:

L(w) = 1 +
1

2
EQ0

[σ(w · x)]− 1

2
EQ0

[L(x)σ(w · x)] .
(6)

We can then expand the loss in Hermite polynomials, which
form an orthonormal basis w.r.t. the standard Gaussian dis-
tribution, and prove that the loss depends only on αu, αv

and can be expanded in the following way:

L(w) = ℓ(αu, αv) =

∞∑
i,j=0

cLijc
σ
i+jα

i
uα

j
v, (7)

see Lemma 7 in the appendix. The degree of the lowest
order term in this expansion is called the information expo-
nent k of the loss and it rigorously determines the duration
of the search phase before SGD weakly recovers the key
directions (Ben Arous et al., 2021; Dandi et al., 2023), in the
sense that for any time-dependent overlap α(t), there exists
an η > 0 such that defining τη := min

{
t ≥ 0

∣∣ |α(t)| ≥ η
}

,
we have

lim
d→∞

P (τη ≤ n) = 1. (8)

Since the time in online SGD is equivalent to the number of
samples, the information exponent governs the sample com-
plexity for weak recovery. Here, we are interested in finding
out how the correlation of the latent variables changes the
information exponent, and which consequences this change
has on the duration of search phase of projected SGD as
d → ∞. Considering only the terms that give relevant con-
tribution for the search phase, Equation (7) applied to the
MCM model with βm = 0 becomes (see Appendix A.2.1
for more details):

ℓ(αu, αv) = −
(
c20α

2
u + c11αuαv + c04α

4
v

)
(9)

where c20, c04 > 0 as long as βu, βv > 0, whereas c11 > 0
if and only if the latent variables are positively correlated:
E[λν] > 0. Note that switching on this correlation does not
change the overall information exponent, which is still 2,
but the mixed term αuαv strongly impacts the direction v,
along which ∂vℓ = c11αu+4c04α

3
v has degree 3 if c11 = 0

whereas it has degree 1 in case of positive correlation. This
means that positive correlation of latent variables lowers
the information exponent along the non-Gaussian direction.

It is not straightforward to link these changes of the
population-loss series expansion to actual changes in SGD
dynamics. The randomness of each sample comes into play
and it must be estimated thanks to a careful selection of the
learning rate δ (see Proposition 3 and Proposition 4). How-
ever, at the risk of oversimplification, we could imagine that
the dynamic is updated descending the spherical gradient
of the population loss, leading to the following system of
ODEs that approximately hold when αu, αv ≤ η{

α̇u(t) = 2c20αu + c11αv +O(η2)

α̇v(t) = c11αu + 4c04α
3
v − 2c20α

2
uαv +O(η4)

(10)
where the last term in the second equation is due to the
distorting effect of the spherical gradient.

We can see that the behaviour of αu is not affected too much
by the presence of correlation (the integral lines starting at
αu(0) ≈ d−1/2 reach order 1 in t = d log2 d). On the
contrary the dynamic of αv changes completely: if c11 > 0,
αv will grow at the same pace as αu, otherwise it will be
orders of magnitude slower (there is even the possibility that
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it will never escape 0, since the term −2c20α
2
uαv could push

it back too fast). Before stating the theorems that make these
intuitions precise, we have to state our main assumptions on
the activation function:

Assumption 1 (Assumption on the student activation func-
tion σ). We require that the activation function σ ∈ C 1(R)
fulfils the following conditions:

E
z∼N (0,1)

[σ(z)h2(z)] > 0, E
z∼N (0,1)

[σ(z)h4(z)] < 0,

sup
w∈Sd−1

E
[
σ′(w · x)4

]
≤ C, sup

w∈Sd−1

E
[
σ′(w · x)8+ι

]
≤ C,

and
∑
k=0

k E
z∼N (0,1)

[hk(z)σ(z)] < ∞.

(11)
Here, (hi)i are normalised Hermite polynomials (see Ap-
pendix A.1) and ι > 0.

Note that smoothed versions of the ReLU activation function
satisfy these conditions. We remark that all Equation (11)
are important requirements, activation functions that do
not satisfy one or more of these conditions could lead to
different dynamics. On the other hand the assumption σ ∈
C 1(R) is done for convenience and differentiability a.e.
should be enough; for instance all the simulations of the
present work were done with the ReLU activation function.

3.1. Learning a single direction

To establish the baselines for weak recovery in single index
models, where inputs carry only a covariance spike or a
spike in the higher-order cumulants, we apply the results of
Ben Arous et al. (2021) directly to find the following SGD
learning timescales:

Proposition 1 (Covariance spike only). Considering only
the spike in the covariance the generative distribution is
y ∼ Rademacher (1/2),

y = 1 ⇒ xµ =
√

βuλ
µu+ zµ, λµ ∼ N (0, 1)

y = −1 ⇒ xµ = zµ, zµ ∼ N (0,1d)

A spherical perceptron that satisfies Assumption 1 and is
trained on the correlation loss (5) using online SGD (4) has
the following result concerning the overlap with the hidden
direction αu,t := u · wt:

• if 1
log2 d

≪ δd ≪ 1
log d and n ≫ d log2 d then there is

strong recovery and

|αu,t| → 1 in probability and in Lp ∀p ≥ 1

• if δd = O(1) and n ≤ d log d then it is impossible to
learn anything:

|αu,t| → 0 in probability and in Lp ∀p ≥ 1

Proposition 2 (Cumulant spike only). Considering only
the spike in the cumulants, letting (yµ)µ, (ν

µ)µ be i.i.d.
Rademacher(1/2), (zµ)µ be i.i.d N(0,1d) and S as in (2),
the generative distribution is:

yµ = 1 ⇒ xµ = S
(√

βvν
µv + zµ

)
yµ = −1 ⇒ xµ = zµ,

A spherical perceptron that satisfies Assumption 1 and is
trained on the correlation loss (5) using online SGD (4) has
the following result concerning the overlap with the hidden
direction αv,t := u · vt:

• if 1
d2 log2 d

≪ δd ≪ 1
d log d and n ≫ d3 log2 d then

there is weak recovery of the cumulant spike in the
sense of Equation (8);

• if δd = o( 1d ) and n ≪ d3 then it is impossible to learn
anything:

|αv,t| → 0 in probability and in Lp ∀p ≥ 1

Note that the thresholds found in Proposition 2 coincide
with the ones found for tensor-PCA for a order 4 tensor
(see proposition 2.8 in (Ben Arous et al., 2021)), which is
exactly the order of the first non trivial cumulant of Qplant
in the spiked-cumulant model. We will also see what hap-
pens in case of larger step size than what considered in
Proposition 2.

3.2. Learning two directions

The following two propositions apply to a perceptron trained
on the MCM model of Equation (1) with βm = 0, νµ ∼
Radem(1/2). We first state a negative result: in the case of
independent latent variables, the cumulant direction cannot
be learned faster than in the one dimensional case (Proposi-
tion 2).

Proposition 3. Consider a spherical perceptron that sat-
isfies Assumption 1 and is trained on the MCM (1) with
correlation loss (5) using online SGD (4), with λµ inde-
pendent of νµ. Let δd = o(1) be the step size. As long as

n ≪ min
(

d
δ2d
, d3
)

, we have that

lim
d→∞

sup
t≤n

|αv,t| = 0

where the limit holds in L p for every p ≥ 1.

The condition n ≪ d/δ2d is due to sample complexity hori-
zon in online SGD. As already pointed out by Ben Arous
et al. (2021), it turns out that after a certain number of steps,
when nδ2d/d becomes large, the noise term in the equations
dominates the drift term and the dynamics starts to become
completely random (mathematically, Doob’s inequality (30)
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Model Step size Weak recovery u Weak recovery v

Covariance spike only δ = O(1), δ ≈ 1
log d n ≪ d log d, n ≫ d log2 d not present

Cumulants spike only δ = o
(
1
d

)
, δ ≈ 1

d not present n ≪ d3 n ≫ d3 log2 d

δ ≈ 1
log d n ≫ d log2 d n ≪ d log2 dTwo spikes,

independent latents δ = o
(
1
d

)
, δ ≈ 1

d n ≫ d2 log d n ≪ d3

δ ≈ 1
log d n ≫ d log2 d n ≫ d log2 dTwo spikes,

correlated latents δ ≈ 1
d n ≫ d2 log d n ≫ d2 log d

Table 1. Summary of positive and negative results on learning from higher-order cumulants. We summarise the sample complexities
required to reach weak recovery of the covariance spike u and the cumulant spike v in the different settings discussed in Section 3.
Negative results mean that weak recovery is impossible below these sample complexities at the given learning rates. Positive results
guarantee weak recovery with at least as many samples as stated. The first two lines are direct applications of results from Ben Arous et al.
(2021) for data models with a single spike. The mixed cumulant model with independent latent variables is a direct corollary of these
results. The notation δ ≈ f(d) for the positive results means that δ = o(f(d)), but the best sample complexity is achieved when δ is as
close as possible to its bound. Note that for independent latents with large learning rate δ ≈ 1/log d, our techniques only allow studying a
time horizons up to t ≈ d log2 d, after which the randomness of the SGD updates becomes too large to be controlled, see Section 3.2 for
more details.

fails to provide a useful estimate on the noise after this
point). So our results can prove the absence of weak recov-
ery only up to the sample complexity horizon; after that our
definition of weak recovery is not useful anymore: due to
the increased randomness, it is possible that the weight vec-
tor attains, by pure chance, a finite overlap with the spiked
directions, but that would be forgotten very easily, not lead-
ing to meaningful learning. If instead the learning rate is
small enough, δd = o( 1d ), then the horizon becomes large
enough to include n ≪ d3, which is the same regime of
Proposition 2.

Now we state the positive results: the covariance spike
can be weakly recovered in the same sample complexity as
the one-dimensional case (Proposition 1). However, if the
latent variables have positive correlation, the same sample
complexity is also sufficient to weakly recover the cumulant
spike.
Proposition 4. In the setting described, let the total number
of samples be n = θdd, with θd ≳ log2 d and growing at
most polynomially in d. The step size (δd)d is chosen to
satisfy:

1

θd
≪ δd ≪ 1√

θd
(12)

Projected SGD reaches weak recovery of the covariance
spike in the sense of Equation (8) in a time τu ≤ n.
Moreover, if the latent variables have positive correla-
tion: E[λν] > 0, conditioning on having matching signs
at initialisation: αu,0αv,0 > 0, weak recovery is reached
also for the cumulant spike v in a time τv ≤ n.

The initialisation assumption αu,0αv,0 > 0 means that the
second part of Proposition 4 can be applied on half of the

runs on average. This requirement could be fundamental:
in case of mismatched initialisation, the correlation of the
latent variables would push both αu,t and αv,t towards 0,
slowing down the process. Note that the dependence of SGD
dynamics on initialisation is a recurring phenomenon that
arises with complex tasks, it is for example a well-known
effect when training a neural network on inputs on a XOR-
like Gaussian mixture task (Refinetti et al., 2021; Ben Arous
et al., 2022). It is likely that this initialisation problem is
specifically due to having a single neuron network. In a
two-layer neural network, overparametrisation usually helps
since it is sufficient that there is a neuron with the right
initialisation signs to drive the learning in the right direc-
tion (Refinetti et al., 2021). For instance, the simulations we
performed for Figure 1 with wide two-layer networks did
not exhibit initialisation problems.

Remark 5. Optimising in θ in Proposition 4, we get that if
1

log2 d
≪ δd ≪ 1

log d , then n ≫ d log2 d guarantees to have
weak recovery. This optimal scaling of δd does not coincide
with the best learning rate scaling for Proposition 3, since
the sample complexity horizon is very short. However, by
taking the slightly sub-optimal learning rate δd = 1

d log d , we
get that on one hand Proposition 3 applies and we can infer
that, with independent latent variables, it takes at least d3

samples/steps to learn direction v. On the other hand, by
Proposition 4 we know that when the latent variables have
(even a small) correlation, in n ≈ d2 log2 d projected SGD
attains weak recovery of both spikes.

This completes our analysis of the search phase of SGD,
which established rigorously how correlated latent variables
speed up the weak recovery of the cumulant spike. We
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finally note that this analysis can only be applied to the
search phase of SGD. The expansion in Equation (7) breaks
down as soon as αu, αv become macroscopic, since there
are infinitely many terms that are not negligible along the
non-Gaussian direction v in that case. Hence, even though
the correlation between latent variables is key in the early
stages of learning, it can become a sub-leading contribution
in the later stages of SGD where the direction of weight
updates is greatly influenced by terms due to HOCs. A
thorough analysis of the descent phase after weak recovery
will require different techniques: the SGD dynamical system
involving the complete expression of the population loss
should be studied, we leave this for future work.

However, the following simple example highlights the
richness of the dynamics in this regime. Consider a
sequence (βm

u , βm
v ) such that (β0

u, β
0
v) = (1, 0) and

limm→∞(βm
u , βm

v ) = (0, 1). The global minimum of
the population loss will move continuously from w = u
to w = v. However, looking at the dynamics of Equa-
tion (10), the change will be only at the level of the coeffi-
cients, and as long as none of them vanishes, the dynamics
will be qualitatively the same. So changing the signal-to-
noise ratios in this regime will affect only the the descent
phase of the problem.

4. Discussion: hierarchies of learning with
neural networks

4.1. Learning functions of increasing complexity and the
staircase phenomenon

There are several well-known hierarchies that characterise
learning in neural networks. In a seminal contribution, Saad
& Solla (1995a;b) characterised a “specialisation” transition
where two-layer neural networks with a few hidden neurons
go from performing like an effective (generalised) linear
model to a non-linear model during training with online
SGD. Notably, this transition occurs after a long plateau in
the generalisation error. A similar learning of functions of
increasing complexity was shown experimentally in convo-
lutional neural networks by Kalimeris et al. (2019).

More recently, Abbé et al. (2021; 2022) studied the problem
of learning a target function over binary inputs that depend
only on a small number of coordinates. They showed that
two-layer neural networks can learn k-sparse functions (i.e.
those functions that depend only on k coordinates) with
sample complexity n ≳ d, rather than the n ≳ dk sample
complexity of linear methods operating on a fixed feature
space, if the target functions fulfil a (merged) staircase
property. Abbé et al. (2023) extended this analysis to study
the saddle-to-saddle dynamics of two-layer neural networks
for specific target link functions. Similar saddle-to-saddle
dynamics have been described by Jacot et al. (2021) in linear

networks and by Boursier et al. (2022) for two-layer ReLU
networks.

A detailed description of the staircase phenomenon when
learning a multi-index target function over Gaussian in-
puts was given by Dandi et al. (2023), who studied feature
learning via a few steps of single-pass, large-batch, gradi-
ent descent1. Their analysis showed how subsequent steps
of gradient descent allow for learning new perpendicular
directions of the target function if those directions are lin-
early connected to the previously learned directions. Bietti
et al. (2023) also consider multi-index target function over
Gaussian inputs, but instead look at the gradient flow for
two-layer neural networks and provide a complete picture
of the timescales of the ensuing saddle-to-saddle dynamics.
Berthier et al. (2023) analyse the gradient flow of two-layer
neural networks when both layers are trained simultaneously.
They perform a perturbative expansion in the (small) learn-
ing rate of the second layer and find the timescales over
which the neural network learns the Hermite coefficients of
the target function sequentially.

4.1.1. RELATION BETWEEN THE MIXED CUMULANT
AND TEACHER-STUDENT MODELS

Given these results, it is natural to ask how the staircases
in teacher-student setups relate to the hierarchical learning
in the mixed-cumulant model. A teacher model with three
“spikes” (or teacher weight vectors) where each spike is
learnt with a different sample complexity, analoguously to
the uncorrelated MCM, is the function

y∗(x) = h1(m · x) + h2(u · x) + h4(v · x), (13)

where hk is the kth Hermite polynomial (see Appendix A.1
for details) and the inputs x are drawn i.i.d. from the stand-
ard Gaussian distribution with identity covariance. In the
language of Ben Arous et al. (2021), a single-index model
with activation hk has information exponent k, so taken
individually, the three target functions in Equation (13) with
directions m,u and v would be learnt with n ≳ d, d log2 d,
and d3 samples by a spherical perceptron using online SGD,
exactly as in our mixed cumulant model with independent
latent variables. We show the sequential learning of the
different directions of such a teacher for a two-layer neural
network in Figure 2A. In particular, we plot the test error
with respect to the teacher y∗(x) (13) for a two-layer net-
work trained directly on the teacher (red), and for two-layer
networks trained on only the first / the first two Hermite poly-
nomials of Figure 2 (blue and green, respectively). Their
performance suggests that the three directions m, v, u are
learnt sequentially, which is further supported by showing

1Note that a single step of gradient descent was studied in a
similar setting by Ba et al. (2022); Damian et al. (2022) without
analysing the staircase phenomenon.
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A

Mean only
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Mean + cov

Full data

Gaussian equiv.

Mixed cumulants 
independent latents

B CCIFAR10 Mixed cumulants 
correlated latents

A B C D

Figure 2. Staircases in the teacher-student setup. A Test accuracy of the same two-layer neural networks as in Figure 1 evaluated on the
degree-4 target function y∗(x) (13) during training on the target functions y(1)(x) = h1(m · x) (blue), y(2)(x) = h1(m · x) + h2(u · x)
(green), and the teacher function Equation (13) (red). Inputs are drawn from the standard multivariate Gaussian distribution. B-D We
show the the average of the top-5 largest normalised overlaps wk · u of the weights of the kth hidden neuron wk and the three directions
that need to be learnt for three different target functions: the teacher function in Equation (13) (B), the same teacher with inputs that have
a covariance 1+ uv⊤ + vu⊤ (C), and a teacher with mixed terms, Equation (14) (D). The dashed black line is at d−1/2, the threshold for
weak recovery. Parameters: Simulation parameters as in Figure 1: d = 128,m = 512 hidden neurons, ReLU activation function. Full
details in Appendix B.1.

the maximum normalised overlap of the hidden neurons
with the different spikes shown in Figure 2B.

How can we speed up learning of the direction u with in-
formation exponent 4 in a way that is analogous to the
correlated latents? The latent variables of the MCM corres-
pond to the pre-activations of the target function in the sense
that both are low-dimensional projections of the inputs that
determine the label. In the standard teacher-student setup,
where inputs are drawn i.i.d. from a multivariate normal dis-
tribution with identity covariance, and target functions are of
two-layer networks of the form y∗(x) =

∑
k vkσk(uk · x),

it is not possible to have correlated pre-activations. Instead,
we can speed up learning of the direction v by introducing a
mixed term in the target function,

y∗(x) = h1(m·x)+h1(u·x)h1(v ·x)+h2(u·x)+h4(v ·x),
(14)

as is apparent from the overlap plot in Figure 2C. Dandi
et al. (2023) and Bietti & Bach (2021) discuss the speed-
up of learning this type of target function in the one-step
and gradient flow frameworks, respectively, whereas our
analysis focuses on online stochastic gradient descent with
non-Gaussian inputs. An alternative for correlating the pre-
activations is to keep the target function Equation (13) while
drawing inputs from a normal distribution with covariance
1+ uv⊤, and we see in Figure 2D that it does indeed speed
up learning of the cumulant direction. This result is similar
to the setting of Mousavi-Hosseini et al. (2024), who found
that “spiking” of the input covariance can speed up learning
a single-index model with a two-layer network.

So in summary, we see that the accelerated learning requires
fine-tuning between the target function and the input struc-
ture. The mixed cumulant model does not require an explicit
target function and instead directly highlights the import-
ance of the correlation in the latent variables of the inputs
to distinguish different classes of inputs.

4.2. The role of Gaussian fluctuations with correlated
latents

Correlation between latent variables changes the covariance
of the inputs compared to independent latents. A quick
calculation shows that the covariance of the inputs under the
planted distribution Cuv ≡ cov

Qplant
(x, x) becomes

Cuv = 1+βuuu
⊤+

√
βuβv

1 + βv
Eλν

(
uv⊤ + vu⊤) . (15)

In other words, we can weakly recover the cumulant spike
by computing the leading eigenvector of the covariance of
the inputs. Does that mean that the speed-up in learning
due to correlated latents is simply due to the amount of
information about the cumulant spike v that is exposed in
the covariance matrix?

We test this hypothesis by taking the two-layer neural
networks trained on the full MCM model and evaluating
them on an equivalent Gaussian model, where we replace
inputs from the planted distribution Qplant of the MCM
with samples from a multivariate normal distribution with
mean βmum and covariance Cuv. We plot the correspond-
ing test losses for independent and correlated latents in
orange in Figure 1. When latent variables are independ-
ent, the Gaussian approximation breaks down after after a
long plateau at ≈ 107 steps, precisely when the network
discovers the non-Gaussian fluctuations due to the cumulant
spike. For correlated latent variables on the other hand, the
Gaussian approximation of the data only holds for ≈ 104

steps. This suggests that the presence of the cumulant spike
in the covariance gives some of the neurons a finite over-
lap wk · v with the cumulant spike, and this initial overlap
speeds up the recovery of the cumulant spike using informa-
tion from the higher-order cumulants of the data which is
inaccessible at those time scales when latent variables are
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uncorrelated. The presence of correlated latent variables
therefore genuinely accelerates the learning from higher-
order, non-Gaussian correlations in the inputs.

4.3. Further related work

Learning polynomials of increasing degree with kernel
methods A series of works analysing the performance
of kernel methods (Dietrich et al., 1999; Ghorbani et al.,
2019; 2020; Bordelon et al., 2020; Spigler et al., 2020;
Xiao et al., 2022; Cui et al., 2023) revealed that kernels (or
linearised neural networks in the “lazy” regime (Li & Yuan,
2017; Jacot et al., 2018; Arora et al., 2019; Li & Liang,
2018; Chizat et al., 2019)) require n ≳ dℓ samples to learn
the ℓth Hermite polynomial approximation of the target
function. Here, we focus instead on the feature learning
regime where neural networks can access features from
higher-order cumulants much faster.

Tensor PCA with side information From the perspect-
ive of unsupervised learning, the MCM model is closely
related to models studied in random matrix theory. When
βm = βν = 0, the data distribution boils down to the well
known Spiked Wishart model, that exhibits the BBP phase
transition (Baik et al., 2005), which predicts thresholds on
βc for detection, at linear sample complexity n ≈ d. If
instead only βν ̸= 0, the MCM model corresponds to a
tensor PCA problem, where one seeks to recover a signal
ξ ∈ Rd from a noisy order-p tensor T = ξ⊗p + ∆ with
suitable noise tensor ∆ (that in most of the cases is assumed
to be Gaussian distributed). Indeed, in the MCM model the
HOCs spike v could be retrieved by performing tensor PCA
on the empirical kurtosis tensor.

The notion of correlated latent variables that we consider
in the present work is reminiscent to the concept of side
information that Richard & Montanari (2014) considered
for tensor PCA. The side information would be an additional
source of information on the spike via a Gaussian channel,
y = γξ + g, where g is a Gaussian noise vector and γ > 0;
using this estimate as an initialisation for AMP leads to
a huge improvement in estimation. This joint model can
be seen as a rank-1 version of a topic modelling method
analysed by Anandkumar et al. (2014). In a similar vein,
Sarao Mannelli et al. (2020) introduced the spiked matrix-
tensor model, in which the statistician tries to recover ξ via
the observation of a spiked matrix M ∝ ξξ⊤ +∆(1) and an
order-p tensor T ∝ ξ⊗p +∆(2) with appropriately scaled
noise matrix / tensor ∆(1) and ∆(2), respectively. They
analyse the optimisation landscape of the problem and the
performance of the Langevin algorithm (Sarao Mannelli
et al., 2020) and of gradient descent (Sarao Mannelli et al.,
2019b;a). The main difference to our model is that these
works consider recovering a single direction that spikes both
the matrix and the tensor; we consider the case where two

orthogonal directions are encoded as principal components
of the covariance matrix and the higher-order cumulant
tensors of the data.

5. Concluding perspectives
To achieve good performance, neural networks need to un-
wrap the higher-order correlations of their training data to
extract features that are pertinent for a given task. We have
shown that neural networks exploit correlations between the
latent variables corresponding to these directions to speed
up learning. In particular, our analysis of the spherical
perceptron showed that correlations between the latent vari-
ables corresponding to the directions of two cumulants of
order p and q > p, respectively, will speed up the learn-
ing of the direction from the qth cumulant by lowering its
information exponent.

Our results open up several research directions. First, it
will be intriguing to extend our analysis from single-index
to shallow models. For two-layer neural networks, a key
difficulty in applying mean-field techniques to analyse the
impact of data structure on the dynamics of learning is the
breakdown of the Gaussian equivalence principle (Mei &
Montanari, 2022; Goldt et al., 2020; 2022; Gerace et al.,
2020; Hu & Lu, 2022; Pesce et al., 2023) that we dis-
cussed in Section 4.2. In the presence of non-Gaussian
pre-activations wk · x, it is not immediately clear what the
right order parameters are that completely capture the dy-
namics. An analysis of the dynamics in the one-step frame-
work of Ba et al. (2022); Dandi et al. (2023) is another
promising approach to tackle the dynamics of two-layer
networks. Other intriguing directions include determining
the hardness of learning from higher-order cumulants when
re-using data (Dandi et al., 2024) and from the perspective
of generative exponents (Damian et al., 2024). For deeper
neural networks, it is important to investigate the role of
different layers in processing the HOCs of the data (even
numerically), for example along the lines of Fischer et al.
(2022). Finally, it will be intriguing to investigate how
correlated latent variables emerge both in real data and in
(hierarchical) models of synthetic data.
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Zdeborová, L. Generalisation error in learning with ran-
dom features and the hidden manifold model. In Interna-
tional Conference on Machine Learning, pp. 3452–3462.
PMLR, 2020.

Ghorbani, B., Mei, S., Misiakiewicz, T., and Montanari, A.
Limitations of lazy training of two-layers neural network.
In Advances in Neural Information Processing Systems,
volume 32, pp. 9111–9121, 2019.

Ghorbani, B., Mei, S., Misiakiewicz, T., and Montanari, A.
When do neural networks outperform kernel methods?
In Advances in Neural Information Processing Systems,
volume 33, 2020.
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Classifying high-dimensional gaussian mixtures: Where
kernel methods fail and neural networks succeed. In
International Conference on Machine Learning, pp. 8936–
8947. PMLR, 2021.

Refinetti, M., Ingrosso, A., and Goldt, S. Neural networks
trained with sgd learn distributions of increasing complex-
ity. In International Conference on Machine Learning,
pp. 28843–28863. PMLR, 2023.

Richard, E. and Montanari, A. A statistical model for tensor
pca. Advances in neural information processing systems,
27, 2014.

Riegler, P. and Biehl, M. On-line backpropagation in two-
layered neural networks. Journal of Physics A: Mathem-
atical and General, 28(20):L507, 1995.

Saad, D. and Solla, S. Exact Solution for On-Line Learning
in Multilayer Neural Networks. Phys. Rev. Lett., 74(21):
4337–4340, 1995a.

Saad, D. and Solla, S. On-line learning in soft committee
machines. Phys. Rev. E, 52(4):4225–4243, 1995b.

Sarao Mannelli, S., Biroli, G., Cammarota, C., Krzakala,
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A. Dynamical analysis
A.1. Expansions with Hermite polynomials

In this section we will present how expansion formulas like (7) can be obtained. The idea is that, thanks to the fact that
the null hypothesis distribution Q0 is a standard Gaussian, and that the planted distribution Qplant is still quite close to a
standard Gaussian, with signal on just 1 or 2 directions, it is possible to use Hermite polynomials to expand in polynomial
series all the functions of interest.

This use of Hermite polynomials is, at this point, well known, and we refer for instance to (Székely et al., 2023), (Kunisky
et al., 2019), (Dandi et al., 2023) for more details on this kind of application of Hermite polynomials. We will just recall the
properties that we need:

• (hn)n∈N is a family of polynomials in which hk has degree k.

• they form an orthonormal basis for L 2(R,N (0, 1)), which is the Hilbert space of square integrable function with the
product:

⟨hi, hj⟩ = Ez∼N (0,1) [hi(z)hj(z)] = δij

• this can be generalised to higher dimensions. (Hα)α∈Nd such that:

Hα(x1, . . . , xd) =

d∏
i=1

hαi
(xi)

form an orthonormal basis for the space L 2
(
Rd,N (0,1d×d)

)
Moreover, it will be useful the following rewriting in our notation of lemma 1 in (Dandi et al., 2023):
Lemma 6. Suppose g ∈ L 2(R,N (0, 1)) and w ∈ R, with ||w|| = 1, then f : Rd → R defined as f(x) := g(w · x)
belongs to L 2(Rd,N (0,1d)) and has Hermite coefficients:

Cf
α := E

z∼N (0,1d)
[Hα(z)f(z)] = E

z∼N (0,1)

[
h|α|(z)g(z)

] d∏
i=1

wαi
i , α ∈ Nd (16)

Suppose now g ∈ L 2(R2,N (0,12)) and u, v ∈ R, with ||u|| = ||v|| = 1 and u · v, then f : Rd → R defined as
f(x) := g(u · x, v · x) belongs to L 2(Rd,N (0,1d)) and has Hermite coefficients:

Cf
α =

∑
i+j=|α|

E
z∼N (0,12)

[
H(i,j)(z)g(z)

] d∏
m=1

 ∑
im+jm=αm∑

m im=i,
∑

m jm=j

uim
m vjmm

 (17)

First we will present the expansion procedure informally, and then in Lemma 7 we will see the exact statement that will be
used in the subsequent proofs.

Assume the learning algorithm is a perceptron f(w, x) = σ(w · x), it can be expanded in Hermite basis with appropriate
coefficients:

f(w, x) =

∞∑
k=0

cσkhk(w · x)

where
cσk = E

z∼N (0,1)
[σ(z)hk(z)] (18)

Suppose that the data distribution is the MCM as described in Section 2 (for simplicity we will assume that βm = 0; there
are only the covariance and HOCs spikes). To be able to carry on the expansion it is useful to consider (as done in (Kunisky
et al., 2019) and (Székely et al., 2023)) the likelihood ratio of Qplant with respect to Q0:

L(x) :=
dQplant(x)

dQ0(x)
(19)
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Note that since Qplant is a perturbation of a standard Gaussian only along the directions u, v; then the likelihood ratio L will
depend only on the projections yu := x · u, yv = x · v. Assuming u, v to be orthogonal and the non Gaussianity ν to have a
distribution that belongs to L 2(R,N (0, 1)), we can have an expansion in Hermite basis:

L(x) =

∞∑
i,j=0

cLijhi(yu)hj(yv)

where

cLij = E
(z1,z2)∼N (0,12×2)

[L(u · z1 + v · z2)hi(z1)hj(z2)] (20)

So assuming to use a correlation loss:

L(w, (x, y)) = 1− yf(w, x)

The population loss is:

L(w) = Ex,y[L(w, (x, y)] = 1 +
1

2
EQ0

[σ(w · x)]− 1

2
EQ0

[L(x)σ(w · x)]

= Ex,y[L(w, (x, y)] = 1 +
1

2
E

z∼N (0,1)
[σ(z)]− 1

2
EQ0

[L(x)σ(w · x)] (21)

= 1 +
cσ0
2

− 1

2
EQ0

 ∞∑
i,j=0

cLijhi(x · u)hj(x · v)

( ∞∑
k=0

cσkhk(w · x)

)
The following lemma deals with the exchanging the integral and the series.

Lemma 7. Let P be such that the likelihood ratio is square integrable L ∈ L 2
(
Rd,Qd

)
and depends on x only through its

projection along 2 orthogonal directions u, v:

L(x) = l(u · x, v · x) =
∞∑

i,j=0

cLijhi(x · u)hj(x · v) (22)

Suppose σ ∈ L 2 (R,Q) ∩ C 1(R), with derivative σ′ ∈ L 2 (R,Q) ∩ C 0(R), and expansions

σ(y) =

∞∑
k=0

cσkhk(y) (23)

then, defining αu := u · w and αv := v · w, the following identity holds

EQ0 [L(x)σ(w · x)] =
∞∑
i,j

cLijc
σ
i+jα

i
uα

j
v (24)

Moreover, if
∑

k kc
σ
k < ∞, the population loss L(w) ∈ C 1(C,R), where C :=

{
w ∈ Sd−1|αu < 1

2 , αv < 1
2

}
and it is also

possible to switch expectations and derivatives, to get the expression:

∇L(w) = ∇EQ [L(x)L(w, (x, y))] = EQ [L(x)∇L(w, (x, y))] =

= −1

2

( ∞∑
i=1

icLi0c
σ
i α

i−1
u

)
u+

 ∞∑
j=1

jcL0jc
σ
j α

j−1
v

 v +

 ∞∑
i,j=1

cLijc
σ
i+jα

i−1
u αj−1

v (iαvu+ jαuv)

 (25)

Proof. First focus on (24). We know that both L and σ(w · ) belong to L 2
(
Rd,Q0

)
, hence we can see the integral in (24)
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as the L 2 inner product, and compute it using the series expansion and Lemma 6.

EQ0
[L(x)σ(w · x)] =

∑
α∈Nd

cLαc
σ(w·)
α =

∞∑
k=0

∑
|α|=k

cLαc
σ
k

d∏
l=1

wαl

l

=
∑
k

∑
i+j=k

cLijc
σ
k

∑
|α|=k

d∏
m=1

wαm
m

 ∑
im+jm=αm∑

m im=i,
∑

m jm=j

uim
m vjmm



=
∑
k

∑
i+j=k

cLijc
σ
k

d∏
m=1

 ∑
∑

m im=i∑
m jm=j

(umwm)im(vmwm)jm


=
∑
k

∑
i+j=k

cLijc
σ
kα

i
uα

j
v

Moreover it can be verified directly that, under the assumption that
∑

k kc
σ
k < ∞, and w ∈ C the series in (25) converges

uniformly, hence also the second part of the statement holds.

A.2. Properties of the MCM model

In this section we will apply the Hermite expansion to the Mixed Cumulant Model and note the key properties that will
allow to prove the Propositions of Section 3.

A.2.1. HERMITE COEFFICIENTS

Starting from the single direction models we have that:

• If βm = βv = 0 only the covariance spike survives and the model is Gaussian, hence the population loss is:

L(w) = ℓ(αu) = 1− βuc
σ
2

4
α2
u (26)

• if βm = βu = 0 only the cumulants spike survives. To compute the Hermite coefficients we can rely on lemma 13
form (Székely et al., 2023) to get:

L(w) = ℓ(αv) = 1− 1

2

∑
j≥3

cσj
j!

(
βv

1 + βv

)j/2

E[hj(ν)]α
j
v (27)

So if ν =Radem(1/2) we have that the leading term is

L(w) = ℓ(αv) = 1 +
cσ4
4!

(
βv

1 + βv

)2

α4
v + o(α4

v)

Note the change of sign, due to E[h4(ν)] = −2. This is why we need to ask cσ4 < 0 to have that the population loss is
decreasing for small αv .

• consider now the case with both spike and independent latent variables λ, ν. It is easy to see that, thanks to the
independence, the coefficients split cLij = ccovi ccumulant

j , so the leading terms are:

L(w) = ℓ(αu, αv) = 1− 1

2

βuc
σ
2

4︸ ︷︷ ︸
c20

α2
u − −cσ4

4!

(
βv

1 + βv

)2

︸ ︷︷ ︸
c04

α4
v + o(α4

v) (28)
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• in case of latent variables with positive correlation, we need to add mixed terms, the leading one is c11 =

cσ2

√
βuβv

1+βv
E[λν]. So the first few terms of the expansion of the population loss are:

L(w) = ℓ(αu, αv) = 1− 1

2

(
c20α

2
u + c11αuαv + c04α

4
v

)
+ o(αuαv) (29)

note that the presence of c11 > 0 makes the term c04α
4
v to become a sub-leading contribution, lowering the information

exponent on the v direction.

A.2.2. ASSUMPTION ON THE SAMPLE WISE ERROR

An important quantity for proving the Propositions in Section 3 is the sample-wise error

Hµ
d (w) := Ld (w, (x

µ, yµ))− Ld(w)

we will ask the same assumptions of (Ben Arous et al., 2021):

sup
w∈Sd−1

E
[
(∇sphHd(w) · u)2

]
≤ C1

sup
w∈Sd−1

E
[
(∇sphHd(w) · v)2

]
≤ C1

sup
w∈Sd−1

E
[
||∇sphHd(w)||4+ι

]
≤ C2d

4+ι/2 for some ι > 0

simple calculations ensure that it is sufficient to ask that

• Qplant has finite moments up to the 8-th order,which is satisfied when taking ν ∼Rademacher(1/2).

• the following holds:

sup
w∈Sd−1

E
[
σ′(w · x)4

]
≤ C

sup
w∈Sd−1

E
[
σ′(w · x)8+2ι

]
≤ C

which we have assumed in (11)

A.3. Proof for the SGD analysis

Here we will provide proofs for the Propositions presented in Section 3. All of them rely heavily on the thorough analysis of
spherical perceptron dynamics proved in (Ben Arous et al., 2021).

Note that Proposition 1 is a well known result, very close to the examples provided in section 2 of (Ben Arous et al., 2021),
and we can verify that a straightforward application of theorems 1.3 and 1.4 from (Ben Arous et al., 2021), in the case k = 2,
proves it.

A different situation happens for Proposition 2, the spiked cumulant model is quite recent so its SGD dynamics have still to
be investigated. However it is very quick to verify that also in this case it is possible to apply theorems 1.3 and 1.4 from
(Ben Arous et al., 2021). Assumption B in (Ben Arous et al., 2021) is met thanks to Appendix A.2.2. The monotonicity
assumption could be harder to check, but since we are interested only in the search phase, it is sufficient to satisfy that
L(w) = ℓ(αv) is monotone only in (0, ρ) for any ρ > 0 (assumption Aρ introduced in section 3.1 of (Ben Arous et al.,
2021)), which is clear from (27). Hence we can apply the case k = 4 of theorems 1.3 and 1.4 from (Ben Arous et al., 2021),
to conclude the proof.

A.3.1. PROOF OF PROPOSITION 3

This proposition can be considered a Corollary of Theorem 1.4 from (Ben Arous et al., 2021), the only differences is that
the data distribution has an additional direction u and that we are considering also lower learning rates δ = o(1) instead of
δ = o( 1d ) (note that at page 10 in (Ben Arous et al., 2021) this extension to larger learning rates is already mentioned).
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On one hand we will verify that thanks to the fact that the auxiliary variable λ, ν are independent, then the additional
direction u makes no impact in the dynamic of the overlap αv . On the other hand, the condition n ≤ d

δ2d
ensures that we are

always inside the time horizon considered in (Ben Arous et al., 2021). We will discuss how to deal with these two changes
in the next two paragrphs.

Direction u can be neglected Since ∇sphL(wt, (x
t, yt)) is orthogonal to wt we have that ||α̃v,t|| = ||v · w̃t|| ≥ 1. Hence

we have that it αv,t > 0, then

αv,t ≤ α̃v,t = αv,t−1 −
δ

d
∇sphL(wt−1, (x

t, yt)) · v

= αv,t−1 −
δ

d
∇sphL(wt−1) · v −

δ

d
∇sphH

t(wt−1) · v

Since the sample-wise error satisfies the same properties required in (Ben Arous et al., 2021) (as checked in Appendix A.2.2)
we just need to ensure that the drift term also can be handled in the same way as in (Ben Arous et al., 2021). There, the
monotonicity assumption on the population loss allowed to estimate −v · ∇sphL(w) ≤ Cα3

v for αv > 0. So the aim will be
to get a similar bound. Note that we can assume αv smaller than η, hence we can apply (28) and Lemma 7 to get:

−∇sphL(w) · v = ((v − αvw)
⊤ ∇L(w)

= ∂vℓ− αv (αu∂uℓ+ αv∂vℓ)

= 4c04α
3
v − c20α

2
uαv + o(η3)

≤ 5c04α
3
v

We can now use this inequality to reach the same estimates as in p 37 of (Ben Arous et al., 2021), and carry on with their
proof, in the case δ = o( 1d ). We only need to show that we can take larger step size, at the cost of taking n ≪ d

δ2d
.

Larger step size We note that in the proof of Theorem 1.4 from (Ben Arous et al., 2021) the main use of the assumptions
δ = o( 1d ) was to ensure that n

d δ
2
d = o(1) which is required to use the following form of Doob’s maximal inequality for

martingales:

sup
wo∈Sd−1

Pw0

max
t≤n

δ

d

∣∣∣∣∣∣
t−1∑
j=0

∇sphH
j+1(wj) · u

∣∣∣∣∣∣ ≥ r

 ≤ 2nδ2C

d2r2
, (30)

where Pw0 means that we are conditioning that the initial weight is w0, C comes from Appendix A.2.2 and r > 0 is a free
parameter. To carry out the proof, the noise level needs to be of order 1√

d
, hence we want to be able to take r ≈ d−1/2 and

have that the probability in Equation (30) goes to 0, which is guaranteed by the condition n
d δ

2
d = o(1). Hence we can follow

(Ben Arous et al., 2021) p 38 and get that the trajectory will be below η for all t ≤ t̃ := Cη
d2

δ , which is larger than our
horizon, completing the proof.

A.3.2. PROOF OF PROPOSITION 4

We will focus on the case of correlated latent variables and prove weak recovery of both spikes. This will be a proof also of
the weak recovery of the covariance spike in the case of independent latent variable (which is actually much simpler and is
essentially a straight-forward verification of (Ben Arous et al., 2021) theorem 1.3 to our slightly different setting).

First note that we can restrict to initialisation with positive overlap, αu,0, αv,0 > 0: if for example the initialisation was
αu,0 < 0 then we can just substitute û := −u, λ̂ = −λ so that the sign changes cancel each other and x̂ = x but
α̂u,0 = −αu,0. In the case of uncorrelated latents, the distribution would not change: x̂ ∼ x, due to the symmetry of the
latent variables and independents of the two directions, hence the new problem is equivalent to the previous one.

In case of positive correlation of the latent variables, we need to use our assumption that there is no sign mismatch in the
initialisation. Unlike the uncorrelated case, we cannot change the sign of one of the axes without changing also the other,
since it would flip the sign of the correlation. So there are only two cases: either αu,0, αv,0 > 0, which is the desired
initialisation; or αu,0, αv,0 < 0, where we can flip the signs along both the spiked directions:

û = −u, λ̂ = −λ, v̂ = −v, µ̂ = −µ
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So that x̂ = x and (λ̂, ν̂) ∼ (λ, ν) keeping a positive correlation and α̂u/v,0 = −αu/v,0.

So from now on we can assume αu,0, αv,0 > 0. Hence, for d large enough, w0 ∈ Kη :=
{
w : (αu, αv) ∈ [0, η]2

}
, for

η > 0 small, so we are able to use the expansions from Appendix A.2.1.

Recall from the statement that we assume n = θdd, with θd ≳ log2 d, and choose the step size δ = δd such that
1/θd ≪ δ ≪ 1/

√
θd. To prove weak recovery, we will show that there are ηu, ηv ≤ η such that, defining the τu, τv as the first

times in which αu,t ≥ ηu and αv,t ≥ ηv , then the probability that τu, τv ≤ n goes to 1 as d → ∞.

Weak recovery of the covariance spike Given γ > 0, let Eγ :=
{
w
∣∣ αu ≥ γ√

d
, αv ≥ γ√

d

}
. Since we consider the limit

d → ∞ and w0 ∼Unif(Sd−1), we can apply Poincaré lemma and have that for any ε > 0 we can find γ > 0 such that for all
d sufficiently large

P (w0 ∈ Eγ) ≥ 1− ε (31)

So, fix ε > 0 and from now on we will assume that w ∈ Eγ for some γ > 0 sufficiently small (or d sufficiently large) so
that (31) holds.

The first step is to prove that the difference inequality from Proposition 4.1 from (Ben Arous et al., 2021) holds also in our
case for (αu,t)t>0. So starting from the update equation (4) and taking the scalar product by u we get

α̃u,t+1 = αu,t −
δ

d
u · ∇sphL (w, (xt, yt))

= αu,t −
δ

d
u ·
(
∇sphL (w) +∇sphH

t(w)
)

Where we used the definition of sample-wise loss Ht(w) = L (w, (xt, yt)) − L (w). Now we need to normalise αu,t =
α̃u,t/||α̃u,t|| but instead we just estimate the denominator, using the fact that if αu, αv ≤ 1

2 by Lemma 7 L ∈ C 1(C,R). So
restricting in Kη for any η < 1

2 we have that there exists A > 0:

sup
w∈Kη

|∇sphL (w) | ≤ A (32)

and letting

Θt :=

∣∣∣∣ 1√
d
∇sphH

t (wt−1)

∣∣∣∣2 (33)

It is straightforward to estimate:

1 ≤ |α̃u,t| ≤ 1 + δ2
(
A

d2
+

Θt

d

)
︸ ︷︷ ︸

ζ

Then we can use the chain of inequalities: 1
|α̃u,t| ≥

1
1+ζ ≥ 1− ζ to get:

αu,t ≥ αu,t−1 −
δ

d
∇sphL(w) · u− δ

d
u · ∇sphH

t(wt−1)− δ2
(
A

d2
+

Θt

d

)
|αu,t−1|

− δ3
(
A

d2
+

Θt

d

)(
1

d
|∇sphL(w) · u|+

1

d
|u · ∇sphH

t(wt−1)|
)

(34)

Now, one of the key ideas employed in (Ben Arous et al., 2021) is to split the random term

δ2
Θt

d
|αu,t−1| = δ2

Θt1Θt≤Θ̂

d
|αu,t−1|+ δ2

Θt1Θt≥Θ̂

d
|αu,t−1| (35)

Where Θ̂ is a real parameter to be tuned carefully. So we can regroup the terms in (34) in two families (for the sake of
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brevity, we use the notation Λ := |∇sphL(w) · u|+ |u · ∇sphH
t(wt−1)|):

αu,t ≥ αu,t−1

F1︷ ︸︸ ︷
− δ

d
∇sphL(wt−1) · u− δ2

Θt1Θt≤Θ̂

d
|αu,t−1|+

− δ

d
u · ∇sphH

t(wt−1)− δ2
(
A

d2
+

Θt1Θt≥Θ̂

d

)
|αu,t−1| −

Λδ3

d

(
A

d2
+

Θt

d

)
︸ ︷︷ ︸

F2

(36)

The family F2 is made up by terms that are either always negligible, or that can cause problems only if very unlikely
realisations of H and Θ happen. They are estimated in lemmas 4.3 and 4.5 of (Ben Arous et al., 2021), and, since our
assumption A.2.2 implies assumption B in (Ben Arous et al., 2021), we are able to replicate those estimates also in our case.

On the contrary, to handle F1 we need to make an adjustment: (Ben Arous et al., 2021) relied on their formula (4.12), that was
derived from the monotonicity and mono-dimensionality of the population loss, which we do not have. However, consider
the gradient of the population loss in direction u. Applying Lemma 7 and substituting the values from Appendix A.2.1 we
have that −u∇sphL(w) = 1

2 (c20αu + c11αv) + o(η), since both c20 = 2βuc
σ
2 > 0 and c11 > 0, taking η small enough and

assuming (αu, αv) ∈ Kη we have that:

1

4
(c20αu + c11αv) ≤ −u∇sphL(w) ≤ c20αu + c11αv (37)

Hence, if we assume αv ≥ 0, we get −u∇sphL(w) ≥ 1
4c20αu, which is exactly what we needed to replicate equation (4.12)

in (Ben Arous et al., 2021), so as long as αu/v,t−1 > 0 we have that:

αu,t ≥ αu,t−1 −
δ

d

(c20
4

− δΘt1Θt≤Θ̂

)
αu,t−1 + F2 (38)

Hence we are back on the setting studied in (Ben Arous et al., 2021), and using that δ ≲ 1
log d we can apply also lemma 4.2

and proposition 4.4 in (Ben Arous et al., 2021).

So, conditioning on positivity of (αv,t)t≤τ we can apply to (αu,t)t Proposition 4.1 from (Ben Arous et al., 2021), that
implies

lim
d→∞

inf
w0∈Eγ/

√
d

Pw0

αu,t ≥
αu,0

2
+

δ

8d

t−1∑
j=0

c20αu,j∀ t ≤ τ

∣∣∣∣∣αv,t ≥ 0 ∀t ≤ τ

 = 1

where τ is a stopping time defined as τ := inf

{
t ≤ n

∣∣ αu,t ≤
γ

2
√
d

or αu,t ≥ η

} (39)

where Pw0
denotes the probability conditioned on starting from w0.

Recall discrete Gronwall inequality

xn ≥ a+ b

n−1∑
i=0

xi =⇒ xn ≥ a (1 + b)
n
, a, b > 0

Using it, we get that, if the event in (39) happens, then

αu,t ≥
αu,0

2

(
1 +

δc20
8d

)t

∀t ≤ τ (40)

So, recalling that we are conditioning to be in Eγ , so αu,0 ≥ γ√
d

, (40) proves that αu,t will have surpassed ηu after a number
of steps t∗u:

t∗u =
log
(
2ηu

√
d
)
− log γ

log
(
1 + δc20

8d

) ≈ C
d

δ
log d (41)

This proves weak recovery of the covariance spike in the time require ending the first part of Proposition 4.
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Weak recovery of the cumulant spike Now turn to (αv,t)t. Starting from the equivalent of (36), we cannot apply the
same reasoning this time because

−v · ∇sphL(w) = c11αu(1 + o(η)) + 4c04α
3
v(1 + o(η)) αu, αv ≤ η. (42)

There is no linear term in αv , hence we cannot regroup the term δΘt1Θt≤Θ̂|αv,t−1| as did in (38).

We will instead prove a the following:

αv,t ≥
γ̃

2
√
d

(
1 +

δmin(c20, c11)

8d

)t

(43)

for some γ̃ small enough. To show it, we apply lemma 4.3, 4.5 from (Ben Arous et al., 2021), and (42), to get that:

lim
d→∞

inf
w0∈Eγ/

√
d

Pw0

αv,t ≥
αv,0

2
+

δ

4d

t−1∑
j=0

c11αu,j + 4c04α
3
v,j −

δ2

d
1Θj≤Θ̂αv,j ∀ t ≤ τ̃

 = 1

where τ̃ is a stopping time defined as τ̃ := inf

{
t ≤ n

∣∣ αv,t ≤
γ

2
√
d

or αv,t ≥ η

}
We need to divide in 2 cases to be able to carry one the estimates: suppose first that αu,s ≥ αv,s for all s ≤ t. Hence
δ2αv,t ≤ δ2αu,t hence we can also apply proposition 4.4 to get:

lim
d→∞

inf
w0∈Eγ/

√
d

Pw0

αv,t ≥
αv,0

2
+

δ

8d

t−1∑
j=0

c11αu,j ∀ t ≤ Su

 = 1

where Su is defined as Su := inf

{
t ≤ n

∣∣ αv,t ≤
γ̃

2
√
d

or αv,t ≥ η or αv,t ≥ αu,t

} (44)

This implies that as long as αv is below αu, it satisfies the same kind of Gronwall inequality, with different coefficients,
leading to:

αv,t ≥
αv,0

2

(
1 +

δc11
8d

)t

t ≤ Su

so it satisfies (43) for this selection of times. Now note that we actually proved a stronger property. If at any time t:
γ̃

2
√
d

(
1 + δmin(c11,c20)

8d

)t
≤ αv,t ≤ αu,t, then we know that same reasoning applies and, calling S(2)

u the next instant such

that with α
v,S(2)

u
≥ α

u,S(2)
u

we get that for all times t ≤ s ≤ S(2)
u :

αv,s ≥
αv,t

2

(
1 +

δc11
8d

)s−t

hence αv,s satisfies (43).

Consider now the other case: if at any instant t we have that αv,t−1 ≥ αu,t−1 we want to prove that it cannot happen that

αv,t ≤ γ̃

2
√
d

(
1 + δmin(c20,c11)

8d

)t
. To do this we use an estimate on the update equation (it can be easily verified that comes

from the application of lemma 4.3,4.5 to formula (4.11) of (Ben Arous et al., 2021), with their choice Θ̂ = d
1
2−

1
4 ι):

αv,t ≥
(
1− δ2

d1/2+1/4ι

)
αv,t−1 +

c11δ

8d
αu,t−1 −

γ̃

5
√
d

≥
(
1− δ2

d1/2+1/4ι
+

c11δ

8d

)
αu,t−1 −

γ̃

5
√
d

≥
(
1−O

(
d−1/2

)) αu,0

2

(
1 +

δc20
8d

)t

− γ̃

5
√
d

Which verifies our requirement by taking γ̃ small enough with respect to γ and d large enough.
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Hence we verified that conditioning on the the events (31) and (39) (that have arbitrarily large probabilities), also inequality
(43) holds. This means that we can drop all the positivity requirements and have that, as long as 0 < αu,t, αv,t ≤ η, then
with high probability (αu,t)t satisfies (40) until it reaches ηu and (αv,t)t satisfies (43) until it reaches ηv , hence we need to
take n larger than the maximum of those bounds, which is (43):

n > t∗v =
log
(
2η

√
d
)
− log γ̃

log
(
1 + δmin(c20,c11)

8d

) ≈ C
d

δmin(c20, c11)
log d (45)

Where the first constant C is just a number, does not depend on η, γ̃, for d large enough. Substituting the constraint δ ≪ 1
log d

(that we used in order to apply proposition 4.1 from (Ben Arous et al., 2021)) we get that n ≳ d log2 d is a sufficient sample
complexity for weak recovery if δ is as close as possible to the upper bound 1

log d . If instead we take a smaller learning rate
δ ≈ 1

d2 we have that if n ≫ d2 log d weak recovery is guaranteed, as shown in Table 1.

So the proposition is proved under the assumption that all the trajectories live in Kη with η sufficiently small. To conclude
we need to make sure that it cannot happen that one of (αu/v,t)t surpasses η while the other is still close to 0 and far away
from ηu/v. Note that up until now we did not choose explicitly values for ηu/v, so it will be sufficient to take them way
smaller than η to be sure that there will be no problems.

To be more precise, we will use the following bound on the maximum progress achieved in a fixed time interval.

Bound on maximum progress Supposing αu,t > 0 (all that we will do here works also for αv, t), since the direction of
the spherical gradient is tangent to the sphere it follows that ||w̃u,t|| > 1, hence

αu,t ≤ α̃u,t = αu,t−1 −
δ

d
∇sphL(wt−1) · u− δ

d
u · ∇sphH

t(wt−1) (46)

Applying this inequality iteratively in a time interval [t1, t2], assuming αu,t > 0 in all the interval, we get that

αu,t2 ≤ αu,t1 −
t2−1∑
j=t1

δ

d
∇sphL(wj) · u+

δ

d
u · ∇sphH

j+1(wj)

To estimate the martingale term we use the estimate from lemma 4.5 in (Ben Arous et al., 2021) (which is an application of
Doob maximal inequality):

sup
T≤n

sup
wo∈Sd−1

Pw0

max
t≤T

1√
T

∣∣∣∣∣∣
t−1∑
j=0

∇sphH
j+1(wj) · u

∣∣∣∣∣∣ ≥ r

 ≤ 2C1

r2
, (47)

where r > 0 is a positive parameter and C1 comes from assumption A.2.2. Together with (32), we have that with probability
larger than 1− 2C1

r2

αu,t2 − αu,t1 ≤ δ

Ad
(t2 − t1) +

δ

d

√
t2 − t1r (48)

assume that at t1 we have that αu,t1 ≥ η1 and that at αu,t2 = η2 while αu,t ≥ η1 for all t ∈ [t1, t2], choosing r =
√
t2 − t1

we get that with probability larger than 1− 2C1

t2−t1

t2 − t1 ≥ C(η2 − η1)
d

δ
≫ C(η2 − η1)d log d (49)

so in the limit d → ∞ with probability converging to 1 t2 − t1 ≫ d log d.

Application of the bound Suppose that at time t2 αu,t2 = η =: ηu, hence there exists t1 such that αu,t ≥ η
2 for all

t ∈ [t1, t2]. By (49), t2 − t1 ≥ Cη
2 d log d. If αv,t is larger than αu,t for any t in this interval, the statement is already

verified by taking ηv = ηu, so assume αv,t ≤ αu,t for t ∈ [t1, t2]. We can apply Equation (44) to get that with probability
converging to 1 in the limit d → ∞:

αv,t2 ≥ αv,t1

2
+

δ

8d

t2−1∑
j=t1

c11αu,j ≥ c11
δηu
16d

(t2 − t1) ≥ Cη2u
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where the constant C does not depend on d, hence we can take ηv := Cη2u there is weak recovery for the cumulant spike v
even in the ”unlucky” case where the overlap along u reaches η very fast.

The vice versa can be done analogously: assume that at time t2 αv,t2 = η =: ηv. Again, let t1 such that αv,t ≥ η
2 for all

t ∈ [t1, t2]. By Equation (49), t2 − t1 ≥ Cη
2 d log d. Now note that by (37) −u · ∇sphL(w) ≥ c11αv,t

4 , so the same reasoning
as before applies leading to weak recovery with ηu := Cη2v .

B. Details on the experiments
B.1. Experiments with two-layer networks

Training In all our experiments with two-layer neural networks on synthetic data, be it on the mixed cumulant model or
in the teacher-student setup, we trained two-layer neural networks using online stochastic gradient with mini-batch size 1.
Note that we used different learning rates for the first and second layer, with the second layer learning rate η2 = ϵη1 and
ϵ = 0.01 unless otherwise noted. It has been noted several times that rescaling the second-layer learning rate in this way
ensures convergence to a well-defined mean-field limit (Riegler & Biehl, 1995; Berthier et al., 2023)

B.1.1. FIGURE 1

CIFAR10 We trained a two-layer neural network with m = 322 ∗ 4 = 4096 hidden neurons on grayscale CIFAR10
images to ensure the same ratio between hidden neurons and input dimension as in our experiments with synthetic data.
We set the mini-batch size to 128, weight decay to 5 · 10−4, and momentum to 0.9. Images were transformed to grayscale
using the pyTorch conversion function. We trained for 200 epochs on the cross-entropy loss and used a cosine learning rate
scheduler. The final test accuracy of the networks was just below 50%.

Synthetic data distributions We trained the two-layer neural network on a data set sampled from the mixed cumulant
model with signal-to-noise ratios βm = 1, βu = 5, βv = 10. The test error on this data set is shown in red (“Full data”). For
the independent latent variables, we used λµ ∼ N (0, 1) and νµ = ±1 with equal probability. For correlated latent variables,
we set νµ = sign(λµ). We also show the test loss of the same network evaluated on the following censored data sets:

• βm = 1, βu = 0, βv = 0 (blue, “mean only”)

• βm = 1, βu = 5, βv = 0 (green, “mean + cov”)

• A Gaussian equivalent model (orange), where we sample inputs for the spiked class from a Gaussian distribution with
mean βmm and a covariance

covP(x, x) = 1+ βuuu
⊤ +

√
βuβv(1− γ)2 Eλν

(
uv⊤ + vu⊤) (50)

B.1.2. TEACHER-STUDENT SETUP (FIGURE 2)

We trained the same two-layer network with the same hyperparameters as in Figure 1. Defining the pre-activations
λi = ⟨ui, x⟩ for the three spikes ui, the tasks were:

A inputs x ∼ N (0,1), teacher
y(x) = h1(λ1) + h2(λ2) + h4(λ3) (51)

B For the simulation shown in A, We computed the absolute normalised overlaps |⟨wk, ui⟩|/∥wk∥ of all the first-layer
weights wk with a given spike, and took the average over the five highest values.

C Same as in B, except that we sampled inputs from a normal distribution with zero mean and covariance 1+γ(uv⊤+vu⊤),
which introduces correlations between the pre-activations λ2 and λ3 of the teacher model.

D Same as in B, except that we trained on isotropic Gaussian inputs N (0,1) and instead added a co-linear cross-term
between spikes u and v, akin to the cross-term that is found in our expansion of the mixed cumulant task,

y(x) = h1(λ1) + h1(λ2)h1(λ3) + h2(λ2) + h4(λ3) (52)
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