
Graph Neural Networks Use Graphs When They Shouldn’t

Maya Bechler-Speicher 1 Ido Amos 2 Ran Gilad-Bachrach 3 Amir Globerson 1 4

Abstract
Predictions over graphs play a crucial role in
various domains, including social networks and
medicine. Graph Neural Networks (GNNs) have
emerged as the dominant approach for learning
on graph data. Although a graph-structure is
provided as input to the GNN, in some cases
the best solution can be obtained by ignoring it.
While GNNs have the ability to ignore the graph-
structure in such cases, it is not clear that they
will. In this work, we show that GNNs actually
tend to overfit the given graph-structure. Namely,
they use it even when a better solution can be
obtained by ignoring it. We analyze the implicit
bias of gradient-descent learning of GNNs and
prove that when the ground truth function does
not use the graphs, GNNs are not guaranteed to
learn a solution that ignores the graph, even with
infinite data. We examine this phenomenon with
respect to different graph distributions and find
that regular graphs are more robust to this over-
fitting. We also prove that within the family of
regular graphs, GNNs are guaranteed to extrapo-
late when learning with gradient descent. Finally,
based on our empirical and theoretical findings,
we demonstrate on real-data how regular graphs
can be leveraged to reduce graph overfitting and
enhance performance.

1. Introduction
Graph labeling problems arise in many domains, from so-
cial networks to molecular biology. In these settings, the
goal is to label a graph or its nodes given information about
the graph. The information for each graph instance is typ-

1Blavatnik School of Computer Science, Tel-Aviv Univer-
sity 2School of Electrical Engineering, Tel-Aviv University
3Department of Bio-Medical Engineering and Edmond J. Safra
Center for Bioinformatics, Tel-Aviv University 4Now also at
Google Research. Correspondence to: Maya Bechler-Speicher
<mayab4@mail.tau.ac.il>.

Proceedings of the 41𝑠𝑡 International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

ically provided in the form of the graph-structure (i.e., its
adjacency matrix) as well as the features of its nodes.

Graph Neural Networks (GNNs) (Kipf & Welling, 2017b;
Gilmer et al., 2017; Veličković et al., 2018; Hamilton
et al., 2017) have emerged as the leading approach for such
tasks. The fundamental idea behind GNNs is to use neural-
networks that combine the node features with the graph-
structure, in order to obtain useful graph representations.
This combination is done in an iterative manner, which
can capture complex properties of the graph and its node
features.

Although graph-structures are provided as input to the GNN,
in some cases the best solution can be obtained by ignoring
them. This may be due to these graph-structures being non-
informative for the predictive task at hand. For instance,
some molecular properties such as the molar mass (i.e.,
weight) depend solely on the constituent atoms (node fea-
tures), and not on the molecular structure. Another case is
when the provided graph-structure does contain valuable
information for the task, but the GNN cannot effectively ex-
ploit it. In such cases, better test accuracy may be achieved
by ignoring the graph-structure. In other cases, the node
features alone carry most of the information and the graph-
structure conveys just a small added value. For example,
assume that node features contain the user’s zipcode. Then
the user’s income is highly predictable by that feature, and
their social structure will add little accuracy of this predic-
tion.

Motivated by this observation, we ask a core question in
GNN learning: will GNNs work well in cases where it is
better to ignore the graph-structure or will they overfit the
graph-structure, resulting in reduced test accuracy? Answer-
ing this question has several far-reaching practical implica-
tions. To illustrate, if GNNs lack the ability to discern when
to disregard the graph, then providing a graph can actually
hurt the performance of GNNs, and thus one must carefully
re-think which graphs to provide a GNN. On the other hand,
if GNNs easily reject the structure when they fail to exploit
it, then practitioners should attempt to provide a graph, even
if their domain knowledge and expertise suggest that there
is only a small chance it is informative.

We consider the common setting of over-parameterized
GNNs. Namely, when the number of parameters the GNN

1

Graph Neural Networks Use Graphs When They Shouldn’t

uses is larger than the size of the training data. This is a very
common case in deep-learning, where the learned model can
fit any training data. Previous studies showed that models
learned using Gradient Descent (GD) often generalize well
despite over-parameterization. Hence, it was suggested that
the learning algorithm exhibits an implicit bias (e.g., low
parameter norm) to avoid spurious models that happen to fit
the training data (e.g., Zhang et al., 2017; Lyu & Li, 2020;
Gunasekar et al., 2018; Soudry et al., 2017).

Our focus is thus on the implicit bias of GNN learning, and
specifically, whether GNNs are biased towards using or not
using the graph-structure. If the implicit bias is towards
“simple models” that do not use the graph-structure when
possible, then one would expect GNNs to be oblivious to
the graph-structure when it is not informative. Our first em-
pirical finding is that this is actually not the case. Namely,
GNNs tend to not ignore the graph, and their performance
is highly dependent on the provided graph-structure. Specif-
ically, there are graph-structures that result in models with
low test accuracy.

Next, we ask which properties of the learned graph distri-
bution affect the GNN’s ability to ignore the graph. We
empirically show that regular graphs result in more resilient
GNNs. We then analyze the implicit bias of learning GNNs
with gradient descent and prove that despite the ground
truth function being “simple" in the sense it does not use
the graph, GNNs are not guaranteed to learn a solution
that ignores the graph, even with infinite data. We prove
that as a result of their implicit bias, GNNs may fail to ex-
trapolate. We then prove that within the family of regular
graphs, GNNs are guaranteed to extrapolate when learning
with gradient descent and provide a sufficient condition for
extrapolation when learning on regular graphs.

Finally, we empirically examine on real-world datasets if
the properties of regular graphs are also beneficial in cases
where the graph should not necessarily be ignored. We
show that modifying the input graph to be “more regular”
can indeed improve performance in practice.

We note that we focus on the implicit bias of GNNs, i.e.,
what GNNs actually do when the graph should be ignored.
Understanding this bias can also shed light on the phe-
nomenon of entanglement as, i.e., the intricate interplay
between the graph structure and the node features (Liu et al.,
2020; Seddik et al., 2022). It was previously shown that as
a result of entanglement, GNNs sometimes do not work as
well as set methods (Errica et al., 2022; Chen et al., 2020;
Zhang et al., 2022). This work is motivated by those find-
ings.

The main contributions of this work are (1) We show that
GNNs tend to overfit the graph-structure, when it should
be ignored. (2) We evaluate the graph-structure overfitting

phenomenon with respect to different graph distributions
and find that the best performance is obtained for regu-
lar graphs. (3) We theoretically analyze the implicit bias
of learning GNNs, and show that when trained on regular
graphs, they converge to unique solutions that are more
robust to graph-structure overfitting. (4) We show empiri-
cally that transforming GNN input graphs into more regular
ones can mitigate the GNN tendency to overfit and improve
performance.

2. GNNs Overfit the Graph-Structure
In this section, we present an empirical evaluation showing
that GNNs tend to overfit the graph-structure, thus hurting
their generalization accuracy. Graph overfitting refers to any
case where the GNN uses the graph when it is preferable to
ignore it (e.g. because it is non-informative for the task).

2.1. Preliminaries

A graph example is a tuple 𝐺 = (𝐴, 𝑋). 𝐴 is an adjacency
matrix representing the graph-structure. Each node 𝑖 is
assigned a feature vector x𝑖 ∈ R𝑑 , and all the feature vectors
are stacked to a feature matrix 𝑋 ∈ R𝑛×𝑑 , where 𝑛 is the
number of nodes in 𝐺. The set of neighbors of node 𝑖 is
denoted by 𝑁 (𝑖). We denote the number of samples in a
dataset by 𝑚. We focus on the common class of Message-
Passing Neural Networks (Morris et al., 2021). In these
networks, at each layer, each node updates its representation
as follows:

ℎ
(𝑘)
𝑖

= 𝜎
©«𝑊 (𝑘)

1 ℎ
(𝑘−1)
𝑖

+𝑊
(𝑘)
2

∑︁
𝑗∈𝑁 (𝑖)

ℎ
(𝑘−1)
𝑗

+ 𝑏 (𝑘)ª®¬ (1)

where 𝑊
(𝑘)
1 ,𝑊

(𝑘)
2 ∈ R𝑑𝑘×𝑑𝑘−1 . The initial representation

of node 𝑖 is its feature vector ℎ
(0)
𝑖

= x𝑖 . The final node
representations {ℎ (𝐿)

𝑖
}𝑛
𝑖=1 obtained in the last layer can then

be used for downstream tasks such as node or graph la-
beling. We focus on graph labeling tasks, where a graph
representation vector is obtained by combining all the node
representations, e.g., by summation. This is then followed
by a linear transformation matrix 𝑊3 that provides the fi-
nal classification/regression output (referred to as a readout
layer). For the sake of presentation, we drop the superscript
in cases of one-layer GNNs. For binary classification, we
assume the label is the sign of the output of the network.

We refer to 𝑊
(𝑘)
1 as the root-weights of layer 𝑘 and to

𝑊
(𝑘)
2 as the topological-weights of layer 𝑘 . A natural way

for GNNs to ignore the graph-structure is by zeroing the
topological-weights 𝑊 (𝑘)

2 = 0̄ in every layer. We say that a
function 𝑓 (𝑋, 𝐴) is graph-less if 𝑓 (𝑋, 𝐴) = 𝑓 (𝑋), i.e., the
function does not use the graph-structure, and is practically
a set function.

2

Graph Neural Networks Use Graphs When They Shouldn’t

Table 1: The accuracy of a fixed GNN architecture, trained
once on the given graphs in the data (GNN) and once on
the same data where the graph-structure is omitted (𝐺𝑁𝑁∅),
i.e., on empty graphs. The solution of 𝐺𝑁𝑁∅ is realizable
by 𝐺𝑁𝑁 , and the only difference between the runs is the
given graph-structures. This suggests that the decreased
performance of 𝐺𝑁𝑁 is due to graph-structure overfitting.

Sum Proteins Enzymes

𝐺𝑁𝑁 94.5 ± 0.9 67.4 ± 1.9 55.2 ± 3.1
𝐺𝑁𝑁∅ 97.5 ± 0.7 74.1 ± 2.5 64.1 ± 5.7

It is important to note that some GNNs, e.g., Kipf & Welling
(2017a), do not possess the ability to ignore the graph-
structure as the root and topological weights are the same.
We therefore focus on the most general GNN type that does
have the ability to ignore the graph (Gilmer et al., 2017).

In the Appendix, we extend our empirical evaluation to
multiple GNN variations, including Graph Attention Net-
work (Veličković et al., 2018; Brody et al., 2022), Graph
Transformer (Shi et al., 2021) and Graph Isomorphism Net-
work (Xu et al., 2019), and to node classification, which
show similar trends.

2.2. Evidence for Graph Overfitting

Our goal is to examine what happens when GNNs learn over
graphs that should be ignored, either because they are non-
informative for the task, or because the GNN fails to exploit
their information. To that end, we conducted experiments
on three datasets.

Sum This is a binary classification synthetic task with
a graph-less ground truth function. To generate the label,
we use a teacher GNN that simply sums the node features
and applies a linear readout to produce a scalar. The data
contains non-informative graph-structures which are drawn
from the GNP graph distribution (Erdös & Rényi, 1959),
where the edges are sampled i.i.d with probability 𝑝 (we
used 𝑝 = 0.5).

Proteins and Enzymes These are two classification
tasks on real-world molecular data (Morris et al., 2020).
In Errica et al. (2022) the authors reported on a thorough
GNNs comparison, that the best accuracy on these datasets
is achieved when the graph-structure is omitted. We
note that with a fixed architecture, the solution learned
by a GNN trained on empty graphs is always realizable
by the same GNN trained on non-empty graphs. This
is a straightforward argument, and it is explained in the
Appendix for the sake of completeness. Therefore, with a
fixed architecture, better performances that are achieved

when learning over empty graphs indicates that it was
better for the GNN to ignore the graph, and it could, but
it didn’t. Errica et al. (2022) used a different model for
the empty graphs, which was not an instance of the other
compared GNNs. Therefore, their results do not imply that
the compared GNNs overfitted the graph-structure, as the
superiority of the model trained on empty graphs may be
due to its architecture. In our experiments, we use a fixed
architecture to ensure that a discrepancy in performance
implies graph overfitting.

Protocol and Results On each of the three datasets, we
trained the same GNN twice: once on the given graph-
structures in the data (𝐺𝑁𝑁), and once when the graph-
structure is replaced with an empty graph, and only the node
features are given for training (𝐺𝑁𝑁∅). This difference
between these setups shows the effect of providing the graph-
structure.

The GNNs architecture is fixed, and the learning hyper-
parameters are tuned on a validation set for the Sum task
and 10-fold cross-validation for Protein and Enzymes. We
report test errors averaged over 10 runs with random seeds
on a separate holdout test set. More information can be
found in the Appendix.

Table 1 shows the results of the experiments. In the three
tasks, 𝐺𝑁𝑁∅ achieves higher accuracy than 𝐺𝑁𝑁 . This
suggests that 𝐺𝑁𝑁 made use of the graphs, although a better
result, i.e., the one learned by 𝐺𝑁𝑁∅ , could be obtained
by ignoring them. This graph overfitting led to lower test
accuracy.

2.3. How Graph-Structure Affects Overfitting

The previous section showed that in the Sum task, where
the given graph-structures are non-informative and should
be ignored, the GNN overfits them instead. Here we further
study how this phenomenon is affected by the specific graph-
structure provided to the GNN. Thus, we repeat the setup of
the Sum task but with different graph distributions.

Data We used the Sum task described in Section 2.2. We
created four different datasets from this baseline by sam-
pling graph-structures from different graph distributions.
The set of node feature vectors remains the same across all
the datasets, and thus, the datasets differ only in their graph-
structures. The graph distributions we used are: 𝑟-regular
graphs (Regular) where all the nodes have the same degree
𝑟 , star-graph (Star) where the only connections are between
one specific node and all other nodes, the Erdös-Rényi graph
distribution (GNP) (Erdös & Rényi, 1959), where the edges
are sampled i.i.d with probability 𝑝, and the preferential at-
tachment model (BA) (Barabasi & Albert, 1999), where the
graph is built by incrementally adding new nodes and con-

3

Graph Neural Networks Use Graphs When They Shouldn’t

(a) (b)

Figure 1: (a) The learning curves of the same GNN model trained on graphs that have the same node features and only
differ in their graph-structure, which is sampled from different distributions. The label is computed from the node features
without the use of any graph-structure. If GNNs were to ignore the non-informative graph-structure they were given, similar
performance should have been observed for all graph distributions. Among the different distributions, regular graphs exhibit
the best performance. (b) The norm ratio between the topological and the root weights along the same runs. Except for the
empty graphs, the ratio is always greater than 1, which indicates that more norm is given to the topological weights.

necting them to existing nodes with probability proportional
to the degrees of the existing nodes.

Protocol The GNN model is the same as in the Sum task in
the previous section. On each dataset, we varied the training
set size and evaluated test errors on 10 runs with random
seeds. More information can be found in the Appendix.

Results For the sake of presentation, we present the results
on one instance from each distribution: Regular with 𝑟 = 10,
GNP with 𝑝 = 0.6, and BA with 𝑚 = 3. Additional results
with more distribution parameters are given in the Appendix,
and similar trends are shown. Recall that the datasets differ
only by the edges and share the same set of nodes and fea-
tures. Therefore, had the GNN ignored the graph-structures,
we would expect to see similar performance for all datasets.
As shown in Figure 1(a), the performance largely differs
between different graph distributions, which indicates the
GNN overfits the graphs rather than ignores them.

To further understand what the GNN learns in these cases,
we evaluate the ratio between the norms of the topological
and root weights. Results are shown in Figure 1(b). It can be
seen that for all the graphs except the empty graphs, the ratio
is larger than 1, indicating that there is more norm on the
topological weights than on the root weights. Specifically,
the graph-structure is not ignored. In the case of empty
graphs, the topological weights are not trained, and the ratio
is 0 due to initialization. We also present the norms of the
root and topological weights separately in the Appendix.

Figure 1 suggests that some graph distributions are more
robust to graph-structure overfitting. The GNN trained on

regular graphs performs best across all training set sizes.

The good performance on regular graphs would seem to
suggest that it learns to use low topological weights. How-
ever, as Figure 1(b) shows, the opposite is actually true.
This may seem counter-intuitive, but in the next section, we
theoretically show how this comes about.

3. Theoretical Analysis
In the previous section, we saw that GNNs tend to overfit
the graph-structure when it should be ignored. We now turn
to a theoretical analysis that sheds light on what GNNs learn
when the ground truth teacher is graph-less.

For the sake of clarity, we state all theorems for a one-layer
GNN with sum-pooling, no readout, and output dimension 1.
For simplicity, we also assume no bias term in our analysis.
All the proofs and extensions can be found in the Appendix.

3.1. Implicit bias of Gradient Descent for GNNs

Let 𝑆 denote a training set of labeled graphs. Each instance
in 𝑆 is a triplet (𝑋, 𝐴, 𝑦), where 𝑋 is a stacked feature ma-
trix of the node feature vectors, 𝐴 is the adjacency matrix,
and 𝑦 ∈ ±1 is the class label (we consider binary classifica-
tion). To examine the solutions learned by GNNs, we utilize
Theorem 4 from Gunasekar et al. (2018). This theorem
states that homogeneous neural networks trained with GD
on linearly separable data converge to a KKT point of a
max-margin problem. Translating this theorem to the GNN
in our formulation, we get that gradient-based training will

4

Graph Neural Networks Use Graphs When They Shouldn’t

converge to the solution of the following problem:

minw1 ,w2 ∥w1∥2
2 + ∥w2∥2

2
𝑠.𝑡. 𝑦[w1 ·

∑𝑛
𝑖 x𝑖 + w2

∑𝑛
𝑖 𝑑𝑒𝑔(𝑖)x𝑖] ≥ 1

∀(𝑋, 𝐴, 𝑦) ∈ 𝑆

(2)

Equation 2 can be viewed as a max-margin problem in
2𝑑 space, where the input vector is [∑𝑛

𝑖 x𝑖 ,
∑𝑛

𝑖 𝑑𝑒𝑔(𝑖)x𝑖].
Therefore, the graph input can be viewed as the sum of the
node feature vectors concatenated with their weighted sum,
according to the node degrees.

When trained on 𝑟-regular graphs, Equation 2 can be written
as:

minw1 ,w2 ∥w1∥2
2 + ∥w2∥2

2
𝑠.𝑡. 𝑦[(w1 + 𝑟w2) ·

∑𝑛
𝑖 x𝑖] ≥ 1

∀(𝑋, 𝐴, 𝑦) ∈ 𝑆

(3)

This can be viewed as a max-margin problem in R𝑑 where
the input vector is

∑𝑛
𝑖 x𝑖 . So the GNN is a linear classifier

on the sum of the node features, but the regularizer is not
the 𝐿2 norm of the weights because of the 𝑟 factor.

The next theorem shows that when a GNN is trained using
GD on regular graphs, the learned root and topological
weights are aligned.

Lemma 3.1 (Weight alignment). Let 𝑆 be a set of linearly
separable 𝑟-regular graph examples. A GNN trained with
GD that fits 𝑆 perfectly converges to a solution such that
w2 = 𝑟w1. Specifically, the root weights w1 and topological
weights w2 are aligned.

We prove Lemma 3.1 in the Appendix by analyzing the KKT
conditions for first-order stationary points of Equation 3.

The next section will use this result to explain why regular
graphs are better for learning graph-less teachers.

3.2. Extrapolation with graph-less teachers

In this section, we analyze what happens when GNNs learn
from training data generated by a graph-less model (we refer
to this as a graph-less teacher). As we saw empirically in
Section 2.2, these learned models will sometimes generalize
badly on test data. We begin with a theorem that proves
that such bad cases indeed exist. The theorem considers the
extrapolation case, where the train and test distribution of
graphs is not the same but is labeled by the same graph-less
teacher. Had the GNN learned a graph-less model, it would
have had the same train and test performance (for infinite
data). However, we show this is not the case, indicating that
GNNs can overfit the graph structure arbitrarily badly. In
other words, they do not extrapolate.

Theorem 3.2 (Extrapolation may fail). Let 𝑓 ∗ be a graph-
less teacher. There exist graph distributions 𝑃1 and 𝑃2, with

node features drawn from the same fixed distribution, such
that when learning a linear GNN with GD over infinite data
drawn from 𝑃1 and labeled with 𝑓 ∗, the test error on 𝑃2
labeled with 𝑓 ∗ will be ≥ 1

4 . Namely, the model will fail to
extrapolate.

The setting in the above result is that a graph-less ground
truth teacher is learned using graphs from 𝑃1. Ideally, we
would have liked GD to “ignore” the graphs, so that the out-
put of the learned model would not change when changing
the support to 𝑃2. However, our result shows that when the
graph distribution is changed to 𝑃2, performance is poor.
This is in line with our empirical observations. The key idea
in proving the result is to set 𝑃2 such that it puts weights
on isolated nodes and thus exposes the fact that the learned
function does not simply sum all nodes, as the graph-less
solution does.

Despite Theorem 3.2 showing GNNs may fail to extrapolate,
the following result shows that GNNs are guaranteed to
extrapolate within the family of regular distributions.

Theorem 3.3 (Extrapolation within regular distributions).
Let 𝐷𝐺 be a distribution over r-regular graphs and 𝐷𝑋 be
a distribution over node features. Assume a training set
of infinite size sampled from 𝐷𝐺 and 𝐷𝑋 and labeled with
a graph-less teacher. Denote the model learned with GD
by 𝑓 . Assume that test examples are sampled from 𝐷′

𝐺
, a

distribution over r’-regular graphs, and 𝐷𝑋. Then 𝑓 will
have zero test error.

To prove Theorem 3.3, we utilize Equation 3 and Lemma
3.1, and show that the direction of the weight vector used
by the GNN does not change when the regularity degree is
changed.

It was previously shown in Yehudai et al. (2020) that when
there is a certain discrepancy between the train and test
distributions, GNNs may fail to extrapolate. The argument
extends to our case, and therefore learning without GD
could fail to generalize.

3.2.1. CHARACTERIZING EXTRAPOLATION ACCURACY

Theorems 3.2 and 3.3 show extreme cases of good and
bad extrapolation. Next, we examine what determines the
extrapolation accuracy.

First, we empirically observe that GNNs trained on regular
graphs exhibit good extrapolation to other non-regular graph
distributions as well, as presented in Table 2.

For example, a GNN trained on 5-regular graphs, gener-
alizes perfectly to GNP graphs, and there is a decrease in
performance when tested on star-graphs. The training setup
and more information on the graphs can be found in the
Appendix.

5

Graph Neural Networks Use Graphs When They Shouldn’t

Figure 2: The ratios histogram for test examples that are
correctly classified in the extrapolation evaluation presented
in Table 2. The condition in Theorem 3.4 is met for all the
correctly classified examples.

Next, we present a sufficient condition for extrapolation
and empirically show on these test sets that indeed when
the GNN successfully extrapolates, this sufficient condition
holds.

We utilize Lemma 3.1 and write the GNN trained on 𝑟-
regular graphs in a new form acting on a test graph 𝐺 as:

𝑓 (𝐺) = 𝑊1

𝑛∑︁
𝑖=1

x𝑖 + 𝑟𝑊1

𝑛∑︁
𝑖=1

𝑟 ′x𝑖︸ ︷︷ ︸
𝑅𝑒𝑔𝑢𝑙𝑎𝑟 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

+ 𝑟𝑊1

𝑛∑︁
𝑖=1

Δ𝑟 ′ ,𝐺 (𝑖)x𝑖︸ ︷︷ ︸
Δ 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

where Δ𝑟 ′ ,𝐺 (𝑖) = 𝑑𝑒𝑔𝐺 (𝑖)−𝑟 ′, for any 0 ≤ 𝑟 ′. This notation
shows that applying 𝑓 to a graph 𝐺 is equivalent to applying
it to an 𝑟 ′-regular graph plus applying it to another Δ-graph
that depends on 𝑟 ′.

Using this notation, the following Theorem provides a suf-
ficient condition for extrapolation. For simplicity, we state
the results as extrapolation to the same training set, with
modified graphs.
Theorem 3.4 (Sufficient condition for extrapolation). Let 𝑆
be a set of 𝑟-regular graphs examples, labeled with a graph-
less teacher 𝑓 ∗. Let 𝑓 denote a GNN trained with GD on 𝑆.
Now assume an instance 𝐺 = (𝑋, 𝐴) ∈ 𝑆 has been modified
to a different graph �̃� = (𝑋, �̃�) such that there exists an
0 ≤ 𝑟 ′ ≤ 𝑛 − 1 where:����𝑟w1

∑𝑛
𝑖=1 Δ𝑟 ′ ,�̃� (𝑖)x𝑖

w1𝑥 + 𝑟 ′𝑟w1𝑥

���� ≤ 1

Then 𝑓 (�̃�) = 𝑓 ∗ (�̃�) .

Theorem 3.4 suggests that applying the GNN to graphs that
are “closer” to regular graphs, i.e., have smaller Δ, results

Table 2: Accuracy of a GNN trained on 5-regular graphs and
tested on different distribution shifts. The GNN extrapolates
perfectly to regular graph distributions, as guaranteed by
Theorem 3.3.

Test distribution Accuracy

Regular (r=10) 100 ± 0.0
Regular (r=15) 100 ± 0.0
GNP (p=0.2) 100 ± 0.0
GNP (p=0.5) 100 ± 0.0
GNP (p=0.8) 100 ± 0.0
BA (m=3) 98.0 ± 1.7
BA (m=15) 93.2 ± 0.9
Star Graph 75.9 ± 1.1

in better extrapolation. To prove it, we show that when
these conditions hold, the extrapolation is guaranteed from
Theorem 3.3.

Next, we empirically show that, indeed, all the samples that
were classified correctly in Table 2 satisfy this condition of
Theorem 3.4.

Figure 2 presents histograms of the values of the ratio in
Theorem 3.4 for every example that is correctly classified
over the test examples presented in Table 2. We do not
include regular graphs in the histograms because extrapola-
tion within regular graphs is guaranteed from Theorem 3.4.
The ratio is computed for the 𝑟 ′ that minimizes the denom-
inator of the ratio. Indeed, all the ratios are less than 1,
and therefore the sufficient condition holds. These results
demonstrate that, indeed, “closeness to a regular” graph is
an important determinant in extrapolation accuracy.

4. Are Regular Graphs Better when Graphs
are Useful?

In the previous sections, we showed that regular graphs
exhibit robustness to the tendency of GNNs to overfit non-
informative graphs that should be completely ignored. In
this section, we examine if regular graphs are also beneficial
in scenarios when the graph may be informative. We per-
form an empirical evaluation on real-world data, where we
do not know in advance if the graph is indeed informative
or not. We compare the performance of the same method
when trained on the original graph, and on the same graph
when transformed to be “more regular".1

Setup Ideally, we would like to examine the performance
change when a graph is transformed into a regular graph.

1The code is available on https://github.com/
mayabechlerspeicher/Graph_Neural_Networks_
Overfit_Graphs

6

https://github.com/mayabechlerspeicher/Graph_Neural_Networks_Overfit_Graphs
https://github.com/mayabechlerspeicher/Graph_Neural_Networks_Overfit_Graphs
https://github.com/mayabechlerspeicher/Graph_Neural_Networks_Overfit_Graphs

Graph Neural Networks Use Graphs When They Shouldn’t

Table 3: Performance of different GNNs when trained on the original graphs versus when the COV of the graphs is reduced.
The best model is in bold and with an underline in cases where the p-value < 0.05 using the Wilcoxon signed-rank test.

Model Graph Proteins NCI1 Enzymes D&D mol-hiv mol-pcba

DeepSet Empty Graph 74.1 ± 2.5 72.8 ± 2.1 64.2 ± 3.0 77.5 ± 2.0 69.5 ± 2.9 15.0 ± 0.6

GraphConv
Original Graph 73.1 ± 1.6 76.5 ± 1.2 58.2 ± 2.1 72.5 ± 1.7 78.2 ± 3.0 20.5 ± 0.5
Original Graph + R-COV 75.5 ± 1.8 80.1 ± 0.9 61.0 ± 1.5 74.8 ± 2.9 80.9 ± 1.8 22.8 ± 0.5

GIN
Original Graph 72.2 ± 2.9 79.2 ± 1.5 58.9 ± 1.8 74.5 ± 2.3 77.0 ± 1.9 21.1 ± 0.5
Original Graph + R-COV 74.8 ± 2.1 80.0 ± 1.1 59.7 ± 1.4 75.7 ± 3.9 77.9 ± 1.3 21.5 ± 0.2

GATv2
Original Graph 73.5 ± 2.8 80.4 ± 1.6 59.9 ± 2.8 70.6 ± 4.0 78.7 ± 2.5 23.5 ± 0.9
Original Graph + R-COV 76.5 ± 2.0 83.0 ± 1.5 63.9 ± 3.5 73.9 ± 1.2 80.9 ± 2.0 24.3 ± 0.7

GraphTransformer
Original Graph 73.9 ± 1.5 80.5 ± 1.1 60.9 ± 2.1 74.1 ± 1.9 80.5 ± 2.9 29.1 ± 0.7
Original Graph + R-COV 76.7 ± 1.4 83.1 ± 1.9 64.0 ± 1.9 77.1 ± 1.8 82.4 ± 1.5 30.5 ± 0.2

Model Graph IMDB-B IMDB-M Collab Reddit-B Reddit-5k

DeepSet Empty Graph 70.0 ± 3.0 48.2 ± 2.5 71.2 ± 1.3 80.9 ± 2.0 52.1 ± 1.7

GraphConv
Original Graph 69.6 ± 1.7 47.5 ± 1.0 73.5 ± 1.3 83.2 ± 1.5 50.0 ± 2.1
Original Graph + R-COV 72.9 ± 0.5 50.0 ± 1.5 74.2 ± 2.1 87.0 ± 1.8 52.5 ± 1.7

GIN
Original Graph 70.1 ± 2.9 48.1 ± 2.5 75.3 ± 2.9 89.1 ± 2.7 56.1 ± 1.5
Original Graph + R-COV 71.3 ± 1.5 48.5 ± 1.7 77.2 ± 2.0 91.0 ± 1.1 56.7 ± 0.8

GATv2
Original Graph 72.8 ± 0.9 48.4 ± 2.1 73.9 ± 1.7 90.0 ± 1.5 56.4 ± 1.5
Original Graph + R-COV 75.8 ± 1.5 50.8 ± 1.7 75.1 ± 1.9 92.1 ± 0.9 57.0 ± 0.9

GraphTransformer
Original Graph 73.1 ± 1.3 49.0 ± 1.9 73.8 ± 1.5 90.6 ± 1.3 51.4 ± 1.7
Original Graph + R-COV 76.1 ± 2.0 51.1 ± 2.3 76.0 ± 1.8 92.3 ± 1.0 56.0 ± 1.2

While it is possible to make a graph regular by simply com-
pleting it into a full graph, this approach may be compu-
tationally expensive or even infeasible when learning with
GNNs. Unfortunately, other approaches may require re-
moving edges from the original graph, which may lead
to information loss or even make the task non-realizable.
Therefore, we evaluate a transformation of a given graph
to a “more regular" graph, while keeping all its original
information. We modify a given graph by adding edges be-
tween low-degree nodes in order to reduce its node degrees
coefficient of variation (COV), i.e., the ratio between the
standard deviation and mean of the node degrees. The COV
of regular graphs is 0, because all the nodes have the same
degree. In order to maintain the original information about
the given graph we augment each edge with a new feature
that has values 1 and 0.5 for the original and added edges,
respectively.

We evaluate2 the four GNN architectures for which Sec-
tion 2.2 shows a tendency to overfit the graph. These are:
GraphConv (Gilmer et al., 2017), GIN (Xu et al., 2019),
GATv2 (Veličković et al., 2018; Brody et al., 2022) and
GraphTransformer (Shi et al., 2021). We adopted the neigh-

2The code is provided in the Supplementary Material.

bors’ aggregation component of each model to process the
edge features in a non-linear way. The complete forms of
each architecture we used with the addition of edge feature
processing can be found in the Appendix.

4.1. Datasets

We used 11 graph datasets, including two large-scale
datasets, which greatly differ in their average graph size
and density, the number of node features, and the number
of classes.

Enzymes, D&D, Proteins, NCI1 (Shervashidze et al., 2011)
are datasets of chemical compounds where the goal is to
classify each compound into one of several classes.
IMDB-B, IMDB-M, Collab, Reddit-B, Reddit-5k (Ya-
nardag & Vishwanathan, 2015) are social network datasets.
mol-hiv, mol-pcba (Hu et al., 2020) are large-scale datasets
of molecular property prediction.

More information on the datasets and their statistics can be
found in the Appendix.

Evaluation For each model and for each task, we evalu-
ate the model twice: on the original graph provided in the

7

Graph Neural Networks Use Graphs When They Shouldn’t

dataset (Original Graph) and on the original graph with the
COV reduced (R-COV). Because different graphs have dif-
ferent COVs, we set COV to a fixed percentage of the origi-
nal average COV of each dataset separately. The percentage
is a hyperparameter, and we tested the values {80%, 50%}.
We also include as a baseline the performance when the
graph-structure is omitted (Empty Graphs), which is equiva-
lent to using DeepSets (Zaheer et al., 2018).

For all the datasets except mol-hiv and mol-pcba we used
10-fold nested cross-validation with the splits and protocol
of Errica et al. (2022). The final reported result on these
datasets is an average of 30 runs (10-folds and 3 random
seeds). The mol-hiv and mol-pcba datasets have pre-defined
train-validation-test splits and metrics Hu et al. (2020). The
metric of mol-hiv is the test AUC averaged over 10 runs
with random seeds. The metric of mol-pcba the metric is
the averaged precision (AP) over its 128 tasks.
Additional details and the hyper-parameters are provided in
the Appendix.

Results Across all datasets and all models, reducing the
COV of the graphs improves generalization. Particularly
intriguing outcomes are obtained in the PROTEINS and
IMDB-M datasets. Within these two datasets, superior per-
formance is attained when learning over empty graphs in
comparison to the provided graphs. Nonetheless, reducing
the COV improves performance also with respect to the
empty graphs. This observation suggests that the structural
information inherent in the data is indeed informative, yet
the GNN fails to exploit it correctly as it is.

The tradeoff between COV and graph density As we
see consistent improvement when the COV is reduced, we
further examined if this improvement is monotone with
respect to the COV reduction. We evaluated the Proteins
dataset with an increasing percentage of COV reduction,
up to the full graph. Indeed as shown in Figure 3, the
performance keeps improving as the COV is reduced. This
is in alignment with the results of Alon & Yahav (2021)
where a full graph was used in the last layer of the network
to allow better information flow between nodes of long
distance. Note that in our case, we also distinguish the
original edges with the added edges using edge features and
allow the network to ignore the added edges. Clearly, using
a full graph comes with a computational cost, a problem
that also arises when using full-graph transformers. Our
results suggested that improvement in generalization can
be achieved also without the cost of using the full graph.
Practically, one can limit the percentage of reduced COV
according to their computation limit in advance.

Figure 3: Accuracy and error bars of the Proteins datasets
as the COV reduces. The performance is monotonically
improving.

5. Practical Implications
In practice, possible graph structures are typically deter-
mined based on domain knowledge, and it is common to
explore multiple possible structures. In some cases, a natu-
ral graph-structure inherently exists within the data, such as
in social networks, where the network connections naturally
define the graph layout. Nevertheless, it is usually not clear
in advance if these graph layouts are informative for the
task, or if the GNN will manage to exploit them. The fact
that certain layouts may provide valuable information for
the task while others might not, and this distinction isn’t
clear beforehand, was the driving question for our research.
Indeed we found that the definition of the graph-structure,
typically determined by users, emerges as a pivotal factor
in performance outcomes due to the tendency of GNNs to
overfit the provided graph. This revelation opens up a fas-
cinating avenue for further research into the significance
of topological information during the training of GNNs.
Understanding how GNNs respond to different structural
layouts and why certain graph-structures are more effective
than others could significantly impact the way we design
and train these models.

6. Future Work
We believe this work opens up many new avenues for ex-
ploration. One simple takeaway from our paper is to always
try learning a model over empty graphs as well, i.e., using
DeepSets (Zaheer et al., 2018). When the graph is known to
have little contribution to the task, regularizing the topolog-
ical weights may be useful. The main difficulty is finding
ways to improve the GNN’s ability to exploit useful infor-
mation from the graph if it exists and ignore it otherwise,
without prior knowledge. While we show in Section 4 that
reducing the graph’s COV can enhance performance, there
may be other ways to mitigate the graph overfitting. In
recent years many methods were introduced to mitigate
different phenomena that limit GNNs performance (Rong
et al., 2019; Alon & Yahav, 2021). It is interesting to exam-
ine whether these methods are useful in mitigating graph
overfitting. Another interesting avenue for future research

8

Graph Neural Networks Use Graphs When They Shouldn’t

is analyzing the implicit bias of non-linear GNNs, including
Graph Attention and Transformers.

7. Conclusion
In this study, we showed that although GNNs have the abil-
ity to disregard the provided graph when needed, they don’t.
Instead, GNNs tend to overfit the graph-structures, which
results in reduced performance. We theoretically analyzed
the implicit bias of gradient-descent learning of GNNs and
proved that even with infinite data, GNNs are not guaran-
teed to learn a solution that ignores the graph when the
graph should be ignored. We showed that regular graphs are
more robust to graph overfitting, and provided a theoretical
explanation and extrapolation results for this setting. Our
study shows that in some cases, the graph structure hurts the
performance of GNNs, and therefore graph selection is of
great importance, as well as having a model that can ignore
the graph when needed.

Acknowledgements
This work was supported by the Tel Aviv University Center
for AI and Data Science (TAD), the Israeli Science Foun-
dation grants 1186/18 and 1437/22, and a grant from Meta
(Facebook) to Tel Aviv University.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Alon, U. and Yahav, E. On the bottleneck of graph neural

networks and its practical implications, 2021.

Barabasi, A.-L. and Albert, R. Emergence of scal-
ing in random networks. Science, 286(5439):
509–512, 1999. doi: 10.1126/science.286.5439.
509. URL http://www.sciencemag.org/cgi/
content/abstract/286/5439/509.

Brody, S., Alon, U., and Yahav, E. How attentive are graph
attention networks?, 2022.

Chen, L., Chen, Z., and Bruna, J. On graph neural networks
versus graph-augmented mlps, 2020.

Dobson, P. D. and Doig, A. J. Distinguishing enzyme struc-
tures from non-enzymes without alignments. Journal of
molecular biology, 330 4:771–83, 2003.

Erdös, P. and Rényi, A. On random graphs i. Publicationes
Mathematicae Debrecen, 6:290, 1959.

Errica, F., Podda, M., Bacciu, D., and Micheli, A. A fair
comparison of graph neural networks for graph classifica-
tion, 2022.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry, 2017.

Gunasekar, S., Lee, J. D., Soudry, D., and Srebro, N. Im-
plicit bias of gradient descent on linear convolutional
networks. In Bengio, S., Wallach, H., Larochelle, H.,
Grauman, K., Cesa-Bianchi, N., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems, vol-
ume 31. Curran Associates, Inc., 2018.

Hamilton, W. L., Ying, R., and Leskovec, J. Inductive
representation learning on large graphs, 2017. URL
https://arxiv.org/abs/1706.02216.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs, 2020. URL
https://arxiv.org/abs/2005.00687.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks, 2017a.

Kipf, T. N. and Welling, M. Semi-supervised classi-
fication with graph convolutional networks. In In-
ternational Conference on Learning Representations,
2017b. URL https://openreview.net/forum?
id=SJU4ayYgl.

Liu, M., Gao, H., and Ji, S. Towards deeper graph
neural networks. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Dis-
covery & Data Mining, KDD ’20, pp. 338–348, New
York, NY, USA, 2020. Association for Computing
Machinery. ISBN 9781450379984. doi: 10.1145/
3394486.3403076. URL https://doi.org/10.
1145/3394486.3403076.

Lyu, K. and Li, J. Gradient descent maximizes the margin
of homogeneous neural networks, 2020.

Morris, C., Kriege, N. M., Bause, F., Kersting, K., Mutzel,
P., and Neumann, M. Tudataset: A collection of bench-
mark datasets for learning with graphs. In ICML 2020
Workshop on Graph Representation Learning and Beyond
(GRL+ 2020), 2020. URL www.graphlearning.
io.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen,
J. E., Rattan, G., and Grohe, M. Weisfeiler and leman go
neural: Higher-order graph neural networks, 2021.

9

http://www.sciencemag.org/cgi/content/abstract/286/5439/509
http://www.sciencemag.org/cgi/content/abstract/286/5439/509
https://arxiv.org/abs/1706.02216
https://arxiv.org/abs/2005.00687
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1145/3394486.3403076
https://doi.org/10.1145/3394486.3403076
www.graphlearning.io
www.graphlearning.io

Graph Neural Networks Use Graphs When They Shouldn’t

Rong, Y., bing Huang, W., Xu, T., and Huang,
J. Dropedge: Towards deep graph convolu-
tional networks on node classification. In Inter-
national Conference on Learning Representations,
2019. URL https://api.semanticscholar.
org/CorpusID:212859361.

Seddik, M. E. A., Wu, C., Lutzeyer, J. F., and Vazirgiannis,
M. Node feature kernels increase graph convolutional
network robustness, 2022.

Shervashidze, N., Schweitzer, P., van Leeuwen,
E. J., Mehlhorn, K., and Borgwardt, K. M.
Weisfeiler-lehman graph kernels. J. Mach.
Learn. Res., 12:2539–2561, 2011. URL
http://dblp.uni-trier.de/db/journals/
jmlr/jmlr12.html#ShervashidzeSLMB11.

Shi, Y., Huang, Z., Feng, S., Zhong, H., Wang, W., and Sun,
Y. Masked label prediction: Unified message passing
model for semi-supervised classification, 2021.

Soudry, D., Hoffer, E., Nacson, M. S., Gunasekar, S., and
Srebro, N. The implicit bias of gradient descent on sepa-
rable data, 2017. URL https://arxiv.org/abs/
1710.10345.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Liò, P., and Bengio, Y. Graph attention networks. In
International Conference on Learning Representations,
2018.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In International Conference
on Learning Representations, 2019. URL https://
openreview.net/forum?id=ryGs6iA5Km.

Yanardag, P. and Vishwanathan, S. Deep graph kernels. In
Proceedings of the 21th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD
’15, pp. 1365–1374, New York, NY, USA, 2015. Associa-
tion for Computing Machinery. ISBN 9781450336642.
doi: 10.1145/2783258.2783417. URL https://doi.
org/10.1145/2783258.2783417.

Yehudai, G., Fetaya, E., Meirom, E. A., Chechik, G., and
Maron, H. On size generalization in graph neural net-
works. CoRR, abs/2010.08853, 2020. URL https:
//arxiv.org/abs/2010.08853.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,
Salakhutdinov, R., and Smola, A. Deep sets, 2018.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.
Understanding deep learning requires rethinking general-
ization, 2017.

Zhang, S., Liu, Y., Sun, Y., and Shah, N. Graph-less neural
networks: Teaching old mlps new tricks via distillation,
2022.

10

https://api.semanticscholar.org/CorpusID:212859361
https://api.semanticscholar.org/CorpusID:212859361
http://dblp.uni-trier.de/db/journals/jmlr/jmlr12.html#ShervashidzeSLMB11
http://dblp.uni-trier.de/db/journals/jmlr/jmlr12.html#ShervashidzeSLMB11
https://arxiv.org/abs/1710.10345
https://arxiv.org/abs/1710.10345
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://doi.org/10.1145/2783258.2783417
https://doi.org/10.1145/2783258.2783417
https://arxiv.org/abs/2010.08853
https://arxiv.org/abs/2010.08853

Graph Neural Networks Use Graphs When They Shouldn’t

A. Proofs and Extensions
All our analysis assumes that train and test data are labeled via some graph-less teacher. Namely, a function 𝑓 ∗ that classifies
a graph instance based only on its features and not the graph. We let 𝑓 ∗ be defined via a weight vector w∗

1 as follows:

𝑓 ∗ (𝑋) = w∗
1 ·

𝑛∑︁
𝑖=1

x𝑖 (4)

For the sake of simplicity, we assume that all the hidden states are of dimension 𝑑. We denote the number of vertices with 𝑛,
the number of samples with 𝑚, and denote x̃ =

∑𝑛
𝑖 x𝑖 for a set of node feature vectors 𝑥𝑖 ∈ 𝐺, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑙 ≤ 𝑚. x(𝑙)

𝑖
is

the feature vector of node 𝑖 in the graph sample 𝑙.

A.1. Proof of Lemma 3.1

For the sake of simplicity, we begin by proving the simplest case of a GNN with one layer and no readout. Then we extend
the proof to the case of readout and multiple layers. In 𝑟-regular graphs, 𝑑𝑒𝑔(𝑖) = 𝑟 for all nodes 𝑖 ∈ 𝑛. Therefore Equation 2
can be written as:

minw1 ,w2 ∥w1∥2
2 + ∥w2∥2

2
𝑠.𝑡. 𝑦 (𝑙) [(w1 + 𝑟w2) · x̃(𝑙)] ≥ 1 ∀(𝑋 (𝑙) , 𝐴(𝑙) , 𝑦 (𝑙)) ∈ 𝑆

Now, writing the KKT stationarity condition:

L(w, 𝛼) = 1
2
(∥w1∥ + ∥w2∥) −

𝑚∑︁
𝑙=1

𝛼𝑙 [𝑦 (𝑙) (w1 + 𝑟w2)x̃(𝑙) − 1]

∇wL = 0 ⇐⇒
𝜕L
𝜕w1

= w1 −
𝑚∑︁
𝑙=1

𝛼𝑙𝑦
(𝑙) x̃(𝑙) = 0 =⇒ w1 =

𝑚∑︁
𝑙=1

𝛼𝑙𝑦
(𝑙) x̃

𝜕L
𝜕w2

= w2 − 𝑟

𝑚∑︁
𝑙=1

𝛼𝑙𝑦
(𝑙) x̃(𝑙) = 0 =⇒ w2 = 𝑟

𝑚∑︁
𝑙=1

𝛼𝑙𝑦
(𝑙) x̃(𝑙)

Therefore w2 = 𝑟w1. □

With Readout Assume a readout 𝑊3 is applied after the sum-pooling, and denote 𝑊 = [𝑊1,𝑊2,𝑊3].

𝑓 (𝑋, 𝐴,𝑊) = 𝑊3

𝑛∑︁
𝑖

ℎ
(2)
𝑖

= 𝑊3𝑊1 ·
𝑛∑︁
𝑖

x𝑖 +𝑊3𝑊2 ·
𝑛∑︁
𝑖

∑︁
𝑗∈𝑁 (𝑖)

x 𝑗 = (𝑊3𝑊1 · +𝑟𝑊3𝑊2) x̃

Then similarly to Equation 3, the max-margin problem becomes:

min𝑊1 ,𝑊2 ,𝑊3 ∥𝑊1∥2
𝐹
+ ∥𝑊2∥2

𝐹
+ ∥𝑊3∥2

𝐹

𝑠.𝑡. 𝑦 (𝑙)
[
(𝑊3𝑊1 · +𝑟𝑊3𝑊2)x̃(𝑙)] ≥ 1 ∀(𝑋 (𝑙) , 𝐴(𝑙) , 𝑦 (𝑙)) ∈ 𝑆

11

Graph Neural Networks Use Graphs When They Shouldn’t

Then, the KKT stationarity condition:

L(𝑊, 𝛼) = 1
2
(∥𝑊3∥2

𝐹 + ∥𝑊1∥2
𝐹 + ∥𝑊2∥2

𝐹) −
𝑚∑︁
𝑙=1

𝛼𝑙

(
𝑦 (𝑙)𝑊3

[
𝑛∑︁
𝑖=1

(
𝑊1x(𝑙)

𝑖
+ 𝑟𝑊2x(𝑙)

𝑖

)]
− 1

)
𝜕L
𝜕𝑊1

= 𝑊1 −
𝑚∑︁
𝑙=1

𝛼𝑙𝑦
(𝑙)

𝑛∑︁
𝑖=1

𝑊3x(𝑙)
𝑖

𝜕L
𝜕𝑊2

= 𝑊2 − 𝑟

𝑚∑︁
𝑙=1

𝛼𝑙𝑦
(𝑙)

𝑛∑︁
𝑖=1

𝑊3x(𝑙)
𝑖

𝜕L
𝜕𝑊3

= 𝑊3 −
𝑚∑︁
𝑙=1

𝛼𝑙𝑦
(𝑙)

𝑛∑︁
𝑖=1

(
𝑊1x(𝑙)

𝑖
+ 𝑟𝑊2x(𝑙)

𝑖

)
∇𝑊L = 0 ⇐⇒

𝑊1 = 𝑊3

𝑚∑︁
𝑙=1

𝛼𝑙𝑦
(𝑙)

𝑛∑︁
𝑖=1

x(𝑙)
𝑖

𝑊2 = 𝑟𝑊3

𝑚∑︁
𝑙=1

𝛼𝑙𝑦
(𝑙)

𝑛∑︁
𝑖=1

x(𝑙)
𝑖

𝑊3 =

𝑚∑︁
𝑙=1

𝛼𝑙𝑦
(𝑙) (𝑊1 + 𝑟𝑊2)

(
𝑛∑︁
𝑖=1

x(𝑙)
𝑖

)

Therefore 𝑊1 and 𝑊2 are aligned, as well as 𝑊3𝑊1 and 𝑊3𝑊2 □

Two Layers The updates in a 2-layer GNN are:

h(1)
𝑖

= 𝑊
(0)
1 · x𝑖 +𝑊

(0)
2

∑︁
𝑗∈𝑁 (𝑖)

x 𝑗

h(2)
𝑖

= 𝑊
(1)
1 · h(1)

𝑖
+𝑊

(1)
2

∑︁
𝑗∈𝑁 (𝑖)

h(1)
𝑗

Then the final predictor is:

𝑓 (𝑋, 𝐴,𝑊) = 𝑊3

(
𝑊

(1)
1 𝑊

(0)
1 +

(
𝑊

(1)
1 𝑊

(0)
2 +𝑊

(1)
2 𝑊

(0)
1

)
𝑟 +𝑊

(1)
2 𝑊

(0)
2 𝑟2

) 𝑛∑︁
𝑖

x𝑖

Therefore, let 𝑊 = [𝑊 (0)
1 ,𝑊

(0)
2 ,𝑊

(1)
1 ,𝑊

(1)
2 ,𝑊3] and we define:

𝑃(𝑊) = 𝑊3

(
𝑊

(1)
1 𝑊

(0)
1 +

(
𝑊

(1)
1 𝑊

(0)
2 +𝑊

(1)
2 𝑊

(0)
1

)
𝑟 +𝑊

(1)
2 𝑊

(0)
2 𝑟2

)
In this case Equation 2 becomes the following max-margin problem:

min𝑊 ∥𝑊 (0)
1 ∥2

𝐹
+ ∥𝑊 (0)

2 ∥2
𝐹
+ ∥𝑊 (1)

1 ∥2
𝐹
+ ∥𝑊 (1)

2 ∥2
𝐹
+ ∥𝑊3∥2

𝐹

𝑠.𝑡. 𝑦 (𝑙)
[
𝑃(𝑊) · x̃(𝑙)] ≥ 1 ∀(𝑋 (𝑙) , 𝐴(𝑙) , 𝑦 (𝑙)) ∈ 𝑆

(5)

Using the KKT stationarity condition:

12

Graph Neural Networks Use Graphs When They Shouldn’t

L(𝑊, 𝛼) = 1
2

©«
∑︁

𝑡∈{0,1}
𝑘∈{0,1}

∥𝑊 (𝑘)
𝑡 ∥2

𝐹 + ∥𝑊3∥2
𝐹

ª®®®¬ −
𝑚∑︁
𝑙=1

𝛼𝑙 [𝑦𝑃(𝑊) · x̃(𝑙) − 1]

𝜕L
𝜕𝑊 𝑗

= 𝑊 𝑗 −
𝑚∑︁
𝑙=1

𝛼𝑙𝑦
𝜕

𝜕𝑊 𝑗

(𝑃(𝑊) · x̃(𝑙)
𝑖
)

𝜕

𝜕𝑊 𝑗

(𝑃(𝑊) · x̃(𝑙)) = x̃(𝑙) 𝜕𝑃(𝑊)
𝜕𝑊 𝑗

𝜕L
𝜕𝑊 𝑗

= 0 =⇒ 𝑊 𝑗 =

𝑚∑︁
𝑙=1

𝛼𝑙𝑦
(𝑙) x̃(𝑙)

𝑖

𝜕𝑃(𝑊)
𝜕𝑊 𝑗

𝜕𝑃(𝑊)
𝜕𝑊

(0)
1

=
𝜕

𝜕𝑊
(0)
1

[𝑊3 (𝑊 (1)
1 + 𝑟𝑊

(1)
2)𝑊 (0)

1]

𝜕𝑃(𝑊)
𝜕𝑊

(0)
2

=
𝜕

𝜕𝑊
(0)
2

[𝑊3 (𝑟𝑊 (1)
1 + 𝑟2𝑊

(1)
2)𝑊 (0)

2] = 𝑟
𝜕𝑃(𝑊)
𝜕𝑊

(0)
1

𝜕𝑃(𝑊)
𝜕𝑊

(1)
1

=
𝜕

𝜕𝑊
(1)
1

[𝑊3𝑊
(1)
1 (𝑊 (0)

1 +𝑊
(0)
2 𝑟)]

𝜕𝑃(𝑊)
𝜕𝑊

(1)
2

=
𝜕

𝜕𝑊
(1)
2

[𝑊3𝑊
(1)
2 (𝑊 (0)

1 𝑟 +𝑊
(0)
2 𝑟2)] = 𝑟

𝜕𝑃(𝑊)
𝜕𝑊

(1)
1

Therefore, the root and topological weights are aligned in every layer. □

L Layers - Overview In the case of L layers, the same holds, only 𝑃(𝑊) is different. We provide the sketch of the proof.
The max-margin problem is

min𝑊 ∥𝑊3∥2
𝐹
+ ∑𝐿−1

𝑘=0 ∥𝑊 (𝑘)
0 ∥2

𝐹
+ ∥𝑊 (𝑘)

1 ∥2
𝐹

𝑠.𝑡. 𝑦 (𝑙) [𝑃(𝑊)x̃(𝑙)] ≥ 1 ∀(𝑋 (𝑙) , 𝐴(𝑙) , 𝑦 (𝑙)) ∈ 𝑆

(6)

Then, the KKT stationarity condition:

L(𝑊, 𝛼) = ∥𝑊3∥2
𝐹 +

𝐿−1∑︁
𝑘=0

∥𝑊 (𝑘)
0 ∥2

𝐹 + ∥𝑊 (𝑘)
1 ∥2

𝐹 −
𝑚∑︁
𝑙=1

𝛼𝑙 [𝑦 (𝑙)𝑃(𝑊)x̃(𝑙) − 1]

𝜕L
𝜕𝑊

(𝑘)
𝑗

= 2𝑊 (𝑘)
𝑗

−
𝑚∑︁
𝑙=1

𝛼𝑙𝑦
(𝑙) 𝜕

𝜕𝑊
(𝑘)
𝑗

(
𝑃(𝑊)x̃(𝑙)

)
𝜕L

𝜕𝑊
(𝑘)
𝑗

= 0 =⇒ 𝑊
(𝑘)
𝑗

=
1
2
𝜕𝑃(𝑊)
𝜕𝑊

(𝑘)
𝑗

·
𝑚∑︁
𝑙=1

𝛼𝑙𝑦
(𝑙) x̃(𝑙)

Therefore, to show alignment between the root and topological weights in layer 𝑘 , it is enough to show that

𝑟
𝜕𝑃(𝑊)
𝜕𝑊

(𝑘)
0

=
𝜕𝑃(𝑊)
𝜕𝑊

(𝑘)
1

13

Graph Neural Networks Use Graphs When They Shouldn’t

A.2. Proof of Theorem 3.2

Here, we prove Theorem 3.2 by providing distributions P1 and P2 such that GNNs trained on graphs from P1 will fail to
extrapolate to graphs from P2. We consider the case where P1 is a distribution over r-regular graphs, and P2 is a distribution
over star graphs with a random center node. The key intuition in our proof is that learning with P1 will learn a model that
averages over nodes. However when testing it on P2, mostly the center node will have to determine the label, and this will
typically result in an error. We will take the graph size to ∞ to simplify the analysis, but results for finite graphs with high
probability can be obtained using standard concentration results.

Let 𝑓 ∗ be a graph-less function, 𝑓 ∗ (𝑋) = 𝑤∗
1
∑𝑛

𝑖=1 𝑥𝑖 . We assume that 𝑓 ∗ labels the training graphs, and graphs are drawn
from 𝑃1, namely a distribution over r-regular graphs. Let 𝑓 be the learned function when trained with infinite data on 𝑟-regular
graphs, with node features with dimension 1 drawn from N(0, 1). Then 𝑓 (𝐺) = 𝑠𝑖𝑔𝑛(𝑤1

∑𝑛
𝑖=1 𝑥𝑖 + 𝑟𝑤1

∑𝑛
𝑖=1 𝑑𝑒𝑔(𝑖)𝑥𝑖),

where 𝑤1 and 𝑟𝑤1 = 𝑤2 (following Lemma 3.1) are the learned parameters.

We now proceed to show that extrapolation to 𝑃2 fails in this case. Let 𝐺 be a star graph, with features of dimension 1
drawn from N(0, 1), and assume w.l.o.g. that the center node of the star has index 1. Then applying the 𝑓 (learned on 𝑃1)
to this 𝐺 can be written as

𝑓 (𝐺) = 𝑠𝑖𝑔𝑛(𝑤1

𝑛∑︁
𝑖=1

x𝑖 + 𝑟𝑤1 (𝑛 − 1)𝑥1 + 𝑟𝑤1

𝑛∑︁
𝑖=2

𝑥𝑖)

We will first show that when the number of vertices grows to infinity, the sign is determined by the first (central) node.
Denote

𝑋 = 𝑟𝑤1 (𝑛 − 1)𝑥1 𝑌 = 𝑤1
∑𝑛

𝑖=1 𝑥𝑖 𝑍 = 𝑟𝑤1
∑𝑛

𝑖=2 𝑥𝑖 𝑊 = 𝑋 + 𝑌 + 𝑍

We will show that the correlation coefficient between 𝑋 and 𝑊 goes to 1 as the number of vertices 𝑛 approaches infinity. It
holds that

𝑋 ∼ N(0, 𝑟2𝑤2
1 (𝑛 − 1)2) 𝑌 ∼ N(0, 𝑤2

1𝑛) 𝑍 ∼ N(0, 𝑟2𝑤2
1 (𝑛 − 1))

𝑉𝑎𝑟 (𝑊) = 𝑉𝑎𝑟 (𝑋 + 𝑍 + 𝑌) = 𝑉𝑎𝑟 (𝑋 + 𝑍) +𝑉𝑎𝑟 (𝑌) + 2𝐶𝑂𝑉 (𝑋 + 𝑍,𝑌)
𝐶𝑂𝑉 (𝑋 + 𝑍,𝑌) = 𝐶𝑂𝑉 (𝑋,𝑌) + 𝐶𝑂𝑉 (𝑍,𝑌)

𝐶𝑂𝑉 (𝑋,𝑌) = 𝐶𝑂𝑉 (𝑟𝑤1 (𝑛 − 1)𝑥1, 𝑤1

𝑛∑︁
𝑖=1

𝑥𝑖) = 𝑟𝑤2
1 (𝑛 − 1)𝐶𝑂𝑉 (𝑥1, 𝑥1) = 𝑟𝑤2

1 (𝑛 − 1)

𝐶𝑂𝑉 (𝑌, 𝑍) = 𝐶𝑂𝑉 (𝑤1

𝑛∑︁
𝑖=1

𝑥𝑖 , 𝑟𝑤1

𝑛∑︁
𝑖=2

𝑥𝑖) = 𝑟𝑤2
1)

𝑛∑︁
𝑖=2

𝐶𝑂𝑉 (𝑥𝑖 , 𝑥𝑖) = 𝑟𝑤2
1 (𝑛 − 1)

=⇒ 𝐶𝑂𝑉 (𝑋 + 𝑍,𝑌) = 2𝑟𝑤2
1 (𝑛 − 1)

=⇒ 𝑉𝑎𝑟 (𝑊) = 𝑟2𝑤2
1 (𝑛 − 1)2 + 𝑟2𝑤2

1 (𝑛 − 1) + 𝑤2
1𝑛 + 2𝑟𝑤2

1 (𝑛 − 1)

𝐶𝑂𝑉 (𝑋,𝑊) = 𝐶𝑂𝑉 (𝑟𝑤1 (𝑛 − 1)𝑥1, 𝑤1

𝑛∑︁
𝑖=1

𝑥𝑖 + 𝑟𝑤1

𝑛∑︁
𝑖=2

𝑥𝑖 + 𝑟𝑤1 (𝑛 − 1)𝑥1)

= 𝑟𝑤1 (𝑛 − 1) [𝑤1𝐶𝑂𝑉 (𝑥1, 𝑥1) + 𝑟𝑤1 (𝑛 − 1)𝐶𝑂𝑉 (𝑥1, 𝑥1)] = 𝑟𝑤2
1 (𝑛 − 1) + 𝑟2𝑤2

1 (𝑛 − 1)2

𝜌(𝑋,𝑊) =
𝑟𝑤2

1 (𝑛 − 1) + 𝑟2𝑤2
1 (𝑛 − 1)2

(𝑟𝑤1 (𝑛 − 1)) (𝑤1
√︁
𝑟2 (𝑛 − 1)2 + 𝑟2 (𝑛 − 1) + 𝑛 + 2𝑟 (𝑛 − 1))

=
𝑟𝑤2

1 (𝑛 − 1) (1 + 𝑟 (𝑛 − 1))√︁
𝑟2 (𝑛 − 1)2 + 𝑟2 (𝑛 − 1) + 𝑛 + 2𝑟 (𝑛 − 1))

=
1 + 𝑟 (𝑛 − 1)√︁

𝑟2 (𝑛 − 1)2 + 𝑟2 (𝑛 − 1) + 𝑛 + 2𝑟 (𝑛 − 1)
𝑟𝑛 + 1 − 𝑟√︁

𝑟𝑛2 + (1 + 2𝑟 − 3𝑟2)𝑛 − 2𝑟
→𝑛→∞ 1

As 𝑋 and 𝑊 are fully correlated, they have the same sign. We will now show that when 𝑛 approaches infinity, the probability
that 𝑋 will have a different sign from 𝑤∗

1
∑𝑛

𝑖=1 𝑥𝑖 is 0.5, and therefore conclude that the error on 𝑃2 is > 0.25 as specified in
the theorem. We will do so by showing that the correlation coefficient between 𝑋 and 𝑤∗

1
∑𝑛

𝑖=1 𝑥𝑖 converges to 0.

14

Graph Neural Networks Use Graphs When They Shouldn’t

𝐶𝑂𝑉 (𝑋, 𝑤∗
1

𝑛∑︁
𝑖=1

𝑥𝑖) = 𝑟𝑤1 (𝑛 − 1)𝑤∗
1

𝜌(𝑋, 𝑤∗
1

𝑛∑︁
𝑖=1

𝑥𝑖) =
𝑟𝑤1 (𝑛 − 1)𝑤∗

1

𝑟𝑤1 (𝑛 − 1)𝑤∗
1
√
𝑛
→𝑛→∞ 0

We conclude that a model trained on 𝑃1 will fail to extrapolate to 𝑃2.

□

A.3. Proof of Theorem 3.3

We consider the case of a graph-less teacher as in (4) We wish to show that if the training data consists of infinitely many
samples from a distribution over r-regular graphs, then the learned model will extrapolate perfectly to a distribution over
r’-regular graphs. We assume the same feature distribution in all cases.

Let 𝑓 = [w1,w2] be a minimizer of Equation 3 on the training distribution. Then 𝑓 has perfect accuracy on the support of
the training distribution (ie it is equal to the graph-less teacher 𝑓 ∗ there). Let 𝐺 = (𝑋𝐺 , 𝐴𝑟) be in the support of the training
distribution. Then:

𝑓 (𝐺) = 𝑠𝑖𝑔𝑛 ((w1 + 𝑟w2)𝑥𝐺)
(∗)
= 𝑠𝑖𝑔𝑛

(
(w1 + 𝑟2w1)𝑥𝐺

) (∗∗)
= 𝑠𝑖𝑔𝑛 (w1𝑥𝐺)

(∗∗∗)
= 𝑠𝑖𝑔𝑛

(
w∗

1𝑥𝐺
)

(7)

(*) Follows from Theorem 3.1 by substituting w2 = 𝑟w1. (**) Follows from the fact that the direction of (w1 + 𝑟2w1) and
w1 is the same. (***) Follows from the fact that 𝑓 is equal to 𝑓 ∗ on the training distribution.

Now let 𝐺𝑟 ′ = (𝑋𝐺𝑟′ , 𝐴𝑟 ′) be an 𝑟 ′-regular graph example, with features drawn from 𝐷. Following Equation 2, we get that:

𝑓 (𝐺𝑟 ′) = 𝑠𝑖𝑔𝑛
(
(w1 + 𝑟 ′w2)𝑥𝐺𝑟′

)
= 𝑠𝑖𝑔𝑛

(
(w1 + 𝑟 ′𝑟w1)𝑥𝐺𝑟′

) (∗∗∗)
= 𝑠𝑖𝑔𝑛

(
w1𝑥𝐺𝑟′

)
= 𝑠𝑖𝑔𝑛

(
w∗

1𝑥𝐺𝑟′
)

(***) Follows from the assumption that the features are drawn from 𝐷. We thus have that all instances drawn from the test
distribution of r’-regular graphs are classified correctly, and therefore we have perfect extrapolation in this case. □

A.4. Proof of Theorem 3.4

Let 𝑓 ∗ be a graph-less function as in (4), and 𝑓 be a GNN minimizing Equation 3, on a training set of 𝑟-regular graph
examples. Assume we have modified an example in 𝑆 from 𝐺 = (𝑋, 𝐴) to �̃� = (𝑋, �̃�). Let 𝑥 =

∑𝑛
𝑖=1 x𝑖 , x𝑖 ∈ 𝐺. Let

0 ≤ 𝑟 ′ ≤ 𝑛 − 1, 𝑟 ′ ∈ N and let Δ𝑟 ′ ,�̃� (𝑖) = 𝑑𝑒𝑔�̃� (𝑖) − 𝑟 ′.
Then using Equation 2:

𝑓 (�̃�) = w1𝑥 + w2

𝑛∑︁
𝑖=1

𝑑𝑒𝑔(𝑖)x𝑖
(∗)
= w1𝑥 + 𝑟w1

𝑛∑︁
𝑖=1

𝑑𝑒𝑔(𝑖)x𝑖

= w1𝑥 + 𝑟w1

𝑛∑︁
𝑖=1

(Δ𝑟 ′ ,�̃� (𝑖) + 𝑟 ′)x𝑖

= w1𝑥 + 𝑟w1

𝑛∑︁
𝑖=1

Δ𝑟 ′ ,�̃� (𝑖) + 𝑟 ′𝑟w1

𝑛∑︁
𝑖=1

x𝑖

= w1𝑥 + 𝑟 ′𝑟w1𝑥 + 𝑟w1

𝑛∑︁
𝑖=1

Δ𝑟 ′ ,�̃� (𝑖)

= w1𝑥 + 𝑟 ′𝑟w1𝑥︸ ︷︷ ︸
𝑅𝑒𝑔𝑢𝑙𝑎𝑟 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

+ 𝑟w1

𝑛∑︁
𝑖=1

Δ𝑟 ′ ,�̃� (𝑖)x𝑖︸ ︷︷ ︸
Δ 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

(8)

Where (*) follows from Theorem 3.1.

15

Graph Neural Networks Use Graphs When They Shouldn’t

Now assume there exists an 𝑟 ′ such that:

|
𝑟w1

∑𝑛
𝑖=1 Δ𝑟 ′ ,�̃� (𝑖)x𝑖

w1𝑥 + 𝑟 ′𝑟w1𝑥
|≤ 1

Therefore, the Δ-component is small with respect to the regular component and can be dropped below because it doesn’t
change the sign.

𝑓 (�̃�) = 𝑠𝑖𝑔𝑛(w1𝑥 + 𝑟 ′𝑟w1𝑥)
(∗∗)
= 𝑓 ∗ (�̃�)

Where (∗∗) follows from Theorem 3.3.

B. Additional Experimental Results
B.1. Empirical Validation of Lemma 3.1

The validation of Theorem 3.1 is presented in Figure 4. We plot the ratio between the topological weights and root weights,
during the training of linear GNNs with one or two layers, with readout. The GNNs are trained on regular graphs with
different regularity degrees. In all cases, the ratio converges to the regularity degree, as guaranteed by Theorem 3.1.

Figure 4: An empirical validation of Theorem 3.1. The ratio between the topological and root weights is equal to the
regularity degree of the graphs. V is the number of nodes in each graph, and r is the regularity degree.

B.2. Evidences For Graph Overfitting With Additional Models (Section 2.2)

In Section 2.2, we presented an empirical evaluation of the model from Gilmer et al. (2017) as described in Equation 1.
Here we provide the results of the same evaluation with more GNNs. All models show similar trends as presented in
the main paper. The results are shown in Figures 5 (GIN (Xu et al., 2019)), 6 (GAT (Veličković et al., 2018)), 7 (Graph
Transformer (Shi et al., 2021)) and 8 (GraphConv with Normalized Neighbor Aggregation (Gilmer et al., 2017)).

B.3. Evidence For Graph Overfitting With Node Task (Section 2.2)

We evaluated the learning curve in a teacher-student setup of a graph classification task, where the teacher is graph-less
GNN. The teacher readout is sampled once from N(0, 1) to generate the train, validation, and test labels. The training graph
is over 4000 nodes, and the validation and test graphs are over 500 nodes. Each node is assigned with a feature vector in
R128 sampled i.i.d from N(0, 1). Figure 9 shows that also, in this case, although the teacher does not use the graph, giving
the model different graphs affects generalization. Therefore, in this case, the GNN overfits the given graph, although it
should be ignored.

B.4. Additional Results on How Graph Structure Affects Overfitting (Section 2.3)

In Section 2.3 for the sake of presentation, we presented only one curve from each distribution. Figure 10 presents the
learning curve of all the distributions we tested, with multiple parameters for each distribution. Additionally, in Figure 11,
we present the weights norms of the root and topological weights separately for the curves presented in the main paper.

16

Graph Neural Networks Use Graphs When They Shouldn’t

Figure 5: Evaluation of the GIN (Xu et al., 2019) model on the Sum task where the graph should be ignored, as described in
Section 2.2 in the main paper.

Figure 6: Evaluation of the GAT (Veličković et al., 2018) model on the Sum task where the graph should be ignored, as
described in Section 2.2 in the main paper.

C. Additional Experimental Details
C.1. Additional Implementation Details For Section 2.2

The teacher readout is sampled once from N(0, 1) and used for all the graphs. All graphs have 𝑛 = 20 nodes, and each node
is assigned with a feature vector in R128 sampled i.i.d from N(0, 1).

For the Sum task, we used a 1-layer “student" GNN following the teacher model, with readout and ReLU activations. For
the PROTEINS and ENZYMES tasks, we used 3-layers.

We evaluated the learning curve with an increasing amount of [20, 40, 60, 100, 200, 300, 400, 500, 1000, 2000, 4000] sam-
ples. We note that the GNN has a total of ∼16,000 parameters, and thus, it is overparameterized and can fit the training data
with perfect accuracy.

17

Graph Neural Networks Use Graphs When They Shouldn’t

Figure 7: Evaluation of the Graph Transformer (Shi et al., 2021) model on the Sum task where the graph should be ignored,
as described in Section 2.2 in the main paper.

Figure 8: Evaluation of the same model presented in Equation 1 (Gilmer et al., 2017) with normalized neighbor aggregation
on the Sum task where the graph should be ignored, as described in Section 2.2 in the main paper.

C.2. Experimental setup in Section 3.2.1

We trained a one-layer linear GNN with readout on 5-regular graphs over 20 nodes. We then applied it to the test sets
presented in Table 2. Each test set contains 100 graph examples, and each graph has 20. All the test sets share the same
node features and differ in the graph structure, which is drawn from different graph distributions.

C.3. Additional Dataset Information

The dataset statistics are summarized in Table 4.

IMDB-B & IMDB-M (Yanardag & Vishwanathan, 2015) are movie collaboration datasets. Each graph is derived from a
genre, and the task is to predict this genre from the graph. Nodes represent actors/actresses, and edges connect them if they
have appeared in the same movie.

Proteins, D&D &Enzymes (Shervashidze et al., 2011; Dobson & Doig, 2003) are datasets of chemical compounds. The
goal in the first two datasets is to predict whether a compound is an enzyme or not, and the goal in the last datasets is to
classify the type of an enzyme among 6 classes.

18

Graph Neural Networks Use Graphs When They Shouldn’t

Figure 9: Evaluation of the same model presented in Equation 1 (Gilmer et al., 2017) on the Sum task for node classification
where the graph should be ignored.

Table 4: Statistics of the real-world datasets used in our evaluation.

Dataset # Graphs Avg # Nodes Avg # Edges # Node Features # Classes

Proteins 1113 39.06 72.82 3 2
NCI1 4110 29.87 32.3 37 2
Enzymes 600 32.63 62.14 3 6
D& D 1178 284.32 715.66 89 2
IMDB-B 1000 19 96 0 2
IMDB-M 1500 13 65 0 3
Collab 5000 74.49 2457.78 0 3
Reddit-B 2000 429.63 497.75 0 2
Reddit-5k 4999 508.52 594.87 0 5
mol-hiv 41,127 25.5 27.5 9 2
mol-pcba 437,929 26.0 28.1 9 2 (128 tasks)

NCI1 (Shervashidze et al., 2011) is a datasets of chemical compounds. Vertices and edges represent atoms and the chemical
bonds between them. The graphs are divided into two classes according to their ability to suppress or inhibit tumor growth.

Collab (Morris et al., 2020) is a scientific collaboration dataset. A graph corresponds to a researcher’s ego network, i.e., the
researcher and their collaborators are nodes, and an edge indicates collaboration between two researchers. A researcher’s
ego network has three possible labels, which are the fields that the researcher belongs to.

Reddit-B, Reddit-5k (Morris et al., 2020) are datasets of Reddit posts from the month of September 2014, with binary and
multiclass labels, respectively. The node label is the community, or “subreddit", that a post belongs to. 50 large communities
have been sampled to build a post-to-post graph, connecting posts if the same user comments on both.

mol-hiv, mol-pcba (Hu et al., 2020) are large-scale datasets of molecular property prediction.

Following Errica et al. (2022), we added a feature of the node degrees for datasets that have no node features at all.

C.4. Hyper-Parameters

All GNNs use ReLU activations with {3, 5} layers and 64 hidden channels. They were trained with Adam optimizer
over 1000 epochs and early on the validation loss with a patient of 100 steps, eight Decay of 1𝑒 − 4, learning rate in

19

Graph Neural Networks Use Graphs When They Shouldn’t

Figure 10: The learning curves of the same GNN model trained on graphs that have the same node features and only
differ in their graph-structure. The label is computed via a graphless teacher. If GNNs were to ignore the non-informative
graph-structure they were given, similar performance should have been observed for all graph distributions. Among the
different distributions, regular graphs exhibit the best performance.

Figure 11: The weights norm of the topological (dashed) and the root (smooth) weights along the same runs. On the empty
graphs, the topological weights are not trained and the ratio is 0 due to initialization.

{1𝑒 − 3, 1𝑒 − 4}, dropout rate in {0, 0.5}, and a train batch size of 32. The preserved COV is among {80%, 50%}.

C.5. Models

In Section 4, when evaluating graphs with reduced COV, we add edge features to differ between the original and added
edges. We adapt each neighbor’s aggregation component to process this edge information in a non-linear way.

GraphConv

x′ = 𝑊1x𝑖 +𝑊2
∑︁

𝑗∈𝑁 (𝑖)
𝑥𝑖 + 𝜎(𝑊3e𝑖, 𝑗)

GIN

x′ = 𝑊4
©«(1 + 𝜖)x𝑖 +𝑊2

∑︁
𝑗∈𝑁 (𝑖)

𝜎
(
x𝑖 + 𝜎(𝑊3e𝑖, 𝑗)

)ª®¬
20

Graph Neural Networks Use Graphs When They Shouldn’t

GATv2
𝑥′ = 𝛼𝑖,𝑖𝑊1x𝑖 +

∑︁
𝑗∈𝑁 (𝑖)

𝛼𝑖, 𝑗𝑊2x 𝑗

𝛼𝑖, 𝑗 =
𝑒𝑥𝑝

(
𝑎𝑇𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈

(
𝑊1x𝑖 +𝑊2x 𝑗 + 𝜎(𝑊3e𝑖, 𝑗)

))∑
𝑘∈𝑁 (𝑖)∪{𝑖} 𝑒𝑥𝑝

(
𝑎𝑇𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈

(
𝑊1x𝑖 +𝑊2x𝑘 + 𝜎(𝑊3e𝑖,𝑘)

))
GraphTransformer

𝑥′ = 𝑊1x𝑖 +
∑︁

𝑗∈𝑁 (𝑖)
𝛼𝑖, 𝑗

(
𝑊2x 𝑗 + 𝜎(𝑊5e𝑖, 𝑗)

)
𝛼𝑖, 𝑗 =

(𝑊3x𝑖)𝑇 (𝑊4x 𝑗 +𝑊5e𝑖, 𝑗)√
𝑑

21

