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Abstract
We propose a standardized version of fairness
measures for continuous scores with a reason-
able interpretation based on the Wasserstein dis-
tance. Our measures are easily computable and
well suited for quantifying and interpreting the
strength of group disparities as well as for com-
paring biases across different models, datasets,
or time points. We derive a link between the dif-
ferent families of existing fairness measures for
scores and show that the proposed standardized
fairness measures outperform ROC-based fairness
measures because they are more explicit and can
quantify significant biases that ROC-based fair-
ness measures miss.

1. Introduction
In recent years, many decision-making processes in areas
such as finance, education, social media or medicine have
been automated, often at least in part with the goal of mak-
ing those decisions more comparable, objective, and non-
discriminatory (Esteva et al., 2017; Holstein et al., 2018; Al-
varado & Waern, 2018; Bucher, 2017; Rader & Gray, 2015).
For high-risk business transactions between individuals and
companies (e.g. in the lending industry), often predictions
of machine learning algorithms are incorporated into those
decisions. Such algorithms aim to differentiate individuals
as optimally as possible based on historical data and in terms
of future behavior. They assign risk scores or risk categories
to individuals. Even with good intentions, the approach
runs the risk of directly or indirectly discriminating against
individuals on the basis of protected characteristics, such as
gender, ethnicity, political background or sexual orientation
(Larson et al., 2016; Datta et al., 2014; Köchling & Wehner,
2020). That may be the case, if the data reflects biased social
circumstances or include prejudicial historical decisions.
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Such discriminatory predictions manifest as disparities
among protected groups and may occur in different forms
and for various reasons. For example, individuals belong-
ing to different protected groups may be assigned different
scores even if they have the same outcome, or predictions
may turn out to have different levels of consistency with
the ground-truth risk. Unfortunately, in most cases different
notions of algorithmic fairness are incompatible (Barocas
et al., 2019; Kleinberg et al., 2018; Saravanakumar, 2021;
Chouldechova, 2017; Pleiss et al., 2017). Various measures
for algorithmic fairness have been developed that aim to
quantify different kinds of group disparities (Zafar et al.,
2017; Kamishima et al., 2012; Makhlouf & Zhioua, 2021).
So far, most of the available literature discusses the problem
in the context of binary decision tasks (Mitchell et al., 2021;
Barocas et al., 2019; Kozodoi et al., 2022).

However, in many applications, neither a final decision is
known, nor is the explicit cost of false predictions. This
is especially be the case when score and decision are per-
formed by different entities. A prominent example is the
COMPAS Score (Larson et al., 2016) which was developed
by one entity to support decisions done by other entities. It
may also be that a score is never applied as a pure decision
but only as a quantitative prediction that affects, e.g. the cost
of a product (risk-based pricing). In these cases, fairness
can only be fully assessed if the disparities between groups
are summarized across the entire score model.

This paper presents a novel approach to quantifying group
disparities for continuous risk score models. It’s major
contributions are

• a well interpretable and mathematically sound method
for quantifying group disparities in continuous risk
score models.

• a standardized framework, that allows for monitoring
bias over time or between models and populations,
even if there is a shift in the score distribution. Further-
more, standardized measures are unaffected by mono-
tonic transformations of the scores, such as logistic /
logit transform. This prevents malicious actors from
finding a transformation that hides the bias (see sec-
tion 3.2).

• bridging the gap between common fairness-metrics
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stemming directly from three parity concepts (Klein-
berg et al., 2018; Hardt et al., 2016; Barocas et al.,
2019; Makhlouf & Zhioua, 2021) and ROC-based ap-
proaches (Vogel et al., 2021; Kallus & Zhou, 2019;
Yang et al., 2022; Beutel et al., 2019).

As not all group disparities arise from discriminatory cir-
cumstances - even large disparities between groups may
be explainable or justifiable otherwise - assessing whether
disparities are unfair should entail a more detailed analysis
of their underlying causes and drivers. Thus, to be explicit,
we use the term disparity measure instead of fairness mea-
sure throughout the rest of the paper to underline that all
discussed measures are purely observational.

The paper is structured as follows: Most of the available
quantitative disparity metrics for classifiers reduce down
to three main parity concepts that are based on conditional
independence: Independence, separation and sufficiency
(Barocas et al., 2019; Makhlouf & Zhioua, 2021; Kozodoi
et al., 2022). In Section 2, we discuss these concepts and
existing related measures in terms of binary classifiers first,
and generalize them to continuous risk scores in Section 3.
We show that our proposed measures are more flexible than
many existing metrics and we discuss their interpretability.
In Section 4, we compare the presented measures to ROC-
based disparity measures, and we prove that our proposed
measures impose a stronger objective and are better suited
to detect bias. We outline published related work throughout
each section. Section 5 contains results of experiments using
benchmark data and Section 6 includes final discussion and
outlook. All proofs of technical results are deferred to the
appendix.

2. Parity concepts and fairness measures for
classifiers

Let Y denote a binary target variable with favorable out-
come class Y = 0 and unfavorable class Y = 1, and X
a set of predictors. Let S ∈ S ⊂ R denote an estimate
of the posterior probability of the favorable outcome of Y ,
P(Y = 0 |X) or some increasing function of this quantity,
in the following called (risk) score, with cumulative distri-
bution function FS and density function fS . We assume
S to be bounded with |S| = supS − inf S denoting the
length of the score range. Let A be a (protected) attribute of
interest defining two (protected) groups (A ∈ {a, b} binary
w.l.o.g.). We choose A = b as the group of interest, e.g. the
expected discriminated group. All discussed measures are
purely observational and based on the joint distribution of
(S,A, Y ). They can be easily calculated if a random sample
of the joint distribution is available.

Note that each continuous score S induces an infinite set of
binary classifiers by choosing a threshold s ∈ S and accept-

ing every sample with S > s. We define disparity measures
for binary classifiers in dependence of such a threshold value
s. For a group A, the positive rate at a threshold s is given
by PRA(s) = P(S > s|A) = 1−FS|A(s), the true positive
and false positive rates by TPRA(s) = 1 − FS|A,Y=0(s)
and FPRA(s) = 1 − FS|A,Y=1(s), respectively. We
will write in short F := FS and f := fS , as well as
Say := S|A = a, Y = y, Fay := FS|A=a,Y=y and
Sby, Fby, fay, fby for the conditional random variables, dis-
tribution functions and density functions. For a cumulative
distribution function G, we denote by G−1 the related quan-
tile function (generalized inverse) with G−1(p) = inf{x ∈
R : p ≤ G(x)} which fulfills G−1(G(X)) = X almost
surely. If G is continuous and strictly monotonically in-
creasing, then the quantile function is the inverse.

Independence (selection rate parity) The random vari-
ables S and A satisfy independence if S ⊥⊥ A, which im-
plies FS|A=a = FS|A=b = FS . Group disparity of classi-
fiers can be quantified by the difference between the positive
rates (Makhlouf & Zhioua, 2021; Zafar et al., 2017; Dwork
et al., 2012)

c-biasIND(Sa, Sb; s) = PRb(s)− PRa(s)

= Fa(s)− Fb(s).
(1)

The concept of independence contradicts optimality S = Y ,
if Y ⊥̸⊥ A and is, thus, not an intuitive fairness measure
in most cases. On the other hand, the following two mea-
sures, separation and sufficiency, are both compatible with
optimality and allow A ⊥̸⊥ Y , as they include the target
variable Y in the independence statements and allow for
disparities that can be explained by group differences in the
ground-truth.

Separation (error rate parity) The random variables S,
A and Y satisfy separation if S ⊥⊥ A | Y . For a binary out-
come Y , the separation condition splits into true positive
rate parity FS|A=a,Y=0 = FS|A=b,Y=0 = FS|Y=0 (equal
opportunity, EO) (Zhang & Bareinboim, 2018b; Hardt
et al., 2016) and false positive rate parity FS|A=a,Y=1 =
FS|A=b,Y=1 = FS|Y=1 (predictive equality, PE) (Corbett-
Davies et al., 2017; Makhlouf & Zhioua, 2021). If both hold,
the condition is also known as equalized odds (Makhlouf
& Zhioua, 2021; Hardt et al., 2016). Group disparity of
classifiers can be quantified by the difference between the
true and false positive rates

c-biasEO(Sa, Sb; s) = TPRb(s)− TPRa(s)

= Fa0(s)− Fb0(s),
(2)

c-biasPE(Sa, Sb; s) = FPRb(s)− FPRa(s)

= Fa1(s)− Fb1(s).
(3)
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Sufficiency (predictive value parity) The random vari-
ables S, A and Y satisfy sufficiency if Y ⊥⊥ A | S (in
words, S is sufficient to optimally predict Y ). Sufficiency
implies group parity of positive and negative predictive val-
ues. However, especially in case of continuous scores, usu-
ally, calibration within each group (Kleinberg et al., 2018)
(resp. test fairness (Chouldechova, 2017)), as an equiva-
lent concept, is used instead (Barocas et al., 2019). The
calibration bias examines if the model’s predicted probabil-
ity deviates similarly strongly from the true outcome rates
within each group:

c-biasCALI(Sa, Sb; s) = P(Y = 0|A = b, S = s)

− P(Y = 0|A = a, S = s).
(4)

Well-calibration (Kleinberg et al., 2018; Pleiss et al., 2017)
additionally requires the prediction of both groups to ac-
curately reflect the ground truth P(Y = 0|A,S = s) = s.
For determining the calibration difference, the score range
is usually binned into a fixed number of intervals. A high
calibration bias reflects the fact that (for a given score s) the
lower-risk group carries the costs of the higher-risk group.
The concept of sufficiency is especially important if the
model is applied in a context, where both, the score and
the group membership are available to the decision maker.
Then, a high calibration bias will evoke a group-specific
interpretation and handling of identical score values. On
the other hand, sufficiency does not prevent discrimination:
high- and low-risk individuals of a group can be mixed and
assigned an intermediate risk score without violating suffi-
ciency. Moreover, sufficiency is often naturally fulfilled as
a consequence of unconstrained supervised learning, espe-
cially if the group membership is (at least to some extent)
encoded in the input data. Thus, it is usually not a constraint
and not a trade-off with predictive performance (Liu et al.,
2019).

If separation is violated, the model output includes more
information about the group A as is justified by the ground
truth Y alone. So, different groups carry different costs of
misclassification. It is therefore a reasonable concept for
surfacing potential inequities. Conversely, a violation of
sufficiency results in a different calibration and a different
meaning of identical score values per group. That is the
case, if the relation of A and Y is not properly modeled by
the score.

In general, independence, separation and sufficiency are
opposing concepts. It can be shown that for a given dataset,
except for special cases (like perfect prediction or equal
base rates), every pair of the three parity concepts is math-
ematically incompatible (Barocas et al., 2019; Kleinberg
et al., 2018; Saravanakumar, 2021; Chouldechova, 2017;
Pleiss et al., 2017).

3. Generalization to continuous risk scores
We propose to use the expected absolute classifier bias as a
disparity measure for scores. Note, that an expected value
of zero implies that every classifier derived from the score
by choosing a group-unspecific threshold will be bias-free.
By evaluating and aggregating the bias across all possible
decision thresholds, this generalization serves as a useful
diagnostic tool in fairness analyses and follows a similar
idea as used in ROC analyses. The two proposed versions
can be seen as generalized rate differences. They differ only
in the way, in which possible thresholds are weighted. We
show, that for the concepts independence and separation,
the proposed disparity measures are identical to Wasserstein
distances between the groupwise score-distributions.

The use of Wasserstein distance in previous works has fo-
cused mainly on independence fairness (e.g. demographic
parity), therefore a consideration of all three disparity con-
cepts (independence, separation and sufficiency / calibra-
tion) for continuous risk scores is novel to this work.

3.1. Expected classifier bias with uniformly weighted
thresholds

Definition 3.1. By assuming each threshold s ∈ S is
equally important, we define

biasUx (Sa, Sb) := ES∼U [| c-biasx(Sa, Sb;S)|]

=
1

|S|

∫
S
| c-biasx(Sa, Sb; s)| ds.

(5)

Theorem 3.2. For the concepts independence and separa-
tion, i.e for x ∈ {IND, PE, EO}, it holds:

(i) biasUx (S|A = a, S|A = b) is equal to the normalized
Wasserstein-1-distance between the conditional score
distributions in the groups over the (finite) score region
S i.e.

biasUx (Sa, Sb) =
1

|S|
·W1(Say, Sby), (6)

where y = 0 for x = EO, y = 1 for x = PE, and y = ·
for x = IND.

(ii) As a consequence, we can derive the disparity between
average scores per group (known as balance for the
positive / negative class (Kleinberg et al., 2018)) as a
lower bound, i.e.

biasUx (Sa, Sb) ≥
1

|S|
|E[Sby]− E[Say]| . (7)

A similar version of Theorem 3.2 (i) for independence bias
has previously be presented by Jiang et al. (2020), but they
did not draw the connection to the balance for the positive
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/ negative class. The Wasserstein distance was recently
proposed as a fairness measure (Miroshnikov et al., 2022;
Kwegyir-Aggrey et al., 2021; Zhao, 2023) mainly for in-
dependence bias, and it was especially used for debiasing
purposes earlier (Miroshnikov et al., 2021; Han et al., 2023;
Chzhen et al., 2020). Fairness of scores has also been sub-
ject for regression tasks (Agarwal et al., 2019; Wei et al.,
2023; Zhao, 2023). Again, due to the different target value,
only for independence bias. A formal definition and prop-
erties of W1 can be found in the appendix. For calibration,
the bias biasUCALI is equal to the two-sample version of the
the l1-calibration error (Kumar et al., 2019).

3.2. Standardized Measures

It can be difficult to compare the expected classifier bias of
datasets with distinct score distributions. Especially for
imbalanced datasets score distributions are often highly
skewed. In this case, disparities in dense score areas may
be more critical as they affect more samples. Therefore, we
developed a method that standardizes the bias computation,
making it independent of data skewness.

Our standardized disparity measures for risk scores are im-
portant especially when a monotonic transformation is ap-
plied to the score. A good example of such a scenario is
given by the logistic regression, where both the probability
or the linear term can be used as a score. The risk assess-
ment of both variants is the same. It is also most likely that
down-stream tasks would adopt to the score representation
(linear term /probability) used. This means, both representa-
tions are likely to lead to the same treatment in down-stream
tasks and to the same (un)fairness. Without invariance to
monotonic transformations, the two representations would
have different bias-measures.

In a worst-case scenario an entity could apply a strictly
monotonic function to their score, stretching areas with low
bias and shrinking areas with high bias. Doing so would
allow to mask the bias without any change in accuracy or
better ranking of the disadvantaged group. This has already
be proposed (Jiang et al., 2020).

That is why we propose an alternative generalization that
weights the thresholds by their frequency observed in the
population. By this, the resulting disparity measures become
independent of the concrete distribution and evaluate the
fairness of a bipartite ranking task, similar to ROC measures.
Each sample is equally important in this scenario.

As a consequence, this allows for a meaningful comparison
of different scores, even of scores with different ranges (e.g.
a normally-distributed score that can take any real value
and a uniformly-distributed score that only takes probabil-
ities). Our methodology can thus be utilized to assess the
effectiveness of debiasing approaches (Hort et al., 2023).

Definition 3.3.

biasSx (Sa, Sb) := ES∼F [| c-biasx(Sa, Sb;S)|] (8)

=

∫ 1

0

| c-biasx(Sa, Sb;F
−1(r))| dr

=

∫
S
| c-biasx(Sa, Sb; s)| · f(s) ds (9)

Note that biasSx (S|A = a, S|A = b) is invariant under
monotonic score transformations as it is a purely ranking-
based metric, biasUx (S|A = a, S|A = b) is not. If S ∼ U
it holds biasS = biasU . We show, that the standardized
bias is equal to the Wasserstein-1-distance between quantile-
transformed distributions. To our knowledge, this is the first
introduction of a fairness measure based on the Wasserstein
distance, which is invariant to transformations.

Theorem 3.4. For the concepts independence and separa-
tion, i.e. for x ∈ {IND, PE, EO}, it holds:

(i) biasSx is equal to the Wasserstein-1-distance using the
push-forward by the quantile function F−1#L1 as
ground metric (with y = 0 for x = EO, y = 1 for
x = PE, and y = · for x = IND)

biasSx (Sa, Sb) = W1(F (Say), F (Sby))

=

∫ 1

0

|Fay ◦ F−1(t)− Fby ◦ F−1(t)| dt.
(10)

(ii) We can derive the disparity between the average rela-
tive rank per group as a lower bound.

For reasons of simplicity, we will use the notation
WZ(X,Y ) := W1(FZ(X), FZ(Y )).

3.3. Interpretation of the score bias

In general, biasU and biasS take values in the interval [0, 1]
as they are expected values over rate differences. The op-
timal value, a bias of zero, indicates group parity for all
decision thresholds with respect to the analyzed type of clas-
sifier error. When comparing multiple score models or one
model over multiple populations, a smaller bias is prefer-
able. The standardized method allows direct comparison
of models with different score distributions with respect to
group parity in bipartite ranking tasks. biasU and biasS

can be interpreted as the classifier bias to be expected at a
randomly chosen threshold - either randomly selected from
all available score values (biasU ) or by randomly selecting
one sample and assigning the favorable label to all samples
that are ranked higher (biasS).

In addition, the separation and independence biases can be
interpreted in terms of the Wasserstein distance (or Earth
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Mover distance): The bias is measured as the minimum cost
of aligning the two groups with respect to the analyzed type
of classifier error. Here, the baseline distance is measured
in normalized scores for biasU or in ranks for biasS . It
indicates what proportion of a group must be scored (how)
differently in order to equalize the groups.

3.4. Positive and negative components of the score bias

Unlike a classifier bias, a score bias does not have to be
overall positive or negative for a particular group. Instead,
there may be thresholds at which one group is disadvantaged
and others at which the opposing group is disadvantaged.
To further analyze the bias, we can decompose the total
bias into a positive and a negative component (positive and
negative from the point of view of the chosen disadvantaged
group, here b). For this purpose, the classifier bias is divided
into a positive and a negative part for each threshold

c-bias+(s) = max(c-bias(s), 0) and

c-bias−(s) = −min(c-bias(s), 0).

This allows to derive a decomposition of both score bias
types into two components:

pos-biasx(Sa, Sb) = E[c-bias+x (Sa, Sb;S)], (11)

neg-biasx(Sa, Sb) = E[c-bias−x (Sa, Sb;S)], (12)

where biasx(Sa, Sb) = pos-biasx(Sa, Sb) +
neg-biasx(Sa, Sb). By dividing each component by
the total bias, a percentage can be calculated. The decom-
position helps to interpret, which of the two compared
groups is affected predominantly negatively by the observed
bias. A similar decomposition of a Wasserstein bias was
proposed by Miroshnikov et al. (2022).

4. ROC-based fairness measures and relations
Furthermore, there exists a wide variety of (separation) fair-
ness metrics which are calculated based on ROC curves
or the area under the curves. We show, that the proposed
standardized bias measures outperform these ROC-based
measures as they are more explicit, easier to interpret, and
can measure biases, that ROC-based fairness measures can-
not catch. We define the ROC curve between two arbitrary
random variables G,H , similar to Vogel et al. (2021). In
a bipartite ranking or scoring task, the ROC curve is usu-
ally used to evaluate the separability between positive and
negative outcome class. In this case, G = S0, H = S1.

Definition 4.1 (ROC). Let G and H be two random vari-
ables with cumulative distribution functions FG, FH on R
with quantile functions F−1

G , F−1
H . Then the ROC curve of

G and H is the mapping

ROCG,H : p ∈ [0, 1] 7→ 1− FG(F
−1
H (1− p)) (13)

with the area under the curve (AUROC) and the Gini coeffi-
cient defined as

AUROC(G,H) =

∫ 1

0

ROCG,H(p) dp and

Gini(G,H) = 2 ·AUROC(G,H)− 1.

(14)

Definition 4.2. Similar to the above introduced biases, a
ROC-based disparity-measure for score models can be de-
fined as the expected absolute difference between two ROC
curves

biasROC(Sa, Sb) = E[|ROCSb0,Sb1
−ROCSa0,Sa1 |]

=

∫ 1

0

|ROCSb0,Sb1
(s)− ROCSa0,Sa1

(s)| ds

biasROC(S|A = a, S|A = b) is equal to the ab-
solute between ROC area (ABROCA) (Gardner et al.,
2019). In general, biasROC(S|A = a, S|A =
b) ≥ |AUROC(Sb0, Sb1) − AUROC(Sa0, Sa1)|, which
is known as intra-group fairness and often used as a fair-
ness measure for scores (Vogel et al., 2021; Beutel et al.,
2019; Borkan et al., 2019; Yang et al., 2022). If the ROC
curves of two groups do not cross (i.e. one group gets uni-
formly better scores than the other), equality holds. As the
thresholds that lead to certain ROC values (pair of FPR and
TPR at a certain score threshold) are group-specific, it is
not sufficient to compare intra-group ROC curves (Vogel
et al., 2021). Thus, we define a second ROC-based measure
that compares the discriminatory power across groups and
is based on the cross-ROC curve (Kallus & Zhou, 2019).

Definition 4.3. We define the cross-ROC bias as the ex-
pected difference of the ROC curves across groups

biasxROC(Sa, Sb) = E[|ROCSb0,Sa1
−ROCSa0,Sb1

|]

=

∫ 1

0

|ROCSb0,Sa1(s)− ROCSa0,Sb1
(s)| ds

The cross-ROC bias evaluates the difference in separa-
bility of negatives samples in one group versus positive
samples of the other group. biasxROC is always greater
or equal to the related AUROC-based fairness-measure
|AUROC(Sa0, Sb1)−AUROC(Sb0, Sa1)|, that is known
as subgroup positive background negative (BPSN) or inter-
group fairness (Borkan et al., 2019; Vogel et al., 2021; Beu-
tel et al., 2019; Yang et al., 2022).

4.1. Relating Wasserstein and ROC biases

We now reveal some connections of the standardized Wasser-
stein disparity measures with the ROC-based disparity mea-
sures. We first consider the general case of the Wasser-
stein distance between two random variables X,Y quantile-
transformed by Z.
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For the following section, we require ROCX,X(r) = r.
This is fulfilled, whenever FX is continuous and strictly
monontonic increasing, so it permits a well-defined inverse,
or if the ROC-curve is interpolated linearly from finite data.

Theorem 4.4. The quantile-transformed Wasserstein dis-
tance can be rewritten in terms of ROC

WZ(X,Y ) =

∫ 1

0

|FX(F−1
Z (t))− FY (F

−1
Z (t))|dt

=

∫ 1

0

|ROCX,Z(t)− ROCY,Z(t)|dt.
(15)

Moreover, we easily get the following result.

Proposition 4.5. Let Zi, i = 1, . . . , n be random vari-
ables with values in S and with densities fi. Let ZK be
their mixture, where K is a random variable with val-
ues in {1, . . . , n}. Then their joint density is given by
fZK

(x) =
∑n

i=1 P(K = i)fi(x) and it holds

WZK
(X,Y ) =

n∑
i=1

P(K = i)WZi
(X,Y ). (16)

Formulating S as a mixture of the two groups and two
outcome classes Sa0, Sa1, Sb0, Sb1, we get

WS(Say, Sby) = wa0 ·WSa0
(Say, Sby)

+ wb0 ·WSb0
(Say, Sby)

+ wa1 ·WSa1
(Say, Sby)

+ wb1 ·WSb1
(Say, Sby).

(17)

By looking at the different mixture components, we can
reveal a connection to the ROC-based disparity measures.

Lemma 4.6. WSay
(Say, Sby) and WSaỹ

(Say, Sby) for ỹ ̸=
y can be rewritten in terms of ROC

WSay
(Say, Sby) =

∫ 1

0

∣∣∣∣ROCSby,Say
(r)− r

∣∣∣∣dr, (18)

WSaỹ (Say, Sby) =

∫ 1

0

∣∣∣∣ROCSby,Saỹ (r)−

ROCSay,Saỹ
(r)

∣∣∣∣dr. (19)

Lemma 4.7. From Jensen inequality, it follows

WSay
(Say, Sby) ≥ |AUROC(Sby, Say)− 1

2 |
= 1

2 · |Gini(Sby, Say)|.
(20)

If the ROC curve does not cross the diagonal, then equality
holds.

Theorem 4.8. We can now decompose each separation bias
into a sum of four ROC statements. Let way = P(Y =

y,A = a) and wby = P(Y = y,A = b), as well as wy =
P(Y = y), then it holds:

biasSEO(Sa, Sb) = wa0

∫ 1

0

|ROCSb0,Sa0
(r)− r| dr

+ wb0

∫ 1

0

|ROCSa0,Sb0
(r)− r| dr

+ wa1

∫ 1

0

|ROCSa0,Sa1(r)− ROCSb0,Sa1(r)|dr

+ wb1

∫ 1

0

|ROCSa0,Sb1
(r)− ROCSb0,Sb1

(r)|dr,

(21)

and analogously for biasSPE(Sa, Sb) by exchanging wa0 with
wa1, wb0 with wb1, Sa0 with Sa1 and Sb0 with Sb1.
Corollary 4.9. From Theorem 4.8 we can infer upper
bounds of the separation biases and their sum

biasSEO(Sa, Sb) ≤ 1− w0

2
and

biasSPE(Sa, Sb) ≤ 1− w1

2
(22)

⇒ biasSEO(Sa, Sb) + biasSPE(Sa, Sb) ≤
3

2
. (23)

Moreover, we show that the sum of the separation biases
is an upper bound (up to population-specific constants) to
both ROC biases and the separability of the groups within
each outcome class.
Theorem 4.10. The following inequality holds 1

biasSEO(Sa, Sb) + biasSPE(Sa, Sb)

= WS(Sa0, Sb0) +WS(Sa1, Sb1)

≥ min(wa0, wa1, wb0, wb1)

2
· (biasROC +biasxROC

+Gini(Sa0, Sb0) + Gini(Sa1, Sb1)).

(24)

Note, that the constant min(wa0, wa1, wb0, wb1)/2 is fixed
for each dataset. Thus, decreasing both separation biases
leads to a decrease of the sum of both ROC biases as well
as the separability of the groups within each outcome class.
Especially, separation biases of zero also diminish both
ROC biases.
Corollary 4.11. Zero separation biases imply zero ROC
biases

biasSEO(Sa, Sb) = biasSPE(Sa, Sb) = 0

⇒ biasROC(Sa, Sb) = biasxROC(Sa, Sb) = 0.
(25)

The inverse does not hold.
1Note, that if Fay and Fby have identical supports and permit an

inverse, then Gini(Say, Sby) = Gini(Sby, Say). If this symmetry
is not fulfilled, the minimum of both must be used on the right
side.
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Theorem 4.12. Moreover, if only one separation bias is
zero, ROC and cross-ROC bias become equal

biasSEO(Sa, Sb) = 0 or biasSPE(Sa, Sb) = 0

⇒biasROC(Sa, Sb) = biasxROC(Sa, Sb).
(26)

5. Experiments
We use the COMPAS dataset2, the Adult dataset3 and the
German Credit dataset4 to demonstrate the application of
the fairness measures for continuous risk scores. For each
bias, we perform permutation tests to determine statistical
significance under the null hypothesis of group parity (Di-
Ciccio et al., 2020; Schefzik et al., 2021). The core of this
paper is our novel bias evaluation metric, therefore the focus
of our experiments is not on achieving a low bias, but on
demonstrating where and how detecting bias is useful, for
example while comparing different models and analyzing
debiasing approaches. In addition, we perform an experi-
ment with synthetic datasets where the equal opportunity
bias is controllable by one parameter. Experimental details
and complete results including all presented bias types can
be found in appendix. The code used for the experiments
in this study is online available 5. The repository includes
detailed instructions for reproducing the results.

5.1. COMPAS

We calculate the different types of biases for the famous
COMPAS decile score (n = 7214), which predicts the risk
of violent recidivism within two years following release. We
choose race as protected attribute and set African-America
as the expected discriminated group versus Caucasian race.
To be consistent with the notation in this paper, we cal-
culate the counter-score, so that a high score stands for
the favorable outcome. In contrast to the original analysis
(Larson et al., 2016) we calculate the bias over the entire
score area. Results (Table 1) show a significant separa-
tion bias against the African-American and in favor of the
Caucasian race. The disadvantaged group experiences a
much lower true-positive rate (rate difference in average
biasSEO = 0.16) as well as false positive rate (rate difference
in average biasSPE = 0.15). The calibration bias is lower
and not statistically significant but predominantly in favor
of the African-American race. While the ROC bias is also
low (implying that the separability is equally good in both
groups considered independently), the cross-ROC bias is
again high. In this case, there is not much difference be-

2https://raw.githubusercontent.com/propublica/compas-
analysis/master/compas-scores-two-years.csv

3https://archive.ics.uci.edu/ml/machine-learning-
databases/adult/adult.data

4https://www.kaggle.com/datasets/uciml/german-
credit?resource=download

5https://github.com/schufa-innovationlab/fair-scoring

Table 1: Bias of COMPAS score of African-American vs.
Caucasian.

type of bias total pos. neg. p-value

biasSEO 0.161 0% 100% <0.01
biasSPE 0.154 0% 100% <0.01
biasSCALI 0.034 79% 21% 0.30

biasROC 0.016 46% 54% 0.31
biasxROC 0.273 0% 100% <0.01

tween biasU and biasS (complete results can be found in
appendix).

5.2. German Credit Data

Moreover, we trained two logistic regression scores on the
German Credit Risk dataset (n = 1000) to predict if a bor-
rower belongs to the good risk class. The first model LogR
uses all available nine predictors including the feature sex,
which we choose as protected attribute. For the second score
LogR (debiased), the protected attribute was removed from
the model input. We set female as the expected discrimi-
nated group. The scores achieve an AUROC of 0.772 and
0.771.

Compared to COMPAS, the separation biases of both mod-
els are lower (all below 0.1) whereas the calibration biases
are higher (close to 0.3). Removing the attribute decreases
the separation bias (Table 2), while it slightly increases
the calibration bias. Note that while LogR contains bias to
the detriment of female, the debiased model predominantly
favors female over male. This demonstrates the use and im-
portance of the split into positive and negative components
introduced in 3.4.

5.3. UCI Adult

Moreover, we used the UCI Adult dataset (n = 32561) to
train three different scores that predict the probability of
the income being above 50k$. Again, we choose sex as the
protected attribute and female as the expected discriminated
group. As before, a logistic regression was trained includ-
ing (logR) and excluding (logR (debiased)) the protected
attribute sex. Moreover, an XGBoost model (XGB), was
trained with the complete feature set. XGB is known as one
of the best performing methods on tabular data (Shwartz-
Ziv & Armon, 2021). The logistic regression achieved an
AUROC of 0.898 with and of 0.897 without the protected
attribute, the XGB model achieved an AUROC of 0.922 on
the testset. Resulting biases are shown in Table 3, with the
lowest bias in bold.

Removing the protected attribute from the model input im-
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Table 2: Gender bias of logistic regression (trained with and without sex) scores on German Credit Risk dataset; positive
and negative component from the point of view of female persons.

LogR LogR (debiased)

type of bias total bias pos. neg. p-value total bias pos. neg. p-value

biasSEO 0.083 1% 99% 0.04 0.048 93% 7% 0.32
biasSPE 0.092 0% 100% 0.09 0.025 62% 38% 0.99
biasSCALI 0.291 46% 54% 0.35 0.299 58% 42% 0.26

(a) biasUEO (b) biasSEO

Figure 1: Equal opportunity biases biasUEO and biasSEO of the logistic regression model trained on the Adult dataset. Each of
the biases is equal to the area under the curve of the true positive rate difference. The area is colored according to the group
for which the bias part is favorable.

proves all biases of LogR except biasROC but separation
biases are still against female while the calibration bias of
the debiased model is predominantly in favor of female.
XGB outperforms the logistic regression model that was
trained on the same data in terms of fairness. In half of the
cases, the bias of the XGB model is even smaller than the
bias of logR (debiased). Here, due to the high sample size,
all biases are statistically significant. We see a difference
between biasU and biasS that is due to the skewed score dis-
tributions on the imbalanced dataset (appendix Fig. C1-C3):
in general rate differences in the range of low scores are
weighted higher for biasS as they effect more people (Fig.
1). Note that biasROC is in favor of female persons: Looking
only at groupwise ROC curves (biasROC) suggests an advan-
tage for females. However, female persons experience lower
true- and false positive rates at every possible threshold that
is chosen independently of the group, as biasSEO and biasSPE
clearly show.

5.4. Synthetic Data

In order to evaluate how different metrics change when the
bias changes, we make use of synthetic datasets. This allows

Figure 2: Changing bias measures with increasing distance
between the groups and classes.

us to change the bias and observe the effect on the different
metrics. For this reason, we sample Sa0, Sa1, Sb0 and Sb1

independently from four Gaussian distributions.

Utilizing a scaling factor r > 0, we set the following dis-
tributions: Sa0 ∼ N (1 · r, 0.62 · r), Sa1 ∼ N (−1, 0.5),
Sb0 ∼ N (1.2 · r, 0.752 · r) and Sb1 ∼ N (−1.3, 0.6). Note
that scores of the positive class of both groups move further
away from each others with increasing r (i.e. an increas-
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Table 3: Gender bias of logistic regression (trained with and without sex) and XGBoost on Adult dataset; positive and
negative component from the point of view of female persons. Each permutation tests gives p < 0.01.

LogR LogR (debiased) XGB

type of bias total bias pos. neg. total bias pos. neg. total bias pos. neg.

biasSEO 0.107 0% 100% 0.069 0% 100% 0.057 1% 99%
biasSPE 0.164 0% 100% 0.121 0% 100% 0.143 0% 100%
biasSCALI 0.052 22% 78% 0.045 55% 45% 0.050 52% 48%

biasROC 0.050 98% 2% 0.051 98% 2% 0.033 98% 2%
biasxROC 0.205 0% 100% 0.151 0% 100% 0.129 0% 100%

biasUEO 0.161 0% 100% 0.104 0% 100% 0.087 0% 100%
biasUPE 0.118 0% 100% 0.098 0% 100% 0.101 0% 100%
biasUCALI 0.105 20% 80% 0.102 50% 50% 0.138 62% 38%

ing equal opportunity bias), while the negative class stays
unchanged. The effect of this increasing difference can be
seen in Fig. 2.

We chose this setting to demonstrate the implications of
Theorem 4.10 and Corollary 4.11. Even though the differ-
ence between Sa0 and Sb0 grows, both ROC and xROC are
unable to detect this disparity.

6. Discussion and Outlook
In this paper, we introduced a family of standardized group
disparity measures for continuous risk scores that have an
intuitive interpretation and theoretical grounding based on
the Wasserstein distance. We derived their relation to well-
established parity concepts and to ROC-based measures and
we proved, that reducing the proposed separation biases is a
stronger objective than reducing ROC-based measures and,
hence, is better suited to cover different sorts of bias. More-
over, we demonstrated the practical application on fairness
benchmark datasets. Our results show that removing infor-
mation about the attribute influences the fairness of a model
and also which group is affected by it. They also show that
debiasing often leads to a shift between different bias types
and should be monitored carefully. XGBoost results may
indicate that flexible models can produce fairer results than
simpler models. The results of our experiments can serve
as a starting point for a comprehensive comparison of score
models (in terms of bias) and debiasing methods for such
models. This work would then provide evaluation metrics
for such a comparison.

The proposed measures generalize rate differences from
classification tasks to entire score models. As a future exten-
sion, a generalization of rate ratios is another option that is
to be explored. Moreover, the discussed decision model er-
rors (TPR/FPR/Calibration) could be summed or related to
each other (i.e., TPR/FPR) to create further disparity measures.

Note also, that the given definitions of the classifier biases
are based on the l1-norm. Especially when used for bias
mitigation, that we did not cover here, it may also be useful
to replace the l1-norm by lp with p > 1, especially l2 or
l∞, to penalize large disparities more than small ones. How-
ever, the score bias is then no longer a Wasserstein-distance.
Another option is to use the Wasserstein-p-distance with
p > 1. Typically, the outcome of fairness analyses is to
assess whether certain groups are discriminated against by
a score model. All the proposed disparity measures can
be used to assess the group disparity of the errors made by
the model. While parity, i.e. a small bias, can be taken as
a sign that there is no algorithmic unfairness in a sample
with respect to a particular type of error, not all disparities
are discriminatory. For practical applications we propose
not to use hard thresholds to decide whether a model is fair
or unfair. If needed, such thresholds can be chosen simi-
larly to the thresholds for classification biases and should
be task-specific. Once a high bias is detected, the causes
of the disparities should be analyzed in detail to decide for
follow-up actions. The relation to the field of causal fairness
criteria (i.e. (Nilforoshan et al., 2022; Zhang & Barein-
boim, 2018a; Makhlouf et al., 2020)) is out of scope of this
manuscript. Further studies should investigate the relation
and how they can be used to perform follow-up analyses in
case of significant group disparities.

Impact Statement
This paper extends the existing ways of measuring bias
in the context of continuous scores. The aim is to report
existing bias, particularly in situations where the score itself
must be considered, such as credit scores, rather than just
a binary decision based on it. This work has the potential
to contribute to the discussion of bias in scoring systems
and lead to the development and use of fairer, bias-reduced
scores.
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A. Background definitions and results
A.1. Wasserstein-p-Distance

Definition A.1 (Wasserstein-p-Distance). The pth Wasserstein distance between two probability measures µ and ν in Pp(Rd)
is defined as

Wp(µ, ν) :=

(
inf

γ∈Γ(µ,ν)

∫
Rd×Rd

d(x, y)p dγ(x, y)

)1/p

, (27)

where Γ(µ, ν) denotes the collection of all measures on Rd × Rd with marginals µ and ν on the first and second factors
respectively.

Corollary A.2. The Wasserstein metric may be equivalently defined by

Wp(µ, ν) =
(
inf E

[
d(X,Y )p

])1/p
, (28)

where E[Z] denotes the expected value of a random variable Z and the infimum is taken over all joint distributions of the
random variables X and Y with marginals µ and ν respectively.

If d = 1, the Wasserstein distance has a closed form. For this special case, we define W as a measure between two random
variables.

Corollary A.3. Let X and Y be two random variables on R and let FX and FY denote their cumulative distribution
functions. Then

Wp(X,Y ) =

(∫ 1

0

|F−1
X (s)− F−1

Y (s)|p ds
) 1

p

(29)

Proposition A.4. Properties of the Wasserstein-Distance for d = 1:

1. For any real number a, Wp(aX, aY ) = |a|Wp(X,Y ).

2. For any fixed vector x, Wp(X + x, Y + x) = Wp(X,Y ).

3. For independent X1, . . . , Xn and independent Y1, . . . , Yn,

Wp

( n∑
i=1

Xi,

n∑
i=1

Yi

)
≤

n∑
i=1

Wp(Xi, Yi).

A.2. Special case: One-dimensional Wasserstein-1-Distance

Corollary A.5. If p = 1 and X,Y are random variables on R with cumulative distribution functions FX and FY , then

W1(X,Y ) =

∫ 1

0

|F−1
X (p)− F−1

Y (p)|dp (30)

=

∫
R
|FX(t)− FY (t)|dt. (31)

Remark. The Wasserstein-1-distance is not invariant under monotone transformations (for instance, under scale tranforma-
tions).

Remark. The Wasserstein distance is insensitive to small wiggles. For example if P is uniform on [0, 1] and Q has density
1 + sin(2πkx) on [0, 1] then their Wasserstein distance is O(1/k).

Theorem A.6 (lower bound of W1). The Wasserstein-distance is always greater or equal to the distance of the means:

W1(X,Y ) ≥ |E[X]− E[Y ]| (32)
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Proof. By Jensen inequality, as norm is convex.

Theorem A.7 (upper bound of W1). For integers p ≤ q,

Wp(X,Y ) ≤ Wq(X,Y ), (33)

especially

W1(X,Y ) ≤ Wq(X,Y ) ∀q ≥ 1. (34)

Proof. By Jensen inequality, as z → zq/p is convex.

A.3. Wasserstein-Distance of Quantile-Transformed Variables

Definition A.8 (Quantile-Transformed Wasserstein Distance). Let X,Y, Z be random variables on R and let FX , FY , FZ :
R → [0, 1] denote their distribution functions and fZ denote the density of Z. The (by Z) quantile-transformed Wasserstein
Distance is then given by:

WZ(X,Y ) := W1(FZ(X), FZ(Y )) (35)

=

∫ 1

0

∣∣FFZ(X)(t)− FFZ(Y )(t)
∣∣ dt (36)

=

∫ 1

0

∣∣FX(F−1
Z (t))− FY (F

−1
Z (t))

∣∣ dt (37)

=

∫
R
|FX(s)− FY (s)| fZ(s) ds (38)

Proposition A.9. Properties of the quantile-transformed Wasserstein-distance

1. For any real number a ̸= 0, WZ(aX, aY ) = WZ/|a|(X,Y ).

2. For any fixed vector x, WZ(X + x, Y + x) = WZ−x(X,Y ).

Remark. The quantile-transformed Wasserstein-1-distance is invariant under monotone transformations, for instance, under
scale tranformations: For a > 0:

WZ(X,Y ) = WaZ(aX, aY ). (39)

A.4. Pushforward

The pushforward of a measure along a measurable function assigns to a subset the original measure of the preimage under
the function of that subset.

Definition A.10. Let (X1,Σ1) and (X2,Σ2) be two measurable spaces, f : X1 → X2 a measurable function and
µ : Σ1 → [0,∞] a measure on (X1,Σ1). The pushforward of µ is defined as

f#µ : Σ2 → [0,∞], f#µ(A) = µ(f−1(A))∀A ∈ Σ2 (40)

Corollary A.11. Let again (X1,Σ1) and (X2,Σ2) be two measurable spaces, f : X1 → X2 a measurable function and
µ : Σ1 → [0,∞] a measure on (X1,Σ1). If g is another measurable function on X2, then∫

X2

g ◦ f dµ =

∫
X1

g d(f#µ) (41)

B. Complete proofs
Lemma B.1. If we quantile-transform a continuous random variable X ∈ R by its own distribution FX , the result will
follow a uniform distribution in [0, 1]:

FX(X) ∼ U [0, 1], so FFX
(x) = x. (42)
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Lemma B.2. Let X,Y be two random variables in R with cumulative distribution functions FX , FY . The cumulative
distribution function of a random variable Z = FX(Y ) is given by FY (F

−1
X (z)):

FFX(Y )(z) = FZ(z) = P(Z ≤ z) = P(FX(Y ) ≤ z) (43)

= P(Y ≤ F−1
X (z)) = FY (F

−1
X (z))

If FX and FY are bijective and have the same support, then

FFX(Y ) = F−1
FY (X). (44)

Proof of Theorem 3.2. For x = EO:

biasUx (S|A = a, S|A = b) =
1

|S|

∫
S
| c-biasx(S|A = a, S|A = b; s)|ds (45)

=
1

|S|

∫
S
|P(S > s|A = b, Y = 0)− P(S > s|A = a, Y = 0)|ds (46)

=
1

|S|

∫
S
|(1− Fb0(s))− (1− Fa0(s))|ds (47)

=
1

|S|

∫
S
|Fa0(s)− Fb0(s)|ds (48)

(A.5)
=

1

|S|
·W1(S|A = a, Y = 0, S|A = b, Y = 0). (49)

For x = PE and x = IND the result follows similary. (ii) follows from Theorem A.6.

Proof of Theorem 3.4. For x = EO:

biasSx (S|A = a, S|A = b) =

∫
S
| c-biasx(S|A = a, S|A = b; s)|f(s)ds (50)

(41)
=

∫
S
| c-biasx(S|A = a, S|A = b; s)|d(F−1#µ) (51)

=

∫ 1

0

| c-biasx(S|A = a, S|A = b;F−1(p))|dp (52)

(3.2)
= W1(FFS(Say), FFS(Sby)) (53)

(B.2)
= W1(Fay ◦ F−1

S , Fby ◦ F−1
S ) (54)

For x = PE and x = IND the result follows similary. (ii) follows from Theorem A.6.

Proof of Theorem 4.4.

WZ(X,Y ) =

∫ 1

0

∣∣FFZ(X)(s)− FFZ(Y )(s)
∣∣ ds (55)

(B.2)
=

∫ 1

0

∣∣FX(F−1
Z (s))− FY (F

−1
Z (s))

∣∣ ds (56)

=

∫ 1

0

∣∣(1− FX(F−1
Z (1− r))− (1− FY (F

−1
Z (1− r)))

∣∣ dr (57)

=

∫ 1

0

|ROCX,Z(r)− ROCY,Z(r)| dr (58)
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Proof of Theorem 4.5. Results directly from Def. 3.3 by using the additivity of the density in (9).

Proof of Lemma 4.6. Using Theorem 4.4 and ROCX,X(r) = r.

Under additional assumptions, we can follow that a quantile-transformation by group a and b result in equal distances:

Lemma B.3. If Say and Sby have bijective cdfs and identical support, then

WSay (Say, Sby) = WSby
(Say, Sby) = WSy (Say, Sby). (59)

Proof of Lemma B.3. We show more general: If X,Y are two random variables on an interval I in R with cdfs FX and FY

that are bijective on I
WX(X,Y ) = WY (X,Y )

By Lemma B.1 and by Lemma B.2, it follows

WX(X,Y )
(38)
=

∫ 1

0

∣∣FFX(X)(t)− FFX(Y )(t)
∣∣ dt (60)

B.1
=

∫ 1

0

∣∣t− FFX(Y )(t)
∣∣ dt (61)

B.2
=

∫ 1

0

∣∣∣t− F−1
FY (X)(t)

∣∣∣ dt (62)

B.1
=

∫ 1

0

∣∣∣F−1
FY (Y )(t)− F−1

FY (X)(t)
∣∣∣ dt (63)

(31)
= WY (X,Y ) (64)

It follows for Z = w1X + w2Y :

WZ(X,Y ) = w1WX(X,Y ) + w2WY (X,Y ) (65)
= WX(X,Y ) = WY (X,Y )

and Lemma B.3 as a special case.

Lemma B.3 implies that quantile-transformation can under the above assumptions be performed on either of the two groups
or the whole sample with the same result. Under the same assumptions, ROC, AUROC and Gini become symmetrical, i.e.
ROCSay,Sby

= ROCSby,Say
.

Proof of Theorem 4.8. Using Proposition 4.5 and Lemma 4.6:

biasSEO(S|A = a, S|A = b) = WS(Sa0, Sb0) (66)
(4.5)
= wa0WSa0

(Sa0, Sb0) + wb0WSb0
(Sa0, Sb0) (67)

+ wa1WSa1
(Sa0, Sb0) + wb1WSb1

(Sa0, Sb0)

(4.6)
= wa0

∫
|ROCSa0,Sb0

(r)− r| dr + wb0

∫
|ROCSb0,Sa0

(r)− r| dr (68)

+ wa1

∫
|ROCSa0,Sa1(r)− ROCSb0,Sa1(r)|dr

+ wb1

∫
|ROCSa0,Sb1

(r)− ROCSb0,Sb1
(r)|dr

For predictive equality, the result follows similarly.
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Proof of Theorem 4.10. From theorem 4.8 follows by triangle-Inequality:

biasSEO(S|A = a, S|A = b) + biasSPE(S|A = a, S|A = b) = WS(Sa0, Sb0) +WS(Sa1, Sb1) (69)

≥ w0

∫
|ROCSa0,Sb0

(r)− r| dr + w1

∫
|ROCSa1,Sb1

(r)− r| dr (70)

+min(wa0, wa1) · biasxROC +min(wb0, wb1) · biasxROC

≥ w0

∫
|ROCSa0,Sb0

(r)− r| dr + w1

∫
|ROCSa1,Sb1

(r)− r| dr (71)

+ 2min(wa0, wa1, wb0, wb1) · biasxROC

and also

biasSEO(S|A = a, S|A = b) + biasSPE(S|A = a, S|A = b) = WS(Sa0, Sb0) +WS(Sa1, Sb1) (72)

≥ w0

∫
|ROCSa0,Sb0

(r)− r| dr + w1

∫
|ROCSa1,Sb1

(r)− r| dr (73)

+min(wa1, wb1) · biasROC +min(wa0, wb0) · biasROC

≥ w0

∫
|ROCSa0,Sb0

(r)− r| dr + w1

∫
|ROCSa1,Sb1

(r)− r| dr (74)

+ 2min(wa0, wa1, wb0, wb1) · biasROC

By additionally using Corollary 4.7, we get

biasSEO +biasSPE = WS(Sa0, Sb0) +WS(Sa1, Sb1) (75)

≥ min(wa0, wa1, wb0, wb1) · (biasROC +biasxROC) +
w0

2
Gini(Sa0, Sb0) +

w1

2
Gini(Sa1, Sb1)

As wi

2 ≤ min(wa0,wa1,wb0,wb1)
2 for i = 0, 1, we can combine all weights to get

biasSEO +biasSPE = WS(Sa0, Sb0) +WS(Sa1, Sb1) (76)

≥ min(wa0, wa1, wb0, wb1) · (biasROC +biasxROC) +
w0

2
Gini(Sa0, Sb0) +

w1

2
Gini(Sa1, Sb1) (77)

≥ min(wa0, wa1, wb0, wb1)

2
(biasROC +biasxROC +Gini(Sa0, Sb0) + Gini(Sa1, Sb1)) (78)

Note, that if Fay and Fby have identical supports and permit an inverse, then Gini(Say, Sby) = Gini(Sby, Say). If this
symmetry is not fulfilled, the minimum of both must be used on the right side.

Proof of Theorem 4.12. Let biasEO(S|A = a, S|A = b) = 0, it follows Fb0 = Fa0 almost everywhere. Then

biasROC(S|A = a, S|A = b) (79)

=

∫ 1

0

|Fb0(F
−1
b1 (s))− Fa0(F

−1
a1 (s))|ds (80)

=

∫ 1

0

|Fa0(F
−1
b1 (s))− Fb0(F

−1
a1 (s))|ds (81)

= biasxROC(S|A = a, S|A = b) (82)

For predictive equality, the statement follows similarly.

C. Experiments
We perform experiments in python using the COMPAS dataset, the Adult dataset and the German Credit
dataset. Empirical implementations of Wasserstein-distance (scipy.wasserstein_distance), calibration curves
(sklearn.calibration.calibration_curve) and ROC curves (sklearn.metrics.roc_curve) were used.
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Table C1: Bias of COMPAS score (complete table)

type of bias total pos. neg. p-value

biasSEO 0.161 0% 100% <0.01
biasSPE 0.154 0% 100% <0.01
biasSCALI 0.034 79% 21% 0.30

biasROC 0.016 46% 54% 0.31
biasxROC 0.273 0% 100% <0.01

biasUEO 0.152 0% 100% <0.01
biasUPE 0.163 0% 100% <0.01
biasUCALI 0.037 78% 22% 0.23

C.1. Statistical Testing

We perform permutation tests (DiCiccio et al., 2020; Schefzik et al., 2021) with 1000 permutations and one pseudocount
to determine the statistical significance of the calculated biases under the null hypothesis of group parity. The calibration
biases were calculated using 50 bins.

C.2. Details on COMPAS experiments

Full results are shown in Table C1.

C.3. Details on German Credit data experiments

Both models have been trained on 70% of the dataset and evaluated on the remaining samples. We used min-max-scaling on
continuous features and one-hot-encoding for categorical features. Full results are shown in Table C2. As the sample size is
relatively small, it happens that even the large calibration biases are not statistically significant.

C.4. Details on Adult experiments

All three models have been trained on 70% of the dataset and evaluated on the remaining samples. We removed the feature
relationship, which is highly entangled with sex through the categories husband and wife and we engineered the remaining
features to merge rare categories. We used min-max-scaling on continuous features and one-hot-encoding for categorical
features. Fig. C1-C3 show the score distributions of the three scores on the testset.
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Table C2: Bias of models for German Credit data (complete table)

type of bias Model total bias pos. neg. p-value

biasSEO LogR 0.083 1% 99% 0.04
LogR (debiased) 0.048 93% 7% 0.32

biasSPE LogR 0.092 0% 100% 0.09
LogR (debiased) 0.025 62% 38% 0.99

biasSCALI LogR 0.291 46% 54% 0.35
LogR (debiased) 0.299 58% 42% 0.26

biasROC LogR 0.044 98% 2% 0.80
LogR (debiased) 0.050 98% 2% 0.69

biasxROC LogR 0.133 0% 100% 0.02
LogR (debiased) 0.057 93% 7% 0.54

biasUEO LogR 0.041 3% 97% 0.13
LogR (debiased) 0.036 97% 3% 0.23

biasUPE LogR 0.078 1% 99% 0.10
LogR (debiased) 0.024 74% 26% 0.98

biasUCALI LogR 0.246 40% 60% 0.57
LogR (debiased) 0.225 75% 25% 0.84

Figure C1: Distribution of logistic regression scores, trained on Adult data.
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Figure C2: Distribution of logistic regression scores, trained on Adult data without protected attribute.

Figure C3: Distribution of XGBoost scores trained on Adult data.

20


