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Abstract
Effective brain representation learning is a key
step toward the understanding of cognitive
processes and diagnosis of neurological dis-
eases/disorders. Existing studies have focused on
either (1) voxel-level activity, where only a single
weight relating the voxel activity to the task (i.e.,
aggregation of voxel activity over a time window)
is considered, missing their temporal dynamics,
or (2) functional connectivity of the brain in the
level of region of interests, missing voxel-level
activities. We design BRAINMIXER, an unsuper-
vised learning framework that effectively utilizes
both functional connectivity and associated time
series of voxels to learn voxel-level representa-
tion in an unsupervised manner. BRAINMIXER
employs two simple yet effective MLP-based en-
coders to simultaneously learn the dynamics of
voxel-level signals and their functional correla-
tions. To encode voxel activity, BRAINMIXER
fuses information across both time and voxel di-
mensions via a dynamic attention mechanism. To
learn the structure of the functional connectivity,
BRAINMIXER presents a temporal graph patching
and encodes each patch by combining its nodes’
features via a new adaptive temporal pooling. Our
experiments show that BRAINMIXER attains out-
standing performance and outperforms 14 base-
lines in different downstream tasks and setups.

1. Introduction
The recent advancement of neuroimaging has provided rich
information to understand the human brain. The provided
data, however, is high-dimensional and complex in na-
ture (Poldrack & Gorgolewski, 2014), which makes it hard

*Equal contribution 1Cornell University, Ithaca, NY, USA
2University of British Columbia, Vancouver, BC, Canada. Corre-
spondence to: Ali Behrouz <ab2947@cornell.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

to take advantage of powerful machine learning models in
analyzing them. To overcome this challenge, representation
learning serves as the backbone of machine learning meth-
ods on neuroimage data and provides a low-dimensional rep-
resentation of brain components at different levels of granu-
larity, enabling the understanding of behaviors (Schneider
et al., 2023), brain functions (Yamins & DiCarlo, 2016)
and/or detecting neurological diseases (Uddin et al., 2017).

In the neuroimaging literature, studies have mainly focused
on two spatial scales—voxel-level and network-level—as
well as two analysis approaches—multivariate pattern anal-
ysis (MVPA) and functional connectivity (Mahmoudi et al.,
2012; Van Den Heuvel & Pol, 2010). The MVPA is often
employed at the voxel-level scale and in task-based studies
to associate neural activities at a very fine-grained and local
level with particular cognitive functions, behaviors, or stim-
uli. This method has found applications in various areas,
including the detection of neurological conditions (Sunder-
mann et al., 2014; Bray et al., 2009), neurofeedback inter-
ventions (Cortese et al., 2021), decoding neural responses
to visual stimuli (Horikawa & Kamitani, 2017), and classi-
fying cognitive states (Mitchell et al., 2003). The functional
connectivity analysis, on the other hand, focuses on the tem-
poral correlations or statistical dependencies between the
activity of different brain regions at larger scales to assess
how these areas communicate and collaborate. This method
has been utilized to study various topics such as task-related
network dynamics (Gonzalez-Castillo & Bandettini, 2018;
Hutchison et al., 2013) and the effects of neurological disor-
ders on brain connectivity (Greicius, 2008; Du et al., 2018).

Limitation of Previous Methods. Despite the advances in
the representation learning of brain signals, existing stud-
ies suffer from a subset of five limitations: 1 Study the
human brain at a single scale: Most existing studies study
the brain at either voxel-level or functional connectivity,
while these two scales can provide complementary informa-
tion to each other; e.g., although voxel-level activity pro-
vides detailed and more accurate information about brain
activity, it misses the information about how different ar-
eas communicate with each other at a high level. Recently,
this limitation has motivated researchers to search for new
methods of integrating these two levels of analyses (Nieto-
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Castanon, 2022; McNorgan et al., 2020). 2 Supervised
setting: Learning brain activity in a supervised setting re-
lies on a large number of clinical labels while obtaining
accurate and reliable clinical labels is challenging due to its
high cost (Avberšek & Repovš, 2022). 3 Missing informa-
tion by averaging: Most existing studies on voxel activities
aggregate measured voxel activity (e.g., its blood-oxygen
level dependence) over each time window to obtain a single
beta weight (Roth et al., 2022; Vassena et al., 2020; Roth &
Merriam, 2023). However, this approach misses the voxel
activity dynamic over each task. Moreover, most studies on
brain functional connectivity also aggregate closed voxels
to obtain brain activity in the Region of Interest (ROI) level,
missing individual voxel activities. 4 Missing the dynam-
ics of the interactions: Some existing studies neglect the fact
that the functional connectivity of the human brain dynami-
cally changes over time, even in resting-state neuroimaging
data (Calhoun et al., 2014). In task-dependent neuroimage
data, subjects are asked to perform different tasks in differ-
ent time windows, and the dynamics of the brain activity
play an important role in understanding neurological dis-
ease/disorder (Hernandez et al., 2015). 5 Designed for a
particular task or neuroimaging modality: Due to the differ-
ent and complex clinical patterns of brain signals (da Silva,
1991), some existing methods are designed for a particular
type of brain signal data (Lanciano et al., 2020; Cai et al.,
2023), and there is a lack of a unified framework.

Application to Understanding Object Representation in
the Brain. Understanding object representation in the brain
is a key step toward revealing the basic building blocks
of human visual processing (Hebart et al., 2023). Due to
the hierarchical nature of human visual processing, it re-
quires analyzing brain activity at different scales, i.e., both
functional connectivity and voxel activity. There is, how-
ever, a small number of studies in this area, possibly due
to the lack of proper large-scale datasets. Recently, Hebart
et al. (2023) provided a large-scale fMRI and MEG datasets,
THINGS, to study human visual processing. However, their
preprocessed data by not only does not provide functional
connectivity, but it also has aggregated voxel activity over
each time window, missing dynamics of voxel activity. To
address this limitation, we present two newly preprocessed
versions of this dataset that provide both functional con-
nectivity and voxel activity timeseries of fMRI and MEG
modalities. See Appendix B for more details.

Contributions. To overcome the above limitations, we
leverage both voxel-level activity and functional connec-
tivity of the brain. We present BRAINMIXER, an unsuper-
vised MLP-based brain representation learning approach
that jointly learns representations of the voxel activity and
functional connectivity. BRAINMIXER uses a novel multi-
variate timeseries encoder that binds information across both

time and voxel dimensions. It uses a simple MLP with func-
tional patching to fuse information across different times-
tamps and learns dynamic self-attention weights to fuse
information across voxels based on their functionality. On
the other hand, BRAINMIXER uses a novel temporal graph
learning method to encode the brain functional connectiv-
ity. The graph encoder first extracts temporal patches using
temporal random walks and then fuses information within
each patch using the designed dynamic self-attention mecha-
nism. We further propose an adaptive permutation invariant
pooling to obtain patch encodings. Since voxel activity
and functional connectivity encodings are different views of
the same context, we propose an unsupervised pre-training
approach to jointly learn voxel activity and functional con-
nectivity by maximizing their mutual information. In the
experimental evaluations, we provide two new large-scale
graph and timeseries datasets based on THINGS (Hebart
et al., 2023). Extensive experiments on six datasets show the
superior performance of BRAINMIXER and the significance
of each of its components in a variety of downstream tasks.

For the sake of consistency, we explain our model for fMRI
modality; however, as it is shown in §4, it can simply be used
for any neuroimaging modalities that provide multivariate
timeseries recorded from multiple units across the brain.
(e.g., MEG and EEG). When dealing with MEG or EEG, we
can replace the term “voxel” with “channel”. Backgrounds,
proofs, details of experimental setups, additional results
with different metrics, and case studies are in Appendix.

2. Related Work
To situate BRAINMIXER in a broader context, we review
machine learning models for timeseries, graphs, and neuro-
science. Additional discussions are in Appendices A and C.

Timeseries Learning. Attention mechanisms are powerful
models to capture long-range dependencies and so recently,
Transformer-based models have attracted much attention
in time series forecasting (Zerveas et al., 2021; Li et al.,
2019; Behrouz et al., 2024). Due to the quadratic time
complexity of attention mechanisms, several studies aim to
reduce the time and memory usage of these methods (Child
et al., 2019). Another type of work uses (hyper)graph learn-
ing frameworks to learn (higher-order) patterns in time-
series (Park et al., 2009; Sawhney et al., 2021). Inspired by
the recent success of MLP-MIXER (Tolstikhin et al., 2021),
Li et al. (2023) and Chen et al. (2023) presented two vari-
ants of MLP-MIXER for timeseries forecasting. All these
methods are different from BRAINMIXER, as 1 they use
static attention mechanisms, 2 do not take advantage of
the functionality of voxels in patching, and 3 are designed
for timeseries forecasting and cannot simply be extended to
various downstream tasks on the brain.
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Figure 1: Schematic of the BRAINMIXER. BRAINMIXER consists of two main modules: (1) Voxel Activity Encoder (top),
and (2) Functional Connectivity Encoder (bottom).

MLP-based Graphs Learning. Learning on graphs has
been an active research area in recent years (Jiang et al.,
2021; Veličković et al., 2018; Chamberlain et al., 2023).
While most studies use message-passing frameworks to
learn the local and global structure of the graph, recently,
due to the success of MLP-based methods (Tolstikhin et al.,
2021), MLP-based graph learning methods have attracted
much attention (Hu et al., 2021; Behrouz et al., 2023).
For example, Cong et al. (2023) and He et al. (2023) pre-
sented two extensions of MLP-MIXER to graph-structured
data. However, all these methods are different from BRAIN-
MIXER and specifically FC Encoder, as either 1 use time-
consuming graph clustering for patching, 2 are static
methods and cannot capture temporal properties, or 3 are
attention-free and cannot capture the importance of nodes.

Graph Learning and Timeseries for Neuroscience. In
recent years, several studies have analyzed functional con-
nectivity to differentiate human brains with a neurological
disease/disorder (Jie et al., 2016; Chen et al., 2011; Wee
et al., 2011). With the success of graph neural networks
in graph data analysis, deep learning models have been
developed to predict brain diseases by studying brain net-
work structures (Behrouz & Seltzer, 2022; Zhu et al., 2022;
Cui et al., 2022b). Moreover, several studies focus on brain
signals (Craik et al., 2019; Shoeibi et al., 2021) to detect neu-
rological diseases. For example, Cai et al. (2023) designed a
self-supervised learning framework to detect seizures from
EEG and SEEG data. However, all these methods are differ-
ent from BRAINMIXER as they are designed for a particular
task (e.g., brain classification), a particular neuroimaging
modality (e.g., fMRI or EEG), and/or supervised settings.

3. Method:BRAINMIXER

In this section, we first discuss the notation we use through-
out the paper. Detailed discussion about background con-

cepts can be found in Appendix A.

Notation. We represent the neuroimaging of a human brain
as B = {B(t)}Tt=1 where B(t) = (V,G(t)

F ,X (t),F) repre-
sents the neural data in time window 1 ≤ t ≤ T . Here, V
is the set of voxels, G(t)

F = (V, E(t),A(t)) is the functional
connectivity graph, E(t) ⊆ V × V is the set connections
between voxels, A(t) is the correlation matrix (weighted
adjacency matrix of G(t)

F ), X (t) ∈ R|V|×T̃ (t) is a multi-
variate timeseries of voxels activities, T̃ (t) is the length
of the timeseries, and F is the set of functional systems
in the brain (Schaefer et al., 2018) in time window t. In
task-dependent data, each time window t corresponds to
a task, and in resting state data, we have T = 1. We
let tmax = maxt=1,...,T T̃ (t), representing the maximum
length of timeseries. BRAINMIXER consists of two main
modules 1 Voxel Activity (VA) Encoder and 2 Functional
Connectivity (FC) Encoder:

3.1. Voxel Activity Encoder

The main goal of this module is to learn the time series of
the voxel-level activity. However, the activities of voxels are
not disjoint; for example, an increase in fusiform face area
(FFA) activity might be associated with a rise in V1 activity.
Accordingly, effectively learning their dynamics patterns
requires capturing both cross-voxel and within-voxel time
series information. The vanilla MLP-MIXER (Tolstikhin
et al., 2021) can be used to bind information across both
of these dimensions, but the human brain has unique traits
that make directly applying vanilla MLP-MIXER insuffi-
cient/impractical. First, there does not exist in general a
canonical grid of the brain to encode voxel activities, which
makes patch extraction challenging. Second, contrary to
images that can be divided into patches of the same size, the
partitioning of voxels might not be all the same size due to
the complex brain topology. Third, vanilla MLP-MIXER
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employs a fixed static mixing matrix for binding patches,
while in the brain the functionality of each patch is impor-
tant and a different set of patchs should be mixed differently
based on their connections and functionality. To address
these challenges, the VA Encoder employs two submodules,
time-mixer and voxel-mixer with dynamic mixing matrix,
to fuse information across both time and voxel dimensions,
respectively.

The human brain is comprised of functional systems
(FS) (Schaefer et al., 2018), which are groups of voxels
that perform similar functions (Smith et al., 2013). We take
advantage of this hierarchical structure and patch voxels
based on their functionality. However, the main challenge
is that the sizes of the patches (set of voxels with similar
functionality) are different. To this end, inspired by the infer-
ence of ViT models (Dosovitskiy et al., 2021), we linearly
interpolate patches with smaller sizes.

Functional Patching. Let |V| be the number of vox-
els and X ∈ R|V|×(T×tmax) represents the time series of
voxels activities over all time windows. We split X to
spatio-temporal patches Xi with size |fi| × tmax, where
fi ∈ F is a functional system (Schaefer et al., 2018).
To address the challenge of different patch sizes, we use
INTERPOLATE(.) to linearly interpolate patches to the same
size Np: i.e., X̃i = INTERPOLATE(Xi), where X̃i ∈
RNp×tmax . We let X̃ ∈ R|V|×tmax be the matrix of X̃i.

Voxel-Mixer. Since the effect of each task (e.g., in task-
based fMRI) on brain activity as well as the time it lasts
varies (Yang et al., 2023a), for different tasks, we might
need to emphasize more on a subset of voxels. To this end,
to bind information across voxels, we use a dynamic at-
tention mechanism that uses a learnable dynamic mixing
matrix Pi, learning to mix a set of input voxels based on
their functionality. While using different learnable matrices
for mixing voxels activity provides a more powerful archi-
tecture, its main challenge is a large number of parameters.
To mitigate this challenge, we first reduce the dimensions
of X̃, split it into a set of segments, denoted as S, and then
combine the transformed matrices. Given a segment s ∈ S:

X̂(t)(s) = X̃(t) W
(s)
segment ∈ R|V|×d, (Dimension Reduction)

P
(s)
i = SOFTMAX

(
FLAT

(
X̂(t)(s)

)
W

(s)(i)

flat

)
∈ R1×|V|,

(Learning Dynamic Mixer)

X
(t)
PE =

[∥∥
s∈S

P(s)X̃(t)(s)
]
WPE ∈ R|V|×tmax ,

(Dynamic Positional Encoding)

H
(t)
Voxel = Norm

(
X̃(t)

)
+ SIGMOID

(
X

(t)
PE X

(t)⊤

PE√
T̃

)
X

(t)
PE ,

(Dynamic Self-Attention)

where W
(s)
segment ∈ Rtmax×d, W(s)(i)

flat ∈ Rd|V|×|V|, WPE ∈
Rtmax×tmax are learnable parameters, ∥ is concatenation,
and SIGMOID(.) is row-wise sigmoid normalization. Note
that for different segments we use different dimensional-
ity reduction matrices to reinforce the power of the Voxel
Mixing.

Time Mixer. We then fuse information in the time di-
mension by using the Time Mixer submodule. To this
end, the Time Mixer employs a 2-layer MLP with layer-
normalization (Ba et al., 2016): (H(t)

Time ∈ R|V|×tmax )

H
(t)
Time = H

(t)
Voxel +

(
σ
(
LN
(
H

(t)
Voxel

)
W

(1)
Time

)
W

(2)
Time

)
, (1)

where W
(1)
Time and W

(1)
Time are learnable matrices, σ(.) is an

activation function (we use GeLU (Hendrycks & Gimpel,
2020)), and LN is layer normalization (Ba et al., 2016).

3.2. Functional Connectivity Encoder

To encode the functional connectivity graph, we design an
MLP-based architecture that learns both the structural and
temporal properties of the graph. Inspired by the recent suc-
cess of all-MLP architecture in graphs (Cong et al., 2023),
we extend MLP-MIXER to temporal graphs. We first define
patches in temporal graphs. While patches in images, videos,
and multivariate timeseries can simply be non-overlapping
regular grids, patches in graphs are overlapping non-grid
structures, which makes the patching extraction challenging.
He et al. (2023) suggest using graph partitioning algorithms
to extract graph patches; however, these partitioning algo-
rithms 1 only consider structural properties, missing the
temporal dependencies, and 2 can be time-consuming, lim-
iting the scalability to dense graphs like brain functional
connectome. To this end, we propose a temporal-patch ex-
traction algorithm such that nodes (voxels) in each patch
share similar temporal and structural properties.

Temporal Patching. To extract temporal patches from the
graph, we use a biased temporal random walk that walks
over both nodes (voxels) and timestamps. Given a func-
tional connectivity graph GF = {G(t)

F }Tt=1, we sample M
walks with length m + 1 started from node v0 ∈ V like:
Walk : (v0, t0) → (v1, t1) → · · · → (vm, tm), such that
(vi−1, vi) ∈ E(ti), and t0 ≥ t1 ≥ t2 ≥ · · · ≥ tm. Note that,
contrary to previous temporal random walks (Wang et al.,
2021; Behrouz et al., 2023), we allow the walker to walk in
the same timestamp at each step. While backtracking over
time, we aim to capture temporal information and extract
the dynamics of voxels’ activity over related timestamps.
Recent studies show that a task can affect brain activity even
after 2 minutes (Yang et al., 2023a). To this end, since more
recent connections can be more informative, we use a bi-
ased sampling procedure. Let vpre be the previously sampled
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node, we use hyperparameters θ, θ0 ≥ 0 to sample a node
v with probability proportional to exp (θ(t− tpre + θ0)),
where t and tpre are the timestamps that (vpre, v) ∈ E(t) and
the timestamp of the previous sample, respectively. In this
sampling procedure, smaller (resp. larger) θ means less
(resp. more) emphasis on recent timestamps. Each walk
started from v can be seen as a temporal subgraph, and so
we let ρv be the union of all these subgraphs (walks started
from v). We treat each of ρv as a temporal patch.

Temporal Pooling Mixer. Given the temporal graph
patches that we extracted above, we need to encode each
patch to obtain patch encodings (we later use these patch
encodings as their corresponding voxel’s encodings). While
simple poolings (e.g., SUM(.)) are shown to miss informa-
tion (Behrouz et al., 2023), more complicated pooling func-
tions consider a static pooling rule. However, as discussed
above, the effect of performing a task on the neuroimaging
data might last for a period of time and the pooling rule
might change over time. To this end, we design a tempo-
ral pooling, TPMIXER(.), that dynamically pools a set of
voxels in a patch based on their timestamps.

Given a patch ρv0 = {v0, v1, . . . , vk}, for each voxel we
consider the correlation of its activity with other voxels’ as
its preliminary feature vector. That is, for each voxel v, we
consider its feature vector in the time window t as A(t)

v , the
v’s corresponding row in A(t). We abuse the notation and
use A(t)

ρv to refer to the set of A(t)’s rows corresponding
to ρv. Since patch sizes are different, we zero pad A(t)

ρv

matrices to a fixed size. Note that this zero padding is im-
portant to capture the size of each voxel neighborhood. The
voxel with more zero-padded dimensions in its patch has
less correlation with others. To capture both cross-feature
and cross-voxel dependencies, we can use the same archi-
tecture as the Time Mixer and Voxel-Mixer. However, the
main drawback of this approach is that a pooling function is
expected to be permutation invariant while the Voxel Mixer
phase is permutation variant. To address this challenge, we
fuse information across features in a non-parametric manner
as follows:

H
(t)
F = A(t)

ρv
+ σ

(
Soft

(
LN
(
A(t)

ρv

)⊤))⊤

∈ R|ρv|×d′
,

(2)

where σ(.) is an activation function, Softmax(.) is used
to normalize across features to bind and fuse feature-wise
information in a non-parametric manner, avoiding permu-
tation variant operations, and d′ is the feature vector size.
To dynamically fuse information across voxels, we use the
same idea as dynamic self-attention in §3.1 and learn dy-

namic matrices PPooli ; let dpatch be the patch size:

PPooli = SOFT
(

FLAT
(
H

(t)
F

)
W

(i)
Pool

)
∈ R1×d′

hρv= MEAN

(
LN(H(t)

F ) +H
(t)
PE SOFT

(
H

(t)⊤

PE H
(t)
PE√

dpatch

))
,

where hρv
∈ R1×d′

and H
(t)
PE = H

(t)
F PPool is the transfor-

mation of H(t)
F by dynamic matrix PPool.

Theorem 1. TPMIXER is permutation invariant and a uni-
versal approximator of multisets.

Time Encoding. To distinguish different timestamps in
the functional connectivity graph, we use a non-learnable
time encoding module proposed by Cong et al. (2023). This
encoding approach helps reduce the number of parameters,
and also it has been shown to be more stable and generaliz-
able (Cong et al., 2023). Given hyperparameters α, β, and
d, we use feature vector ω = {α−i/β}d−1

i=0 to encode each
timestamp t using cos (ωt) function. Therefore, we obtain
the time encoding as ηt = cos (ωt).

Voxel-, Edge-, and Graph-level Encodings. Depending
on the downstream task, we might obtain voxel-, edge-,
or graph-level encodings. For each voxel v ∈ V , we let
E(t)[ρv] be the set of connections in the patch of v. To
obtain the voxel-level encoding of each voxel v, ψv, we
use patch encoding and concatenate it with all the weighted
mean of timestamp encodings; i.e., ψt

v = MLP([hρv∥Tv]),

where Tv =
∑t

t0=1 E(t0)[ρv ]ηt0∑t
t0=1 E(t0)[ρv ]

. For a connection e =

(u, v) ∈ E(t), we obtain its encoding by concatenating
its endpoints and its timestamp encodings; i.e., ζ(t)(u,v) =

MLP ([ψt
u,ψ

t
v,ηt]). To obtain the graph level encoding,

we use vanilla MLP-MIXER (Tolstikhin et al., 2021) on
patch encodings; let Ψ(t) be the matrix whose rows areψ(t)

v :

Ψ
(t)
patch = Ψ(t) +W

(2)
patchσ

(
W

(1)
patchLN

(
Ψ(t)

))
,

ENC(G(t)
F ) = MEAN

(
Ψ

(t)
patch+

σ
(
LN
(
Ψ

(t)
patch

)
W

(1)
channel

)
W

(2)
channel

)
.

Similarly, to obtain the brain-level encoding, Z(t)
V , based on

voxel activity timeseries, we use MLP-MIXER on H
(t)
Time.

3.3. Self-supervised Pre-training

In §3.1 and §3.2 we obtained the encodings of the same
contexts, from different perspectives. In this section, in-
spired by (Hjelm et al., 2019; Bachman et al., 2019), we
use the mutual information of these two perspectives from
the same context, to learn voxel- and brain-level encod-
ings in a self-supervised manner. To this end, let Ψ be the
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Table 1: Performance on multi-class brain classification:
Mean ACC (%) ± standard deviation.

Methods BVFC BVFC-MEG HCP-Mental HCP-Age

USAD 48.52±1.94 50.02±1.13 73.49±1.56 39.17±1.68

HYPERSAGCN 51.92±1.47 51.19±1.88 90.37±1.61 47.38±1.96

GMM 53.11±1.44 53.04±1.73 90.92±1.83 47.75±1.26

GRAPHMIXER 53.17±1.21 53.12±1.18 91.13±1.44 48.32±1.11

BRAINNETCNN 49.10±1.83 50.12±1.57 83.58±1.68 42.26±2.03

BRAINGNN 50.63±1.67 51.08±0.96 85.25±2.17 43.08±1.54

FBNETGEN 50.18±0.98 50.94±1.39 84.47±1.88 42.83±1.78

ADMIRE 54.36±1.39 54.87±1.92 89.74±1.93 47.82±1.72

PTGB 55.89±1.78 55.11±1.62 92.58±1.31 48.41±1.47

BNTRANSFORMER 55.03±1.35 55.17±1.74 91.71±1.48 47.94±1.15

BRAINMIXER 67.24±1.47 62.58±1.12 96.32±0.29 57.83±1.03

voxel-level encodings obtained from functional connectome,
Z

(t)
F = ENC(G(t)

F ) be the global encoding (brain-level) of
the functional connectome, H(t)

Voxel be the voxel activity en-
codings from the brain activity timeseries, and Z

(t)
V be the

global encoding (brain-level) of the voxel activity timeseries,
we aim to maximize I(Z

(t)
V ,ψ

(t)
v,i) + I(Z

(t)
F , (H

(t)
Time)v,j)

for all v ∈ V and possible i, j. Following previous stud-
ies (Bachman et al., 2019), we use Noise-Contrastive Esti-
mation (NCE) (Gutmann & Hyvärinen, 2010) and minimize
the following loss function:

E
(Z

(t)
F ,ψ

(t)
v,i)

[
EN

[
LΦ(Z

(t)
F ,ψ

(t)
v,i,N )

]]
+E

(Z
(t)
V ,(H

(t)
Voxel)v,j)

[
EN

[
LΦ(Z

(t)
V , (H

(t)
Voxel)v,j ,N )

]]
, (3)

where N is the set of negative samples, (Z(t)
V ,ψ

(t)
v,i) and

(Z
(t)
F , (H

(t)
Voxel)v,j) are the positive sample pairs, and LΦ is

a standard Log-Softmax.

Data Augmentation & Negative Samples. MLP-MIXER-
based architectures are known to have the potential of over-
fitting (Liu et al., 2021). To mitigate this, we perform data
augmentation. For G(t)

F = (V, E(t)), in patch extraction, we
randomly mask p connections and then sample temporal
walks to generate new patches. Note that, at the end, each
patch is an induced subgraph and might include masked
connections as well. Furthermore, to generate negative sam-
ples: 1 To corrupt the functional connectivity, we randomly
change one endpoint of a subset of connections. 2 To cor-
rupt the timeseries, we follow existing studies (Yue et al.,
2022; Woo et al., 2022) and replace a brain signal in time
window t with another signal that is randomly selected from
the batch. Given a pre-trained model M, for different down-
stream tasks in a semi-supervised setting, we fine-tune M
using a small subset of labeled training data. For each voxel,
we concatenate its encodings from VA and FC Encoders.

4. Experiments

Dataset. We use six real-world datasets: 1 We present
BVFC, a task-based fMRI dataset that includes voxel activity
timeseries and functional connectivity of 3 subjects when
looking at the 8460 images from 720 categories. This data
is based on THINGS (Hebart et al., 2023). 2 BVFC-MEG
is the MEG counterpart of BVFC. 3 ADHD (Milham et al.,
2011) contains data for 250 subjects in the ADHD group and
450 subjects in the typically developed (TD) control group.
4 The Seizure detection TUH-EEG dataset (Shah et al.,
2018) consists of EEG data (31 channels) of 642 subjects.
5 ASD (Craddock et al., 2013) contains data for 45 subjects
in the ASD group and 45 subjects in the TD control group.
6 HCP (Van Essen et al., 2013) contains data from 7440
neuroimaging samples each of which is associated with one
of the seven ground-truth mental states.

Evaluation Tasks. We focus on 5 tasks: 1 Edge-Anomaly
Detection (AD), 2 Voxel AD, 3 Brain AD (binary classi-
fication), 4 Brain Classification (multi-class), and 5 Re-
gression (Appendix F.4). For the edge and voxel AD tasks,
we follow previous studies (Ma et al., 2021; Behrouz &
Seltzer, 2023a; Behrouz & Hashemi, 2023), and inject 1%
and 5% corrupted edges into the functional connectivity in
the control group. For brain AD all datasets has ground-truth
anomalies (see Appendix E.2). The ground truth anoma-
lies in BVFC are the brain responses to not recognizable
images, generated by BigGAN (Brock et al., 2019), and for
other datasets are brain activity of people living with ADHD,
seizure, and ASD. For brain classification, we focus on the
prediction of i categories of images seen by the subjects (in
BVFC, and BVFC-MEG), and ii age prediction and mental
state decoding (in HCP-Age, and HCP-Mental). In all ex-
periments, we perform statistical comparison with baselines
via paired t-tests and shade significance results (corrected
p-value ≤ 0.05) with blue and others with gray. The details
of the setup and reason for used metrics are in Appendix E.

Baselines. For anomaly detection and graph classification
tasks, we compare BRAINMIXER with state-of-the-art time
series, graph, and brain anomaly detection and learning mod-
els: 1 Graph-based methods: GOutlier (Aggarwal et al.,
2011), NETWALK (Yu et al., 2018), HYPERSAGCN (Zhang
et al., 2020), Graph MLP-Mixer (GMM) (He et al., 2023),
GRAPHMIXER (Cong et al., 2023). 2 brain-network-based
methods: BRAINGNN (Li et al., 2021), FBNETGEN (Kan
et al., 2022a), BRAINNETCNN (Kawahara et al., 2017),
ADMIRE (Behrouz & Seltzer, 2023b), and BNTRANS-
FORMER (Kan et al., 2022b), PTGB (Yang et al., 2023b). 3
Time-series-based methods: USAD (Audibert et al., 2020),
Time Series Transformer (TST) (Zerveas et al., 2021), and
MVTS (Potter et al., 2022). We may exclude some baselines
in some tasks as they cannot be applied in that setting. We
use the same training, hyperparameter tuning, and testing
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Table 2: Performance on anomaly detection: Mean AUC-PR (%) ± standard deviation†.

Methods BVFC BVFC-MEG HCP ADHD TUH-EEG ASD

Anomaly % 1% 5 % 1% 5 % 1% 5 % 1% 5 %

E
dg

e-
le

ve
lA

D

GOUTLIER 65.12±2.97 59.45±2.61 62.47±1.15 61.83±1.28 65.37±0.93 64.70±2.09 65.61±1.82 64.12±0.97 60.85±0.97 59.13±1.86

NETWALK 71.67±1.56 62.75±1.16 73.12±1.25 72.19±1.31 70.29±2.15 69.86±2.58 71.14±1.36 70.27±1.42 69.07±2.20 68.52±2.55

HYPERSAGCN 80.17±1.59 70.83±1.27 82.94±1.14 81.98±1.58 84.22±1.61 83.96±1.47 73.99±0.83 72.65±0.97 73.26±1.08 73.18±0.92

GRAPHMIXER 87.13±0.99 75.91±1.59 86.87±1.96 86.19±1.48 85.12±1.46 84.86±1.58 75.93±0.95 75.12±1.08 84.91±2.27 83.52±2.03

BRAINNETCNN 80.92±1.18 71.54±2.07 80.79±1.23 79.44±1.18 80.58±1.62 79.95±2.01 73.06±1.74 72.87±1.31 72.68±2.12 72.01±1.45

BRAINGNN 81.96±1.76 72.68±1.13 82.15±1.84 81.38±1.61 79.02±1.85 78.64±1.43 72.96±1.58 71.73±1.14 72.14±1.25 71.82±1.73

FBNETGEN 81.58±1.92 72.66±1.52 82.05±1.19 81.53±1.82 79.89±1.63 78.97±1.84 73.04±1.53 72.56±1.33 72.51±1.28 71.62±1.82

ADMIRE 87.12±1.61 75.91±1.43 87.01±1.27 86.38±1.17 86.23±1.74 85.18±2.21 76.68±1.82 75.14±1.67 86.52±1.72 85.44±1.49

PTGB 86.52±1.64 75.93±1.71 86.83±1.59 86.00±1.28 86.14±1.15 85.22±1.21 75.98±1.16 74.92±1.08 86.18±1.58 85.72±1.05

BNTRANSFORMER 86.61±1.72 75.82±1.18 86.22±1.77 85.15±1.12 85.83±1.97 85.14±1.67 75.91±1.72 75.24±1.53 74.92±1.18 74.11±1.37

BRAINMIXER 91.62±1.36 82.58±1.92 90.14±1.72 90.02±1.49 91.74±0.93 91.48±1.41 80.91±1.19 80.85±1.62 90.44±1.57 90.27±1.39

Vo
xe

l-
le

ve
lA

D

USAD 68.27±1.16 62.73±1.27 65.49±1.31 65.01±1.18 72.79±1.48 72.19±0.94 72.81±1.42 71.36±1.03 66.28±1.16 65.17±1.15

TST 70.62±1.48 68.57±1.81 69.18±1.64 69.11±1.32 74.81±1.14 73.99±1.47 73.71±1.55 73.03±1.47 69.23±1.82 68.94±1.73

MVTS N/A N/A N/A N/A N/A N/A 77.48±1.81 77.02±1.29 N/A N/A
GOUTLIER 64.66±2.38 60.17±1.25 63.59±1.62 63.07±1.52 68.97±1.16 67.12±0.93 65.18±1.09 65.01±1.57 59.67±1.42 58.49±1.35

NETWALK 68.73±1.16 63.61±1.31 66.98±1.44 66.04±1.63 75.16±1.23 74.73±1.01 72.21±0.91 71.62±1.46 71.28±1.17 71.02±1.49

HYPERSAGCN 78.84±1.22 71.62±1.96 80.74±1.51 79.18±1.83 83.94±1.13 83.01±0.92 75.62±1.12 74.83±0.78 74.93±1.47 74.15±1.19

GRAPHMIXER 76.94±1.68 71.44±1.39 81.55±1.82 81.07±1.27 81.37±1.09 80.83±1.16 72.95±1.26 72.01±0.82 72.49±1.28 72.27±1.69

BRAINNETCNN 80.17±1.49 73.91±1.54 82.75±1.27 82.21±1.73 82.79±1.08 81.12±1.16 73.98±1.24 73.01±1.08 73.18±0.95 72.88±1.04

BRAINGNN 79.92±1.63 73.25±1.94 82.99±1.65 82.13±1.66 81.14±1.05 80.83±0.87 73.06±1.14 72.74±0.86 72.54±1.38 71.12±1.19

FBNETGEN 79.17±2.04 72.35±1.84 82.26±1.37 81.62±1.49 80.91±1.12 80.94±1.74 72.53±1.48 72.06±1.29 72.11±1.94 71.28±1.22

PTGB 85.18±1.83 76.16±1.08 85.72±1.14 84.95±1.33 86.43±1.16 86.36±1.15 77.54±1.37 77.32±1.21 77.92±1.26 77.76±1.25

BNTRANSFORMER 85.19±1.23 75.67±1.14 85.02±0.96 84.36±1.59 86.13±1.21 86.11±1.82 77.96±1.32 77.08±1.06 76.05±1.52 75.72±1.18

BRAINMIXER 90.14±1.57 81.52±1.32 89.27±1.61 88.94±1.24 89.97±1.14 89.81±1.27 79.45±1.19 79.23±0.94 89.51±1.78 89.24±1.59

B
ra

in
-l

ev
el

A
D

USAD 71.93±1.15 61.32±1.71 67.79±2.28 67.36±2.61 82.87±2.03 80.52±1.84 72.03±1.17 71.48±1.05 71.62±1.58 70.98±1.41

TST 72.47±1.23 67.12±2.07 67.94±1.69 67.22±1.17 83.54±1.38 83.04±1.12 72.96±1.39 72.11±1.58 72.76±1.71 72.04±1.56

MVTS N/A N/A N/A N/A N/A N/A 83.53±1.91 82.41±1.02 N/A N/A
NETWALK 72.16±1.44 69.57±1.73 69.14±1.49 68.66±1.52 83.11±1.02 82.81±1.61 71.06±1.05 69.94±1.12 72.85±1.17 72.21±1.34

HYPERSAGCN 80.25±1.15 76.91±1.18 72.26±1.47 72.01±1.21 86.94±1.63 86.17±1.49 75.31±0.85 74.79±1.09 76.72±1.32 75.81±1.58

GMM 81.79±1.24 77.84±1.52 74.87±1.58 74.02±1.10 85.89±0.98 85.03±1.18 76.62±1.17 76.11±1.26 76.37±1.83 75.68±1.59

GRAPHMIXER 82.56±1.19 77.91±1.26 75.03±1.72 74.46±1.53 86.02±1.15 85.64±1.09 77.49±1.09 76.63±1.22 76.82±1.84 76.18±1.80

BRAINNETCNN 78.47±1.18 73.12±1.27 70.73±1.77 70.12±1.86 85.84±0.96 85.07±1.52 73.92±0.97 73.07±1.51 75.96±1.66 75.03±1.28

BRAINGNN 79.81±1.57 75.28±1.61 72.98±1.55 72.41±1.16 84.59±1.26 83.72±1.35 72.41±1.38 71.55±1.16 75.12±1.33 74.57±1.52

FBNETGEN 78.94±1.24 74.49±1.33 71.62±1.53 71.06±1.48 84.67±1.26 84.08±1.37 72.69±1.18 71.87±1.12 75.34±1.21 74.73±1.39

ADMIRE 83.72±1.18 78.83±1.56 75.52±1.81 74.59±1.12 86.27±1.72 85.18±1.56 78.12±1.47 77.59±1.68 77.18±1.61 76.33±1.45

PTGB 84.08±1.35 79.68±1.62 76.01±1.07 75.13±1.48 87.59±1.12 86.99±0.96 79.17±1.36 78.64±1.55 80.56±1.29 80.04±1.16

BNTRANSFORMER 83.86±1.52 79.03±1.78 75.64±1.82 75.09±1.18 87.54±1.04 86.92±1.48 79.36±1.71 78.08±1.16 77.19±2.01 76.58±1.73

BRAINMIXER 88.13±1.27 84.59±1.70 80.67±1.13 80.49±1.07 91.38±0.94 90.98±1.02 85.74±1.16 85.63±1.23 89.14±1.54 88.99±1.15
† We perform statistical comparison with baselines via paired t-tests. Shaded blue indicates significance improvement over the baselines (p-value ≤ 0.05), while gray
shaded boxes indicate (p-value > 0.05). The maximum p-value is 0.061.

Table 3: Ablation study on BRAINMIXER. AUC-PR scores on edge AD and ACC on classification.
Methods BVFC BVFC-MEG HCP ADHD

Edge AD Classification Edge AD Classification Edge AD Classification Edge AD Classification

BRAINMIXER 91.62±1.36 67.24±1.47 82.58±1.92 62.68±1.12 90.02±1.49 96.32±0.29 91.48±1.41 90.98±1.02
Without Pre-training 88.75±2.16 63.58±2.09 80.21±1.63 61.02±1.37 88.14±1.29 93.81±0.92 90.18±1.13 89.27±1.06

Without VA Encoder 87.99±2.04 59.14±4.51 78.52±2.18 60.53±1.83 86.97±2.05 92.41±1.24 88.29±1.41 88.76±1.19

Replace VA Encoder with TST 89.02±1.18 62.89±1.49 80.46±2.00 61.78±1.24 89.01±0.86 93.53±1.78 90.06±1.55 88.94±1.98

Without FC Encoder 84.27±4.37 65.82±2.18 77.09±3.41 59.73±1.12 85.59±2.47 91.64±1.58 86.97±1.16 87.62±2.16

Replace FC Encoder with BNTRANSFORMER 87.18±2.03 66.12±1.27 78.85±1.36 62.01±0.87 86.76±1.44 94.24±1.25 88.03±1.24 88.81±0.98

Without Functional Patching 86.35±2.97 60.42±3.53 77.21±1.93 60.28±1.72 86.14±3.09 91.97±1.88 87.51±1.86 88.25±2.53

Replace Functional Patching with Partitioning 88.56±1.42 66.50±1.92 79.26±1.51 60.63±1.87 87.55±1.29 96.14±1.04 90.10±1.78 89.69±1.46

Replace TPMIXER by MEAN(.) 88.51±1.03 63.38±1.48 78.94±1.85 60.91±2.01 87.52±1.91 93.31±1.73 89.04±0.95 89.11±1.52

Static Self-Attention 88.39±1.40 63.01±2.10 78.63±1.97 60.78±1.64 87.04±1.53 92.95±1.49 88.96±1.22 88.83±2.07

Remove Time Encoding 89.58±0.81 66.14±1.52 79.91±1.75 61.19±1.36 88.82±2.07 94.12±1.92 90.57±0.91 89.99±1.04

fix θ = 0 83.60±4.52 59.33±2.58 75.96±2.05 59.11±1.46 85.39±1.52 90.51±1.38 86.24±2.01 87.18±1.94

procedure as BRAINMIXER. The details of baselines can be
found in Appendix E.1.

Brain Classification. Table 1 reports the performance of
BRAINMIXER and baselines on multi-class brain classi-
fication tasks. BRAINMIXER achieves the best accuracy
on all datasets with 14.3% average improvement (20.3%

best improvement) over the best baseline. There are three
main reasons for BRAINMIXER’s superior performance: 1
While the time series-based model only uses voxel activity
timeseries, and graph-based methods only use functional
connectivity graph, BRAINMIXER takes advantage of both
and learns the brain representation at different levels of gran-
ularity, which can provide complementary information. 2
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Figure 2: Distribution of abnormal voxel activities detected by
BRAINMIXER in the visual cortex when seeing (Left) GAN-
generated, (Right) Normal image.

Figure 3: The distribution of detected abnormal vox-
els by BRAINMIXER in condition ADHD group.

Static methods (e.g., PTGB, BRAINGNN, etc.), miss the
dynamics of brain activity, while BRAINMIXER employs
a time encoding module to learn temporal properties. 3
Compared to graph learning methods (e.g., GMM, GRAPH-
MIXER, etc.), BRAINMIXER is specifically designed for the
brain, taking advantage of its special properties.

Anomaly Detection. Table 2 reports the performance of
BRAINMIXER and baselines on anomaly detection tasks at
different scales: i.e., edge-, voxel-, and brain-level. BRAIN-
MIXER achieves the best AUC-PR on all datasets with 6.2%,
5.7%, 4.81% average improvement over the best baseline in
edge AD, voxel AD, and brain AD, respectively. The main
reasons for this superior performance are the same as above.
We report results in accuracy in Appendix F.3 to validate
the superior performance of our model in different metrics.

Ablation Study. We next conduct ablation studies on the
BVFC, BVFC-MEG, HCP, and ADHD datasets to validate
the effectiveness of BRAINMIXER’s critical components.
Table 3 shows AUC-PR for edge AD and accuracy for clas-
sification tasks. The first row reports the performance of the
complete BRAINMIXER implementation with pre-training.
Each subsequent row shows results for BRAINMIXER with
one module modification: row 2 removes the pre-training
phase, row 3 removes the VA Encoder module, row 4 re-
place VA Encoder with TST, row 5 removes FC Encoder
module, row 6 replace it with BNTRANSFORMER, row 7
replaces functional patching with random patching, row
8 replace temporal patching with partitioning (Karypis &
Kumar, 1998), row 9 replaces TPMIXER with MEAN(.)
pooling, row 10 replaces dynamic with static self-attention,
row 11 removes time encoder, the last row set θ = 0, re-
moving biased in the sampling. These results show that
each component is critical for achieving BRAINMIXER’s
superior performance. The greatest contribution comes from
biased sampling, VA and FC encoders, functional patching,
and dynamic self-attention. Further results on patching and
self-supervised objective function are in Appendix F.

Parameter Sensitivity. We discuss the effect of the number
of walks, M , the walk length, m, and time decay, θ on the
performance in Appendix F.1. Results show that increasing
the number of walks results in better performance as each
patch is a better representation of the node’s neighborhood.
The effect of the walk length on performance peaks at a
certain point, but the exact value varies with datasets. In
Appendix F, we further discuss how aggregating timeseries
to obtain beta weights and aggregating voxels to obtain ROIs
can affect performance.

How Does BRAINMIXER Detect GAN Generated Im-
ages? The visual cortex, responsible for processing visual
information, is hierarchically organized with multiple layers
building upon simpler features at lower stages (Van Essen
& Maunsell, 1983). Initially, neurons detect edges and
colors, but on deeper levels, they specialize in recogniz-
ing more complex patterns and objects. Figure 2 (Left)
(resp. (Right)) reports the distribution of detected voxel
activity by BRAINMIXER when the subject looking at non-
recognizable images (resp. natural images). Interestingly,
while the distributions share similar patterns in lower levels
(e.g., V1 and V2 voxels), higher-level voxels (e.g., V3) are
less active when the subject sees non-recognizable images.
These results show the potential of BRAINMIXER in learn-
ing meaningful representation of voxels activity. Additional
details can be found in Appendix F.

Case Study: ADHD In this case study, we train our model
on the neuroimages of the typically developed group and test
it on the ADHD condition group to detect abnormal voxel
activities that might be correlated to ADHD symptoms. Fig-
ure 3 reports the distribution of anomalous voxels within the
brain of the ADHD group. 78% of all found abnormal voxel
activities by BRAINMIXER are located in the Frontal Pole,
Left and Right Temporal Poles, and Lingual Gyrus. These
findings are consistent with previous studies on ADHD,
which use diffusion tensor imaging (Lei et al., 2014) and
Forman–Ricci curvature changes (Chatterjee et al., 2021).
Additional case study on ASD is in Appendix F.7.
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5. Conclusion
In this work, we present an unsupervised pre-training frame-
work, BRAINMIXER, that bridges the representation learn-
ing of voxel activity and functional connectivity by max-
imizing their mutual information. The experimental re-
sults show the potential of BRAINMIXER in 1 detecting
abnormal brain activity that might be related to a brain
disease/disorder, 2 disease/disorder detection, and 3 un-
derstanding object representation in the brain. We discuss
potential limitations and future work in Appendix G.

Impact Statement
This paper presents BRAINMIXER whose goal is to learn
low dimensional representation of brain activity for use
in detecting and understanding of brain diseases/disorders.
This area of research can be used for enhancing brain-
computer interfaces; however, governmental regulations
and research communities effort are needed to ensure the
privacy of patients’ data.
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A. Backgrounds
We begin by reviewing the preliminaries and background concepts that we refer to in the main paper.

A.1. Graphs and Machine Learning on Graphs

Temporal Graphs. We first define the concept of temporal graphs, which are graphs such that each connection is associated
with a timestamp. We formally define temporal graph as follows:

Definition 1 (Temporal Graphs). Let G = (V, E , T ) be a temporal graph, where V is the set of nodes, T is the set of
timestamps, and E ⊆ V × V × T is the set of edges. That is, each connection between two nodes (u, v) is associated with a
timestamp like t ∈ T .

In this study, we use snapshot based representation of temporal graphs. That is, G = {G(t)} is the set of graphs, where
G(t) = (V, E(t)) represents the state of the graph G at timestamp t.

Node Representation Learning. Node representation learning in graphs is a process that aim to map nodes of a graph
into a vector space. This representation seeks to capture the structure of the graph, the features of the nodes, their dynamic
over time, and their relationships. The core idea is to represent each node with a vector that encapsulates not just its own
attributes but also its position, dynamics, and role within the larger graph structure.

Definition 2 (Node Representation Learning). Let G = (V, E) be a graph with nodes V and edges E . The goal is to learn a
function f : V → Rd, where d is the dimension of the target vector space (usually d ≪ |V |, implying a lower-dimensional
representation).

A.2. Voxel Time Series Activity

Neuroimaging modalities (e.g., fMRI, MEG) provide (estimated) recordings of neural activity signals. To this end, their
estimation is built up in a 3-D image building block, units called voxels, which represent a small cube of brain tissue. For
example, fMRI measures the blood-oxygen level dependence (BOLD) of each voxel in order to estimate the neural activity
of the whole brain over time. In the literature, for each voxel, most studies aggregate its activity (e.g., its BOLD) over each
time window, called beta weight (Roth et al., 2022; Vassena et al., 2020; Roth & Merriam, 2023). However, this approach
misses the voxel activity dynamic over each task. In this study, we consider voxels’ activity as it is (without aggregation)
and model it as timeseries data. We model this data as a multivariate time seris: An fMRI scan involves thousands of voxels,
leading to a multivariate time series {X1(t), X2(t), ..., Xn(t)} where Xi(t) is the time series for the i-th voxel.

A.3. Brain Functional Connectivity

The brain’s functional connectivity is a graph, derived from a neuroimaging modality (often fMRI), where each node
represents a brain parcel or ROI, and two nodes are connected if there is a statistical association between their functionality.
In more details, as discussed above, fMRI measures brain activity by detecting changes in blood flow. The primary data
from fMRI is the Blood Oxygen Level Dependent (BOLD) signal, reflecting changes in the oxygenation level of the blood.
Deriving a brain network from fMRI data involves 1 preprocessing, 2 parcellation using atlases, and 3 computing
correlations.

1. Preprocessing: Is the sequence of actions to clean the data and make it for process. Common preprocessing techniques
are:

• Motion Correction: Aligns all the neuroimages to a reference neuroimage to correct for patient movement.
• Band-Pass Filtering: Isolating the frequency band that corresponds to the fMRI signal (usually 0.01 to 0.1 Hz).
• Slice Timing Correction: Adjusts for the time difference in image acquisition between slices.
• Smoothing: Applies a Gaussian filter to reduce spatial noise and improve signal-to-noise ratio.

2. Parcellation using Atlases: Brain atlases divide the brain into regions of interest (ROIs). Each ROI represents a node in
the brain network. Common atlases include:

• AAL (Automated Anatomical Labeling): Divides the brain into areas based on anatomical structures.
• Harvard-Oxford Atlas: Based on probabilistic information from a large population.
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• Functional Atlases: Based on functional connectivity patterns, e.g., resting-state networks.

3. Computing Correlations: For each ROI defined by the atlas, the time series of the fMRI signal is extracted. This step
involves averaging the fMRI signal over all voxels within each ROI (Note that in this paper, we argue that the best
case is to consider each voxel as an ROI). Next, to capture the statistical association of ROIs activity, we compute the
Pearson correlation coefficient between the time series of every pair of ROIs:

Cij =

∑T
k=1(Xi(k)− X̄i)(Xj(k)− X̄j)√(∑T

k=1(Xi(k)− X̄i)2
)(∑T

k=1(Xj(k)− X̄j)2
) , (4)

Here, Cij is the correlation between ROI i and ROI j, and Xi, Xj are the time series for ROIs i and j, respectively. To
construct a network G = (V, E), where V is the set of ROI and E is the set of connections, a threshold is applied to the
correlation matrix. Only correlations above a certain value are considered to represent connections in E .

In EEG and MEG data the process is the same while each signal corresponds to a channel and so in the constructed brain
network, each node is a channel and each connection shows high Pearson’s correlation between its endpoints.

A.4. MLP-MIXER

The MLP-MIXER architecture (Tolstikhin et al., 2021) is a novel neural network design that has attracted much attention in
the field of computer vision. It presents itself as a distinctive alternative to the CNNs and Transformer models. The structure
of MLP-MIXER is composed of two key sub-layers in each layer: the patch mixing layer and the channel mixing layer.
The patch mixing layer processes spatial information within each channel independently, whereas the channel mixing layer
combines the information across various channels. This dual process of mixing is crucial for the MLP-MIXER’s capability
to detect both local and global image dependencies.

The mathematical representation of the MLP-MIXER is as follows:

patch Mixer:

Hpatch = E+W
(2)
patchσ

(
W

(1)
patchLayerNorm (E)

⊤
)⊤

, (5)

Channel Mixer:
Hchannel = Hpatch +W

(2)
channelσ

(
W

(1)
channelLayerNorm (Hpatch)

)
, (6)

Challenges of Extending MLP-MIXER to Graphs and Time Series. In graphs, the vanilla MLP-MIXER (Tolstikhin
et al., 2021) can be used to bind information across both of feature and node dimensions, but directly applying vanilla
MLP-MIXER to graphs is insufficient and impractical. First, there does not exist in general a canonical grid of the graphs
(contrary to images) to encode nodes, which makes patch extraction challenging. Second, contrary to images that can be
divided into patches of the same size, the partitioning of nodes in graphs might not be all the same size due to the complex
graph topology. Moreover, in temporal graphs, dynamics of the graph and its temporal properties should be captured to
effectively learn its node encodings. The vanilla MLP-MIXER is not capable of learning temporal dynamics.

Similarly, in multivariate time series data, there is no canonical grid and patches are not necessarily the same size.

Challenges of using MLP-MIXER and its variants for Brain Activity. While there are existing studies that aim to
address the above limitations and define patches in graphs using graph partitioning algorithms (He et al., 2023), or first-hop
neighbourhood (Cong et al., 2023), there are designed for general cases and miss special properties of the brain. 1 The
human brain is comprised of functional systems (Schaefer et al., 2018), which are groups of voxels that perform similar
functions (Smith et al., 2013). Recently, Trockman & Kolter (2023) show that the main power of vision architectures
like MLP-MIXER and VIT (Khan et al., 2022) comes from patching, splitting the image into multiple same size parts
which might show the same concept. Inspired by this, we suggest using functional patching in analysis of brain activity,
i.e. splitting voxels into some groups such that each group has similar functionality. 2 This approach results in another
challenge which is the size of functional systems are not the same and simply using vanilla MLP-MIXER on functional
patches is not feasible. To this end, we present an interpolation method to linearly interpolate functional systems to the same
size.
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Table 4: The differences of VA Encoder and FC Encoder with MLP-MIXER.

MLP-MIXER FC Encoder VA Encoder(Tolstikhin et al., 2021)

Patches

Input Images (2-d Regular grid) Graphs (Irregular and non-grid) Time series (Unstructured)
Same width and height Different sizes (#Nodes, #Edges) Variable Length

Patch Extraction
Based on pixels order Based on Temporal Random Walks Based on Brain Functional Systems

Non-overlapping patches Overlapping patches Overlapping patches
Same patches at each epoch Different patches at each epoch Different patches at each epoch

Patch Encoder
Same patch size Variable patch size Variable patch size

Usign 2-d MLP Using TPMIXER Using Voxel-Mixer
(1-d MLP + Dynamic self-attention) (2-d MLP + Dynamic self-attention)

Positional Implicitly ordered No universal ordering No universal ordering
Information Permutation invariant Permutation variant

The main differences of our VA Encoder and FC Encoder with MLP-MIXER are summarized in Table 4. In this table, 1-d
MLP and 2-d MLP refers to applying MLP in one of the dimensions and both dimensions, respectively.

B. BVFC Dataset
In this section, we introduce BVFC dataset and discuss how it is derived from the fMRI and MEG data.

B.1. THINGS Dataset

The Things dataset1 (Hebart et al., 2023) is a large battery of visual object recognition datasets that use a common set
of images as visual stimuli. These datasets cover a broad range of data types, ranging from behavioral aspects, such as
similarity judgments, to neural responses to the presented images, such as fMRI and MEG recordings. The shared image
database includes more than 26,000 images in total, categorized into 1,854 object concepts. In this work, we used 1 the
THINGS fMRI1 dataset, consisting of event-related BOLD responses of three human subjects to 8,460 images selected
from 720 categories (12 images per each). 2 the THINGS MEG1 dataset, consisting of Magnetoencephalography (MEG)
of 4 subjects for 22,248 images (1,854 categories, 12 images per category), collected over the course of 12 sessions. Both
preprocessed and raw versions of the fMRI and MEG datasets are provided by the Things authors2. However, in the
preprocessed version of fMRI dataset, each voxel is associated with a single beta value, which misses the dynamic of
voxel activity over time. For the purpose of this work, we utilized the raw version as we required the time series of fMRI
recordings and follow the following preprocess steps:

B.2. Preprocessing

The beta values provided in the preprocessed version of the THINGS fMRI dataset are single measures of each voxel’s
response to a certain stimulus, which are obtained by applying a general linear model (GLM) to the voxels’ time series.

1https://things-initiative.org
2https://plus.figshare.com/collections/THINGS-data_A_multimodal_collection_of_

large-scale_datasets_for_investigating_object_representations_in_brain_and_behavior/
6161151

18

https://things-initiative.org
https://plus.figshare.com/collections/THINGS-data_A_multimodal_collection_of_large-scale_datasets_for_investigating_object_representations_in_brain_and_behavior/6161151
https://plus.figshare.com/collections/THINGS-data_A_multimodal_collection_of_large-scale_datasets_for_investigating_object_representations_in_brain_and_behavior/6161151
https://plus.figshare.com/collections/THINGS-data_A_multimodal_collection_of_large-scale_datasets_for_investigating_object_representations_in_brain_and_behavior/6161151


Unsupervised Representation Learning of Brain Activity via Bridging Voxel Activity and Functional Connectivity

Since the preprocessed dataset only offers beta values, we utilized and preprocessed the raw data without applying the GLM
step at the end. The preprocessing pipeline used by the authors of THINGS also includes a semi-supervised ICA-denoising
step, which requires prior experience with fMRI noise-signal classification. We replaced this stage with ICA-AROMA
(Pruim et al., 2015), an automatic ICA-denoising tool, to improve the replicability of our results without the need for manual
supervision or intervention in the denoising step. For the rest of the preprocessing steps, we followed the same pipeline used
by Hebart et al. (2023). For each image, we use 13 seconds of fMRI signals of the human subject, and treat each as a time
window. We use the output of the preprocess time series as the voxel level brain activity. To derive the brain functional
connectivity from the time series data, we consider each voxel as an ROI and calculate the statistical association of the time
series of two voxels vi and vj in each time window using Pearson’s correlation:

Cij =

∑T
k=1(Xi(k)− X̄i)(Xj(k)− X̄j)√(∑T

k=1(Xi(k)− X̄i)2
)(∑T

k=1(Xj(k)− X̄j)2
) , (7)

where Xi(k) and Xj(k) are vi and vj activities at time k, and X̄i and X̄j are their average activity over the time window,
respectively. We next, for each voxel removes negative elements and then keep 90-percentile of its corresponding correlation.
We use the same approach on the time series of channels in MEG to obtain brain connectivity networks. For the preprocessing
scripts visit this link.

B.3. Image Classification

Understanding object representation in the brain is a key step toward revealing the basic building blocks of human visual
processing (Hebart et al., 2023). Toward this direction, in the first downstream task on BVFC we aim to classify seen images
during the fMRI and MEG recording. As discussed above, the fMRI dataset consists of responses of three human subjects to
8,460 images selected from 720 categories (12 images per each) from THINGS database (Hebart et al., 2019). Each of the
images has a high-level concept as its high-level label, which described the type of the object in the image (e.g., “Food”,
“Human Body”, etc.)3. In the first task, we aim to predict the high-level label of the seen image by using the fMRI responses
of the human subject. This task is a multi-class classification tasks with 9 classes.

B.4. Anomaly Detection

In the fMRI1 THINGS dataset (Hebart et al., 2023), there are 100 unique catch images that were created using the generative
adversarial neural network, BigGAN (Brock et al., 2019). These images were generated by interpolating between two latent
vectors, yielding novel objects that were not recognizable. We take advantage of these images and design a downstream task
to detect these images.

The visual cortex, responsible for processing visual information, is hierarchically organized with multiple layers building
upon simpler features at lower stages (Van Essen & Maunsell, 1983). Initially, neurons detect edges and colors, but on
deeper levels, they specialize in recognizing more complex patterns and objects. Accordingly, we expect our model to detect
GAN generated images by using the subject’s brain fMRI response. We model this task as a binary classification task, where
the brain fMRI response to each natural image is considered “normal” and the brain fMRI response to GAN generated
images is considered “Abnormal”. For further information about the generated images by GAN and its architecture see the
original paper of THINGS dataset (Hebart et al., 2023) and original paper of BigGAN (Brock et al., 2019).

C. Additional Related Work
To further situate our BRAINMIXER in a broader context, we briefly review self-supervised representation learning of brain
activity and time series representation learning.

Self-supervised Representation Learning of Brain Activity. In representation learning of brain activity, such as fMRI,
MEG and EEG, obtaining labeled data is challenging and costly. To address this, various self-supervised learning techniques
have been introduced (Behrouz & Hashemi, 2024a; Mohsenvand et al., 2020; Kostas et al., 2021; Banville et al., 2021).
Banville et al. (2021) suggest using relative positioning, temporal shuffling, and contrastive predictive coding specifically to

3Note that the high-level labels of images are different from their original labels, as each high-level class include a set of primary
labels. For example, all “Pizza”, “Fast Food”, and “Bacon” are in a high-level class of “Food”.
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EEG data. Additionally, Mohsenvand et al. (2020) and Kostas et al. (2021) presents an approach to learn EEG signals using
negative sampling and contrastive learning, which is only suitable for SEEG and EEG data. Yang et al. (2023b) propose an
unsupervised pre-training technique designed specifically for brain networks using contrastive learning and maximizing
the mutual information between an anchor point of investigation X from a data distribution H and its positive samples,
while minimizing its mutual information with its negative samples. All these methods are either 1 are designed for a
specific type of neuroimaging data (e.g., EEG) and cannot be generalized to other neuroimage modalities, 2 are based
on negative sampling generation which bias the performance toward the patterns of generated negative samples, being
unable to generalize to complex and unseen patterns, and/or 3 uses either time series data or connectivity network, missing
information from different level of granularity.

Time Series Representation Learning. Representation learning of multivariate time series has been getting increasingly
popular with the motivation that modeling the complex relationships between covariates should improve the forecasting
performance(Chen et al., 2023). to this end, Transformers (Vaswani et al., 2017) attract much attention due to their superior
performance in modeling long-term sequential data. (Zhou et al., 2021) present Informer and (Wu et al., 2021) present
Autoformer to address the efficiency challenges in long-term forecasting. Zhou et al. (2022b) design FEDformer and later
FiLM (Zhou et al., 2022a) that decompose the sequences using Fast Fourier Transformation for better extraction of long-term
information. Recently, Chen et al. (2023) design TSMIXER, and all MLP architecture for time series forecasting. Not only
the purpose of these methods are different from VA Encoder, but also their architectures are different from VA Encoder from
a subset of following aspects: 1 They bind information across time series, missing the cross-time dependencies of signals.
2 These methods use fixed static learnable matrices for binding time series, while in the brain signals, the functionality of
each time series is important and a different set of signals should be mixed differently based on their corresponding voxel’s
(channel’s) connections and functionality. 3 They treat each time series the same, while in multivariate time series some
signals cab be more important than others for a specific downstream task.

MLP-MIXER for fMRI Data. MLP-MIXER shows promising performance on image data. One approach to learn from
fMRI data is to treat fMRI image in each time window as an image and then employ an MLP-MIXER to learn representation
for voxels. Geenjaar et al. (2022) designed a fully-differentiable non-linear framework for whole-brain dynamic factor
learning and applied MLP-MIXER to fMRI data. However, this study suffers from all the MLP-MIXER limitations that
we discussed. For more explanations and illustrative examples see our discussion on the difference of our encoders with
MLP-MIXER in Appendix A.4.

C.1. Our Contributions

As we discussed in Sections 1, 2, and Appendix C, existing studies miss a subset of the following: 1 the functional
connectivity between voxels, 2 timeseries activity of voxels, 3 special properties of the brain like hierarchical structure
and its complex dynamics. Here, we summarize our contributions as follows:

1. Voxel Activity Encoder: We present VA Encoder, a novel multivariate time series encoder that employs a dynamic
attention mechanism to bind information across both voxel and time dimensions. VA Encoder by learning the
representation of each voxel allows us to obtain brain activity encodings at different level of granularity (e.g., voxel- ,
functional system-, and/or brain-level encodings). Our experiments (row 5 in Table 3) show that VA Encoder alone, i.e.
without using functional connectivity, outperforms baselines in different downstream tasks.

2. Simple and Low Cost, but Effective Patching: We propose functional patching for learning brain activity. While
existing patching methods are either i grid-based and inapplicable to graphs and time series, ii requires additional
computational cost, and/or iii cannot use specific brain properties (e.g., functional systems), missing the functional
similarity of voxels. Our functional patching uses additional knowledge about the brain functional systems and patch
the brain into some groups in which voxels have similar functionality. Our experimental results show that removing
functional patching and replacing it with either random patching or clustering patching can damage the performance
(See Appendix F.2 and Table 3).

3. Functional Connectivity Encoder: To encode the functional connectivity graph, we design an MLP-based architecture
that learns both the structural and temporal properties of the graph using temporal random walks. FC Encoder first
extracts temporal patches using temporal random walks and then fuses information within each patch using a novel
dynamic self-attention mechanism. To obtain the brain activity encoding at different level of granularity, we further
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propose an adaptive permutation invariant pooling method that theoretically is the universal approximator of any
multi-set function. Our experimental results in Table 3 show that FC Encoder alone, i.e. without using time series of
voxel activity, outperforms baselines in different downstream tasks.

4. Self-Supervised Pre-training Framework: We present a novel self-supervised pre-training framework without using
contrastive learning, which requires generating negative samples. Existing pre-trianing methods for the representation
learning of brain activity suffers from two main limitations: i They require negative samples to learn from data in a
contrastive manner (Yang et al., 2023b). However, brain activity is complex by its nature, and simple negative samples
cause missing complex patterns, damaging the performance. ii They are based on a meta knowledge about a specific
brain disease and so cannot generalize to other neuroimage modalities and different neuroimaging tasks (Yuan et al.,
2023). Our framework allows self-supervised pre-training of any neuroimaging data that provides multivariate time
series (e.g., fMRI, EEG, MEG, iEEG, etc.) without using any meta knowledge about the disease or downstream tasks,
making it generalizable to different neuroimage modalities and different downstream tasks.

D. Theoretical Guarantee of TSETMIXER Performance
Theorem 1. TPMIXER is permutation invariant and a universal approximator of multisets.

Proof. Let π(S) be an arbitrary permutation of set S, we aim to show that Ψ(S) = Ψ(π(S)). We first recall the TSETMIXER
and its two phases: Let S = {v1, . . . ,vd}, where vi ∈ Rd1 , be the input set and V = [v1, . . . ,vd]

T ∈ Rd×d1 be its matrix
representation: we first fuse information across features in a non-parametric manner as follows:

H
(t)
F = V + σ

(
Softmax

(
LayerNorm (V)

⊤
))⊤

, (8)

Now, for π(S), let π(V) = [π(v1), . . . , π(vd)]
T ∈ Rd×d1 be its matrix representation, for the first phase we have:
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(
Softmax
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⊤
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which means that the first phase of TSETMIXER is equivariant. In the above, we used the fact that Softmax is permutation
equivariant. In the second part, we first have:
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Also, note that we defined H
(t)
PE as H(t)

PE = H
(t)
F PPool. Therefore, we have:
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In the last step, we use the fact that MEAN(.) is permutation invariant, which results TSETMIXER to be permutation invariant.

Since the patch mixer is just normalization it is inevitable and cannot affect the expressive power of TSETMIXER. Also,
channel mixer is a 2-layer MLP with attention, which are the universal approximator of any function. Therefore, due
to the fact that TSETMIXER is permutation invariant, we can conclude that it is a universal approximator of multi-set
functions.

E. Experimental Setup
E.1. Baselines

Since BRAINMIXER combines functional connectivity and voxel timeseries activity, we compare our method to fourteen
previous state-of-the-art methods and baselines on the timeseries, functional connectivity, and graph encoding:

1. GOutlier (Aggarwal et al., 2011): GOutlier uses a generative model for edges in a node cluster and labels outliers as
anomaly.

2. NETWALK (Yu et al., 2018): Yu et al. (2018) proposed a random-walk based dynamic graph embedding approach, NET-
WALK. NETWALK first uses simple random walks and jointly minimizes the pairwise distance of vertex representations
of each sampled walk. Next, it uses a clustering-based technique to dynamically detect network anomalies.

3. HYPERSAGCN (Zhang et al., 2020): HyperSAGCN (Self-attention-based graph convolutional network for hyper-
graphs) utilizes a spectral aggregated graph convolutional network to refine the embeddings of nodes within each
hyperedge. HyperSAGCN generates initial node embeddings by hypergraph random walks and combines node
embeddings by MEAN(.) pooling to compute the embedding of hyperedge. The model with code can be found in here.

4. Graph MLP-Mixer (GMM) (He et al., 2023): Graph MLP-Mixer uses graph partitioning algorithms to split the input
graph into overlapping graph patches (subgraphs) and then employs a graph neural network to encode each patch. It
then uses an MLP to fuse information across patch encodings. The model with code can be found in here. Note that
Graph MLP-Mixer cannot take advantage of temporal properties of the graph as it is designed for static networks.

5. GRAPHMIXER (Cong et al., 2023): GRAPHMIXER is a simple method that concatenates the 1-hop temporal connections
and their time encoding of each node as its representative matrix. It then uses an MLP-MIXER to encode each
representative matrix to obtain node encodings. The model with code can be found in here.

6. FBNETGEN (Kan et al., 2022a): FBNETGEN is a graph neural network based generative model for functional brain
networks from fMRI data that includes three components: a dimension reduction phase to denoise the raw time-series
data, a graph generator for brain networks generation from the encoded features, and a GNN predictor for predictions
based on the generated brain networks. The model with code can be found in here.

7. BRAINGNN (Li et al., 2021): BRAINGNN is a graph neural network-based framework that maps regional and cross-
regional functional connectivity patterns. Li et al. (2021) propose a novel clustering-based embedding method in the
graph convolutional layer as well as a graph node pooling to learn ROI encodings in the brain. The model with code
can be found in here.

8. BRAINNETCNN (Kawahara et al., 2017): BRAINNETCNN is a CNN-based approach that uses novel edge-to-edge,
edge-to-node and node-to-graph convolutional filters that leverage the topological locality of structural brain networks.
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9. ADMIRE (Behrouz & Seltzer, 2023b): ADMIRE is a random walk-based approach that models brain connectivity
networks as multiplex graphs. It uses inter-view and intra-view walks to capture the causality between different
neuroimage modalities or different frequency band filters.

10. BNTRANSFORMER (Kan et al., 2022b): BNTRANSFORMER adapts Transformers (Vaswani et al., 2017) to brain
networks, so it can use unique properties of brain networks. BNTRANSFORMER use connection profiles as node
features to provide low-cost positional information and then learns pair-wise connection strengths among ROIs with
efficient attention weights. It further uses a novel READOUT operation based on self-supervised soft clustering and
orthonormal projection. The model with code can be found in here.

11. PTGB (Yang et al., 2023b): PTGB is an unsupervised pre-training method designed specifically for brain networks
using contrastive learning and maximizing the mutual information between an anchor point of investigation X from a
data distribution H and its positive samples, while minimizing its mutual information with its negative samples. The
model with code can be found in here.

12. USAD (Audibert et al., 2020): USAD is an unsupervised representation learning method in time series, which utilizes
an encoder-decoder architecture within an adversarial training framework that allows it to take advantage of both.

13. Time Series Transformer (TST) (Zerveas et al., 2021): TST is a transformer-based framework for unsupervised
representation learning of multivariate time series, which is capable of pre-training and can be employed on varius
downstream tasks.

14. MVTS (Potter et al., 2022): MVTS is an unsupervised transformer-based model for time series learning, which utilizes
special properties of EEGs for seizure identification. It uses an autoencoder mechanism involving a transformer encoder
and an unsupervised loss function for training.

We use the same hyperparameter selection process as BRAINMIXER. Also, we fine tune their training parameters as their
original papers using grid search. For the sake of fair comparison, we use the same training, testing and validation data for
all the baselines (including same data augmentation and negative sampling). Also, for PTGB (Yang et al., 2023b), which
also is capable of pre-training, we use the same datasets and settings as we use for BRAINMIXER.

E.2. Datasets

We use six real-world datasets with different neuroimage modalities and downstream tasks, whose descriptions are as
follows:

• BVFC (This Paper): The main characteristics and pre-processing steps are mentioned in Appendix B. For the multi-class
classification task, we aim to predict the label of the seen image (9 labels) using the fMRI response of a human subject
(3 subjects). For the edge- and node-level anomaly detection tasks, we use synthetic injected anomalies and for the
graph anomaly detection, we aim to detect GAN generated images using the fMRI response. We label brain activities
that correspond to seeing a GAN generated image (resp. natural image) as “Anomalous” (resp. “Normal”). In the
experiments, for the sake of efficiency, we remove irrelevant voxels. We use only highly active and related voxels in
our experiments.

• BVFC-MEG (This Paper): The main characteristics and pre-processing steps are mentioned in Appendix B. For the
multi-class classification task, we aim to predict the label of the seen image (9 labels) using the MEG response of a
human subject (4 subjects). For the edge- and node-level anomaly detection tasks, we use synthetic injected anomalies
and for the graph anomaly detection, we aim to detect natural scenes using the MEG response. We label MEG response
that correspond to seeing natural scenes as “Anomalous” and seeing other objects as “Normal”.

• ADHD (Milham et al., 2011): ADHD (Milham et al., 2011) contains resting-state fMRI of 250 subjects in the ADHD
group and 450 subjects in the typically developed (TD) control group. We follow the standard pre-processing steps (Cui
et al., 2022a) to obtain brain networks. For the edge and node anomaly detection tasks, we use synthetic anomalies,
while for the graph anomaly detection task we label brain networks of the typically developed control group as “Normal”
and brain networks of the ADHD group as “Anomalous”.
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Table 5: Datasets statistics.

Datasets Number of Graphs Average Number of Nodes Average Number of Edges Number of Classes Ground-Truth Anomaly
(Multi-class Classification) (Binary Classification)

BVFC 25380 11776 352479 9 Yes
BVFC-MEG 88992 272 9841 9 Yes
ADHD 700 400 6194 - Yes
TUH-EEG 642 31 252 - Yes
ASD 90 400 5903 - Yes

HCP 7440 1000 7635 7 (Mental states) Yes1067 8041 5 (Age)

• TUH-EEG (Shah et al., 2018): The seizure detection TUH-EEG dataset (Shah et al., 2018) consists of EEG data with
31 channels of 642 subjects. For the edge and node anomaly detection tasks, we use synthetic anomalies, while for
the graph anomaly detection task we label brain networks of people with and without seizure as “Anomalous” and
“Normal”, respectively.

• ASD (Craddock et al., 2013): This dataset includes the resting fMRI data taken from the Autism Brain Imaging Data
Exchange (ABIDE) (Craddock et al., 2013); it contains data for 45 subjects (22 female, age = 25.4± 8.9 yrs) in the
typically developed control group and 45 subjects (23 female, age = 23.1 ± 8.1 yrs) in the ASD group. We have
followed the five pre-processing strategies denoted as DPARSF, followed by Band-Pass Filtering. For the edge and
node anomaly detection tasks, we use synthetic anomalies, while for the graph anomaly detection task we label brain
networks of the typically developed control group as “Normal” and brain networks of the ASD group as “Anomalous”.

• HCP (Van Essen et al., 2013): HCP (Van Essen et al., 2013) contains data from 7440 neuroimaging samples each of
which is associated with one of the seven ground-truth mental states. Following previous studies (Said et al., 2023),
we define two downstream multi-class classification tasks: 1 Mental states prediction, in which we aim to predict
the mental state using the fMRI. 2 We aim to predict the age of human subjects using their fMRI. In this tasks, we
split the age into 5 groups, balancing the number of samples in each class. Similar to other datasets, we use synthetic
anomalies for the edge and node anomaly detection tasks.

We model the pre-processed fMRI, MEG, and EEG signals as multivariate time series and use them as our time series
activity. Next, we discuss how we derive the brain connectivity network.

Constructing Brain Connectivity Network. To construct the brain connectivity networks for each dataset, we use the
same process as we do for BVFC. We use the output of the preprocess time series as the voxel level (channel level for EEG
and MEG) brain activity. To derive the brain connectivity from the time series data, we consider each voxel (or channel) as
an ROI and calculate the statistical association of the time series of two voxels (channels) vi and vj in each time window
using Pearson’s correlation:

Cij =

∑T
k=1(Xi(k)− X̄i)(Xj(k)− X̄j)√(∑T

k=1(Xi(k)− X̄i)2
)(∑T

k=1(Xj(k)− X̄j)2
) , (22)

where Xi(k) and Xj(k) are vi and vj activities at time k, and X̄i and X̄j are their average activity over the time window,
respectively. We next, for each voxel (channel) removes negative elements and then keep 90-percentile of its corresponding
correlation.

E.3. Implementation, Training, and Hyperparameters Tuning

In each task, we split the data into training set (70% of the data), validation set (10% of the data), and test set (20% of
the data). In the pre-training phase, we use both training set and validation set to train the model and then we fine tune
the pre-trained model for downstream tasks using only training set. For downstream tasks, we use validation set to tune
hyperparameters as discussed bellow. During the training of both pre-trained model and fine tuning for downstream tasks,
the test set is untouched and it is used only for the final evaluation of the method.
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Table 6: Hyperparameters used in the grid search.

Datasets Sampling Number M Sampling Time Bias θ Temporal Walk Length m Hidden dimensions

BVFC 4, 8, 16, 32, 64, 128 {0.5, 2.0, 20, 200, 2000, 20000} × 10−7 1, 2, 3, 4 32, 64, 128
BVFC-MEG 4, 8, 16, 32, 64 {0.5, 2.0, 20, 200, 2000, 20000} × 10−7 1, 2, 3, 4, 5, 6 32, 64, 128
ADHD 4, 8, 16, 32, 64, 128 {0.5, 2.0, 20, 200, 2000, 20000} × 10−7 1, 2, 3, 4 32, 64, 128
TUH-EEG 4, 8, 16, 32, 64 {0.5, 2.0, 20, 200, 2000, 20000} × 10−7 1, 2, 3, 4, 5, 6 32, 64, 128
ASD 4, 8, 16, 32, 64 {0.5, 2.0, 20, 200, 2000, 20000} × 10−7 1, 2, 3, 4 32, 64, 128
HCP 4, 8, 16, 32, 64 {0.5, 2.0, 20, 200, 2000, 20000} × 10−7 1, 2, 3, 4 32, 64, 128

In addition to hyperparameters and modules (activation functions) mentioned in the main paper, here, we report the training
hyperparameters of BRAINMIXER: On all datasets, we use a batch size of 32 and use a learning rate of 10−3. We use the
maximum training epoch number of 100 with an early stopping strategy to stop training if the validation performance does
not increase for more than 7 epochs. Furthermore, a dropout layers with rate = 0.1 is employed in all neural networks. To
tune the model’s hyperparameters, we systematically perform grid search. The search domains of each hyperparameter are
reported in Table 6.

BRAINMIXER is implemented by PyTorch in Python and a Linux machine with GPU and 16GB of RAM is used to run
evaluations.

Note that we use the same training pipeline as BRAINMIXER for all the baselines. For the sake of fair comparison, we use
the same training, testing and validation data for all the baselines (including same data augmentation and negative sampling).
Also, for PTGB (Yang et al., 2023b), which also is capable of pre-training, we use the same datasets and settings as we use
for pre-training of BRAINMIXER.

E.4. Injecting Synthetic Anomalies

Due to the nature of anomaly detection tasks, specifically in neuroimaging data, there is a lack of unified definition for
abnormal brain activity and so the ground truth labels are not available. To mitigate this challenge in evaluation of our
approach, we first evaluate our approach using synthetic anomalies and then we perform case studies on real-world data and
show that the found anomalies are compatible with previous findings.

1 Injecting Abnormal Connections to Brain Connectivity Network: We randomly choose 5% (or 1%, depends on the
setting) normal connections and corrupt them. Given a connection (u, v), we randomly change one of its endpoint, assume
that u, to another voxel like w such that v and w have not been connected previously. Therefore, from a normal connection
(u, v), we generate an abnormal connection (w, v). This method is used to evaluate the performance of anomaly detection
methods in different domains (Ma et al., 2021), including neuroimaging (Behrouz & Seltzer, 2023a).

2 Injecting Abnormal Activity to Brain Activity Time Series: We randomly choose 5% (or 1%, depends on the setting) of
time series and corrupt them as follows: Given a voxel activity time series Xi and Xj , during time window t, we swap this
part of these two randomly selected signals and construct X̃i and X̃j which are corrupted of Xi and Xj , respectively.

Note that only edge-AD and node-AD tasks are evaluated using synthetic data and graph-level anomaly detection methods
are evaluated using ground-truth anomalies.

E.5. Visualization Tools

To visualize the average distribution of anomalous connections, we use BrainPainter (Marinescu et al., 2019) with the
Desikan-Killiany atlas. Also, to visualize the average distribution of brain activities in the visual cortex we use Pycortex,
which is an interactive surface visualizer for fMRI (Gao et al., 2015).
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Figure 4: The effect of the number of walks on the performance of BRAINMIXER in different downstream tasks.

F. Additional Experimental Results
F.1. Parameter Sensitivity

In this section, we evaluate the effect of hyperparameters on the performance of BRAINMIXER in different downstream
tasks.

The Effect of the Number of Walks. In the first evaluation, we evaluate the effect of the number of walks on the performance
of BRAINMIXER. Results are reported in Figure 4. These results show that increasing the number of walks results in better
performance. The main reason is that we use the union of walks to capture the neighbourhood of each node over time. The
more number of walks the better representation of the temporal neighborhood we can obtain. That is, sampling more walks
lets the model to extract more information about the dynamic of nodes neighborhood as well as its structure. Also, notably,
we observe that only a small number of sampled walks are needed to achieve competitive performance: in the best case 4
and in the worst case 16 sampled walks are needed to achieve better performance than baselines.

The Effect of the Walk Length. In this experiment, we evaluate the effect of the walk length on the performance of
BRAINMIXER. Results are reported in Figure 5. The results suggest that the effect of the walk length on performance
peaks at a certain point, but the exact value varies with datasets. The main reason for this is that we use walks to capture
the structural and temporal properties of each node. Therefore, for dense brain connectivity networks as well as datasets
with a large number of relevant time windows we need longer walks so the model can extract enough information about
both relevant time windows and dense neighborhoods. Accordingly, we see increasing trend in BVFC-MEG’s performance
when we increase the length of the walk. Also, note that increasing the walk length for more sparser brain connectivity
networks or for datasets with a smaller number of relevant time windows can damage the performance. The reason is we
might consider irrelevant time windows by backtracking over time or consider far nodes (voxels in brain connectivity graph),
which are irrelevant. Accordingly, depends on the structure of the brain connectivity graph and temporal properties of time
series signals, we might need longer or shorter walks.
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Figure 5: The effect of the walk length on the performance of BRAINMIXER in different downstream tasks.

The Effect of the Time Decay θ. As we discussed in section 3, previous studies show that doing a task can affect brain
activity even after 2 minutes (Yang et al., 2023a). To this end, since more recent connections can be more informative,
we use a biased sampling procedure and control the bias using a variable θ. That is, in the proposed sampling procedure,
smaller (resp. larger) θ means less (resp. more) emphasis on recent timestamps.

In this experiment, we evaluate the effect of time decay θ on the performance of BRAINMIXER. Results are presented in
Figure 6. These results suggest that θ has a dataset-dependent optimal interval. That is, a small θ means an almost uniform
sampling of brain activity history, which results in poor performance when the brain activities in recent time-windows are
more important in the dataset. Also, very large θ might damage the performance as it makes the model focus on the most
recent brain activity or only its own time window, missing long-term and lasting brain activities.

Please note that while the value of θ needs to be tuned to achieve the best performance, choosing arbitrary θ in a wide proper
interval can still results in state-of-the-art performance over baselines.

The Effect of the Number of ROIs. The human brain is hierarchically organized and comprised of hierarchical groups
of voxels that have similar functionality (Smith et al., 2013). Accordingly, different downstream tasks requires studying
the brain at different level of granularity. In this experiment, we evaluate the the effect of the number of ROIs4 on the
performance of BRAINMIXER. We vary the number of ROIs from 10000 (voxel-level activity) to 100 (functional system-
level activity) and report the results in Figure 7. The results suggest that using more ROIs and so studying the brain at
lower-levels like voxel-level can result in a better performance. While there is a little improvement for downstream tasks
that are correlated with human brain functional systems (e.g., HCP dataset and classification mental states), the significant
improvements are for tasks that are highly correlated to a specific brain region (e.g., BVFC dataset and classifying seen
images, which is closely related to human brain visual cortex). As an example, there is a ≈ 50% performance loss in the
accuracy of BRAINMIXER on BVFC in multi-class classification task as it requires learning voxel activity (e.g., V1 and V2)
not learning the higher-level aggregated visual cortex activity.

4Note that here ROI means any region of interest in the brain not necessarily pre-defined brain regions based on the atlases.
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Figure 6: The effect of the time decay θ on the performance of BRAINMIXER in different downstream tasks.

The Effect of the Aggregation of Time Series. Most existing studies on voxel-level brain activity aggregate the voxel
activity in each time window and use a single weight relating the voxel activity to the task, called beta weight. However,
aggregation of the voxel activity misses the temporal property and dynamics of voxel activity over time. To this end, we
suggest using a time series encoder that learn the dynamic of voxel activity over time, instead of simply aggregating them.
In this experiment, we evaluate how much the aggregation of voxel activity time series can affect the performance. To this
end, we take the mean of voxel activity time series and shorten it to 10%, 20%, 40%, and 60% of its original size. Figure 8
reports the results of this experiment on different downstream tasks. For datasets with low frequency sampling rate (e.g.,
HCP) aggregation does not significantly damage the performance. For the datasets with high frequency sampling rate (e.g.,
BVFC-MEG), however, aggregation of the voxel activity can significantly damage the performance (≈ 12% performance
lost in the worst case and ≈ 5% in the best case). These results show the importance of considering voxel activity as a time
series instead of aggregating its activity and considering it as a single weight.

F.2. The Effect of Functional and Temporal Patching

As discussed in section 3, in both VA Encoder and FC Encoder we first split the data (either time series or graph) into
patches. In this section, we replace the proposed functional and temporal patching methods with some existing patching
strategies as well as some baselines to evaluate their contribution in BRAINMIXER’s superior performance. For patching
time series data we evaluate the following methods:

1. Random Patching: We randomly group time series in multivariate time series data and treat each group as a patch.

2. Ordered Patching: We use the actual order of time series in the multivariate time series and group consecutive time
series as a patch.

3. Correlation Patching: We calculate the Pearson’s correlation of multivariate time series (see Equation 22) and split the
data into groups base on their pairwise correlation.
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Figure 7: The effect of the number of ROIs on the performance of BRAINMIXER in different downstream tasks.

4. Functional Patching: This is our designed patching method, in which we group the time series of voxels in each brain
functional system as a patch.

Also, for the graph patching we evaluate the following methods:

1. 1-hop Patching: We use the 1-hop neighborhood of each node as its corresponding patch.

2. Partitioning Patching: Following He et al. (2023) for graph patching, we use METIS (Karypis & Kumar, 1998), a graph
clustering algorithm that partitions a graph into a pre-defined number of clusters.

3. Spectral Clustering Patching: Following Geenjaar et al. (2022), we use spectral clustering patching used in this study.

4. Static Random Walk Patching: We replace temporal random walk in our temporal patching strategy with a static
random walk. This random walk still should be able to capture structural properties but missing the dynamic of the
graph.

5. Functional Patching in Graph: We use the actual brain functional systems as our patches.

6. Temporal Patching: This is our designed patching method for brain connectivity graph, in which we use temporal
random walks that randomly sample temporal and structural neighborhood of each node.

In this experiments, we replace the baselines with our proposed patching method and keep the rest of the model unchanged.
Results are reported in Table 7. Results show the superior performance of functional and temporal patching in time series
and graph data, respectively. In time series patching, random and ordered patching perform poorly as they might group
unrelated time series. Correlation patching performs better but still weaker than functional patching. The main reason for
this superior performance is that we expect time series in each patch to have similar functionality and functional patching
using the actual brain functional systems provides the best grouping since we know voxels in each functional system has
similar functionality.

In graph patching, again our proposed temporal patching outperforms the other patching methods. Surprisingly, here
functional patching performs poorly. The main reason is that in the functional connectivity graph, we connect highly
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Figure 8: The effect of the aggregation of the time series on the performance of BRAINMIXER in different downstream
tasks.

Table 7: The effect of functional and temporal patching on the performance of BRAINMIXER: Mean ACC (%) ± standard
deviation.

Patching Methods BVFC BVFC-MEG HCP-Mental HCP-Age

Time Series Patching

Random Patching 60.42±3.53 60.28±1.72 91.97±1.88 45.71±3.69

Ordered Patching 60.58±0.60 60.55±1.01 91.63±1.57 47.21±0.91

Correlation Patching 66.97±0.63 60.91±1.46 95.08±1.21 55.30±0.98

Functional Patching 67.24±1.47 62.58±1.12 96.32±0.29 57.83±1.03

Graph Patching

1-hop Patching 63.59±0.09 60.01±0.18 89.97±0.16 54.91±0.71

Partitioning Patching 66.50±1.92 60.63±1.87 96.14±1.04 56.82±1.75

Spectral Clustering Patching 63.77±0.23 59.16±1.33 90.24±0.95 48.34±1.28

Static Random Walk Patching 66.28±1.52 59.94±1.20 95.86±0.79 57.81±0.92

Functional Patching in Graph 60.03±0.68 54.99±0.74 91.45±0.80 50.11±0.96

Temporal Patching 67.24±1.47 62.58±1.12 96.32±0.29 57.83±1.03

correlated voxels (with respect to their activity). However, in each brain functional systems some voxels have complementary
activity to others, which means while they have the same functionality, they might not have high correlation and so they are
not connected. This fact results in considering disconnected subgraphs as patches, which is undesirable and so damages the
performance.

F.3. Performance Comparison using Different Metrics

We compared the performance of BRAINMIXER with baselines in section 4. In multi-class classification tasks, we used
accuracy as our metrics. Also, for the anomaly detection tasks, since we have binary labels (either anomaly or normal), we
used AUC-PR as the metrics. In this section, we additionally evaluate the BRAINMIXER and baselines using accuracy for
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Table 8: Performance on anomaly detection: Accuracy (%) ± standard deviation.

Methods BVFC BVFC-MEG HCP ADHD TUH-EEG ASD

Anomaly % 1% 5 % 1% 5 % 1% 5 % 1% 5 %

E
dg

e-
le

ve
lA

D

GOUTLIER 62.78±2.41 55.24±2.03 60.83±1.73 58.29±1.49 63.91±1.84 61.05±2.32 64.12±1.46 61.87±1.61 59.59±0.83 56.79±1.51

NETWALK 69.21±1.92 58.47±1.77 71.99±1.12 69.64±0.89 68.85±2.34 66.18±1.98 70.71±0.97 67.92±1.01 68.39±1.79 65.87±2.06

HYPERSAGCN 78.84±1.73 67.47±0.92 80.33±1.61 78.61±1.24 82.05±1.75 80.57±1.32 72.45±1.67 69.15±0.89 72.73±0.92 70.68±1.77

GRAPHMIXER 84.82±2.01 71.34±0.98 85.36±1.58 83.99±1.19 83.89±1.78 81.58±0.99 74.29±1.78 72.48±1.65 83.33±1.36 80.94±1.62

BRAINNETCNN 77.26±0.89 68.78±1.49 78.43±0.94 75.08±1.33 79.22±1.97 76.54±1.17 72.11±1.49 68.81±1.06 70.52±1.47 68.85±1.80

BRAINGNN 78.09±0.73 69.71±1.85 80.85±1.52 78.54±1.12 77.02±1.34 75.68±1.23 71.36±1.38 68.83±1.83 70.24±1.77 68.92±1.25

FBNETGEN 78.35±1.98 70.44±1.58 80.82±1.25 78.30±1.56 77.66±0.89 75.74±1.78 72.11±1.57 69.63±1.47 70.97±1.42 69.69±1.18

ADMIRE 84.91±1.71 72.60±1.91 85.23±1.07 83.58±1.44 84.43±1.68 82.34±1.19 74.88±1.07 72.34±1.72 85.84±1.55 82.76±1.48

PTGB 84.13±1.78 71.24±1.43 84.44±1.86 83.61±1.35 84.75±1.49 82.83±1.54 73.94±1.56 71.18±1.48 85.78±1.22 82.89±1.61

BNTRANSFORMER 82.52±1.64 73.21±1.78 84.92±1.29 82.85±1.61 83.52±1.81 82.72±1.31 74.07±1.36 72.54±1.15 73.76±1.80 71.18±1.59

BRAINMIXER 87.75±1.58 79.12±1.53 88.19±1.97 87.83±1.39 89.77±1.12 88.12±1.57 79.88±1.24 77.47±1.14 89.92±1.57 88.39±1.62

Vo
xe

l-
le

ve
lA

D

USAD 65.13±2.23 61.28±1.91 63.38±2.11 62.18±1.42 70.41±1.71 69.06±1.39 69.46±2.32 68.07±1.88 64.29±2.12 63.41±1.87

TST 67.12±2.06 67.10±2.16 67.16±1.00 66.03±2.10 72.11±1.82 70.50±2.04 70.31±1.89 69.32±2.15 67.14±2.08 66.41±1.81

MVTS N/A N/A N/A N/A N/A N/A 73.15±1.79 73.01±2.08 N/A N/A
GOUTLIER 61.28±1.78 59.33±1.16 61.47±1.70 61.12±1.93 66.83±1.82 64.79±2.16 62.26±2.02 61.33±1.51 57.75±1.95 56.87±1.95

NETWALK 65.31±1.90 62.38±2.13 64.65±1.76 63.39±2.15 73.71±1.88 71.12±1.41 69.40±1.87 68.89±1.76 69.71±1.63 68.49±2.11

HYPERSAGCN 75.01±1.50 70.01±1.72 78.61±1.98 76.24±1.46 81.22±1.54 80.34±1.26 72.28±1.45 70.27±2.20 72.59±1.56 72.42±1.92

GRAPHMIXER 75.06±1.45 70.14±2.14 79.32±1.56 78.14±1.98 79.45±1.87 77.56±1.79 69.70±1.43 68.18±2.03 70.42±1.71 70.39±1.94

BRAINNETCNN 77.10±1.29 72.43±2.09 80.19±1.64 79.36±1.43 80.48±1.33 78.88±1.65 70.72±1.62 69.57±1.10 71.22±1.75 70.79±2.04

BRAINGNN 76.48±1.55 72.06±1.35 80.26±1.80 79.09±1.93 80.17±1.24 77.97±2.18 70.32±2.20 68.88±2.15 70.39±1.63 69.33±2.16

FBNETGEN 76.29±2.02 71.50±1.96 81.41±0.91 78.18±1.86 78.66±1.47 78.67±1.48 69.85±2.06 68.38±1.97 70.50±1.59 69.44±2.08

PTGB 82.26±1.37 75.59±1.42 83.25±1.51 81.80±2.02 84.51±1.32 83.29±1.39 74.73±1.02 74.07±2.13 75.59±2.04 75.12±2.12

BNTRANSFORMER 82.25±1.56 74.71±2.10 84.16±1.03 81.12±1.11 84.64±1.62 83.46±2.13 74.07±1.68 74.40±1.97 74.47±1.18 73.04±1.74

BRAINMIXER 87.11±1.03 80.38±1.59 88.01±1.22 85.84±1.32 88.84±1.37 86.55±1.19 76.98±1.42 76.11±1.52 87.19±1.93 87.11±1.84

B
ra

in
-l

ev
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D

USAD 69.12±1.92 60.27±1.41 64.23±1.55 64.14±2.27 79.71±2.09 78.47±2.11 68.01±2.06 67.12±1.18 70.28±1.87 67.09±1.68

TST 70.94±2.26 66.03±1.94 64.61±1.78 63.18±1.69 80.43±2.01 81.51±1.21 68.82±2.03 68.09±1.79 71.47±1.64 69.42±2.08

MVTS N/A N/A N/A N/A N/A N/A 79.24±1.56 78.39±1.80 N/A N/A
NETWALK 70.45±1.29 68.23±1.67 66.45±1.37 65.23±1.44 80.89±1.11 80.28±1.83 67.01±1.87 65.37±1.45 71.29±1.63 69.26±1.49

HYPERSAGCN 78.10±1.18 75.76±1.22 69.08±1.42 69.16±1.37 83.18±1.39 84.32±1.65 71.14±1.11 71.59±1.32 75.46±1.60 72.09±1.37

GMM 79.55±1.07 76.09±1.21 71.44±1.26 71.55±1.42 82.14±1.24 83.20±1.14 72.00±1.24 72.82±1.08 75.76±1.55 72.08±1.46

GRAPHMIXER 80.49±1.10 76.68±1.38 72.28±1.24 72.04±1.17 83.26±1.05 83.13±1.21 73.68±1.37 72.34±1.33 75.42±1.64 73.59±1.62

BRAINNETCNN 76.29±1.32 72.70±1.13 67.59±1.19 67.89±1.78 82.77±1.46 82.04±1.17 69.83±1.29 69.29±1.12 74.86±1.38 72.15±1.38

BRAINGNN 77.26±1.42 74.14±1.28 69.43±1.35 69.68±1.59 81.09±1.42 81.34±1.44 68.91±1.53 67.48±1.28 74.02±1.15 71.47±1.47

FBNETGEN 76.28±1.10 73.29±1.69 68.22±1.28 68.53±1.32 81.08±1.33 82.57±1.22 68.51±1.37 67.95±1.39 74.12±1.48 71.61±1.26

ADMIRE 81.54±1.22 77.27±1.16 72.92±2.06 71.34±1.59 83.35±1.16 83.19±1.43 74.32±1.31 73.11±1.45 76.62±1.76 73.88±1.53

PTGB 82.01±1.51 78.12±1.25 73.53±1.64 72.62±1.26 84.42±1.47 84.62±1.17 75.81±1.24 74.19±1.42 79.98±1.58 77.29±1.46

BNTRANSFORMER 81.60±1.18 78.14±1.22 72.13±1.55 72.84±1.67 84.71±1.39 84.09±1.28 75.14±1.94 74.44±1.23 78.18±1.46 73.50±1.38

BRAINMIXER 86.62±1.81 83.22±2.01 77.92±1.86 77.13±1.35 88.51±1.27 88.19±1.61 81.22±1.59 81.74±1.27 88.14±1.41 85.27±1.35

anomaly detection tasks and top-1 accuracy for multi-class brain classification tasks.

Accuracy. In this part, we compare the performance of BRAINMIXER and baselines in anomaly detection tasks, using
accuracy metric. Table 8 reports the results. Similar to Table 2, these results show the superior performance of BRAINMIXER
in all edge-level, voxel-level, and brain-level anomaly detection tasks.

Comparison of Best results. In Table 1, we reported the average of accuracy. In this experiment, we report the best
performance of each model among 20 times of running. Table 9 reports the result and show that BRAINMIXER significantly
outperforms baselines.

F.4. Graph Regression

In this section we evaluate the performance of BRAINMIXER in a regression task and compare it with baselines. In this
task, we aim to predict Achenbach adult self-report (ASR) scores in HCP dataset, which are “Aggressive”, “Intrusive”, and
“Rule-Break” scores. In this experimental setup, we use L1 loss to fine-tune the model for the downstream regression task.
We also use the commonly used metric of Mean Absolute Errors (MAEs) on the prediction of these three scores.

Table 10 reports the results. In all three regression tasks, BRAINMIXER achieves the lower MAE and outperforms all the
baselines.
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Table 9: Performance on multi-class brain classification: Top-1 ACC (%) (Best results among 20 times run).

Methods BVFC BVFC-MEG HCP-Mental HCP-Age

USAD 50.48 51.16 75.05 40.84
HYPERSAGCN 53.41 53.09 91.94 49.31
GMM 54.54 54.72 92.73 48.99
GRAPHMIXER 54.37 54.27 92.56 49.43
BRAINNETCNN 50.91 51.68 85.25 44.30
BRAINGNN 52.29 52.05 87.40 44.61
FBNETGEN 51.13 52.32 86.34 44.61
ADMIRE 55.73 56.78 91.65 49.48
PTGB 57.69 56.73 93.88 49.90
BNTRANSFORMER 56.37 56.80 93.17 49.08
BRAINMIXER 68.67 63.68 96.63 58.88

Table 10: Performance on brain network regression task: MAE ↓ (the lower value is better).

Dataset BRAINMIXER BNTRANSFORMER BRAINGNN BRAINNETCNN GMM

HCP-AGGRESSIVE 0.81 0.96 1.72 1.59 1.05
HCP-INTRUSIVE 0.95 1.09 1.19 1.27 1.01
HCP-RULE-BREAK 1.06 1.14 2.01 1.44 1.38

F.5. Qualitative Results

In this section, we report some success and failure cases of BRAINMIXER in image classification task and detecting synthetic
images based on fMRI. Figure 9 (resp. Figure 10) shows four examples of BRAINMIXER success (resp. failures) in
prediction of the image label based on the brain activity. Finally, Figure 11 shows four example of BRAINMIXER failure in
detecting synthetic (abnormal) images based on the fMRI.

F.6. How Does BRAINMIXER Detect GAN Generated Images?

The visual cortex, responsible for processing visual information, is hierarchically organized with multiple layers building
upon simpler features at lower stages (Van Essen & Maunsell, 1983). Initially, neurons detect edges and colors, but on
deeper levels, they specialize in recognizing more complex patterns and objects.

Figure 9: Examples of success cases in prediction of image labels based on fMRI.
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Figure 10: Examples of failure cases in prediction of image labels based on fMRI.

Figure 11: Examples of failure cases in detecting synthetic images based on fMRI.
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Figure 12: The distribution of detected abnormal voxels by BRAINMIXER in condition ASD group

Table 11: Performance on multi-class brain classification using different objectives (ACC).

Methods BVFC BVFC-MEG HCP-Mental HCP-Age

BRAINMIXER with contrastive learning and
47.30 49.77 53.78 49.41margin-based pairwise loss

BRAINMIXER with DGI 63.49 60.82 94.12 58.36
BRAINMIXER 68.67 63.68 96.63 58.88

As we discussed in Appendix B, BVFC consists of the fMRI response when the subject sees the GAN-generated image,
and we define an anomaly detection task, in which we aim to detect brain responses to GAN-generated images. While we
report the performance of BRAINMIXER in detecting these anomalies, in this experiment, we examine how BRAINMIXER
can detect fMRI responses to the GAN generated images. To this end, we split the test set into two groups based
on BRAINMIXER’s prediction: 1 data samples that BRAINMIXER has detected as normal, and 2 data samples that
BRAINMIXER has detected as abnormal. Figure 2 (Left) reports the distribution of fMRI responses that BRAINMIXER
found abnormal (i.e., corresponds to synthetic images) and Figure 2 (Right) reports the the distribution of fMRI responses
that BRAINMIXER found normal (corresponds to natural images). Interestingly, while the distributions share similar patterns
in lower levels (e.g., V1 and V2 voxels), higher-level voxels (e.g., V3) are less active when the subject sees non-recognizable
images. This voxel activity drop in the V3 is ≈ 57%. These results are compatible with our expectation about the hierarchical
structure of the visual cortex and so support that BRAINMIXER can learn a powerful representation for voxel activity.

F.7. Case Study: ASD

In this experimental design we train our model on a healthy control group, which lets the model learn normal brain patterns.
After the training, we test our model on the ASD group and report the abnormal brain regions in the ASD group. The most
repeatedly abnromal regions in ASD group are 1 Right Cerebellum Cortex, 2 Right-precuneus, and 3 Left-lingual. Our
findings about the abnormal activity in the cerebellum cortex is consistent with previous studies (Rogers et al., 2013).

F.8. The Effect of Objective

In this experiment, to evaluate the significance of our loss function, we train the model with two other well known loss
functions. 1 Contrastive learning: we replace our loss function with margin-based pairwise. In this loss function, we aim to
maximize the distances of positive and negative samples. 2 Deep Graph InfoMax (Veličković et al., 2019): We use the
encoding of each node as its local feature. Furthermore, we use the suumary of the all encoding as the global encoding of
the graph. Results are reported in Table 11.

F.9. Effect of the Number of Parameters on Accuracy

To evaluate the effect of the number of parameters on the performance of the model, we use BVFC and employ BRAINMIXER
with different capacity. We restrict BRAINMIXER’s and its encoders’ capacity to 80%, 60%, 50%, and 30% of their original
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Figure 13: The performance of the BRAINMIXERwith different capacity on BVFC.

capacity. The results are reported in Figure 13.

G. Limitations and Future Work
In this work, we present an unsupervised pre-training framework, BRAINMIXER, that bridges the representation learning
of voxel activity and functional connectivity by maximizing their mutual information. The promising performance of
BRAINMIXER in several downstream tasks raises many interesting directions for future studies: While BRAINMIXER with
a simple MLP can successfully classify observed images based on fMRI, one future direction is to pair BRAINMIXER
with diffusion models (Xu et al., 2023) to directly decode brain visual system in an end-to-end manner. Also, there is
a potential of using more powerful graph encoders (Behrouz & Hashemi, 2024b) instead of our FC Encoder. There are,
however, a few limitations for BRAINMIXER: i In this study, we focus on designing a powerful unsupervised framework
that could provide us with a robust and effective brain activity representation. However, reliability of machine learning
methods for downstream tasks in sensitive domains (like healthcare) is critical. Evaluation of BRAINMIXER’s prediction
reliability and modifying BRAINMIXER so that it can provide us with the uncertainty of its prediction is left for future
studies. ii The current approach is capable of using one neuroimage modalities, while different neuroimage modalities
can provide complementary information, which can help understanding and detecting neurological disease or disorders.
One potential future work is to design multimodal BRAINMIXER, where it can learn from different neuroimage modalities,
taking advantage of their complementary information.
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