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Abstract
Collective action in machine learning is the study
of the control that a coordinated group can have
over machine learning algorithms. While previous
research has concentrated on assessing the impact
of collectives against Bayes (sub-)optimal clas-
sifiers, this perspective is limited in that it does
not account for the choice of learning algorithm.
Since classifiers seldom behave like Bayes classi-
fiers and are influenced by the choice of learning
algorithms along with their inherent biases, in this
work we initiate the study of how the choice of the
learning algorithm plays a role in the success of a
collective in practical settings. Specifically, we fo-
cus on distributionally robust optimization (DRO),
popular for improving a worst group error, and on
the ubiquitous stochastic gradient descent (SGD),
due to its inductive bias for “simpler” functions.
Our empirical results, supported by a theoreti-
cal foundation, show that the effective size and
success of the collective are highly dependent on
properties of the learning algorithm. This high-
lights the necessity of taking the learning algo-
rithm into account when studying the impact of
collective action in machine learning.

1. Introduction
With the rapid increase in deployed machine learning mod-
els, a large number of firms rely on data contributed by
users (Gerlitz & Helmond, 2013) to train their algorithms.
In response to this, consumers and users have searched for
ways to alter their data to influence the outputs of such mod-
els (Chen, 2018; Burrell et al., 2019; Rahman, 2021). Algo-
rithmic collective action (Olson, 1965; Hardt et al., 2023)
has emerged as a formal framework to study the effect a
coordinated group of individuals can have on such models,
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by altering the data they provide to the firm. This naturally
leads to various technical questions regarding how large the
collective needs to be, how effective different data altering
strategies are, and which details about firm’s algorithm can
be leveraged by the collective to achieve the best results.

Hardt et al. (2023) initiated the formal study into the suc-
cess of different collective action strategies. Their work
provided theoretical analysis based on the fractional size
of the collective and on the properties of the signal with re-
gards to the original data distribution. However, their results
only hold for Bayes (sub-)optimal classifiers which do not
immediately adapt to peculiarities of practical learning algo-
rithms. In this work, we investigate two types of commonly
used learning algorithms that exhibit distinct properties: (1)
Distributional robustness and (2) Simplicity bias. We show
how these properties lead to significantly different levels of
collective success that are unexplained by prior work.

When the data is composed of multiple sub-populations,
algorithms that optimise for average performance often
perform poorly in minority sub-populations (Meinshausen
& Bühlmann, 2015). A fairness-focused firm will want
to ensure that their trained learning model performs well
uniformly on all sub-populations, as opposed to being on-
average good. Distributionally Robust Optimisation (DRO)
is a family of algorithms designed to maximize this per-
group accuracy (Hashimoto et al., 2018; Wang et al., 2020).
We show that as a consequence, a small collective achieves
higher success when the training algorithm performs DRO,
compared to standard empirical risk minimization (ERM).
Conversely, a large collective in the same settings achieves
lower success, contradicting the expectation set by previous
work regarding the effectiveness of large collectives.

Second, most machine learning algorithms used today are
based on some form of gradient descent (GD). Such al-
gorithms, including the popular Stochastic Gradient De-
scent (SGD), Adam (Kingma & Ba, 2015), and RMSProp,
exhibit a preference for learning functions that are “sim-
pler”. This inductive bias of GD algorithms is popularly
referred to as simplicity bias (Kalimeris et al., 2019; Shah
et al., 2020). In practice, this preference results in the model
“overlooking” certain complex features. We demonstrate
that these overlooked features can be leveraged by a col-
lective to design a strategy that will gain higher success
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compared to what is possible on a Bayes optimal classifier.

Our work initiates a study into an algorithm-dependent view
on the success of collective action. We provide a theoretical
foundation and empirical evidence to analyse the success
of the collective for two important categories of algorithms:
DRO and algorithms with simplicity bias (e.g. SGD).

2. Problem Formulation and Notation
In this section, we provide a formal discussion of both Col-
lective Action and Distributionally Robust Optimisation in
addition to defining the various notations that will be used
throughout this manuscript.

2.1. Collective Action

While there are several goals in the domain of algorithmic
collective action defined in Hardt et al. (2023), in this work
we will focus on the goal of collectively planting a signal
with a features-label strategy. We believe that other impor-
tant goals, like erasing signals, can also benefit from the
techniques and observations of this paper, but we leave the
detailed study of such settings to future work.

Planting a signal Given a base distribution P0 on the
domain of features and labels X ×Y , the classifier observes
the mixture distribution

Pα = αP∗ + (1− α)P0, (1)

where α is the collective’s proportional size and P∗ is the
collective’s distribution. The goal of the collective is to
create an association in a classifier f : X → Y , between
a signal g : X → X and a label y∗ ∈ Y . Formally, the
collective’s goal is to maximize the success defined as

S (α) = P0 [f (g (x)) = y∗] . (2)

The collective modifies their own data by planting a sig-
nal (x, y)→ (g (x) ,y∗). P∗ defines the distribution of
(g (x) , y∗) where x ∼ P0. This has been defined as the
feature-label strategy in prior work. The signal g also de-
fines the signal set X ∗ = {g (x) |x ∈ X}. For any distribu-
tion P over X×Y , the Bayes optimal classifier on P , which
we denote as fP , is defined as

fP (x) = argmax
y∈Y
P (Y = y | X = x) . (3)

For Bayes (sub-)optimal classifiers, Hardt et al. (2023) iden-
tify four properties that affect the success of a collective
action:

• The fractional size of the collective α (see Equation (1))
gives the collective greater statistical power. The larger
the size, the higher the success.

• The uniqueness ξ of the signal. A signal is ξ-unique
if P0 (X ∗) ≤ ξ. Informally, ξ is the measure of the
codomain of the collective transformation g under the
probability measure of the base distribution P0. The
more unique the signal (smaller ξ), the easier it is to
associate the signal to y∗, leading to higher success.

• The sub-optimality gap of the signal is defined as
∆= max

x∈X∗
max
y∈Y
P0 (y|x)−P0 (y

∗|x). It measures the

extent to which the collective competes with signals
already present in P0. The smaller the sub-optimality
gap, the higher the chances of success.

• The sub-optimality ϵ of a learned classifier relays how
close a classifier is to the Bayes optimal. It is defined
as the smallest total variation (TV) distance between
Pα and a distribution on which the learned classifier is
actually Bayes optimal.

Using the above four properties, they derive the following
lower bound on the success of the collective.

Theorem 1 (Theorem 1 in Hardt et al. (2023)). Given the
mixture distribution Pα and the feature-label strategy for
planting a signal, the success is lower bounded by

S (α) ≥ 1−
(
1− α

α

)
∆ · ξ − ϵ

1− ϵ
, (4)

where α, ξ, ∆, and ϵ are, respectively, the size, uniqueness,
sub-optimality gap for y∗ in the base distribution, and sub-
optimality of the learned classifier on Pα.

While they are sufficient to characterise the success of the
collective for a Bayes (sub-)optimal learner, various practi-
cally deployed algorithms show different behaviours, as is
discussed in Section 3 and 4.

2.2. Distributionally Robust Optimisation

In Section 3, we inspect collective action on a set of learn-
ing algorithms that target Distributionally-Robust objec-
tives (Delage & Ye, 2010; Sagawa et al., 2020; Duchi &
Namkoong, 2021). Intuitively, these algorithms aim to learn
classifiers that perform equally well on a set of distributions
as opposed to any single one. Formally, they minimise the
following objective

Rdro(θ) := sup
q∈Qp

Eq [ℓ (gθ(x), y)] , (5)

where Qp is an uncertainty set of distributions close to p
over which we want to control the risk, ℓ is the loss function,
and gθ is a function with parameters θ. There are many
possible definitions of the uncertainty set that the algorithm
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is controlling for. One possible choice is an f -divergence1

ball (Ali & Silvey, 1966; Csiszár, 1967).

Qp = {q ≪ p | Df (q || p) ≤ δ} , (6)

where δ is the radius according to Df .2 An often cited use-
case of DRO algorithms is to protect the performance of
small subgroups (Hashimoto et al., 2018).

Consider a set of subgroups or sub-populations denoted as
A and let the observed distribution, p, arise as a mixture over
the subgroups with distributions pa as p =

∑
a∈A αapa so

the uncertainty set then becomes

Qp =

{∑
a∈A

βapa |
∑
a∈A

βa = 1, βa ≥ 0

}
. (7)

Under this setting, minimisingRdro(θ) is equivalent to min-
imising the worst group loss (Sagawa et al., 2020)

RWGL (θ) := max
a∈A

Eq [ℓ (gθ (x) , y) | A = a] . (8)

Thus, DRO algorithms are often employed when there is
concern about performance on “similar” distributions or on
subgroups of the data (Namkoong & Duchi, 2016; Duchi
& Namkoong, 2019). In Section 3, we investigate how the
success of the collective changes when minimisingRdro(θ)
as opposed to performing simple Empirical Risk Minimisa-
tion (ERM).

3. Effective Size and Validation Control
The most intuitive parameter to predict the success of col-
lective action is the fractional size of the collective α; a
larger collective will attain greater success. However, DRO
algorithms assign different weights to different samples, ren-
dering α inappropriate for predicting success. Instead, we
introduce a correction to the collective size under a weighted
distribution that we denote the effective size αeff, and show
that DRO algorithms can yield αeff > α.

We experimentally validate this theory on a selection of
two-stage re-weighting algorithms, specifically JTT (Liu
et al., 2021) and LfF (Nam et al., 2020). Our findings,
based on synthetic and image datasets, indicate that DRO
algorithms can significantly increase collective success, sur-
passing standard Empirical Risk Minimization (ERM) for
the same tasks.

Finally, we turn to iterative re-weighting algorithms, focus-
ing on CVaR-DRO (Levy et al., 2020). Unlike two stage
re-weighting algorithms, iterative re-weighting algorithms

1 Definition 2 in the appendix.
2The notation q ≪ p means q is absolutely continuous with

respect to p.

oscillate between fitting different parts of the data in train-
ing, relying on performance on a validation set as a stopping
criterion. When the collective can influence both the train-
ing and validation set, we show that this stopping criteria
makes them particularly sensitive to the collective’s size in
the validation set. To demonstrate this we first analyse an ab-
stract theoretical version of CVaR-DRO, varying the degree
of use of collective action in the validation set. Finally, we
experimentally validate these claims, showing the collective
success with CVaR-DRO is very sensitive to the collective
proportion in the validation set.

3.1. Effective Collective Size

As mentioned, DRO algorithms allow for varying data
points to have differing levels of impact on the algorithm
by assigning different weights to the training data. Let
w : X × Y → R be a mapping from a sample to its weight.
Those weights define the weighted distribution

P(w) (X = x, Y = y) =
w (x, y)P (X = x, Y = y)

EP [w (x, y)]
.

(9)

Within the context of collective action, this weighting can
effectively boost or diminish the influence of the collective.
To capture this change of impact, we introduce the following
notion of effective collective size αeff (w).

Definition 1. For a distribution P(w) where samples are up-
weighted according to their covariates by w(x) we define
the effective collective size as

αeff (w) =
Ex,y∼P [w (x, y)1 {(x, y) is in the collective}]

Ex,y∼P [w(x, y)]
.

(10)

Note that if w (x)=1 for all x, then αeff=α. Now, since αeff
is the collective size under the weighted distribution, then
bounding the success for this algorithm, akin to Theorem 1,
requires adding a corrective term c for the non-weighted
distribution, giving

S (α) ≥ 1−
(
1− αeff

αeff

)
(∆ · ξ + c)− ϵ

1− ϵ
, (11)

with the corrective term being

c = Ex∼P∗

[
∆w

xP
(w)
0 (x)

(P∗)
(w)

(x)
− ∆xP0 (x)

P (x)

]
, (12)

where ∆w
x = maxy∈Y

(
P(w) (y | x)− P(w) (y∗ | x)

)
and

∆x is defined the same but for P0. Formal proof and defi-
nitions are in the appendix under Proposition B.3. Under
certain circumstances we can have c ≤ 0, implying a col-
lective success greater than that guaranteed by Theorem 1
for α = αeff. We provide such an example where c ≤ 0 and
αeff ≥ α in Appendix B.1.

3



The Role of Learning Algorithms in Collective Action

1 0 1
x1

1

0

1

x 2

(a) Synthetic 2D dataset
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(b) Success on synthetic 2D dataset
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(c) Success on CIFAR-10

Figure 1. Success with DRO algorithms. (a) An example of the 2D dataset. The color of each point represents its label, and the grey
rectangle is the co-domain of the collective signal. (b-c) The success of a collective of different sizes α when trained with ERM (blue
circles), JTT (orange squares) and LfF(green triangles) on a synthetic 2D and CIFAR-10.

We now provide theoretical results, showing that DRO
algorithms can increase the effective collective size αeff.
Firstly, for any algorithm that targets a DRO defined by an
f -divergence, we can say the following:
Proposition 3.1. For a mixture distribution Pα, let QPα

be the set of distribution in a ball of radius δ around Pα as
defined in Equation (6). Then QPα

contains a distribution
Pαeff with effective collective size

αeff = α+
δ

Df (P∗∥Pα)
. (13)

The proof can be found in Appendix B. The δ parameter in
this case is the radius of the ball that the algorithm is con-
trolling performance over. It is either explicitly chosen, or
implicitly defined by the hyper-parameters of the algorithm.
This proposition tells us that if the algorithm is optimising
against a wide range of distributions, this range will include
a mixture distribution with a higher αeff.

Now, we turn to analysing two-stage algorithms. In the first
phase, these algorithms train a weak classifier, for example
with early stopping or strong regularisation. Then, all sam-
ples in the error set of this classifier are up-weighted by a
factor of λ for the second and final stage of training. This en-
sures an algorithm has good performance against the worst
case subgroups in the original data. The following char-
acterises the effective collective size for these algorithms.

Proposition 3.2. [Effective Collective Size of JTT (Liu et al.,
2021)] For JTT trained on Pα, let λ be the up-weighting
parameter, f be the classifier learned in the first phase and
define

PE := Pα [f (X) ̸= Y ] and

PE|C := Pα [f (X) ̸= Y | (X,Y ) in the collective] .
(14)

Then, the effective collective size is given by

αeff = α
λPE|C +

(
1− PE|C

)
λPE + (1− PE)

. (15)

Figure 2. Image transformation used by the collective. The effect
of the signal is exaggerated for visualisation purposes and in prac-
tice it is invisible to the human eye.

The proof can be found in Appendix B. This proposition
demonstrates that if the first stage classifier f is more likely
to make errors on the collective samples than on random
samples (PE|C>PE), this leads to αeff>α. This means
that if the collective distribution represents a particularly
challenging subgroup of the dataset, it will be up-weighted
to have a much larger effect on the final output of these
algorithms, which should lead to higher collective success.

3.2. Experiments Results for Two Stage Algorithms

We experimentally validate the above theory, showing that
a collective can be more successful against JTT and LfF
compared to ERM on a synthetic 2D dataset and CIFAR-
10 (Krizhevsky, 2009). These algorithms are explained in
Definition 3 and 4 in the appendix, and the synthetic 2D
dataset comprises points sampled i.i.d. from a uniform
distribution on (−1, 1)2, labeled by the sign of their first
coordinate x1 (Figure 1a). The collective wants the points
with a negative x2 to be labeled y∗ and uses the strategy
{(x1, x2) , y}→{(x1,− |x2|) , y∗}. We also consider the
multi-class classification problem of CIFAR-10. The collec-
tive transformation g, in the pixel space of integer values
from 0 to 255, adds a perturbation of magnitude 2 to the
value of every second pixel in every second row (Figure 2).
This transform is virtually invisible to the human eye. Tech-
nical details can be found in Appendix C.

The results on the 2D dataset (Figure 1b) and on CIFAR-
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(a) Success against time
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(b) Success for different stopping conditions

Figure 3. Success sensitivity to stopping condition when using CVaR-DRO on the Waterbirds dataset with a collective of size α = 0.3.
(a) The success of the collective after every epoch of training. Each shade represents a differently initialised training. The rapid and
sharp oscillations show how drastic it is to stop training at the right time. (b) The success achieved by different α for 2 different stopping
conditions. The baseline (ERM) is shown in blue circles. Stopping at maximum accuracy in a validation set with no collective action is
shown in the green triangles. Stopping at maximum success on the validation set is shown in orange triangles. When the firm is trying to
maximize general accuracy, the collective has no success.

10 (Figure 1c) show that for small α, a collective achieves
higher success in JTT and LfF than with the same α in ERM.
Proposition 3.2 predicts this behavior for JTT. When α is
small, the data bias causes ERM to misclassify collective
members. This inaccuracy increases the collective popula-
tion in the error set of first phase. This leads to a higher
PE|C relatively to PE (Equation (14)), which consequently
leads to αeff > α. This is no longer the case when α is large
enough. As α rises, the accuracy of ERM on the collective
increases, and the collective membership in the error set
decreases. As a result, PE|C < PE and αeff < α, lowering
the success. This effect starts at α ≈ 0.2 on the 2D dataset
and at α ≈ 0.1 on CIFAR-10.

Intuitively, the goal of JTT and LfF is to empower weak
groups. Accordingly, these algorithms give a small collec-
tive more statistical power, which grants the collective a
higher success than they would achieve in ERM. When the
collective is large, these algorithms will take the power away,
lowering the success. This teaches us that a large collective
should alter its strategy in order to maximize success.

3.3. Iterative Re-weighting Algorithms and Collective
Action on Validation Sets

We now turn to analyse algorithms that iteratively re-weight,
focusing on CVaR-DRO. For these algorithms, the effective
distribution at each step is chosen adversarially from the
uncertainty set of distributions as discussed in Section 2.2.
We explain the CVaR-DRO algorithm in definition 5 in the
appendix. This causes the algorithm to cycle between fitting
different parts of the distribution, terminating only when a
high enough accuracy is reached on some validation set. As
the validation set plays an important role in deciding when
the algorithm terminates, we consider how varying α in the

validation set can affect the collective success.

Theory In order to theoretically analyse the effect of the
validation set on the final success of the collective, we look
at an idealised version of a iterative re-weighting DRO algo-
rithm. This ideal algorithm computes a sequence of classi-
fiers F , where each classifier f (i) is a Bayes optimal classi-
fier for a distribution on which the previous classifier f (i−1)

has the maximum error, starting with P0. The algorithm
outputs the classifier f∈F that has the highest accuracy
on the validation distribution affected by collective action,
which is given by PV = βP ∗ + (1− β)P0, where β is the
collective size in the validation set. A precise form of this
algorithm is given in Algorithm 3 in the appendix.
Proposition 3.3. Let f be the output of Algorithm 3, and
fPα

be the Bayes optimal classifier on the mixture distribu-
tion Pα. Then we have that the success Sf and SfPα

with
f and fPα

, respectively, relate as

Sf − SfPα
≥ PV [f (X) = Y ]− PV [fPα (X) = Y ]

β − α
.

(16)

The proof is in Appendix B. If β is close to α, fPα must
still be Bayes optimal on PV and so we have that Sf

is not provably greater than SfPα
. However, as β in-

creases, f will have better accuracy on the validation set
than fPα

that was trained on the train set. In such a
case, PV [f (X)=Y ]>PV [fPα (X)=Y ], which leads to
a strictly higher collective success from our idealised CVaR-
DRO algorithm when compared to the Bayes optimal classi-
fier on the training distribution.

Experimental Results Figure 3a demonstrates the oscil-
lating success after every epoch when training CVaR-DRO
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(b) CVaR-DRO on CIFAR-10
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(c) ERM on Waterbirds
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(d) CVaR-DRO on Waterbirds

Figure 4. Each graph shows the success of different levels on collective action in the validation set αval when using ERM or CVaR-DRO
on CIFAR-10 and Waterbirds. The blue circles are for a training set with αtrain = 0.001 and the orange squares are for αtrain = 0.1. ERM
is almost not affected from αval, but for CVaR-DRO αval is crucial.

on the Waterbirds dataset (Sagawa et al., 2020) with α=0.3.
These oscillations are due to the search over the distribu-
tions space QPα

(Equation (6)). Proposition 3.1 predicts
that this space contains a distribution where the collective is
stronger than in the observed distribution. The peaks of the
oscillations suggests that CVaR-DRO was able to find such
a distribution. The frequency and amplitude of the oscilla-
tions show that the resulting success is sensitive to when
training stops, varying from minimal to maximal success.

Realistically, training stops according to some condition on
a validation set. For example, the firm can choose to stop
training at the iteration that achieves the highest accuracy on
the validation set. In Figure 3b we compare the success on
ERM with the success on CVaR-DRO with different condi-
tions on a collective-free validation set: maximum accuracy
and maximum collective success. This comparison shows
that when there is no collective action in the validation set,
maximum validation accuracy cancels possible success. The
reason that the success is 0 is because there is no collective
signal in the validation set.

If the collective is able to affect the validation set, then
increasing its proportion in the validation set will increase
success, as suggested in Proposition 3.3. We show this
experimentally by applying collective action in both training
and validation set of the CIFAR-10 and Waterbirds datasets.
Figure 4b and 4d show that when CVaR-DRO is used, the
amount of collective in the validation set has a very large
impact on the collective success compared to the collective
size in the training set. In contrast, Figure 4a and 4c show
that success in ERM is more sensitive to the collective size
in the training set α rather than to the size in the validation
set. With α = 0.1 in ERM, the collective achieves almost
full success, while when α = 0.001, even with full control
of the validations set, the success does not go over 0.4.

4. Leveraging Algorithmic Bias
In the previous section we described how different learning
algorithms can modify the effective size of the collective.

However, these results do not provide guidelines for design-
ing a more effective signal g. In this section we address
this gap by leveraging insights on the biases of the learning
algorithm with regard to the properties of the base distri-
bution P0. This bias deviates the resulting classifier from
the Bayes optimal classifier discussed in Hardt et al. (2023),
but in a way that allows the collective to take advantage
of. Essentially, if the learning algorithm overlooks certain
signals in the base distribution, it is akin to eliminating these
signals from the distribution, rendering them unique.

4.1. Theoretical Results

We provide the following theoretical result to support this
claim. First, for an arbitrary distribution Q0 we define the
Bayes-optimal classifier on that distribution

fQ0(x) := argmax
y∈Y
Q0 (Y = y|X = x) , (17)

and the Qα-mixture distribution as

Qα := αP∗ + (1− α)Q0. (18)

Theorem 2. Consider a base distribution P0 and a learning
algorithm A which outputs hPα when learning on Pα. For
any given distribution Q0, we denote the corresponding
classifier TV distance as

ωQ0 = TV (P∗ (X)×hPα (X) |P∗ (X)×fQα (X)) .
(19)

Then the collective success of algorithm A on Pα, is
bounded below as

S (α)≥ sup
Q0

{
1− ωQ0

1− ωQ0

−1− α

α
Q0(X ∗)∆Q0

}
, (20)

where ∆Q0
= max

x∈X∗
max
y∈Y
Q0 (y|x)−Q0 (y

∗|x).

The proof is given in Appendix B.3. Note that the bound in
theorem 2 cannot be smaller than the bound in theorem 1,
since Q0=P0 recovers the original bound in Equation (4).
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Figure 5. Results on LMS-k. (a) an example of LMS-6. The color of each point represents its label, the grey rectangle is the codomain of
the collective signal. (b) Success over LMS-k. Larger complexity (k) increases the success.

A toy example where the bound is strictly tighter can be
found in Appendix B.4.

Intuitively, if a learning algorithm ignores “complicated”
features, then one can conceptualise a surrogate distribu-
tion Q0 that is devoid of those “complicated” features.
The corresponding mixture distribution is then defined as
Qα=αP∗+(1−α)Q0. Within this surrogate distribution,
the signal g is ξQ0

-unique with a smaller ξQ0
< ξ unique-

ness parameter. As Q0 and P0 share the same features that
are relevant to the learned classifier, the Bayes optimal clas-
sifier onQα is likely to closely resemble the learnt classifier
on the original distribution Pα. This similarity effectively
causes the signal to be ξQ0

-unique on Pα as well.

4.2. Experimental Results With Simplicity Bias

In the experiments, we focus on SGD, which is not only
ubiquitous, but also has a bias towards “simple” fea-
tures (Shah et al., 2020). We demonstrate our theory with
three different experiments, each showing a different ap-
proach for constructing the collective signal g. In all these
examples, we train the models using stochastic gradient de-
scent (SGD) (more details in Appendix C), leveraging its
known preference towards learning simpler features first.

Collective action on a complex feature The first ap-
proach we explore involves the collective embedding its sig-
nal within a complex feature. We illustrate this approach on
a dataset similar to LMS-k from (Shah et al., 2020), shown
in Figure 5a. In this dataset we consider a two-dimensional
binary classification problem with variables x1, x2 repre-
senting the two dimensions. The dataset comprises two
blocks along x1, and k blocks along x2. The classification
label is primarily determined by a single threshold function

on x1, but can also be inferred using multiple thresholds
on x2. As noted by Shah et al. (2020), with an increasing
number of blocks, models trained using SGD tend to in-
creasingly disregard the x2 feature, classifying by x1 alone.

Here, the collective’s goal is to classify samples with x2<0
as y∗=1. Figure 5b shows that the collective is more suc-
cessful as x2 becomes increasingly complex with higher
values of k∈{2, 4, 6, 8}. Theorem 2 captures this intuition:
As k grows, an SGD-based algorithm h=A (Pα) tends to
learn the simpler x1, becoming oblivious to variations in x2.
In turn, h becomes more similar to a Bayes optimal classi-
fier on a distributionQ0 which is spurious on x2, givingQ0

a smaller ωQ0
, and therefore higher success for larger k.

When a simpler feature is less informative In the pre-
vious example, we observed that when both a simple and
a complex feature are fully correlated with the label, the
collective’s success increases as the gap in the simplicity
between these features widens. However, this is not always
reflected in practice where the simpler feature may not fully
correlate with the label.

One such example is the presence of spurious correlations in
the dataset. To demonstrate this, we use another dataset, de-
rived from the MNIST-CIFAR dataset in Shah et al. (2020).
Each data point in this dataset comprises a pair of images:
one from MNIST (zero or one) and one from CIFAR (truck
or automobile), as illustrated in the left side of Figure 6a.
The CIFAR image determines the label. We then adjust the
correlation level between the MNIST image and the label.
A correlation of one implies that automobiles always pair
with MNIST zero, and trucks with MNIST one. A zero
correlation indicates random pairing of MNIST digits, and a
0.5 correlation suggests that the MNIST image is randomly

7
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(c) On Class Truck

Figure 6. Collective success on correlated MNIST-CIFAR (a) An automobile and a truck from MNIST-CIFAR and the transformation that
changes the CIFAR part to automobile. (b-c) Success with y∗ = truck when the signal is (b) an automobile or (c) a truck . Blue circles
are for no MNIST-to-label correlation, orange square are for 0.5 correlation and green triangles are for full correlation.

sampled half of the time and correlates with the label for
the other half. In this experiment, the collective’s strategy
involves embedding a signal in the CIFAR component of
the dataset, representing either an automobile or a truck,
with the designated label y∗=truck.3 Figure 6a shows a
transformation using automobile pictures. The full dataset
comprises 5000 images of trucks and automobiles, but the
collective is restricted to only plant a randomly selected
subset of a 100 of these images.

Our results in Figure 6b and 6c show that as the correlation
decreases, the success increases. The underlying intuition is
that with higher correlation the simpler MNIST part alone
can yield high training performance. As a result, SGD
tends to ignore the CIFAR part, where the signal acts. In
contrast, a weaker correlation between the MNIST part and
the label necessitates the algorithm’s reliance on the CIFAR
part, leading it to also learn the collective signal embedded
therein. Note that for small α in Figure 6b, the success with
non-zero correlation is low because the collective is labeling
automobiles as y∗=truck, resulting in competing signals.

This effect can be explained by Theorem 2 as follows. First,
note that unlike the analysis in the previous section, in this
case it is not possible to design Q0 that is significantly
different from P0 in the complex feature (CIFAR) while
maintaining a small ωQ0 . This difficulty arises because
with weak correlation between the MNIST part and the
label, the CIFAR part becomes the primary source of the
label information. Consequently, Q0 must closely resemble
P0 in the CIFAR part. Instead by choosing the surrogate
distribution Q0 to be one where the MNIST part contains
relatively small amount of information about the label, we
can minimise ωQ0

while also keeping Q0(X ∗)∆Q0
small.

As the correlation increases, this will not be possible and
we see a drop in the success of the collective.

3Embedding signals in the complex feature is not necessarily
the optimal approach in scenarios where the simpler feature is not
predictive of the label.

Collective action on simpler feature Finally, we demon-
strate that when the simpler feature is uncorrelated with
the label, the more effective approach is to simply plant
the signal in the simpler feature. This is especially true for
algorithms that exhibit simplicity bias and use early stop-
ping or strong regularisation, which are common practices
in machine learning. Intuitively, if the learning algorithm
on Pα is stopped early, it is unlikely to have learned all the
correlations present in the data, resulting in a sub-optimal
model. However, it will have captured more of the simpler
feature than the complex feature. Thus, if the collective’s
signal aligns with the simpler feature, this leads to greater
success because the sub-optimal aspects of the classifier will
be concentrated in areas outside the collective’s signal set.
Remark 4.1. Note that this phenomenon is not captured
by Hardt et al. (2023), where the sub-optimality ϵ is always
considered to lie within collective’s signal set.

To demonstrate how a collective can gain from planting a
signal in the simpler feature, we use a new dataset, named
k-strips, which is similar to LMS-k, but removes the correla-
tion between x1 and the label (Figure 7a). In this experiment,
we create the synthetic dataset by sampling points from a
uniform distribution on (0, 1)

2, labeled by their x2 values.
The x2-axis is divided into n horizontal strips, and a point
has a positive label if it’s in an even-numbered strip, and a
negative label if it’s in an odd-numbered strip.

The collective attempts to focus the attention on x1 by giv-
ing positive labels if x1 < 0. Figure 7b shows that with
more horizontal strips, the collective attains higher success
with a smaller strength α. This result is predicted by Theo-
rem 2: As k grows, an SGD-based early-stopped algorithm
on the collective A (Pα) will tend to learn the simpler x1

feature while largely overlooking x2. If X ′ ⊂ R2 is the
part of the domain whereA (Pα) accurately predicts on Pα,
a distribution Q0 can place the majority of its probability
mass on a thin horizontal strip and the remaining probabil-
ity mass on X ′. This will be sufficient to both get a small
ωQ0 due to the small mass on X ′, and a smallQ0(X ∗)∆Q0
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Figure 7. Results on k-strips. (a) Example of 6-strips. The color of each point represents its label, the grey rectangle is the codomain of
the collective signal. (b) Success for different α and k.

due to only small part of x2 having any probability mass
underQ0. This leads to a higher lower bound in Theorem 2,
thereby explaining the observations in Figure 7b.

5. Conclusion and Future Work
In this work we conducted a theoretical and empirical study
on how the choice of learning algorithms affects the success
of a collective action to plant a signal. We presented vari-
ous approaches a collective can take to design their signal
when they have knowledge about the learning algorithm.
In particular, these approaches include maintaining a small
collective size against algorithms like JTT and LfF, influ-
encing the validation set against CVaR-DRO, and changing
the complexity of the signal against SGD. While we have
focused on these three algorithms, these phenomena are rel-
evant for several popular algorithms. Common algorithms
in the topic of domain adaptation (Koh et al., 2021), distri-
bution shift (Hendrycks & Dietterich, 2019), and improving
fairness (Berk et al., 2017) use some form of DRO algo-
rithms. It would be interesting to consider the impact of
other kinds of algorithms used to improve worst group per-
formance including un-supervsied and self-supervised rep-
resentation learning (Shi et al., 2023) and fairness-inducing
in-processing (Prost et al., 2019) and post-processing algo-
rithms (Ţifrea et al., 2024). In a similar vein, recent research
has seen a surge in algorithms that aim to improve safety
of outputs of generative models including techniques like
adversarial training (Ziegler et al., 2022), DPO (Rafailov
et al., 2024), and RLHF (Christiano et al., 2017). It is im-
portant to also consider the impact of these algorithms on
the success of a well-designed collective.

Algorithmic biases akin to simplicity bias are also exhib-

ited by SGD training of various state-of-the art deep neural
networks. This includes a texture bias for CNN (Hermann
et al., 2020), an in-context bias for language models (Levine
et al., 2022), and word-order biases in LSTMs and trans-
formers (White & Cotterell, 2021). Our work discusses how
these biases can affect the design of the collective signal and
how successful they are expected to be. However, several
algorithms also display a different kind of biases. For ex-
ample, differentially private algorithms are unable to learn
minority sub-populations (Bagdasaryan et al., 2019; Sanyal
et al., 2022) and adversarially robust algorithms (Madry
et al., 2018) are used to improve the smoothness of learned
models. One direction for future work is to consider the
impact of these algorithmic biases on the success of the
collective.

Finally, a third important direction of future research is
understanding what level of information and influence is
required by the collective to design their signal. For ex-
ample, our results suggest that improving success against
certain DRO algorithms requires less information about the
learning algorithm compared to success against SGD style
algorithms. However, for iterative re-weighting algorithms
like CVar-DRO (Sagawa et al., 2020), it is important to influ-
ence both the validation set and the training set. Future work
should investigate whether a uniformly randomly selected
collective can be as powerful as a strategically chosen col-
lective (e.g. in adversarial vulnerability (Paleka & Sanyal,
2023)). We hope that our work will inspire further research
into practical and algorithm-dependent view on collective
action.
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A. Definitions and Algorithms
Definition 2. f -divergence is a function that measures the difference between two distribution P and Q. For a given
convex function f : [0,+∞)→ (−∞,+∞] such that f (x) is finite for all x>0, with f (1)=0 and f (0)= lim

t→0+
f (t), the

f -divergence is defined as

Df (P∥Q) =

∫
Ω

f

(
dP
dQ

)
dQ.

Definition 3. JJT, as defined by Liu et al. (2021), has two stages. The first stage trains a classifier by ERM. The second
stage trains a different classifier on a similar dataset, where each sample that was misclassified by the classifier from the
first stage, is given a higher weight.

Algorithm 1 JTT training
Input: Training set D and hyperparameters T and λup.
Stage one: identification
1. Train f̂id on D for T steps.
2. Construct the error set E of training examples misclassified by f̂id.
Stage two: upweighting identified points
3. Construct upsampled dataset Dup containing examples in the error set λup times and all other examples once.
4. Train final model f̂final on Dup.

Definition 4. LfF, as defined by Nam et al. (2020), simultaneously trains 2 models: a biased classifier fB , and a de-biased
classifier fD. The biased model is encouraged to learn biases by using a generalized cross entropy (GCE) loss, and the
de-biased model is trained by giving more weight to samples that the biased model fails on. Where CE stands for the cross

Algorithm 2 Learning from Failure

1: Input: θB , θD, training set D, learning rate η, number of iterations T
2: Initialize two networks fB(x; θB) and fD(x; θD).
3: for t = 1, · · · , T do
4: Draw a mini-batch B = {(x(b), y(b))}Bb=1 from D
5: Update fB(x; θB) by θB ← θB − η∇θB

∑
(x,y)∈B GCE(fB(x), y).

6: Update fD(x; θD) by θD ← θD − η∇θD

∑
(x,y)∈BW(x) · CE(fD(x), y).

7: end for

entropy loss, and GCE with hyperparameter q is defined as

GCE (p (f) , y) =
1− (f (y))

q

q
,

where f (y) is the probability of label y after a softmax layer. The weightW per sample is defined as

W (x) =
CE (fB (x) , y)

CE (fB (x) , y) + CE (fD (x) , y)
.

Definition 5. CVaR-DRO, as defined by Levy et al. (2020), dynamically changes the weights of samples according to their
loss at every iteration. After the loss is computed for every sample in the mini-batch, and the samples with the smallest are
ignored (given a 0 weight) in the current update step.

B. Theoretical Results
In this section, we provide theoretical proofs for results stated in the main text.

B.1. Impact of αeff

Proposition B.1. Suppose we have a set of weights w : X × Y → R+, then we have that:

P(w)
α = αeff (P∗)

(w)
+ (1− αeff)P(w)

0
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Proof. We have that:

PrP(w)
α

(X = x, Y = y) =
w(x, y)

(
αPr(P∗)(w)(X = x, Y = y) + (1− α)PrP(w)

0
(X = x, Y = y)

)
EPα

[w(x, y)]

=
αEP∗ [w(x, y)]Pr(P∗)(w)(X = x, Y = y) + (1− α)EP0

[w(x, y)]PrP(w)
0

(X = x, Y = y)

EPα
[w(x, y)]

=
αEP∗ [w(x, y)]

EPα [w(x, y)]
Pr(P∗)(w)(X = x, Y = y) +

(1− α)EP0
[w(x, y)]

EPα [w(x, y)]
PrP(w)

0
(X = x, Y = y)

= αeff (P∗)
(w)

+ (1− αeff)P(w)
0

Where the final line follows as we have αEP∗ [w(x,y)]
EPα [w(x,y)] =

EPα [w(x,y)1(Sample from collective)]
EPα [w(x,y)] = αeff .

Corollary B.2. For any x ∈ X we have f(x) = y∗ if:

αeff > (1− αeff)
∆w

xP
(w)
0 (x)

(P∗)(w)(x)

Proof. This follows from the same argument as Hardt et al. (2023) where we now use the weighted distributions.

Proposition B.3. Let:

c = EP∗

[
∆w

xP
(w)
0 (x)

(P∗)(w)(x)

]
− EP∗

[
∆xP0(x)

P∗(x)

]

Where ∆x = maxy (P0(y | x)− P0(y
∗ | x)) and ∆w

x = maxy

(
P(w)
0 (y | x)− P(w)

0 (y∗ | x)
)

.Then we have:

S (α) ≥ 1−
(
1− αeff

αeff

)
(∆ · ξ + c)− ϵ

1− ϵ
, (21)

Moreover, if we have that:

w(x, y′) ≤
∆xEx,y∼P0 [w(x, y)]

∆w
xEx,y∼P⋆ [w(x, y)]

w(x, y⋆)

Then c ≤ 0 so that:

S (α) ≥ 1−
(
1− αeff

αeff

)
∆ · ξ − ϵ

1− ϵ
, (22)

Proof. First, for any x ∈ X we have f(x) = y∗ if:

αeff > (1− αeff)
∆w

xP
(w)
0 (x)

(P∗)(w)(x)

Now, as in the original proof of (Hardt et al., 2023), we have that if the classifier is Bayes optimal on Pα:

S(α) ≥ 1− 1− αeff

αeff
Ex∼P∗

[
∆w

xP
(w)
0 (x)

(P∗)(w)(x)

]
(23)

= 1− 1− αeff

αeff
Ex∼P∗

[
∆xP0(x)

P∗(x)

]
+

(1− αeff) c

αeff
(24)
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Now, we have that c can be written as:

c = EP∗

[
∆w

xP
(w)
0 (x)

(P∗)(w)(x)
− ∆xP0(x)

P∗(x)

]
(25)

= EP∗

 1

(P∗)(w)(x)

∑
y′∈Y

∆w
x

w(x, y′)

Ex,y∼P0 [w(x, y)]
P0(x, y

′)− 1

(P∗)(w)(x)

∑
y′∈Y

∆x
w(x, y∗)

Ex,y∼P∗ [w(x, y)]
P0(x, y

′)

 (26)

= EP∗

 1

(P∗)(w)(x)

∑
y′∈Y

∆w
x

w(x, y′)

Ex,y∼P0 [w(x, y)]
P0(x, y

′)−∆x
w(x, y∗)

Ex,y∼P∗ [w(x, y)]
P0(x, y

′)

 (27)

= EP∗

 1

(P∗)(w)(x)

∑
y′∈Y

∆w
x

w(x, y′)

Ex,y∼P0
[w(x, y)]

P0(x, y
′)−∆w

x

∆w
xw(x, y

∗)

∆xEx,y∼P∗ [w(x, y)]
P0(x, y

′)

 (28)

= EP∗

 1

(P∗)(w)(x)

∑
y′∈Y

∆w
xP0(x, y

′)

(
w(x, y′)− ∆xEx,y∼P0 [w(x, y)]

∆w
xEx,y∼P∗ [w(x, y)]

w(x, y∗)

) (29)

(30)

Where this term is negative if w(x, y′) − ∆xEx,y∼P0
[w(x,y)]

∆w
x Ex,y∼P∗ [w(x,y)]w(x, y

∗) ≤ 0 which happens when w(x, y′) ≤
∆xEx,y∼P0

[w(x,y)]

∆w
x Ex,y∼P∗ [w(x,y)]w(x, y

∗)

.

Example If we have ∆x

∆w
x
≥ λ for all x then if for w(x, y∗) = λEx,y∼P0 [w(x, y)] we have that:

w(x, y∗)− ∆xEx,y∼P0 [w(x, y)]

∆w
xEx,y∼P∗ [w(x, y)]

w(x, y∗) = λEx,y∼P0
[w(x, y)]− ∆xEx,y∼P0

[w(x, y)]

∆w
x

≤ 0

For all other y′, setting w(x, y′) ≤ ∆xEx,y∼P0
[w(x,y)]

∆w
x

is sufficient for w(x, y′)− ∆xEx,y∼P0
[w(x,y)]

∆w
x Ex,y∼P∗ [w(x,y)]w(x, y

∗) ≤ 0. Finally
we can see that αeff = λα so setting λ ≥ 0 we have a setting where c ≤ 0 and αeff ≥ α.

B.2. Proofs for Results in Section 3

Proposition 3.1. For a mixture distribution Pα, let QPα
be the set of distribution in a ball of radius δ around Pα as defined

in Equation (6). Then QPα contains a distribution Pαeff with effective collective size

αeff = α+
δ

Df (P∗∥Pα)
. (13)

Proof. Letting:
P = αP∗ + (1− α)P0,

Then we want to consider for what λ does the mixture distribution λP ∗ + (1− λ)P lies in Qδ . Now we have that:

Df (λP∗ + (1− λ)P || P) ≤ λDf (P∗ || P) + (1− λ)Df (P || P)
= λDf (P∗ || P)

Now, we have that:

Df (P∗ || P) = Df (P∗ || αP∗ + (1− α)P0)

= Df (P∗ || αP∗ + (1− α)P0)

≤ αDf (P∗ || P∗) + (1− α)Df (P∗ || P)
= (1− α)Df (P∗ || P)

14
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Now plugging in the above we have that the following is sufficient to guarantee λP ∗ + (1− λ)P ∈ Qδ:

λ ≤ δ

(1− α)Df (P∗ || P)

Finally, note the collective proportion in λP∗ + (1− λ)P is α+ λ− αλ. Plugging in the largest λ and collecting terms
gives the desired result.

Proposition 3.2. [Effective Collective Size of JTT (Liu et al., 2021)] For JTT trained on Pα, let λ be the up-weighting
parameter, f be the classifier learned in the first phase and define

PE := Pα [f (X) ̸= Y ] and

PE|C := Pα [f (X) ̸= Y | (X,Y ) in the collective] .
(14)

Then, the effective collective size is given by

αeff = α
λPE|C +

(
1− PE|C

)
λPE + (1− PE)

. (15)

Proof. We have that the effective collective size is defined as:

αeff =
E[w(X)1{X is in the collective}]

E[w(X)]

In this case we have that E[w(X)] = λPE + (1− PE) and that:

E[w(X)1{X is in the collective}] = P (X is in the collective)E[w(X) | X is in the collective)]

= α
(
λPE|C + (1− PE|C)

)
Inputting these expression into the effective collective size gives the result.

Validation Control For some validation distribution PV = βP∗ +(1− β)P0 and some minimal acceptable error ξ on the
validation set, we first define an abstract version of CVaR-DRO in Algorithm 3. Then we restate and prove Proposition 3.3.

Algorithm 3 Ideal Continuous Reweighting

Input: Validation Distribution PV = βP∗ + (1− β)P0, Uncertainty ball Qp centred at P = αP∗ + (1− α)P0

f0(x)← argmax
y∈Y
P(Y = y | X = x)

t← 1
while t ≤ T do
P ← arg max

Q∈Qp

EQ [ℓ (ft−1(x), y)]

ft(x)← argmax
y∈Y
P(Y = y | X = x)

t← t+ 1
end while
tmax = argmax

t≤t
EPV

[ℓ (ft+1(x), y)]

Return: ftmax

Proposition 3.3. Let f be the output of Algorithm 3, and fPα be the Bayes optimal classifier on the mixture distribution Pα.
Then we have that the success Sf and SfPα

with f and fPα
, respectively, relate as

Sf − SfPα
≥ PV [f (X) = Y ]− PV [fPα

(X) = Y ]

β − α
. (16)

15
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Proof. This follows as we have:

PrPV
(f(X) = Y )− PrPV

(fPα
(X) = Y ) =

β − α

1− α

(
Sf − SfPα

)
+

1− β

1− α
(PrP(f(X) = Y )− PrP(fPα

(X) = Y ))

But as fPα
is Bayes optimal on P we have that (PrP(f(X) = Y ) ≤ PrP(fPα

(X) = Y )) which implies that:

(β − α) (Sf − Sh) ≥ PrPV
(f(X) = Y )− PrPV

(fPα(X) = Y )

Re-arranging terms gives the result.

B.3. Proofs for Results in Section 4

Theorem 2. Consider a base distribution P0 and a learning algorithm A which outputs hPα
when learning on Pα. For any

given distribution Q0, we denote the corresponding classifier TV distance as

ωQ0 = TV (P∗ (X)×hPα (X) |P∗ (X)×fQα (X)) . (19)

Then the collective success of algorithm A on Pα, is bounded below as

S (α)≥ sup
Q0

{
1− ωQ0

1− ωQ0

−1− α

α
Q0(X ∗)∆Q0

}
, (20)

where ∆Q0
= max

x∈X∗
max
y∈Y
Q0 (y|x)−Q0 (y

∗|x).

Proof. Let Q be any distribution satisfying:

TV(Pα(X)× hPα
(X),Pα(X)× fQα

(X)) ≤ ωQ0

Now following Hardt et al. (2023), we have that fQα
(x) = y if:

α > (1− α)∆x,Q
Q(x)

P ∗(x)

Where ∆x,Q = maxy∈Y Q(y | x)−Q(y∗ | x). Therefore, following a similar argument to Hardt et al. (2023), we have that:

S(α) = Prx∼P∗ {f(x) = y∗}

≥ Prx∼P∗

{
α > (1− α)∆x,Q

Q(x)

P ∗(x)

}
= Ex∼P∗

[
1

{
1− (1− α)

α
∆x,Q

Q(x)

P ∗(x)
> 0

}]
≥ Ex∼P∗

[
1− (1− α)

α
∆x,Q

Q(x)

P ∗(x)

]
= 1− (1− α)

α
Ex∼P∗

[
∆x,Q

Q(x)

P ∗(x)

]
≥ 1− (1− α)

α
(Q(X ∗)∆Q)

Now the total variation constraint can be added to give that the success under A(Pα) is

S(α) ≥ 1− ω

1− ω
− (1− α)

α
(Q(X ∗)∆Q) .

16
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Example An example of where this would hold be when P0(y
∗ | x) = 0, w(x, y∗) = a where a is constant, and

w(x, y′) ≤ Ex,y∼P0 [w(x, y)] for all x ∈ X ∗. Intuitively, this corresponds to a scenario where the algorithm places lower
weight the region on X ∗ than average.

B.4. Example for Theorem 2

Proposition B.4. There exists a problem setting, defined by a data distribution P0, a biased learning algorithm A, and
collective signal g such that the success obtained with Theorem 2 is larger than that obtained by Theorem 1.

We prove this below.

Base distribution Building on the intuition from the MNIST-CIFAR example, we assume a distribution P0(x1, x2, y) over
X1 × X2 × Y where Xi is a set of size 10 and Y = {y+, y−}. In the base distribution P0 we assume that both x1, x2 are
perfectly correlated with y and so either is enough to determine the outcome. This can be seen as similar to MNIST-CIFAR
where x1 and x2 correspond to the MNIST and CIFAR image respectively. We will also take the following:

1. Both labels have equal probability, so P0 (y) =
1
2 .

2. Each set Xi can be partitioned as: Xi=Xi+ ∪ Xi− where P (y=y+ | xi∈Xi+)=1 and likewise for the other class. This
is possible as each xi is perfectly correlated with y. We also take that |X |i⋆ = |X |i⋆ for i ∈ {1, 2} and ⋆ ∈ {+, y−}.

3. The collective controls 10% of the data α=0.1, its target label is y∗=y−, and the signal is g (x1, x2) = g (x1, C) where
C ∈ X2+ is constant.

4. The learning algorithm A works, similarly to JTT, in two stages:

(a) In the first stage, the algorithm learns a Bayes optimal classifier f1 : X1 → Y that uses only x1.

(b) In the second stage, the algorithm then stores all the (x1, x2, y) triples that are misclassified by f1 by saving the
pair (x1, x2) in the error set E and their label y in a function fE : X1 ×X2 → Y that gets the pair (x1, x2) and
outputs y.

(c) The algorithm then outputs a classifier

f (x1, x2) =

{
fE (x1, x2) (x1, x2) ∈ E

f1 (x1) (x1, x2) /∈ E

The second assumption defines the following 4 distributions.

1. P1+ (x1) is a uniform discrete probability over the set X1+ which contains 5 values that correspond to the label y+, i.e.
P1+ (x1 ∈ X1+) =

1
5 , P1 (x1 /∈ X1+) = 0.

2. P1− (x1) is a uniform discrete probability over the set X1− that correspond to the label y−.

3. P2+ (x2) is a uniform discrete probability over the set X2+ that correspond to the label y+.

4. P2− (x2) is a uniform discrete probability over the set X2− that correspond to the label y−.

Then we can get the full probabilities

P0 (x1, x2|y = y+) = P1+ (x1)P2+ (x2)

P0 (x1, x2|y = y−) = P1− (x1)P2− (x2)

P0 (x1, x2) =
1

2
(P1+ (x1)P2+ (x2) + P1− (x1)P2− (x2)) .
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Let the collective signal be g (x1, x2) = g (x1, C) where C is a constant and the target label is y∗ = y−. Then the
uniqueness of the signal is

ξ = P0 (x1, C) =
∑

x1∈X1

[P1+ (x1)P2+ (C)P (y = y+) + P1− (x1)P2− (C)P (y = y−)]

=
∑

x1∈X1

[
1

2
(P1+ (x1)P2+ (C) + P1− (x1)P2− (C))

]

=
1

2
P2+ (C)

( ∑
x1∈X1

P1+ (x1)

)
+

1

2
P2− (C)

( ∑
x1∈X1

P1− (x1)

)

=
1

2
(P2+ (C) + P2− (C))

=
1

2

(
1

5
+ 0

)
=

1

10
,

and the sub-optimality gap is

∆ = max
x∈X∗

max
y

(P0 (y|x)− P0 (y
∗|x))

≥ P0 (y+|x1 ∈ X1+, x2 = C)− P0 (y−|x1 ∈ X1−, x2 = C)

= 1.

Now, according to theorem 1, the lower bound of success when using Bayes optimal classifier with ϵ = 0 is

SBayes (α) ≥ 1− 1− α

α
∆ξ − ϵ

1− ϵ
= 1− 9

10
− 0 = 0.1.

Algorithmic bias The observed mixture distribution Pα now contains conflicting labels when x1 ∈ X1+ and x2 = C, as
it can be sampled from either the base distribution P0 with y=y+ or from the collective distribution P∗ with y=y−. As
defined, the first-stage classifier f1 of the learning algorithm A is Bayes optimal w.r.t x1. The Bayes optimal f1, with the
collective being small, will predict the f1 (x1 ∈ X1+) = y+ label as it is more probable to come from P0. As a result, only
the collective samples will be misclassified and will dominate the second stage classifier fE such that fE (x1, C) = y−.
Finally the algorithm will return the classifier f = A (Pα) where

f (x1, x2) =

{
y∗ = y− x2 = C

argmaxy P0 (y|x1) else
.

Compare this with a Bayes optimal classifier f that uses both x1 and x2 equally when given a sample (x1 ∈ X1+, x2 = C):

f (x1 ∈ X1+, x2 = C) = argmax
y
Pα (y|x1 ∈ X1+, x2 = C)

= argmax
y

{
Pα (y = y+|x1 ∈ X1+, x2 = C) y = y+

Pα (y = y−|x1 ∈ X1+, x2 = C) y = y−

= argmax
y

{
αP∗ (y = y+|x1 ∈ X1+, x2 = C) + (1− α)P0 (y = y+|x1 ∈ X1+, x2 = C)

αP∗ (y = y−|x1 ∈ X1+, x2 = C) + (1− α)P0 (y = y−|x1 ∈ X1+, x2 = C)

= argmax
y

{
α · 0 + (1− α) · 1 y = y+

α · 1 + (1− α) · 0 y = y−

= argmax
y

{
0.9 y = y+

0.1 y = y−
= y+
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(a) LMS-2 (b) LMS-4

(c) LMS-6 (d) LMS-8

Figure 8. Trained classifier on LMS-k with no collective action. Left figure of each pair is a visualisation of the dataset, and the right
figure of each pair is the decision boundary of the trained classifier.

Surrogate distribution and success bounds Let Q0 be the a distribution similar to P0, such that Q0 (y|x1) = P0 (y|x1)
but x2 is discrete uniformly distributed over N values, meaning Q0 (X ∗) = Q0 (x2 = C) = Q0 (x2) =

1
N . Note than N

can be as large as we want, virtually resulting in Q0 (X ∗) ≈ 0. In other words, large N makes the signal almost 0-unique.

Since x2 in Q0 is i.i.d. and is not correlated with y, the Bayes optimal classifier fQα
on the mixture distribution Qα will

only will only x1, or x2 if it is equal to C:

fQα (x1, x2) =

{
y∗ x2 = C

argmaxyQ0 (y|x1) else
.

Then, from the definition of Q0 it stems that fQα = hPα . Plugging that in the definition for w (Equation (19)) we get
wQ0 = 0. Now, the bound for success according to theorem 2:

Sbias (α) ≥ 1− w

1− w
− 1− α

α
Q0 (X ∗) = 1− 9

N
≈ 1 > SBayes

Making the bound from theorem 2 tighter than the bound of theorem 1.

C. Experiments
Experimental details For the 2D datasets, we used an MLP with layers sizes of [64, 32, 16, 2] with ReLU activations. For
all image datasets we used the ResNet50 model. In all experiments we used the PyTorch ADAM optimizer with the default
parameters, a learning rate of 5 × 10−4 and a batch size of 128. Each experiment was run multiple times with different
random seeds, and in all figures the lines represent the means over the seeds, and the region around the lines is the 95%
confidence interval according to Student’s t-distribution.

Example of simplicity bias in action To show the effect of simplicity bias, here we repeat training a classifier on the LMS-k
dataset with no collective action for different ks. Figure 8a to 8d show how the decision boundary depends more on x1 as k
grows.
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