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Abstract
Parameter-efficient finetuning (PEFT) has become
ubiquitous to adapt foundation models to down-
stream task requirements while retaining their
generalization ability. However, the amount of
additionally introduced parameters and compute
for successful adaptation and hyperparameter
searches can explode quickly, especially when
deployed at scale to serve numerous individual
requests. To ensure effective, parameter-efficient,
and hyperparameter-robust adaptation, we pro-
pose the ETHER transformation family, which
performs E fficient fineTuning via HypE rplane
Reflections. By design, ETHER transformations
require a minimal number of parameters, are less
likely to deteriorate model performance, and ex-
hibit robustness to hyperparameter and learn-
ing rate choices. In particular, we introduce
ETHER and its relaxation ETHER+, which match
or outperform existing PEFT methods with sig-
nificantly fewer parameters (∼10-100 times lower
than LoRA or OFT) across multiple image syn-
thesis and natural language tasks without exhaus-
tive hyperparameter tuning. Finally, we investi-
gate the recent emphasis on Hyperspherical En-
ergy retention for adaptation and raise questions
on its practical utility. The code is available at
https://github.com/mwbini/ether.

1. Introduction
Recently, large-scale foundation models (Bommasani
et al., 2021) have demonstrated impressive general-purpose
capabilities across both generative and discriminative
tasks (Rombach et al., 2022; Touvron et al., 2023a; OpenAI,
2023; Kirillov et al., 2023), showing extensive flexibility
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and strong performance when further adapted to different,
more specialized tasks such as instruction following or con-
trolled image synthesis (Zhang & Agrawala, 2023; Ruiz
et al., 2022; Taori et al., 2023; Chiang et al., 2023).

While impressive, these capabilities come with parameter
counts increasing into the billions (OpenAI, 2023; Podell
et al., 2023a; Touvron et al., 2023b). To allow for affordable
and scalable model adaptation that can serve large and di-
verse client bases, various techniques have been introduced
in the literature. They range from full finetuning (Zhao et al.,
2024; Zhang et al., 2023a; Stojanovski et al., 2022) to just a
few layers of the pretrained model (Kornblith et al., 2019),
concatenating additional learning modules (Houlsby et al.,
2019; Pfeiffer et al., 2020; Mou et al., 2023), and more re-
cently to adapters on the network weights with lightweight
learnable transformations (Qiu et al., 2023; Hu et al., 2022;
Kopiczko et al., 2023; Valipour et al., 2023). The latter have
proven particularly effective, introducing no inference la-
tency, fewer adaptation parameters, and strong performance.

Conceptually, these methods finetune on smaller datasets to
adapt to downstream task and data requirements, without
(1) compromising too much on the costly pretraining and
(2) incurring concept and semantic drifts by catastrophically
overwriting pretrained weights (Kirkpatrick et al., 2017;
Lee et al., 2019; Lu et al., 2020; Mehta et al., 2022; Ruiz
et al., 2023; Ke et al., 2023; Roth et al., 2024; Garg et al.,
2024; Ibrahim et al., 2024). Treading the line for a suitable
trade-off between adaptation and retention of the founda-
tional model capabilities thus presents itself as a difficult
task to tackle, often requiring costly tuning of hyperparame-
ters such as learning rates. This problem is acknowledged
explicitly in Li et al. (2018); Chen et al. (2023a); Gouk
et al. (2021) aiming to preserve Euclidean weight distances
between pretrained and finetuned models, and implicitly
with approaches opting for both lower learning rates (at
the cost of more tuning iterations) and inclusion of tuning
parameters via summation (Qiu et al., 2023).

In particular, Qiu et al. (2023) hints that a Euclidean dis-
tance measure likely fails to fully capture the preservation of
the network’s ability, suggesting instead Hyperspherical En-
ergy (HE) as an alternative measure. The resulting objective
uses orthogonal transformations (OFT) for multiplicative
weight changes that control HE. Still, even OFT requires
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specific and restricted hyperparameter choices such as small
learning rates and initialization from identity matrices to
ensure sufficient knowledge preservation. In addition, while
more robust and stable for finetuning in controllable gener-
ation settings compared to LoRA (Qiu et al., 2023), OFT
comes with a high computational overhead due to matrix
multiplication and a large number of tuning parameters.

In this work, we propose Efficient fineTuning via
HypErplane Reflections (ETHER ) - a new family of weight
transformations, efficient in parameter count while preserv-
ing model abilities and being robust in convergence and
learning rate choices. By default, ETHER transformations
frame the tuning process as a search for suitable hyperplanes,
along which weight vectors can be reflected based on the or-
thogonal Householder transformation (Householder, 1958).
This keeps the distance to the transformation neutral ele-
ment - the identity matrix - constant by construction and
improves training stability while reducing the chance of
deteriorating model performance. In addition, being built
from single vectors, Householder transformations allow for
efficient block-parallel matrix multiplication with minimal
performance trade-offs.

However, situations may arise where the hard distance
restriction of ETHER can prove suboptimal (such as for
subject-driven image generation, where finegrained subject-
specific semantics need to be retained). As such, we aug-
ment the ETHER family with ETHER+ - a relaxation on
the default ETHER method. More precisely, ETHER+ de-
rives from the Householder transformation, but breaks the
orthogonality and constant distance constraints, introduc-
ing multiple hyperplanes that can interact with a weight
vector. As a result, ETHER+ allows for more controlled
and finegrained adaptation, while still having a bounded
distance to the transformation neutral element, and retaining
the ETHER benefits of high parameter-efficiency, training
stability, and hyperparameter robustness.

Indeed, across subject-driven image generation, controlled
image synthesis, natural language understanding and in-
struction tuning tasks, we find that ETHER and especially
ETHER+ match and outperform existing methods using
only a few additional tuning parameters (e.g. 100× less
than OFT when finetuning Stable Diffusion for controlled
image synthesis) - all while presenting stronger learning rate
robustness compared to other methods and consequently re-
quiring minimal hyperparameter tuning to achieve strong
performance (c.f. Sec. 4). Finally, we also utilize our ex-
perimental benchmark findings to further investigate and
question the recent emphasis on transformation orthogo-
nality and hyperspherical energy (HE) retention (e.g. Qiu
et al. (2023)), showing how non-orthogonal ETHER+ can
achieve strong performance while displaying increased HE.

2. Related Work
Parameter-Efficient Finetuning (PEFT). PEFT of pre-
trained models has seen different strategies evolve in the
past years - starting from finetuning protocols and concate-
nation of learnable modules (Houlsby et al., 2019; Lester
et al., 2021; Li & Liang, 2021; Pfeiffer et al., 2020; Guo
et al., 2021) to more recently reparametrization of network
weights with efficient transformations (Qiu et al., 2023; Hu
et al., 2022; Kopiczko et al., 2023; Valipour et al., 2023;
Zhang et al., 2023c). The latter have shown convincing
trade-offs between adaptation quality, additional parameters,
and inference latency. LoRA (Hu et al., 2022) transforms
network weights by adding the result of a learnable, low-
rank matrix product. On top of LoRA, multiple variations
have been proposed, s.a. QLora (Dettmers et al., 2023)
with quantized weights, AdaLoRA (Zhang et al., 2023c)
with dynamic rank adjustment, and VeRA (Kopiczko et al.,
2023) with low-rank frozen random projections and train-
able vectors to reduce parameter counts. OFT (Qiu et al.,
2023) instead learns matrix multiplier with orthogonality
constraints to retain hyperspherical energy. In our work, we
use the same paradigm but introduce hyperplane reflections
for better parameter efficiency and learning rate robustness.

Controlling Diffusion Generative Models. Diffusion-
based generative models show strong compositional gener-
ation (Rombach et al., 2022; Mukhopadhyay et al., 2023;
Podell et al., 2023b; Karthik et al., 2023; Saharia et al.,
2022). Among these, Gal et al. (2022); Ruiz et al. (2023)
popularized personalized generation - teaching models to
generate variations of user-provided samples. Based on
DreamBooth (Ruiz et al., 2023), other works (Liu et al.,
2023b; Richardson et al., 2023; Zhang et al., 2023e) fol-
lowed. ControlNet (Zhang et al., 2023b) shows model
controllability through external signals s.a. semantic and
depth maps or face landmarks via extra layers at the cost
of higher inference latency. Qiu et al. (2023) show con-
trollability through direct finetuning with learnable matrix-
multiplication transformations. Our work suggests an al-
ternative, more robust and parameter-efficient approach
through hyperplane reflections.

Instruction Tuning Language Models. Large Language
Models (LLMs) have shown striking generalization across a
wide range of tasks (Zhao et al., 2023; Zhang et al., 2023d;
OpenAI, 2023; Touvron et al., 2023a). However, the default
training objective often does not exactly match downstream
task requirements and intentions. To address this mismatch,
Instruction Tuning (Wang et al., 2023; Zhang et al., 2023d;
Longpre et al.; Taori et al., 2023) finetunes LLMs using ad-
ditional (Instruction, Output) pairs to explicitly
align the model with human preferences. This enhances ca-
pabilities and controllability while avoiding costly retraining
(Köpf et al., 2023). Recently, methods based on LoRA (Hu
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et al., 2022) have been proposed to efficiently achieve this
control (Dettmers et al., 2023; Xu et al., 2023; Chen et al.,
2023b; Valipour et al., 2023; Kopiczko et al., 2023). This
work proposes a strong alternative with further parameter-
efficiency and high learning rate robustness.

3. Method
We first discuss adapter-based PEFT in §3.1, before de-
scribing and motivating the use of hyperplane reflections in
ETHER (§3.2). To encourage flexibility in trainable control
and adaptation, we propose a simple, yet effective relaxation
ETHER+ in §3.3. Finally, §3.4 describes block-diagonal
ETHER for improved computational efficiency.

3.1. Preliminaries

Parameter-Efficient Finetuning with Adapters. The
most commonly deployed form of PEFT with an adapter
is Low-rank Adaptation (LoRA, Hu et al. (2022)). LoRA
parametrizes a change of pretrained weights W as

(W +BA)⊺x+ b

where BA is the matrix product of two low-rank matrices,
i.e. for W ∈ Rd×f , A ∈ Rd×r and B ∈ Rr×f . When
rank r << min(d, f), this can bring down required tuning
parameters significantly compared to full finetuning. In
addition, BA can be absorbed into W during inference to
avoid additional latency.

Orthogonal Finetuning (OFT). However, finetuning
with LoRA can incur significant, potentially catastrophic
weight changes. To ensure better preservation of pretrained
model weights, Qiu et al. (2023) propose Orthogonal Fine-
tuning (OFT). Based on the hypothesis that Hyperspherical
Energy (HE) needs to be kept unaltered to preserve the
original model abilities, OFT proposes the usage of multi-
plicative orthogonal transformations on the model weights.
By retaining pairwise weight angles, HE can remain un-
affected. However, to work in practice, Qiu et al. (2023)
require the construction of the orthogonal matrix Q via a
Cayley parametrization Q = (I + S)(I − S)−1, where S
is skew-symmetric. Notice that by using this parametriza-
tion, they limit the range of possible orthogonal matrices to
those with determinant 1, missing orthogonal matrices with
determinant equal to −1. As we show, this is relevant, as it
excludes reflections, which motivate ETHER. To make OFT
more parameter efficient, the orthogonal matrix Q ∈ Rd×d

is built in a block-diagonal fashion, made up of n smaller
blocks Qb of size d

n × d
n . The final OFT transformation on

the forward pass can then be described as

(QBW )⊺x+ b

with block-diagonal QB . The trainable parameters are the n
matrices Qb ∈ R d

n× d
n that compose QB - more specifically

the matrices Rb that build the skew-symmetric matrices
Sb = 1

2 (R
b − (Rb)⊺) for Qb. For finetuning, the Rb are

initialized as zero, such that QB |0 = I and consequently
QB |0W = W at the beginning of finetuning.

3.2. ETHER : Finetuning with Hyperplane Reflections

Fundamentally, ETHER (Efficient fineTuning via
HypErplane Reflections) sets up weight transformations as
hyperplane reflections. These reflections can be obtained
via the Householder transformation matrix H ∈ Rd×d with

H = I − 2uu⊺ (1)

with u ∈ Rd the hyperplane unit normal vector and the
corresponding outer product uu⊺. The reflection can be
easily intuited when applied to a weight vector w ∈ Rd:

Hw = (I − 2uu⊺)w = w − 2u(u⊺w).

Transformation H effectively subtracts twice the compo-
nent of w projected on u, thereby reflecting it with respect
to the hyperplane defined by u (see Fig. 1). By construc-
tion, hyperplane reflections are well-suited for the efficient
finetuning of pretrained models, as they keep the distance
to the transformation neutral element - the identity matrix -
constant, which minimizes the risk of divergence from the
pretrained model and deterioration of model performance
(c.f. Fig. 4). This can be easily shown by computing the
Frobenius norm of the difference between the Householder
matrix H and the identity matrix I:

∥H − I∥F = ∥I − 2uu⊺ − I∥F = 2 · ∥uu⊺∥F = 2 (2)

The above equation leverages the fact that for any matrix M

∥M∥F =
√

Tr(MM⊺)

and that with M = uu⊺ and u having unit length u2
1 + u2

2 +
...+ u2

d = 1, one can simply write (with (uu⊺)⊺ = uu⊺)

∥uu⊺∥F =
√∑d

i=1 u
2
i = 1.

Since the finetuning process simply consists of finding
the optimal directions of the reflection hyperplanes with
bounded deviations from the transformation neutral element,
it allows for (i) a very low number of extra parameters cor-
responding to the unit vectors u, and (ii) the usage of high
learning rates, as the risk of divergence is minimized. This
allows for general learning rate robustness and encourages
fast convergence by default, as consistently high learning
rates can be selected; reducing computational resources
required to achieve good performance (e.g. Fig. 6).
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Figure 1. ETHER and ETHER+ sketches. We visualize either a
single hyperplane reflection for ETHER or two interacting hyper-
planes for ETHER+, parametrized unit normals u (and v). Unlike
ETHER, the final result of ETHER+ does not have to retain the
original length L, as the need for hard reflections is softened, and
orthogonality is no longer guaranteed.

Interestingly, as this transformation is orthogonal (HH⊺ =
I), it falls under the umbrella of orthogonal transformations
motivated in OFT (Qiu et al., 2023) from the perspective of
Hyperspherical Energy control to better preserve model pre-
training. However, OFT leverages the Cayley parametriza-
tion of orthogonal matrices, which only produces determi-
nant 1 matrices. By construction, this excludes Householder
matrices from OFT, which have determinant −1! How-
ever, as noted above, it is indeed in this particular setting
and through the use of Householder transformations that
high parameter efficiency, strong pretraining retention, and
learning rate robustness arise.

On top of that, we further investigate the importance of Hy-
perspherical Energy retention by conducting a control study
comparing OFT against its non-orthogonal variant (Naive)1

Our experiments do not show significant differences in terms
of control and training stability, suggesting that such proper-
ties stem from the multiplicative finetuning approach rather
than the underlying HE retention, contrasting insights in
Qiu et al. (2023) (c.f. Sec. 5.3). These findings partly moti-
vate the exploration of a relaxed variant of the Householder
reflection in the next section 3.3, which demonstrates that
loosening the orthogonality constraint not only maintains
good performance but can even lead to enhanced results.

3.3. Relaxing Orthogonality in ETHER

While finetuning via hyperplane reflections has several
promising qualities as highlighted above, there is no free
lunch. In particular, situations may arise where the strength
of the transformation and inherent deviation from the iden-

1Naive employs an unconstrained block-diagonal transforma-
tion matrix NB made up of n blocks and initialized as an identity
matrix, i.e. having the same number of trainable parameters and
initialization as OFT’s transformation matrix QB .
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Figure 2. Block-Parallel Computation scheme between d-
dimensional block-diagonal transformation with n blocks and a
d× f -dimensional weight matrix W .

tity may be too large by default, such as for potentially
more nuanced tasks like subject-driven generation (Ruiz
et al., 2023). To allow for more nuanced transformations
while retaining beneficial properties of ETHER - parame-
ter efficiency and learning rate robustness through bounded
deviations from the transformation neutral element - we
propose the ETHER+ relaxation

H+ = I − uu⊺ + vv⊺

with unit vectors u, v ∈ Rd. This is a simple variation of the
Householder transformation that now allows for interaction
between two distinct hyperplanes (see Fig. 1). This helps
to control the transformation strength as uu⊺ and vv⊺ can
weaken or even cancel each other out to return the identity
transformation in the limit where u = v. In addition, the
transformation distance remains bounded, as the relaxed
variant H+ always has ∥H+ − I∥F ≤ 2, i.e.

max
∥∥H+ − I

∥∥
F
≤ max ∥H − I∥F .

This follows immediately from the triangle inequality of
norms, i.e. ∥vv⊺ − uu⊺∥F ≤ ∥vv⊺∥F + ∥uu⊺∥F = 2. Due
to the weaker strength of this new transformation, we apply
it both on the left (H+) and right (H̃+) of the weight matrix
W , such that the forward pass becomes(

H+WH̃+
)⊺

x+ b.

Consequently, ETHER+ effectively leverages a sequence of
hyperplane interactions that no longer have to retain length
to allow for more nuanced weight adjustment while still
minimizing the risk of diverging from the pretrained model
(as also shown e.g. in Figs. 3, 4, 5 and 6).

3.4. Efficient ETHER through Block-Parallelism

In multiplicative finetuning like OFT or ETHER, further
computational load is introduced through additional ma-
trix multiplications. To mitigate this issue, we introduce
a block-diagonal formulation of ETHER similar to block-
diagonal OFT described in §3.1. For this, we break down the
Householder transformation H (eq. 1) into its corresponding
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Table 1. Better computational efficiency through block-
diagonality on Phi1.5-1.3B and Llama-2-7B, with internal di-
mensions of 2048 and 4096 respectively. As the number of blocks
n increases, so does the computational efficiency, quantified by the
decrease in TFLOPs required for a single backward pass (using
a sample with longest sequence length). The larger the model’s
internal dimension, the larger the efficiency gain.

Phi1.5-1.3B Llama-2-7B
TFLOPs rel. drop TFLOPs rel. drop

LoRAr=8 6.04 - 6.85 -
OFTn=256 9.13 - 25.26 -
ETHERn=1 9.13 - 25.26 -
ETHERn=4 7.07 -23% 12.07 -52%
ETHERn=32 6.71 -27% 8.22 -68%
ETHER+n=1 10.78 - 51.65 -
ETHER+n=4 7.69 -29% 18.66 -64%
ETHER+n=32 6.79 -37% 9.04 -83%

block-diagonal variant HB :

diag(H1 · · ·Hn) = I − 2

û1û
⊺
1

. . .
ûnû

⊺
n


with each i-th block-plane parameterized by ûi ∈ R d

n . Of
course, one can do the same for H+. In both cases, such
a block-diagonal formulation reduces the cost of comput-
ing H . More importantly, each i-th block now only affects
the corresponding i-th block-row in the weight matrix W .
This means we can split W into n sub-blocks W i ∈ R d

n×f ,
each of which is uniquely altered by its corresponding Hi

counterpart. As a result, the full weight transformation can
now be separated into smaller block-specific operations, re-
ducing the overall number of computations. Furthermore,
these operations can now be fully block-parallelized, signif-
icantly increasing training speed! In terms of computations,
for each full-matrix-multiplication between H and W of
sizes d×d and d×f respectively, d(df) multiplications and
(d−1)df additions are necessary, accounting for O(d2f) op-
erations. With our block-parallel scheme, we reduce these
to n block-specific d

n (
d
nf) multiplications and d−1

n ( dnf)

additions, resulting in O(d
2f
n ) operations (see Tab. 1).

Furthermore, with each block being built from a single vec-
tor of dimension d

n , ETHER transformations’ construction
ensures that the total number of trainable parameters re-
mains constant for any n number of blocks. This stands
in contrast to block-diagonal OFT, where the use of higher
block counts was introduced to minimize the number of
parameters while introducing noticeable decreases in adap-
tation performance! Instead, for block-diagonal ETHER,
we find performance to be consistent over increasing block
counts (see App. D), allowing for an improved computa-
tional footprint with negligible performance decrease.

original OFT

ETHER+ETHER

perturbation

perturbation

Figure 3. Change in model behavior as a function of perturba-
tion strength, i.e. distance between weight transformation and
identity matrix. As ETHER and ETHER+ are upper-bounded in
perturbation by construction, catastrophic deterioration of model
performances is rarely encountered, and weight transformations
remain controllable even for maximal deviations. For standard
approaches, s.a. OFT, larger deviations from the identity matrix
may occur during training and result in substantial divergence from
the pretrained model. Notice also that by breaking orthogonality
constraints in ETHER+, both smaller and stronger semantic vari-
ants can be learned.

4. Intriguing Properties of ETHER
This section investigates and highlights the bounded dis-
tance and non-deteriorating nature of ETHER /ETHER+ in
more detail while providing insights into its favorable learn-
ing rate robustness and the reliable use of high learning rates
for fast convergence. For completeness, we also report here
comparisons with the unconstrained Naive method, to better
show the impact of orthogonality as proposed by Qiu et al.
(2023), and how our method provides much stronger ro-
bustness. Finally, we include a discussion on the parameter
efficiency. For all experiments in this section, please see
§5.1 for relevant implementation details.

Non-Deteriorating Nature. Because both ETHER and
ETHER+ are upper-bounded in their possible perturbation
over the pretrained weight matrices (as measured for ex-
ample by the distance to the transformation neutral ele-
ment, the identity matrix), finetuning with both methods will
guarantee suitable results for most hyperparameter choices.
This is easily visualized in Fig. 3 by looking at generation
samples after perturbing Stable Diffusion with randomly
sampled transformations for each approach - OFT, ETHER
and ETHER+ - respectively. While ETHER uses a fixed-
distance transformation (c.f. Eq. 2) that introduces a notice-
able change (but still retaining semantics), ETHER+ can
obtain both finegrained visual control as well as stronger se-
mantic changes. Conversely, unbounded methods like OFT
catastrophically deteriorate a model’s generative abilities as
the perturbation strength increases.
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Transformation Distance Weights Distance

OFT Naive ETHER ETHER+

Figure 4. Distances as a function of learning rates between trans-
formation and identity matrix (Transformation Distance), and
finetuned and pretrained weights (Weights Distance). Distances
obtained for subject-driven generation finetuning at convergence
(1200 iterations). Results show distances magnitudes higher and
unbounded for non-ETHER methods in both cases as learning
rates increase.

This results in a much more controlled generation setting
for ETHER and ETHER+ finetuning. This is also depicted
quantitatively in Fig. 4, which shows distances between the
learned transformation and the transformed weights (at con-
vergence) to the identity matrix and the pretrained weights,
respectively, as a function of the learning rate. As can be
seen, larger learning rate values for OFT and Naive fine-
tuning (OFT without orthogonality constraints) result in
distances that are orders of magnitude higher than those of
ETHER and ETHER+, leading to catastrophic deterioration
and model collapse (see Fig. 8 in App.).

Learning Rate and Hyperparameter Robustness. Practi-
cally, the non-deteriorating nature of ETHER and ETHER+
manifests in learning rate robustness during finetuning. As
the risks of divergence and collapse are minimized, train-
ing stability becomes much less dependent on the choice of
learning rate. This is seen when evaluating performance (e.g.
mIoU for controllable image synthesis in Fig. 5) and model
convergence (Fig. 6) against learning rates. For non-ETHER
methods, Fig. 5 shows significant performance drops for
high learning rates, while Fig. 6 reveals fast convergence
speeds for ETHER+ with learning rates covering multiple
magnitudes, much more general than e.g. OFT.

This means that not only can good performance be guaran-
teed for most learning rate choices, but fast convergence as
well, with competitive results already after the first epoch.
Since ETHER also only introduces a single hyperparameter,
the number of diagonal blocks, which marginally impacts
performance (c.f. §3.4), ETHER methods become very at-
tractive for practical usage, as the need for grid-search and
cautious low learning rate training for good performance
(c.f. §1) is reduced.

 mIoU vs Learning Rate FID vs Learning Rate

OFT Naive ETHER ETHER+

Figure 5. mIoU and FID performances as a function of learn-
ing rates. Results are obtained for controllable generation S2I
finetuning on Stable Diffusion, and reveal a much stronger learn-
ing rate robustness of ETHER -based methods; retaining strong
performance across entire learning rate magnitudes.

1e-5 1e-4 1e-3 1e-2 1e-1

Convergence in S2I with different Learning Rates

OFT Naive ETHER+

Figure 6. Achieved controllability (mIoU) per epoch for differ-
ent finetuning methods. This figure extends Fig. 5 and highlights
in detail how only a learning rate of 10−4 allows for optimal
convergence in OFT and Naive, while for ETHER+ fastest conver-
gence speeds are stably achieved across magnitudes.

Parameter Efficiency. Finally, we provide a more detailed
exploration on the parameter efficiency of ETHER -based
methods. Let L be the number of finetuned layers, d and f
the respective weight dimensions for W ∈ Rd×f . Then the
parameter complexity for OFT can be written as O(Ld2

n )
(Qiu et al., 2023) with n number of diagonal blocks2. Sim-
ilarly, for LoRA we get O(Lr(d+ f)), while for ETHER
and ETHER+ we only have O(Ld) and O(L(d+f)) respec-
tively. With respect to both LoRA and OFT, this omits at the
very least the rank multiplier r, or a potentially quadratic
scaling. As already motivated in Sec. 3, this results in in-
credibly efficient finetuning while achieving comparable or
stronger performances. For example, when finetuning Sta-
ble Diffusion as done above, ETHER and ETHER+ use 120
times and 30 times fewer parameters than OFT respectively.

2Qiu et al. (2023) note a possible O(Ld) if n = αd. However,
in practice, equally scaling n with d disproportionally reduces
adaptation parameters for large weight matrices. As OFT is fairly
dependent on the parameter count, we omit this estimate.
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5. Benchmark Experiments
We first investigate generative model adaptation in Sec. 5.1,
with a focus on subject-driven image synthesis (§5.1.1) and
controllable image synthesis (§5.1.2) following recent works
(Qiu et al., 2023; Liu et al., 2023a). Sec. 5.2 then corre-
spondingly investigates language model adaptation, looking
at both natural language understanding (§5.2.1) and instruc-
tion tuning (§5.2.2). Finally, we study the importance of
orthogonality and hyperspherical energy on finetuning per-
formance in Sec. 5.3.

5.1. ETHER for Image-generative Model Adaptation

For our experiments on diffusion-based generative models,
we apply the finetuning methods on the pretrained Stable
Diffusion-v1.5 (Rombach et al., 2022), following the setting
from OFT (Qiu et al., 2023). Our experiments follow best
practices and hyperparameter choices for each method. For
implementation details, please refer to App. C.

5.1.1. SUBJECT-DRIVEN GENERATION

We first deploy ETHER and ETHER+ on subject-driven
generation following Ruiz et al. (2023); Qiu et al. (2023);
finetuning the generative model for each of the 30 subjects
and 25 prompts. For each combination, we generate four
images, and measure image quality via a DINO (Caron
et al., 2021) and a CLIP image encoder (Radford et al.,
2021), text-prompt fidelity via a CLIP text encoder, and
image diversity using LPIPS (Zhang et al., 2018).

Quantitative Results. Results are shown in Tab. 2. On
subject-driven generation, we find competitive performance
for both image quality, text-prompt fidelity and image di-
versity, particularly for ETHER+ (e.g. DINO and CLIP-I
scores of 0.666 vs 0.652 and 0.8 vs 0.794 for OFT, respec-
tively). Most importantly, we achieve this performance
while only utilizing a fraction of tuning parameters; with
ETHER+ only introducing 0.4M as compared to 11.6M
by OFT. As hypothesized in Sec. 3, for nuanced finetuning,
ETHER ’s transformation strength seems to be too high to
retain key semantic concepts in subject-driven generation,
falling short in image quality with respect to other methods
(e.g. also qualitatively depicted in Fig 3), despite achieving
strong image diversity and text-prompt fidelity.

5.1.2. CONTROLLABLE IMAGE GENERATION

This section applies ETHER for controllability of Stable
Diffusion following Qiu et al. (2023) for the Semantic Map
to Image (S2I) task on ADE20K (Zhou et al., 2018). We
use the trainable encoder from ControlNet (Zhang et al.,
2023b) for the control signal and perform finetuning on
the Stable Diffusion weights only. We report a baseline
with just the control signal encoder to highlight relative

Table 2. Subject-driven Generation Results. We use r to denote
rank, and n the number of diagonal blocks. We measure image
quality (DINO, CLIP-I), text-prompt fidelity (CLIP-T) and im-
age diversity (LPIPS). ETHER+ addresses finegrained adaptation
shortcomings of ETHER (c.f. Sec. 3.3) and achieves strong per-
formance with only few adaptation parameters.

#params DINO ↑ CLIP-I ↑ CLIP-T ↑ LPIPS ↑
Real Images - 0.703 0.864 - 0.695
DreamBooth 859.5M 0.644 0.793 0.236 0.709
LoRAr=4 0.8M 0.660 0.796 0.231 0.714
OFTn=4 11.6M 0.652 0.794 0.241 0.725
ETHER 0.1M 0.567 0.746 0.256 0.766
ETHER+ 0.4M 0.666 0.800 0.240 0.729

Table 3. Semantic Map to Image Results. We use n to denote
the number of diagonal blocks. ETHER and particularly ETHER+
achieve strong synthesis control (mIoU, Acc) with few parameters
while retaining good image alignment (FID). We indicate with (+
magn. r.f.) the OFT version with magnitude re-fitting.

#params mIoU ↑ Acc ↑ FID ↓
Encoder-only 0 8.2 38.0 41.2
OFTn=4 13.2M 24.5 62.8 31.1
OFTn=4 (+ magn. r.f.) 13.4M 24.6 63.3 30.8
ETHER 0.1M 24.6 63.3 32.0
ETHER+ 0.4M 27.3 68.1 31.0

gains through finetuning. Evaluations are performed on
2000 images generated from the validation set using mean
Intersection-over-Union (mIoU) and accuracy of seman-
tic maps over generated images using UperNet-101 (Xiao
et al., 2018) pretrained on ADE20K. Finally, we measure
the similarity between generated and original images via
FID (Heusel et al., 2018). For OFT, we also test magnitude
re-fitting (Qiu et al., 2023) for an additional epoch. We
note that LoRA did not provide good results even for larger
hyperparameter grids and was therefore omitted from Tab. 3
(more details in App. F).

Quantitative Results. Results are depicted in Tab. 3, and
clearly demonstrate competitive control with both ETHER
and ETHER+. Unlike subject-driven image generation, we
find that ETHER performs on the same level as OFT multi-
plicative finetuning while using over 100× fewer parame-
ters (e.g. 24.6 versus 24.5 mIoU of OFT with 0.1M versus
13.2M parameters). Introducing magnitude re-fitting to
OFT yields only limited gains while adding 0.2M parame-
ters. Similar to Tab. 2 for subject-driven image generation,
we find that for controllable image synthesis, the ETHER+
relaxation provides additional performance gains (e.g. 27.3
vs 24.5 mIoU and 68.1 vs 62.8 Acc against OFT). Taking
into account the more robust (Fig. 5) and faster convergence
(Fig. 6), this presents ETHER+ as a practically attractive
finetuning alternative.
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Table 4. GLUE benchmark. Comparisons of different methods
finetuning DeBERTaV3-base. Results of all baselines are taken
from (Liu et al., 2023a). We use r to denote rank, and n the
number of diagonal blocks. As can be seen, ETHER and ETHER+
achieve competitive performances across metrics while utilizing
fewer parameters (up to a magnitude in the case of ETHER ) while
also retaining all practical benefits such as learning rate robustness
depicted e.g. in Sec. 4.

#params MNLI↑ SST-2↑ CoLA↑ QQP↑ QNLI↑ RTE↑ MRPC↑ STS-B↑ Avg↑
Full Finet. 184M 89.90 95.63 69.19 92.40 94.03 83.75 89.46 91.60 88.25
BitFit 0.10M 89.37 94.84 66.96 88.41 92.24 78.70 87.75 91.35 86.20
H-Adapter 1.22M 90.13 95.53 68.64 91.91 94.11 84.48 89.95 91.48 88.28
P-Adapter 1.18M 90.33 95.61 68.77 92.04 94.29 85.20 89.46 91.54 88.41
LoRAr=8 1.33M 90.65 94.95 69.82 91.99 93.87 85.20 89.95 91.60 88.50
AdaLoRA 1.27M 90.76 96.10 71.45 92.23 94.55 88.09 90.69 91.84 89.46
OFTn=16 0.79M 90.33 96.33 73.91 92.10 94.07 87.36 92.16 91.91 89.77
BOFTm=2

n=8 0.75M 90.25 96.44 72.95 92.10 94.23 88.81 92.40 91.92 89.89
ETHER 0.09M 90.23 96.10 71.31 91.42 94.31 89.53 93.68 92.30 89.86
ETHER+ 0.33M 90.52 96.33 72.64 92.22 94.33 89.53 92.89 92.35 90.10

5.2. ETHER for Language Models Adaptation

To understand the applicability of the ETHER transforma-
tion family in the language domain, we follow Liu et al.
(2023a)’s and Hu et al. (2022)’s experimental setup. For fair
comparisons, we run grid searches over the most relevant
hyperparameters in common value ranges. For additional
implementation details, please refer to App. C.

5.2.1. NATURAL LANGUAGE UNDERSTANDING

We begin by deploying ETHER and ETHER+ on the widely
utilized (Devlin et al., 2019; Liu et al., 2019; He et al.,
2023; Kopiczko et al., 2023) GLUE benchmark (Wang et al.,
2018), finetuning a pretrained DeBERTaV3-base model (He
et al., 2023) following Liu et al. (2023a), from which we
report the baselines’ results. GLUE comprises various En-
glish sentence understanding tasks, such as inference tasks
(MNLI, QNLI, RTE), classification of sentiment (SST-2) or
correct English grammatical structures (CoLA), and seman-
tic similarity and equivalence prediction (MRPC, QQP, STS-
B). CoLA scores report the Matthews correlation coefficient,
MNLI matched accuracy, and STS-B average correlation.
All other tasks are evaluated on accuracy.

Quantitative Results. Results in Tab. 4 show that ETHER
and ETHER+ match and even outperform previous methods
with significantly fewer parameters. For example, ETHER
outperforms the second-best BOFT on the RTE inference
task (89.53 vs 88.81) or equivalence prediction on MRPC
(93.68 vs 92.40) while using just one-ninth of the param-
eters (0.085M compared to 0.75M ). ETHER+ sets both
the best performance on STS-B and particularly the highest
overall score (90.10) using less than half of the parameters
of BOFT. These results provide additional support for the
practical viability of ETHER transformations, now for nat-
ural language adaptation - being a strong, but much more
parameter-efficient competitor.

Table 5. Instruction Tuning. We use r to denote rank, and n the
number of diagonal blocks. Both ETHER and ETHER+ outper-
form LoRA/OFT which use up to a magnitude more parameters,
and beat VeRA with similar parameter counts.

#params MMLU↑ ARC↑ Tru-1↑ Tru-2↑
Llama-2-7B - 41.81 42.92 25.21 38.95
VeRAr=64 0.27M 42.30 45.13 27.41 41.04
VeRAr=256 1.05M 42.21 43.85 25.33 39.02
LoRAr=1 0.52M 42.40 44.62 27.05 41.94
LoRAr=8 4.19M 43.61 46.16 28.76 42.21
OFTn=256 2.09M 42.92 44.88 27.42 41.11
ETHERn=32 0.26M 44.57 45.14 27.91 41.83
ETHER+n=32 1.04M 44.87 46.50 29.38 43.51

5.2.2. INSTRUCTION TUNING

Our instruction tuning experiments make use of Llama-2-
7B (Touvron et al., 2023b) as pretrained model, finetun-
ing it on the Alpaca dataset (Taori et al., 2023) for one
epoch. To operate on a consumer GPU, we truncate the
maximum sequence length to 256 and use bfloat16 precision
(Kalamkar et al., 2019). We evaluate 0-shot performance
of our instruction-tuned model on (i) Massive Multitask
Language Understanding (MMLU) (Hendrycks et al., 2021)
with 57 different tasks in four different subjects (STEM,
Humanities, Social Sciences, Others); (ii) the AI2 Reason-
ing Challenge (ARC) (Clark et al., 2018), a common-sense
reasoning dataset of questions from science grade exams;
(iii) TruthfulQA (Lin et al., 2022) comprising 817 ques-
tions spanning 38 categories testing how much the model
(wrongly) relies on imitation of human text to answer.

Quantitative Results. Results in Tab. 5 show that both
ETHER and ETHER+ outperform comparable finetuning
approaches while utilizing fewer parameters. Across all
metrics, the Llama-2-7B baseline is consistently surpassed
by significant margins (e.g. 44.87 MMLU for ETHER+
vs the 41.81 baseline, or 46.50 vs 42.92 ARC score). De-
spite being the most parameter-efficient method, ETHER
outperforms all baselines with comparable number of pa-
rameters, such as the recently introduced VeRA (Kopiczko
et al., 2023) with rank r = 64, and LoRA rank 1. Surpris-
ingly, increasing the rank of VeRA to 256 leads to a decrease
in performance, while LoRA rank 8 shows better results but
is still outperformed on MMLU despite having 16× more
parameters. On the other hand, ETHER+ surpasses all other
methods across all benchmarks, while having 4× fewer
parameters than LoRA rank 8.

5.3. Hyperspherical Energy for Effective PEFT

Qiu et al. (2023) link finetuning stability and perfor-
mance obtained by transforming the weights via matrix-
multiplication to the orthogonality of the transformations,
and a consequently unaltered hyperspherical energy (HE).
To test this assumption, we have included an OFT control
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ΔHE in Subject-driven Gen. ΔHE in S2I

OFT Naive ETHER ETHER+

Figure 7. Difference in HE between finetuned/pretrained models
for Subject-driven Generation and S2I. Notice that by removing
the orthogonality constraint, both ETHER+ and Naive alter the
HE of the pretrained model, while OFT and ETHER do not.

Table 6. OFT vs Naive. OFT performance-test against its non-
orthogonal counterpart Naive. We show that results don’t differ
significantly, questioning the relevance of HE retaining for finetun-
ing performance.

Subject-driven Generation S2I
DINO CLIP-I CLIP-T LPIPS mIoU Acc FID

OFTn=4 0.652 0.794 0.241 0.725 24.5 62.8 31.1
Naiven=4 0.648 0.793 0.245 0.730 24.3 62.9 29.9

baseline (Naive), which does not utilize orthogonality con-
straints, on the same finetuning settings in which OFT was
proposed. Results at convergence, as reported in Tab. 6, do
not show significant differences, while actually introduc-
ing the overhead of computing the Cayley parametrizations
(which also involve computing the inverse of a matrix). We
also included the Naive baseline in the learning rate robust-
ness studies in Fig. 4 and Fig. 5, showcasing that while
differences are present for high learning rates, the optimal
working range remains unaltered. Finally, we validate that
the HE indeed varies during training, as reported in Fig. 7.

In contrast, on these same evaluations, our newly proposed
ETHER transformation family, by introducing a bound-
ary on the Euclidean distance on the transformation side,
achieves stronger performance and greater robustness. This
is especially true for the non-orthogonal ETHER+, which
alters the overall HE even more than Naive (Fig. 7). This
evidence diminishes the role of the HE and instead em-
phasizes the greater importance of the Euclidean distance,
establishing the ETHER family as a favorable option in
multiplicative finetuning settings.

6. Conclusions
Our paper introduces the ETHER family of transformations
for parameter-efficient finetuning. Based on the House-
holder formulation of hyperplane reflections, ETHER meth-

ods frame finetuning as a search for unit normal vectors that
define hyperplanes along which weight vectors are reflected.
In doing so, ETHER (and its relaxation ETHER+ for more
finegrained adaptation) fix (or upper bound) the distance of
learned transformations from the identity matrix (the trans-
formation neutral element), thereby minimizing the risk
of finetuning divergence. Put together, ETHER methods
operate more parameter-efficiently than other PEFT meth-
ods (e.g., around 10-100 times less than LoRA or OFT),
have higher learning rate robustness and encourage fast
convergence. Consequently, ETHER transformations re-
quire less expansive hyperparameter searches to achieve
good performance, making them very attractive for practical
deployment.

Limitations. Of course, there is no free lunch. While both
ETHER and its relaxation ETHER+ show strong results
with few parameters across a broad range of tasks, increas-
ing the expressive power of the transformation is not as
straightforward as in other methods, such as LoRA, where
one can adjust the rank parameter to more closely approx-
imate full finetuning. Moreover, multiplicative methods
introduce a computational overhead during training com-
pared to additive methods. Thanks to our block-parallel
scheme, we make significant progress towards closing the
gap between multiplicative and additive approaches; how-
ever, multiplicative methods still lag behind. This introduces
a trade-off between parameter efficiency and computational
overhead when achieving similar performance levels.

Impact Statement
This paper presents work that looks into better and more effi-
cient finetuning of foundation models. By bringing down the
need for compute-expensive hyperparameter grid searches
and encouraging fast convergence, both the cost and envi-
ronmental footprint of serving individually adapted models
at scale can be brought down. Of course, with most advance-
ment in the field of Machine Learning, there is potential for
misuse and societal consequences, however, none of which
we feel are specific to our proposed method and which need
to be highlighted explicitly.
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Appendix
In this appendix, we augment the main paper with additional, qualitative evidence for the learning rate robustness of ETHER
transformations in Appendix A. In addition, we also provide benchmark-specific qualitative examples for subject-driven
and controllable image generation in Appendix B. For all experiments - both those in the main paper and supplementary
results, we then list all relevant details in Appendix C for our studies on finetuning in subject-driven image generation (§C.1),
controllable image synthesis (§C.2), natural language understanding tasks (§C.3) and instruction tuning (§C.4). We then
provide two additional ETHER ablations in Appendix D - for the number of block-diagonals and the specific double-sided
application in ETHER+. Finally, we discuss LoRA shortcomings for adaptation in the controllable image synthesis task
(§F).

A. Qualitative Evidence of Learning Rate Robustness
As introduced in Sec. 3, when finetuning with ETHER transformation, by construction, the learning rate only controls
the speed with which reflection angels change. As a consequence, ETHER methods are much more robust to learning
rate choices, and less likely to diverge and cause model deterioration. This allows for user control over the convergence
speed while minimizing the risk of model collapse during training. To demonstrate this, Sec. 4 introduced both a qualitative
example comparing the impact of minimal and maximal perturbation strength on the model output in Fig. 3, and quantitative
evaluations on the Semantic Map to Image task against learning rate choices in Figs. 5 and 6.

In this section, we augment Sec. 4 and provide additional qualitative results and impressions to highlight the non-deteriorating
nature of ETHER transformation. For this, we showcase subject-driven generation results using different finetuning methods
in Fig. 8, with default generations using the best learning rate. We then systematically increase the finetuning learning rate
by 10 and by 100 times, and visualize the correspondingly generated output. As can be seen, for 10× higher learning rates
OFT and Naive fail to follow the text prompt, while LoRA finetuning quickly collapses. With 10× lower learning rates
instead, OFT, Naive and ETHER are not able to generate the subject correctly in the predefined number of iterations.

"a [V] vase with a mountain in 
the background"

Input Images:

Text Prompt:

ETHER ETHER+LoRA OFT

ba
se

 lr
10

 x
 lr

10
0 

x 
lr

Naive

0.
1 

x 
lr

Figure 8. Qualitative visualization of learning rate robustness of ETHER and ETHER+ in subject-driven generation finetuning. We
see how ETHER methods are able to consistently produce good results avoiding model deterioration. Specifically, ETHER+ shows
impressive capabilities, being able to follow the subject-prompt instructions in the widest learning rate range.
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B. Qualitative Examples for ETHER Finetuning
We show some qualitative results by using the finetuning methods proposed in this paper.

B.1. Subject-driven Generation.

In Figure 9 we report subject-driven generation examples. In particular, for a fair comparison, we report images which
come from the same noise vector in the Stable Diffusion latent space. For the sunglasses images, we see how non-ETHER
methods manage to reproduce the subject, but fail to follow the text prompt in most cases. Interestingly in the first row, we
notice how ETHER+ is able to properly control the generation, by transforming the yellow area (associated to a beer in
other models) in an enlightened Eiffel Tower. For the teapot images instead, we see how ETHER+ is able to better keep the
appearances of the subject.

ETHER+LoRA OFT Naive

"a [V] teapot in the snow"

Input Images:

Text Prompt:

"a [V] glasses with the Eiffel Tower in 
the background"

Input Images:

Text Prompt:

Figure 9. Subject-driven Generation results. Each row shares initial latent noise (notice row-wise similarities). We can see that ETHER+
method is better at adapting the model to the subjects. Notice how for the pink sunglasses, OFT and Naive fail in following the prompt.
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B.2. Controllable Generation.

In Figure 10 we show some examples from the Semantic Map to Image task. In particular, we notice how in the first row all
models but ETHER+ fail to control the image correctly, not being able to separate the land from the water. Additionally, in
the second row OFT fails to generate the sky, while Naive presents a halo effect. These examples showcase the abilities of
ETHER+ finetuning over the other methods.

"a lighthouse"

"a living room"

"the jefferson 
memorial"

"wind turbines 
at sunset"

Semantic MapOriginal Image Text Prompt OFT Naive ETHER ETHER+

Figure 10. Semantic Map to Image Qualitative Results. We notice how in the first row all models but ETHER+ fail to control the image
correctly. Overall ETHER+ controlled images show better control.

To show broader controllable capabilities, we also report few qualitative examples with ETHER methods trained with
Landmarks and Canny Edge Maps control signals on CelebA-HQ (Karras et al., 2018) and COCO 2017 (Lin et al., 2015)
datasets respectively.

Text Prompt: "a young woman smiling for the camera"

Face LandmarkOriginal Image Canny Edge MapOriginal Image

Text Prompt: "Several suit cases lined in rows with luggage tags on them."

ETHER ETHER+ ETHER ETHER+

Figure 11. Examples of Landmark to Face (left) and Canny Edge Map to Image (right) controlled generation with ETHER methods.
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C. Experimental Details
This section provides additional experimental details for replication not listed in the main benchmark experimental section 5.
It is worth noting that while in most of our experiments we do not employ regular dropout (Srivastava et al., 2014), Liu
et al. (2023a) proposes a multiplicative dropout form specifically designed for multiplicative finetuning methods, which we
did not test in this study. We hypothesize that this specialized dropout technique could potentially work better than regular
dropout for ETHER and ETHER+ as well. We also note that Qiu et al. (2023) report OFT’s number of parameters as half of
the actual trainable parameters due to the redundancy in the skew symmetric matrices SB in the Cayley parametrization of
QB . Basically, we they report the storage parameters for QB rather than the training parameters. For consistency and fair
comparisons, we follow the same convention for OFT throughout our paper.

C.1. Subject-driven Generation

For subject-driven generation, we follow the same setting listed in DreamBooth (Ruiz et al., 2023), using DreamBooth and
OFT (Qiu et al., 2023) baselines as implemented in official OFT GitHub repository. The additional trainable layers follow
(Qiu et al., 2023) and are added to the Q,K,V layers and the projection layer inside every attention module. The training
is performed over 1400 iterations for each method, evaluating the generation results every 200 iterations at selecting the
best one (typically around 1200 iterations). For DreamBooth and OFT, we follow the original implementations and use a
learning rate of 5× 10−6 and 6× 10−5 respectively, with a batch size of 1. For Naive - the non-orthogonal OFT variant -
we use the same setting of OFT for a fair comparison. For LoRA we select a learning rate of 6× 10−4. For ETHER and
ETHER+, we use a learning rate of 6× 10−3. We perform the training on a Tesla V100-32GB GPU.

C.2. Controllable Generation

For our experiments on controllable image generation we follow the setting of Qiu et al. (2023), using the signal encoder
from ControlNet (Zhang & Agrawala, 2023) (comprising 8 trainable convolutional layers, accounting for 3.1M additional
learnable parameters). Finetuning parameters are added to the Q,K,V layers as well as the projection layer of the attention
modules and the subsequent feedforward layers. As baselines, we use the official implementation of OFT. Similarly to Qiu
et al. (2023), for OFT and Naive we use a learning rate of 1× 10−5. For ETHER and ETHER+ we use a larger learning
rate of 1× 10−3. For all experiments, we upper bound the learning rate of the signal encoder to 1× 10−4. We perform all
the training runs on a single Nvidia-A100-40GB with a batch size of 10. As listed in Sec. 5.1.2 and expanded in Sec. F, we
tried to utilize LoRA for controllable generation as well but found no comparable results even after extensive trials with
different hyperparameters.

C.3. Natural Language Understanding

For our GLUE benchmark experiments finetuning DeBERTaV3-base (He et al., 2023), we make use of the peft Hugging
Face repository (Mangrulkar et al., 2022) as the basis for our implementations. To compare our results with those of Liu
et al. (2023a), we follow their implementation and apply ETHER and ETHER+ to all the linear layers in every transformer
block. The relevant hyperparameters for each task are reported in Tab. 8. All training runs are conducted on a single
Nvidia-A100-40GB GPU.

Table 7. GLUE benchmark hyperparameters.

Method Hyperparameters MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B

Learning Rate 8e-4 1e-3 1e-3 3e-4 1e-3 1e-3 3e-4 2e-3
Batch Size 32 32 32 8 8 32 32 8

ETHER Num. Epochs 9 14 10 20 7 13 14 8
Dropout 1e-3 1e-3 1e-1 1e-1 1e-3 1e-2 1e-1 1e-1

Max Seq. Len. 256 128 64 320 512 320 320 128

Learning Rate 8e-4 1e-4 1e-3 3e-3 3e-3 3e-4 8e-4 8e-4
Batch Size 8 8 8 32 32 8 32 8

ETHER+ Num. Epochs 8 10 6 16 5 35 17 11
Dropout 1e-3 1e-3 1e-1 1e-3 1e-3 1e-3 1e-2 1e-3

Max Seq. Len. 256 128 64 320 512 320 320 128
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C.4. Instruction Tuning

For our Instruction Tuning experiments, we use the LoRA (Hu et al., 2022) finetuning implementation in the lit-gpt repository
(AI, 2023) as baseline. For evaluations, we make use of Gao et al. (2023)’s benchmark implementations. For the recently
proposed VeRA (Kopiczko et al., 2023) baseline, we reproduce the model implementation following their best performing
method as described in the paper: sampling random A and B matrices with uniform kaiming initialization scaled by the
matrix dimension, and a learnable, non-zero diagonalized vector initialized as a vector of all zeros apart for one element
equal to 0.1. Same for OFT, for which we follow the implementation in the official repository oft, selecting the number of
block-diagonal matrices such that the overall number of parameters becomes comparable with ETHER+ and LoRA rank 8.
For all experiments, we use a cosine annealing learning rate scheduler, no dropout, and 1000 warmup steps. For LoRA,
VeRA, and OFT we use AdamW optimizer with a weight decay of 0.01, while for ETHER methods, given the normalization
happening on the parameters, weight decay would have limited impact and thus we set it to 0. For LoRA and VeRA, we
keep α fixed with respect to the learning rate by setting it equal to the rank. For all experiments, we conduct an extensive
grid search over learning rates and batch sizes. For each combination, we perform the LLama-2-7B (Touvron et al., 2023b)
finetuning over Alpaca (Taori et al., 2023) for one epoch. All training runs are conducted on a single Nvidia-A100-40GB
GPU, but could also be run on a consumer NVIDIA GeForce-RTX-3090-24G GPU.

Table 8. Instruction Tuning hyperparameters.

VeRAr=64 VeRAr=256 LoRAr=1 LoRAr=8 OFTn=256 ETHERn=32 ETHER+n=32

Learning Rate 5e-3 1e-3 3e-3 5e-4 5e-4 2e-3 5e-3
Batch Size 32 32 8 8 16 8 16

D. ETHER Ablations
This section details additional ablation experiments on the impact of the block-diagonality degree on the final performance,
as well as experimental support to the theoretical motivation in Sec. 3.3 to apply the relaxed Householder transformation on
both the left and right side of the weight matrix.

D.1. Block-diagonal ETHER Performances

In Table 9 and Table 10, we compare the usage of multiple diagonal blocks for ETHER finetuning to allow for fast
performance, especially in large models domain. Both tables augment our method description in Sec. 3.4 and the shortened
results in Tab. 1. In all cases, we notice that performance remains almost unaffected by the choice of block number, while
on the other hand, the computational efficiency consistently increases (8.22 TFLOPs for n = 32 versus 25.26 TFLOPs for
n = 1 for Llama-2-7B). It is worth noting that results for ETHER+ with n = 32 show better performance with respect to
less diagonalized counterparts.

Table 9. Semantic Map to Image (S2I) results for different number of diagonal blocks n on ETHER finetuning at epoch 10

ETHER #params mIoU ↑ Acc ↑ FID↓
n = 1 0.1M 23.1 61.23 31.7
n = 4 0.1M 22.9 60.92 30.5
n = 16 0.1M 22.3 60.35 30.7

Table 10. Instruction Tuning results for different number of diagonal blocks n on ETHER finetuning

ETHER+ #params TFLOPs MMLU ↑ ARC ↑ Tru-1↑ Tru-2 ↑
n = 1 1.04M 51.65 43.75 46.76 28.03 41.06
n = 4 1.04M 18.66 43.91 45.73 27.54 40.46
n = 32 1.04M 9.04 44.87 46.50 29.38 43.51
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D.2. Double-sided Application of ETHER+

Finally, we provide a brief ablation study in Tab. 11, comparing the ETHER+ performance when applying the relaxed
Householder transformations H+ on only one side versus both sides. Although the parameter count doubles, we observe a
significant increase in performance (e.g. 0.666 vs 0.618 in DINO score) as higher transformation distances can be achieved.

Table 11. Subject-driven Generation image quality results comparison (at iteration 1200) among standard ETHER+ and its version only
applied on one side of the weight matrix.

#params DINO ↑ CLIP-I ↑
ETHER+ (one-sided) 0.2M 0.618 0.777
ETHER+ 0.4M 0.666 0.800

E. VTAB preliminary results
We also perform a small evaluation over a subset of the popular Visual Task Adaptation Benchmark (VTAB), using an
ImageNet-21k pretrained ViT-B. As can be seen, ETHER and ETHER+ perform comparably to OFT with n = 256 and
LoRA rank 8, while using a fraction of the trainable parameters.

Table 12. VTAB results

#params Natural Specialized Structured
Caltech101 DTD Flowers102 SVHN EuroSAT sNORB-Elev

Full Finetuning 85.8M 96.26 73.03 98.71 73.71 96.16 63.36
Linear Probing 0 95.96 72.34 99.12 52.55 95.03 34.09
LoRAr=8 1.33M 97.69 77.50 99.10 97.40 98.92 74.89
OFTn=256 0.29M 96.95 75.80 98.60 96.58 98.83 74.37
ETHER 0.08M 97.64 75.85 98.83 95.81 98.80 74.17
ETHER+ 0.33M 98.27 76.92 98.88 96.84 99.15 78.41

F. LoRA failures for S2I task
As described at the beginning of our benchmark experimental section (Sec. 5.1.2, we excluded LoRA from our experimental
results listed in Tab. 3, as it did not convincingly converge to good results. In this section, we provide additional experimental
details on our application of LoRA to controllable image synthesis, given which still no suitable results were able to be
achieved. In particular, LoRA finetuning for the Semantic Map to Image task (S2I) task was tested on a large, randomly
subsampled grid of learning rate {1e-5, 5e-5, 1e-4, 1e-3, 1e-2}, batch size {4, 8, 16, 32, 64}, rank {4, 8, 64}, scaling factor
{0.1, 1}, dropout {0, 0.1}, for which we also visualize reflective samples in Fig. 12.

Semantic MapOriginal Image

Figure 12. LoRA randomly sampled generated samples from validation set control. Control signal reported on the left.
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