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Abstract

Deep learning models are known to overfit and
memorize spurious features in the training dataset.
While numerous empirical studies have aimed at
understanding this phenomenon, a rigorous the-
oretical framework to quantify it is still missing.
In this paper, we consider spurious features that
are uncorrelated with the learning task, and we
provide a precise characterization of how they
are memorized via two separate terms: (i) the
stability of the model with respect to individual
training samples, and (ii) the feature alignment
between the spurious feature and the full sam-
ple. While the first term is well established in
learning theory and it is connected to the gener-
alization error in classical work, the second one
is, to the best of our knowledge, novel. Our key
technical result gives a precise characterization
of the feature alignment for the two prototypical
settings of random features (RF) and neural tan-
gent kernel (NTK) regression. We prove that the
memorization of spurious features weakens as the
generalization capability increases and, through
the analysis of the feature alignment, we unveil
the role of the model and of its activation func-
tion. Numerical experiments show the predictive
power of our theory on standard datasets (MNIST,
CIFAR-10).

1. Introduction
Neural networks often use features that are not inherently
relevant for the intended task. This phenomenon can be
caused by positive spurious correlations between certain pat-
terns and the learning task (Geirhos et al., 2020; Xiao et al.,
2021), but it occurs even when the patterns are rare (Yang
et al., 2022) or simply irrelevant (Hermann & Lampinen,
2020), leading the model to memorize spurious relations
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present in the training data, which are not predictive for
the sampling distribution. An extensive empirical effort has
aimed at mitigating this phenomenon (Plumb et al., 2022;
Chang et al., 2021). In fact, the benefits of solving this prob-
lem range from robustness to distribution-shift (Geirhos
et al., 2019; Zhou et al., 2021), fairness (Zliobaite, 2015),
and data-privacy (Leino & Fredrikson, 2020). However,
avoiding to overfit spurious features is not always feasi-
ble, since memorization can be optimal for accuracy and
over-parameterized models often exhibit their best perfor-
mance when trained long enough to achieve 0 training error
(Nakkiran et al., 2020; Feldman, 2020).

In this regard, a related (but separate) body of work has
characterized the role of benign overfitting (Belkin, 2021;
Bartlett et al., 2020), and it has precisely described the in-
distribution generalization of interpolating models, such as
random features and neural tangent kernels (Mei & Mon-
tanari, 2022; Ghorbani et al., 2021; Montanari & Zhong,
2022). However, this powerful theoretical machinery does
not cover the memorization of spurious features, as noise
is generally modelled to be in the labels, rather than in the
input data. More generally, while practical work has tried to
understand the impact of spurious features and disentangle
them from core features in deep learning models (Hermann
& Lampinen, 2020; Singla & Feizi, 2022), theoretical ap-
proaches remain predominantly directed to understand how
learning is impacted by the complexity of the features (Qiu
et al., 2023), or the degree of overparameterization (Sagawa
et al., 2020), without capturing the role of the architecture.

Our paper bridges this gap, offering an analytically tractable
framework to understand and quantify the memorization of
spurious features. We consider a setting similar to (Yang
et al., 2022), and we in particular look at the case where
the spurious features are not correlated with the true label
of the sample (thus the term memorization). Formally, we
model the sample z as composed by two distinct parts, i.e.,
z ≡ [x, y], where x is the core feature and y the spurious
one, see Figure 1 for an illustration. The memorization of
spurious features is captured by the correlation between the
true label g of the training sample and the output of the
model evaluated on the spurious sample zs ≡ [−, y], where
“−” corresponds to removing the core feature x (e.g., replac-
ing it with all zeros). In fact, zs is independent of the label
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g, as the spurious feature y is un-informative. However, due
to memorization, the output of the model evaluated on zs

can still be correlated with g. Our analysis describes quanti-
tatively this phenomenon in the setting of generalized linear
regression. Surprisingly, it turns out that the emergence of
memorization can be reduced to the separate effect of two
distinct components:

1. The feature alignment F(zs, z), see (8). This repre-
sents the similarity in feature space between the train-
ing sample z and the spurious one zs; it depends on the
feature map of the model and on the rest of the training
dataset. To the best of our knowledge, this is the first
time that attention is raised over such an object.

2. The stability Sz of the model with respect to z, see
Definition 3.1. Similar notions of stability are provided
in a rich line of work (Bousquet & Elisseeff, 2002),
which relates them to generalization.

Our technical contributions can be summarized as follows:

• We connect the stability in generalized linear regres-
sion to the feature alignment between samples, see
Lemma 4.1. Then, we show that this connection makes
the memorization of spurious features a natural conse-
quence of the generalization error of the model. This is
the case when F(zs, z) can be well approximated by a
constant γ > 0, independent of the original sample z.

• We focus on two settings widely analyzed in the theo-
retical literature, i.e., (i) random features (RF) (Rahimi
& Recht, 2007), and (ii) the neural tangent kernel
(NTK) (Jacot et al., 2018). Using tools from high
dimensional probability, we prove the concentration of
F(zs, z) to a positive constant γ, see Theorems 5.4 and
6.3. For the NTK, we obtain a closed-form expression
for γ, which unveils the role of the activation function
in the memorization of spurious features.

In a nutshell, our results give a precise characterization
of the feature alignment of RF and NTK models. This in
turn establishes how the memorization of spurious features
grows with the generalization error, and how it depends
on the chosen model (RF/NTK) and, in particular, on the
activation function. Finally, going beyond RF/NTK mod-
els trained on synthetic data, we empirically show that our
theoretical predictions transfer to standard datasets (see Fig-
ure 3 that analyzes the impact of the activation function on
MNIST and CIFAR-10) and different neural networks (see
Figures 4 and 5 that consider fully connected, convolutional,
and ResNet architectures).

2. Related work
Spurious features. Spurious correlations refer to signals
that are correlated but not causally related to the learning

Figure 1. Example of a training sample z (top-left) and its spuri-
ous counterpart zs (top-right). In experiments, we add a noise
background (y) around the original images (x) before training
(bottom-left). We then query the trained model only with the noise
component (bottom-right).

task (Geirhos et al., 2020; Xiao et al., 2021), and they have
been shown to lead to poor out-of-distribution robustness
(Geirhos et al., 2019; Zhou et al., 2021) or biased predic-
tors (Zliobaite, 2015; Seo et al., 2022; Ghosh et al., 2023).
The phenomenon has been studied through the lens of over-
parameterization (Sagawa et al., 2020) and simplicity bias
(Hermann & Lampinen, 2020; Shah et al., 2020; Qiu et al.,
2023), where the latter refers to models that are inherently
prone to learn “easy” patterns first (Kalimeris et al., 2019).

Our paper considers spurious features that are independent
of the learning task and, hence, focuses on their memoriza-
tion. Spurious features in the training set can in fact be
memorized also if they are irrelevant or rare (Yang et al.,
2022; Bansal et al., 2022). This overfitting can then be
used to retrieve information on the training set (Leino &
Fredrikson, 2020; Bombari et al., 2022a).

Memorization and stability. Memorization measures the
influence of a single sample on the final trained model.
Feldman (2020); Feldman & Zhang (2020) point out its ad-
vantages on learning from heavy-tailed data, and Arpit et al.
(2017); Stephenson et al. (2021) investigate its emergence in
neural networks. A related concept is that of leave-one-out
stability, which has been studied in a classical line of work:
Hoaglin & Welsch (1978) focus on under-parameterized lin-
ear models; Bassily et al. (2021); Elisseeff & Pontil (2002);
Mukherjee et al. (2006) link it to generalization; and Bous-
quet & Elisseeff (2002) discuss a wide range of variations
on this object.
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Random features and neural tangent kernel. The ran-
dom features (RF) model (Rahimi & Recht, 2007; Penning-
ton & Worah, 2017; Louart et al., 2018) can be regarded as
a two-layer neural network with random first layer weights.
This model is theoretically appealing, as it is analytically
tractable and offers deep-learning-like behaviours, such as,
for example, the double descent phenomenon (Mei & Mon-
tanari, 2022). The neural tangent kernel (NTK) can be
regarded as the kernel obtained by linearizing a neural net-
work around the initialization (Jacot et al., 2018; Bartlett
et al., 2021). A popular line of work has analyzed its spec-
trum (Fan & Wang, 2020; Adlam & Pennington, 2020;
Wang & Zhu, 2021) and bounded its smallest eigenvalue
(Soltanolkotabi et al., 2018; Nguyen et al., 2021; Montanari
& Zhong, 2022; Bombari et al., 2022b). The behaviour of
the NTK has been used in practical work to study adver-
sarial training (Loo et al., 2022) and examples (Tsilivis &
Kempe, 2022), and to understand reconstruction attacks for
dataset distillation (Loo et al., 2024).

3. Preliminaries
Notation. Given a vector v, we denote by ∥v∥2 its Eu-
clidean norm. Given v ∈ Rdv and u ∈ Rdu , we denote by
v ⊗ u ∈ Rdvdu their Kronecker product. Given a matrix
A ∈ Rm×n, we denote by PA ∈ Rn×n the projector over
Span{rows(A)}. All the complexity notations Ω(·), O(·),
o(·) and Θ(·) are understood for sufficiently large data size
N , input dimension d, number of neurons k, and number
of parameters p. We indicate with C, c > 0 numerical
constants, independent of N, d, k, p.

Setting. Let (Z,G) be a labelled training dataset, where
Z = [z1, . . . , zN ]⊤ ∈ RN×d contains the training data
(sampled i.i.d. from a distribution PZ ) on its rows and G =
(g1, . . . , gN ) ∈ RN contains the corresponding labels. We
assume the label gi to be a (eventually noisy) function of
the sample zi. Let φ : Rd → Rp be a generic feature map,
from the input space to a feature space of dimension p. We
consider the following generalized linear regression model

f(z, θ) = φ(z)⊤θ, (1)

where φ(z) ∈ Rp is the feature vector associated to the
input z, and θ ∈ Rp are trainable parameters of the model.
We minimize the empirical risk with a quadratic loss:

minθ ∥Φθ −G∥22 , (2)

where Φ := [φ(z1), . . . , φ(zN )]⊤ ∈ RN×p is the feature
matrix. We use the shorthand K := ΦΦ⊤ ∈ RN×N for the
kernel associated with the feature map. If K is invertible
(i.e., the model can fit any set of labels G), gradient descent
converges to the interpolator which is the closest in ℓ2 norm
to the initialization (see equation (33) in (Bartlett et al.,

2021)):
θ∗ = θ0 +Φ+(G− f(Z, θ0)), (3)

where θ∗ is the gradient descent solution, θ0 the initial-
ization, f(Z, θ0) := Φθ0 the output of the model (1) at
initialization, and Φ+ := Φ⊤K−1 the Moore-Penrose in-
verse. Let z ∼ PZ be an independent test sample. Then, we
define the generalization error of the trained model as

R = Ez∼PZ

[
(f(z, θ∗)− g)

2
]
, (4)

where g denotes the ground-truth label of the test sample z.

Stability. Let us introduce quantities related to “incom-
plete” datasets. We indicate with Φ−1 ∈ R(N−1)×p the
feature matrix of the training set without the first sample
z1. For simplicity, we focus on the removal of the first
sample, and similar considerations hold for the removal
of any other sample. In other words, Φ−1 is equivalent to
Φ, without the first row. Similarly, using (3), we indicate
with θ∗−1 := θ0 + Φ+

−1 (G−1 − f(Z−1, θ0)) the set of pa-
rameters the algorithm would have converged to if trained
over (Z−1, G−1), the original dataset without the first pair
sample-label (z1, g1). We can now proceed with the defini-
tion of our notion of “stability”.

Definition 3.1. Let θ∗ (θ∗−1) be the parameters of the model
f given by (1) trained on the dataset Z (Z−1), as in (3).
We define the stability Sz1 : Rd → R with respect to the
training sample z1 as

Sz1 := f(·, θ∗)− f(·, θ∗−1). (5)

This quantity indicates how the trained model changes if
we add z1 to the dataset Z−1. If the training algorithm
completely fits the data (as in (3)), then Sz1(z1) = g1 −
f(z1, θ

∗
−1), which implies that

Ez1∼PZ

[
S2
z1(z1)

]
= Ez1∼PZ

[(
f(z1, θ

∗
−1)− g1

)2]
= Ez∼PZ

[(
f(z, θ∗−1)− g

)2]
=: RZ−1 ,

(6)

where the purpose of the second step is just to match the
notation used in (4), and RZ−1

denotes the generalization
error of the algorithm that uses Z−1 as training set.

Memorization of spurious features. The input sam-
ples are decomposed in two independent components, i.e.,
z ≡ [x, y]. With this notation, we mean that z ∈ Rd is the
concatenation of x ∈ Rdx and y ∈ Rdy (dx + dy = d).
Here, x is the core feature that is useful to accomplish the
task (e.g., the cat in top-left image of Figure 1), while y is
the spurious feature containing noise (e.g., the background).
Formally, we assume that, for i ∈ {1, . . . , N}, gi = g(xi),
where g is a labelling function, i.e., the label depends only
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on the core feature xi and it is independent of the spurious
feature yi (a similar setting was previously considered in
(Loureiro et al., 2021)). Even if yi is not useful for learn-
ing, the training algorithm may overfit it, memorizing its
co-occurrence with the label gi. This phenomenon could
then lead to unpredictable behaviours at test time, such as
poor performance on samples zt = [xt, yi] with different in-
formation but the same spurious feature (Yang et al., 2022),
or data privacy breaches, through extraction of information
about xi via the knowledge of yi (Leino & Fredrikson, 2020;
Bombari et al., 2022a). Specifically, in computer vision, an
unusual background could expose information about the
object in the foreground (Leino & Fredrikson, 2020). In nat-
ural language processing, sensitive information (xi) about
an individual (yi) could be extracted with proper prompting
strategies: a language model might in fact be able to success-
fully auto-complete “The address of yi is...” with “...xi”,
as shown by Bombari et al. (2022a) on question-answering
tasks. With slight abuse of notation, during the discussion,
we will use the term feature to indicate both elements in
feature space φ(z) ∈ Rp (as in (1)), and portions of the
samples x and y. This choice is common in the related
literature, and we will elaborate whenever it could generate
confusion.

To quantify the memorization of the spurious feature yi, we
will consider

Cov (f(zsi , θ
∗), gi) , (7)

which represents the covariance between the true label
gi = g(xi) and the output of the trained model (3) eval-
uated on zsi = [x, yi], which replaces the core feature xi
with an independent feature x. As x and xi are indepen-
dent, this correlation is due to the memorization of yi. In
the experiments, similarly to Singla & Feizi (2022); Yang
et al. (2022), we report the spurious accuracy, i.e., the
fraction of queries f(zsi , θ

∗) that returns the correct label
g(xi). For MNIST and CIFAR-10, instead of sampling
an independent x, we simply set it to 0, see Figure 1.
Our code is publicly available at the GitHub repository
simone-bombari/spurious-features-memorization.

4. Memorization and feature alignment
We start by relating the output f(zsi (x), θ

∗) evaluated on
the spurious sample zsi = [x, yi] with the output f(zi, θ∗)
evaluated on the original sample zi. For generalized linear
regression, this can be elegantly done via the notion of
stability of Definition 3.1. By symmetry, from now on, we
set i = 1 without loss of generality.

Lemma 4.1. Let φ : Rd → Rp be a feature map, such
that the induced kernel K ∈ RN×N on the training set is
invertible. Let z1 ∈ Rd be an element of the training dataset
Z, and z ∈ Rd a generic test sample. Let PΦ−1 be the
projector over Span{rows(Φ−1)} and Sz1 the stability with

respect to z1, as in Definition 3.1. Define

Fφ(z, z1) :=
φ(z)⊤P⊥

Φ−1
φ(z1)∥∥∥P⊥

Φ−1
φ(z1)

∥∥∥2
2

(8)

the feature alignment between z and z1. Then, we have

Sz1(z) = Fφ(z, z1)Sz1(z1). (9)

Classical work (Hoaglin & Welsch, 1978) considers a simi-
lar problem in the under-parametrized regime, exploiting the
projector H = Φ(Φ⊤Φ)−1Φ⊤ ∈ RN×N (p ≤ N is needed
for Φ⊤Φ to be invertible), known as the hat matrix. In con-
trast, Lemma 4.1 focuses on the over-parameterized regime
and highlights the role of the projector PΦ−1

. The different
behaviour of under-parameterized and over-parameterized
models requires the proof of Lemma 4.1 to follow a different
strategy, which is discussed in Appendix B.

In words, Lemma 4.1 relates the stability with respect to z1
evaluated on the two samples z and z1 through the quantity
Fφ(z, z1), which captures the similarity between z and z1
in the feature space induced by φ. As a sanity check, the
feature alignment between any sample and itself is equal to
one, which trivializes (9). Then, as z and z1 become less
aligned, the stability Sz1(z) = f(z, θ∗)− f(z, θ∗−1) starts
to differ from Sz1(z1) = f(z1, θ

∗)− f(z1, θ
∗
−1). We note

that the feature alignment also depends on the rest of the
training set Z−1, as Z−1 implicitly appears in the projector
P⊥
Φ−1

. We also remark that the invertibility of K directly
implies that the denominator in (8) is different from zero,
see Lemma B.1 in Appendix B.

Armed with Lemma 4.1, we now characterize the correla-
tion between f(zs1, θ

∗) and g1. Let us replace Fφ(zs1, z1) in
(9) with a constant γφ > 0, independent from z1. This is
justified by Sections 5 and 6, where we prove the concentra-
tion of Fφ(zs1, z1) for the RF and NTK model, respectively.
Then, by using the definition of stability in (5), we get

f(zs1, θ
∗) = f(zs1, θ

∗
−1) + γφ Sz1(z1)

= f(zs1, θ
∗
−1) + γφ

(
g1 − f(z1, θ

∗
−1)
)
.

(10)

Note that f(zs1, θ
∗
−1) is independent from g1, as it doesn’t

depend on x1. In fact, zsi = [x, yi] is independent of x1, and
θ∗−1 is not trained on x1. Thus, if the algorithm is stable, in
the sense that Sz1(z1) is close to 0, we have that f(zs1, θ

∗)
has little dependence on g1. Conversely, if Sz1(z1) grows,
then f(zs1, θ

∗) will start picking up the correlation with g1.
Concretely, we can look at the covariance between f(zs1, θ

∗)
and g1, in the probability space of z1:

Cov (f(zs1, θ
∗), g1) = γφCov (Sz1(z1), g1)

≤ γφ
√

Var (Sz1(z1))Var (g1) ≤ γφ

√
RZ−1

√
Var (g1).

(11)
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Here, the first step uses (10) and the independence between
f(zs1, θ

∗
−1) and g1, the second step is an application of

Cauchy-Schwarz, and the last step follows from (6).

The terms γφ and
√
RZ−1

in the RHS of (11) show that
the memorization of spurious features is affected by two
factors: (i) the similarity between zs1 and z1 (formalized by
Fφ(zs1, z1)), and (ii) the generalization error of the model.
While the dependence on the generalization error is not
entirely surprising (overfitting causes both the inability of
the model to generalize and the memorization of spurious
correlations between g1 and y1), the key role of the feature
alignment (in the form defined in (8)) is a-priori far from
obvious. Furthermore, via the analysis of Fφ(zs1, z1) in the
next two sections, we will show how the memorization is
affected by the choice of the feature map and, specifically,
of the activation function.

Similarly, we can lower bound the spurious loss, defined as

L := Ez1
[
(f(zs1, θ

∗)− g1)
2
]
. (12)

By introducing the shorthands f̄ := Ez1 [f(zs1, θ∗)] and
ḡ := Ez1 [g1], we have the lower bound:

L = Ez1
[((

f(zs1, θ
∗)− f̄

)
− (g1 − ḡ) +

(
f̄ − ḡ

))2]
= Ez1

[(
f(zs1, θ

∗)− f̄
)2]

+ Ez1
[
(g1 − ḡ)

2
]

+ Ez1
[(
f̄ − ḡ

)2]− 2Cov (f(zs1, θ
∗), g1)

≥ Ez1
[
(g1 − ḡ)

2
]
− 2 γφ

√
RZ−1

√
Var (g1).

(13)
The first term on the RHS of (13) is the minimal loss when
no information about x1 is available (and, thus, the best es-
timator is the expectation of g1). The second term indicates
how the memorization of the spurious feature y1 improves
the trivial guess ḡ, and it depends again on RZ−1

and γφ.

5. Main result for random features
The random features (RF) model takes the form

fRF(z, θ) = φRF(z)
⊤θ, φRF(z) = ϕ(V z), (14)

where V is a k × d matrix s.t. Vi,j ∼i.i.d. N (0, 1/d), and ϕ
is an activation applied component-wise. The number of
parameters of this model is k, as V is fixed and θ ∈ Rk
contains trainable parameters. We denote by µl the l-th
Hermite coefficient of ϕ (see Appendix A.1 for details).

Assumption 5.1 (Data distribution). The input data
(z1, . . . , zN ) are N i.i.d. samples from PZ = PX × PY
s.t. zi ∈ Rd can be written as zi = [xi, yi], with xi ∈ Rdx ,
yi ∈ Rdy and d = dx + dy. We assume that xi ∼ PX is
independent of yi ∼ PY , and the following holds:

1. ∥x∥2 =
√
dx and ∥y∥2 =

√
dy .

2. E[x] = 0 and E[y] = 0.

3. PX and PY satisfy Lipschitz concentration.

The first two assumptions are achieved by data pre-
processing and could be relaxed as in Assumption 1 of
(Bombari et al., 2022b) at the cost of a more involved argu-
ment. The third assumption (see Appendix A for details)
corresponds to data having well-behaved tails, and it covers
a number of important cases, e.g., standard Gaussian (Ver-
shynin, 2018), uniform on the sphere/hypercube (Vershynin,
2018), or data obtained via GANs (Seddik et al., 2020). This
requirement is common in the related literature (Bombari
et al., 2022b; Bubeck & Sellke, 2021; Nguyen et al., 2021)
and it is often replaced by a stronger requirement (e.g., data
uniform on the sphere), see (Montanari & Zhong, 2022).

Assumption 5.2 (Over-parameterization and high-dimen-
sional data).

N log3 N = o(k),
√
d log d = o(k), k log4 k = o(d2).

(15)

The first condition in (15) requires the number of neurons
k to scale faster than the number of data points N . This
over-parameterization leads to a lower bound on the small-
est eigenvalue of the kernel induced by the feature map,
which in turn implies that the model interpolates the data,
as required to write (3). This over-parameterized regime
also achieves minimum test error (Mei & Montanari, 2022).
Combining the second and third conditions in (15), we have
that k can scale between

√
d and d2 (up to log factors). Fi-

nally, merging the first and third condition gives that d2

scales faster than N . We notice that this holds for standard
datasets (MNIST, CIFAR-10 and ImageNet).

Assumption 5.3 (Activation function). The activation func-
tion ϕ is a non-linear L-Lipschitz function.

Theorem 5.4. Let Assumptions 5.1, 5.2, and 5.3 hold, and
let x ∼ PX be sampled independently from everything. Con-
sider querying the trained RF model (14) with zs1 = [x, y1].
Let α = dy/d and FRF(z

s
1, z1) be the feature alignment

between zs1 and z1, as defined in (8). Then,

|FRF(z
s
1, z1)− γRF| = o(1), (16)

with probability at least 1 − exp(−c log2 N) over V , Z
and x, where γRF ≤ 1 does not depend on z1 and x. Fur-
thermore, letting µl be the l-th Hermite coefficient of the
activation ϕ (see Appendix A.1), we have

γRF >

∑+∞
l=2 µ2

l α
l∑+∞

l=1 µ2
l

− o(1), (17)

with probability at least 1 − exp(−c log2 N) over V and
Z−1, i.e., γRF is bounded away from 0 with high probability.
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Figure 2. Test and spurious accuracies as a function of the number of training samples N , for various binary classification tasks. In the
first two plots, we consider the RF model in (14) with k = 105 trained over Gaussian data with d = 1000. The labeling function is
g(x) = sign(u⊤x). We repeat the experiments for α = {0.25, 0.5} and for the two activations ϕ2 = h1 + h2 and ϕ4 = h1 + h4, where
hi denotes the i-th Hermite polynomial (see Appendix A.1). In the last two plots, we consider the same model with ReLU activation,
trained over two MNIST and CIFAR-10 classes. The width of the noise background is 10 pixels for MNIST and 8 pixels for CIFAR-10,
see Figure 1. The spurious accuracy is obtained by querying the model only with the noise background from the training set, replacing all
the other pixels with 0, and taking the sign of the output. As we consider binary classification, an accuracy of 0.5 is achieved by random
guessing. We plot the average over 10 independent trials and the confidence band at 1 standard deviation.

Theorem 5.4 proves the concentration of the fea-
ture alignment FRF(z

s
1, z1) to a constant γRF between∑+∞

l=2 µ2
l α

l/
∑+∞
l=1 µ2

l > 0 and 1. The lower bound in-
creases with α (as expected, since α is the fraction of the
input given by the spurious feature), and it depends in a non-
trivial way on the activation via its Hermite coefficients.

This result validates the argument in (10), where we replaced
the feature alignment FRF(z

s
1, z1) with a constant γRF > 0.

Thus, (11) now reads

Cov (fRF(z
s
1, θ

∗), g1) ≤ γRF

√
RZ−1

√
Var (g1), (18)

which quantifies the memorization of spurious features in
terms of the generalization error and the constant γRF.

These effects are clearly displayed in Figure 2 for binary
classification on synthetic (first two plots) and image (last
two plots) datasets. Specifically, as the number of samples
N increases, the test accuracy increases and the spurious
accuracy (obtained by querying the trained model with the
spurious sample f(zsi , θ

∗)) decreases. Furthermore, for the
synthetic dataset, while the test accuracy does not depend on
α or the activation function, the spurious accuracy increases
with α and by taking an activation function with dominant
low-order Hermite coefficients, as predicted by (17). For
an additional experiment highlighting the dependence on α,
we refer the reader to Figure 7 in Appendix F.

Proof sketch. We set

γRF :=
Ez1,zs1 [φRF(z

s
1)

⊤P⊥
Φ−1

φRF(z1)]

Ez1 [∥P⊥
Φ−1

φRF(z1)∥22]
. (19)

Here, PΦ−1 is the projector over Span{rows(ΦRF,−1)} and
ΦRF,−1 the RF feature matrix after removing the first row.
With this choice, the numerator and denominator of γRF
equal the expectations of the corresponding quantities ap-
pearing in FRF(z

s
1, z1). Thus, the concentration result in

(16) is obtained from the general form of the Hanson-Wright
inequality in (Adamczak, 2015), see Lemma D.7. The up-
per bound γRF ≤ 1 follows from an application of Cauchy-
Schwarz inequality. In contrast, the lower bound is more
involved and it is obtained via the three steps below.

Step 1: Centering the feature map φRF. We extract the term
EV [ϕ(V z)] from the expression of FRF and show it can be
neglected, due to the specific structure of P⊥

Φ−1
. Specifically,

letting φ̃RF(z) := φRF(z)− EV [φRF(z)], we have

FRF(z
s
1, z1) ≃

φ̃RF(z
s
1)

⊤P⊥
Φ−1

φ̃RF(z1)∥∥∥P⊥
Φ−1

φ̃RF(z1)
∥∥∥2
2

=
φ̃RF(z

s
1)

⊤φ̃RF(z1)− φ̃RF(z
s
1)

⊤PΦ−1
φ̃RF(z1)∥∥∥P⊥

Φ−1
φ̃RF(z1)

∥∥∥2
2

,

(20)

where ≃ denotes an equality up to a o(1) term. This is
formalized in Lemma D.3.

Step 2: Linearization of the centered feature map φ̃RF. We
consider the terms φ̃RF(z

s
1), φ̃RF(z1) that multiply PΦ−1

in
the RHS of (20), and we show that they are well approxi-
mated by their first-order Hermite expansions (µ1V zs1 and
µ1V z1, respectively). In fact, the rest of the Hermite series
scales at most as N/d2, which is negligible due to Assump-
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Figure 3. We consider the NTK model in (24) with k = 100, trained on MNIST (digits 1 and 7, first and second plots), and CIFAR-10
(cats and ships, third and fourth plots). We repeat the experiments for activations whose derivatives are ϕ′

2 = h0 + h1 and ϕ′
8 = h0 + h7,

where hi denotes the i-th Hermite polynomial (see Appendix A.1). The rest of the setup is the same as that of Figure 2.

tion 5.2. Specifically, Lemma D.4 implies

φ̃RF(z
s
1)

⊤φ̃RF(z1)− φ̃RF(z
s
1)

⊤PΦ−1 φ̃RF(z1)∥∥∥P⊥
Φ−1

φ̃RF(z1)
∥∥∥2
2

≃
φ̃RF(z

s
1)

⊤φ̃RF(z1)− µ2
1(V zs1)

⊤PΦ−1(V z1)∥∥∥P⊥
Φ−1

φ̃RF(z1)
∥∥∥2
2

.

(21)

Step 3: Lower bound in terms of α and {µl}l≥2. To con-
clude, we express the RHS of (21) as follows:

φ̃RF(z
s
1)

⊤φ̃RF(z1)−µ2
1(V zs1)

⊤(V z1)+µ2
1(V zs1)

⊤P⊥
Φ−1

(V z1)

∥φ̃RF(z1)∥22 −
∥∥PΦ−1

φ̃RF(z1)
∥∥2
2

≳
φ̃RF(z

s
1)

⊤φ̃RF(z1)− µ2
1(V zs1)

⊤(V z1)

∥φ̃RF(z1)∥22

≃
∑+∞
l=2 µ2

l α
l∑+∞

l=1 µ2
l

> 0,

(22)
where ≳ denotes an inequality up to a o(1) term. As
PΦ−1 = I − P⊥

Φ−1
, the term in the first line equals the

RHS of (21). Next, we show that µ2
1(V zs1)

⊤P⊥
Φ−1

(V z1) is
equal to µ2

1(V [y1, 0])
⊤P⊥

Φ−1
(V [y1, 0]) (which corresponds

to the common noise part in z1, z
s
1) plus a vanishing term,

see Lemma D.5. As µ2
1(V [y1, 0])

⊤P⊥
Φ−1

(V [y1, 0]) ≥ 0, the
inequality in the second line follows. The last step is ob-
tained by showing concentration over V of numerator and
denominator. The expression on the RHS of (22) is strictly
positive as α > 0 and ϕ is non-linear by Assumption 5.3.

6. Main result for NTK features
We consider the following two-layer neural network

fNN(z, w) =

k∑
i=1

ϕ (Wi:z) . (23)

The hidden layer contains k neurons; ϕ is an activation
function applied component-wise; W ∈ Rk×d denotes the
weights of the hidden layer; Wi: denotes the i-th row of
W ; and we set the k weights of the second layer to 1. We
indicate with w the vector containing the parameters of
this model, i.e., w = [vec(W )] ∈ Rp, with p = kd. We
initialize the network with standard (e.g., He’s or LeCun’s)
initialization, i.e., [W0]i,j ∼i.i.d. N (0, 1/d).

The NTK regression model takes the form

fNTK(z, θ) = φNTK(z)
⊤θ,

φNTK(z) = ∇wfNN(z, w)|w=w0
= z ⊗ ϕ′(W0z),

(24)

where ∇wfNN in the second line is computed via the chain
rule. The vector of trainable parameters is θ ∈ Rp, with
p = kd, which is initialized with θ0 = w0 = [vec(W0)].
We note that fNTK(z, θ) is the linearization of fNN(z, w)
around the initial point w0 (Bartlett et al., 2021; Jacot et al.,
2018), and the model in (24) corresponds to training the
two-layer network (23) in the lazy regime (Chizat et al.,
2019; Oymak & Soltanolkotabi, 2019). As such, it has
received significant attention in the theoretical literature,
see e.g. (Bombari et al., 2023; Dohmatob & Bietti, 2022;
Montanari & Zhong, 2022).

Assumption 6.1 (Over-parameterization and topology).

N log8 N = o(kd), N > d, k = O (d) . (25)

The first condition is the smallest (up to log factors) over-
parameterization that guarantees interpolation (Bombari
et al., 2022b). The second condition is rather mild (it is
easily satisfied by standard datasets) and purely technical.
The third condition is required to lower bound the smallest
eigenvalue of the kernel induced by the feature map (24),
and a stronger requirement, i.e., the strict inequality k < d,
has appeared in prior work (Nguyen & Hein, 2017; 2018;
Nguyen & Mondelli, 2020).
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Figure 4. Test and spurious accuracies as a function of the number of training samples N , for a fully connected (FC, first two plots), and a
small convolutional neural network (CNN, last two plots). In the first plot, we use synthetic (Gaussian) data with d = 1000, and the
labeling function is g(x) = sign(u⊤x). As we consider binary classification, the accuracy of random guessing is 0.5. The other plots use
subsets of the MNIST and CIFAR-10 datasets, with an external layer of noise added to images, see Figure 1. As we consider 10 classes,
the accuracy of random guessing is 0.1. We plot the average over 10 independent trials and the confidence band at 1 standard deviation.

Assumption 6.2 (Activation function). The activation func-
tion ϕ is non-linear and its derivative ϕ′ is L-Lipschitz.

We denote by µ′
l the l-th Hermite coefficient of ϕ′. We

remark that the invertibility of the kernel KNTK induced by
the feature map (24) follows from Lemma E.1. At this point,
we are ready to state our main result for the NTK model,
whose full proof is contained in Appendix E.

Theorem 6.3. Let Assumptions 5.1, 6.1, and 6.2 hold, and
let x ∼ PX be sampled independently from everything.
Consider querying the trained NTK model (24) with zs1 =
[x, y1]. Let α = dy/d ∈ (0, 1) and FNTK(z

s
1, z1) be the

feature alignment between zs1 and z1, as defined in (8). Then,
letting µ′

l be the l-th Hermite coefficient of the derivative of
the activation ϕ′ (see Appendix A.1), we have

|FNTK(z
s
1, z1)− γNTK| = o(1),

where 0 < γNTK := α

∑+∞
l=1 µ′

l
2
αl∑+∞

l=1 µ′
l
2 < 1,

(26)

with probability at least 1 − N exp(−c log2 k) −
exp(−c log2 N) over Z, x and W0.

Theorem 5.4 proves the concentration of the feature align-
ment FNTK(z

s
1, z1) to a constant γNTK, which has an exact

expression depending on α and the Hermite coefficients of
the derivative of the activation.

This result validates the argument in (10), where we replaced
the feature alignment FNTK(z

s
1, z1) with a constant γNTK >

0. Thus, (11) now reads

Cov (fNTK(z
s
1, θ

∗), g1) ≤ γNTK

√
RZ−1

√
Var (g1), (27)

which quantifies the memorization of spurious features in
terms of the generalization error and the constant γNTK.

Figure 3 considers training on MNIST and CIFAR-10, and
it shows that the predictions of Theorem 6.3 also hold for
standard datasets: as N increases, the test accuracy im-
proves and the spurious accuracy decreases; considering
activations with dominant high-order Hermite coefficients
reduces memorization. For additional experiments using the
same setup as Figure 2 and highlighting the dependence on
α, we refer the reader to Figures 6 and 7 in Appendix F.

Proof sketch. The argument is more direct than for the
RF model since, in this case, we are able to express γNTK in
closed form. We denote by PΦ−1

the projector over the span
of the rows of the NTK feature matrix ΦNTK,−1 without the
first row. Then, the first step is to center the feature map
φNTK, which gives

φNTK(z
s
1)

⊤P⊥
Φ−1

φNTK(z1)∥∥∥P⊥
Φ−1

φNTK(z1)
∥∥∥2
2

≃
φ̃NTK(z

s
1)

⊤P⊥
Φ−1

φ̃NTK(z1)∥∥∥P⊥
Φ−1

φ̃NTK(z1)
∥∥∥2
2

,

(28)
where φ̃NTK(z) := z ⊗ (ϕ′(W0z)− EW0 [ϕ

′(W0z)]).
While a similar step appeared in the analysis of the RF
model, its implementation for NTK requires a different strat-
egy. In particular, we exploit that the samples z1 and zs1 are
approximately contained in the span of the rows of Z−1 (see
Lemma E.4). As the rows of Z−1 may not exactly span all
Rd, we resort to an approximation by adding a small amount
of independent noise to every entry of Z−1. The resulting
perturbed dataset Z̄−1 satisfies Span{rows(Z̄−1)} = Rd
(see Lemma E.3), and we conclude via a continuity argu-
ment with respect to the magnitude of the perturbation (see
Lemmas E.2 and E.5).

The second step is to upper bound the terms∣∣φ̃NTK(z
s
1)

⊤PΦ−1 φ̃NTK(z1)
∣∣ and

∥∥PΦ−1 φ̃NTK(z1)
∥∥2
2
,
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showing they have negligible magnitude, which gives

φ̃NTK(z
s
1)

⊤P⊥
Φ−1

φ̃NTK(z1)∥∥∥P⊥
Φ−1

φ̃NTK(z1)
∥∥∥2
2

≃ φ̃NTK(z
s
1)

⊤φ̃NTK(z1)

∥φ̃NTK(z1)∥22
.

(29)
This is a consequence of the fact that, if z ∼ PZ is in-
dependent from Z−1, then φ̃(z) is roughly orthogonal to
Span{rows(ΦNTK,−1)}, see Lemma E.8.

Finally, the third step is to show the concentration over W0

of the numerator and denominator of the RHS of (29), see
Lemma E.6. This allows us to conclude that

φ̃NTK(z
s
1)

⊤φ̃NTK(z1)

∥φ̃NTK(z1)∥22
≃ α

∑+∞
l=1 µ′

l
2
αi∑+∞

l=1 µ′
l
2 > 0. (30)

The RHS of (30) is strictly positive as α > 0 and ϕ is
non-linear by Assumption 6.2.

Discussion. As showed by (11) and (13), if Fφ(z1, zs1)
converges to 0, spurious correlations are not memorized
by the model. However, Theorems 5.4 and 6.3 prove that,
for the RF and NTK model respectively, a strictly positive
geometric overlap (α > 0) guarantees a strictly positive
feature alignment. Thus, these results imply that, as long
as the generalization error is not vanishing, spurious fea-
tures are memorized and, in fact, we quantify the extent to
which memorization occurs. Remarkably, our experiments
on real datasets (see Figure 3) show that the effect of the
activation function is in line with our predictions: taking ϕ′

with higher order Hermite coefficients lead to models that
are less prone to memorize spurious features. Finally, while
we focus on generalized linear regression, the interplay be-
tween memorization of spurious features and generalization
provided by our analysis holds in far more generality and,
in particular, it is displayed by neural networks also capable
of feature learning, see Figures 4 and 5.

7. Conclusions
In this work, we present a theoretical framework to quantify
the memorization of spurious features. Our characteriza-
tion hinges on (i) the classical notion of stability of the
model w.r.t. a training sample, and (ii) a novel notion of
feature alignment F(zs, z) between two samples that share
the same spurious feature y. By providing a precise anal-
ysis of the feature alignment in the prototypical settings
of random and NTK features regression, we show that the
memorization is proportional to the generalization error, and
we characterize the proportionality constant, revealing how
it depends on the model and its activation function. Our the-
oretical predictions are confirmed by numerical experiments
on standard datasets (see Figure 3) and on different neural
network architectures (see Figures 4 and 5).
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ResNet18
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101 102 103 104
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Figure 5. Test and spurious accuracies as a function of the number
of training samples N , for two ResNet architectures. We use
subsets of the CIFAR-10 dataset, with an external layer of noise
added to images, see Figure 1. As we consider 10 classes, the
accuracy of random guessing is 0.1. We plot the average over 10
independent trials and the confidence band at 1 standard deviation.

The approach we put forward is rather general, and our
results could be extended to cases where the spurious fea-
ture y is correlated with the ground-truth label g. Another
possible extension involves testing the trained model on a
new spurious feature y′, which is not present in the training
set but is correlated with a feature y that has already been
seen; or capturing the role of simplicity bias in this phe-
nomenon. We also remark that the formalism introduced by
Lemma 4.1 applies to any feature map φ (e.g., with multiple
fully-connected, convolutional or attention layers). Charac-
terizing the feature alignment of such maps would allow to
compare different models and establish which of those is
less prone to memorizing spurious correlations.
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A. Additional notations and remarks
Given a sub-exponential random variable X , let ∥X∥ψ1 = inf{t > 0 : E[exp(|X|/t)] ≤ 2}. Similarly, for a sub-Gaussian
random variable, let ∥X∥ψ2

= inf{t > 0 : E[exp(X2/t2)] ≤ 2}. We use the analogous definitions for vectors. In
particular, let X ∈ Rn be a random vector, then ∥X∥ψ2

:= sup∥u∥2=1

∥∥u⊤X
∥∥
ψ2

and ∥X∥ψ1
:= sup∥u∥2=1

∥∥u⊤X
∥∥
ψ1

.
Notice that if a vector has independent, mean-0, sub-Gaussian (sub-exponential) entries, then it is sub-Gaussian (sub-
exponential). This is a direct consequence of Hoeffding’s inequality and Bernstein’s inequality (see Theorems 2.6.3 and
2.8.2 in (Vershynin, 2018)).

We say that a random variable or vector respects the Lipschitz concentration property if there exists an absolute constant
c > 0 such that, for every Lipschitz continuous function τ : Rd → R, we have E|τ(X)| < +∞, and for all t > 0,

P (|τ(x)− EX [τ(x)]| > t) ≤ 2e−ct
2/∥τ∥2

Lip . (31)

When we state that a random variable or vector X is sub-Gaussian (or sub-exponential), we implicitly mean ∥X∥ψ2
= O (1),

i.e. it doesn’t increase with the scalings of the problem. Notice that, if X is Lipschitz concentrated, then X − E[X] is
sub-Gaussian. If X ∈ R is sub-Gaussian and τ : R → R is Lipschitz, we have that τ(X) is sub-Gaussian as well. Also, if a
random variable is sub-Gaussian or sub-exponential, its p-th momentum is upper bounded by a constant (that might depend
on p).

In general, we indicate with C and c absolute, strictly positive, numerical constants, that do not depend on the scalings of the
problem, i.e. input dimension, number of neurons, or number of training samples. Their value may change from line to line.

Given a matrix A, we indicate with Ai: its i-th row, and with A:j its j-th column. Given a square matrix A, we denote by
λmin (A) its smallest eigenvalue. Given a matrix A, we indicate with σmin(A) =

√
λmin (A⊤A) its smallest singular value,

with ∥A∥op its operator norm (and largest singular value), and with ∥A∥F its Frobenius norm (∥A∥2F =
∑
ij A

2
ij).

Given two matrices A,B ∈ Rm×n, we denote by A ◦B their Hadamard product, and by A ∗B = [(A1:⊗B1:), . . . , (Am:⊗
Bm:)]

⊤ ∈ Rm×n2

their row-wise Kronecker product (also known as Khatri-Rao product). We denote A∗2 = A ∗ A. We
remark that (A ∗B) (A ∗B)

⊤
= AA⊤ ◦ BB⊤. We say that a matrix A ∈ Rn×n is positive semi definite (p.s.d.) if it’s

symmetric and for every vector v ∈ Rn we have v⊤Av ≥ 0.

A.1. Hermite polynomials
In this subsection, we refresh standard notions on the Hermite polynomials. For a more comprehensive discussion, we refer
to (O’Donnell, 2014). The (probabilist’s) Hermite polynomials {hj}j∈N are an orthonormal basis for L2(R, γ), where γ
denotes the standard Gaussian measure. The following result holds.

Proposition A.1 (Proposition 11.31, (O’Donnell, 2014)). Let ρ1, ρ2 be two standard Gaussian random variables, with
correlation ρ ∈ [−1, 1]. Then,

Eρ1,ρ2 [hi(ρ1)hj(ρ2)] = δijρ
i, (32)

where δij = 1 if i = j, and 0 otherwise.

The first 5 Hermite polynomials are

h0(ρ) = 1, h1(ρ) = ρ, h2(ρ) =
ρ2 − 1√

2
, h3(ρ) =

ρ3 − 3ρ√
6

, h4(ρ) =
ρ4 − 6ρ2 + 3√

24
. (33)

Proposition A.2 (Definition 11.34, (O’Donnell, 2014)). Every function ϕ ∈ L2(R, γ) is uniquely expressible as

ϕ(ρ) =
∑
i∈N

µϕi hi(ρ), (34)

where the real numbers µϕi ’s are called the Hermite coefficients of ϕ, and the convergence is in L2(R, γ). More specifically,

lim
n→+∞

∥∥∥∥∥
(

n∑
i=0

µϕi hi(ρ)

)
− ϕ(ρ)

∥∥∥∥∥
L2(R,γ)

= 0. (35)
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This readily implies the following result.

Proposition A.3. Let ρ1, ρ2 be two standard Gaussian random variables with correlation ρ ∈ [−1, 1], and let ϕ, τ ∈
L2(R, γ). Then,

Eρ1,ρ2 [ϕ(ρ1)τ(ρ2)] =
∑
i∈N

µϕi µ
τ
i ρ
i. (36)

B. Proof of Lemma 4.1
We start by refreshing some useful notions of linear algebra. Let A ∈ RN×p be a matrix, with p ≥ N , and A−1 ∈ R(N−1)×p

be obtained from A after removing the first row. We assume AA⊤ to be invertible, i.e., the rows of A are linearly
independent. Thus, also the rows of A−1 are linearly independent, implying that A−1A

⊤
−1 is invertible as well. We indicate

with PA ∈ Rp×p the projector over Span{rows(A)}, and we correspondingly define PA−1 ∈ Rp×p. As AA⊤ is invertible,
we have that rank(A) = N .

By singular value decomposition, we have A = UDO⊤, where U ∈ RN×N and O ∈ Rp×p are orthogonal matrices,
and D ∈ RN×p contains the (all strictly positive) singular values of A in its “left” diagonal, and is 0 in every other
entry. Let us define O1 ∈ RN×p as the matrix containing the first N rows of O⊤. This notation implies that if O1u = 0
for u ∈ Rp, then Au = 0, i.e., u ∈ Span{rows(A)}⊥. The opposite implication is also true, which implies that
Span{rows(A)} = Span{rows(O1)}. As the rows of O1 are orthogonal, we can then write

PA = O⊤
1 O1. (37)

We define Ds ∈ RN×N , as the square, diagonal, and invertible matrix corresponding to the first N columns of D. Let’s also
define IN ∈ Rp×p as the matrix containing 1 in the first N entries of its diagonal, and 0 everywhere else. We have

PA =O⊤
1 O1 = OINO⊤

=OD⊤D−2
s DO⊤ = OD⊤U⊤UD−2

s U⊤UDO⊤

=A⊤ (UD2
sU

⊤)−1
A = A⊤ (UDO⊤OD⊤U⊤)−1

A

=A⊤ (AA⊤)−1
A ≡ A+A,

(38)

where A+ denotes the Moore-Penrose inverse.

Notice that this last form enables us to easily derive

PA−1A
+v = A+

−1A−1A
+v = A+

−1I−1AA+v = A+
−1I−1v = A+

−1v−1, (39)

where v ∈ RN , I−1 ∈ R(N−1)×N is the N ×N identity matrix without the first row, and v−1 ∈ RN−1 corresponds to v
without its first entry.

Lemma B.1. Let Φ ∈ RN×k be a matrix whose first row is denoted as φ(z1). Let Φ−1 ∈ R(N−1)×k be the original matrix
without the first row, and let PΦ−1 be the projector over the span of its rows. Then,∥∥∥P⊥

Φ−1
φ(z1)

∥∥∥2
2
≥ λmin

(
ΦΦ⊤) . (40)

Proof. If λmin

(
ΦΦ⊤) = 0, the thesis becomes trivial. Otherwise, we have that ΦΦ⊤, and therefore Φ−1Φ

⊤
−1, are invertible.

Let u ∈ RN be a vector, such that its first entry u1 = 1. We denote with u−1 ∈ RN−1 the vector u without its first
component, i.e. u = [1, u−1]. We have∥∥Φ⊤u

∥∥2
2
≥ λmin

(
ΦΦ⊤) ∥u∥22 ≥ λmin

(
ΦΦ⊤) . (41)

Setting u−1 = −
(
Φ−1Φ

⊤
−1

)−1
Φ−1φ(z1), we get

Φ⊤u = φ(z1) + Φ⊤
−1u−1 = φ(z1)− PΦ−1φ(z1) = P⊥

Φ−1
φ(z1). (42)

Plugging this in (41), we get the thesis.
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At this point, we are ready to prove Lemma 4.1.

Proof of Lemma 4.1. We indicate with Φ−1 ∈ R(N−1)×p the feature matrix of the training set Φ ∈ RN×p without the first
sample z1. In other words, Φ−1 is equivalent to Φ, without the first row. Notice that since K = ΦΦ⊤ is invertible, also
K−1 := Φ−1Φ

⊤
−1 is.

We can express the projector over the span of the rows of Φ in terms of the projector over the span of the rows of Φ−1 as
follows

PΦ = PΦ−1
+

P⊥
Φ−1

φ(z1)φ(z1)
⊤P⊥

Φ−1∥∥∥P⊥
Φ−1

φ(z1)
∥∥∥2
2

. (43)

The above expression is a consequence of the Gram-Schmidt formula, and the quantity at the denominator is different from
zero because of Lemma B.1, as K is invertible.

We indicate with Φ+ = Φ⊤K−1 the Moore-Penrose pseudo-inverse of Φ. Using (3), we can define θ∗−1 := θ0 +
Φ+

−1 (G−1 − f(Z−1, θ0)), i.e., the set of parameters the algorithm would have converged to if trained over (Z−1, G−1), the
original data-set without the first pair sample-label (z1, g1).

Notice that PΦΦ
⊤ = Φ⊤, as a consequence of (38). Thus, again using (3), for any z we can write

f(z, θ∗)− φ(z)⊤θ0 = φ(z)⊤Φ+ (G− f(Z, θ0))

= φ(z)⊤PΦΦ
+ (G− f(Z, θ0))

= φ(z)⊤

PΦ−1
+

P⊥
Φ−1

φ(z1)φ(z1)
⊤P⊥

Φ−1∥∥∥P⊥
Φ−1

φ(z1)
∥∥∥2
2

Φ+ (G− f(Z, θ0)) .

(44)

Notice that, thanks to (39), we can manipulate the first term in the bracket as follows

φ(z)⊤PΦ−1
Φ+ (G− f(Z, θ0)) = φ(z)⊤Φ+

−1 (G−1 − f(Z−1, θ0))

= f(z, θ∗−1)− φ(z)⊤θ0.
(45)

Thus, bringing the result of (45) on the LHS, (44) becomes

f(z, θ∗)− f(z, θ∗−1) =
φ(z)⊤P⊥

Φ−1
φ(z1)∥∥∥P⊥

Φ−1
φ(z1)

∥∥∥2
2

φ(z1)
⊤P⊥

Φ−1
Φ+ (G− f(Z, θ0))

=
φ(z)⊤P⊥

Φ−1
φ(z1)∥∥∥P⊥

Φ−1
φ(z1)

∥∥∥2
2

φ(z1)
⊤ (I − PΦ−1

)
Φ+ (G− f(Z, θ0))

=
φ(z)⊤P⊥

Φ−1
φ(z1)∥∥∥P⊥

Φ−1
φ(z1)

∥∥∥2
2

(
f(z1, θ

∗)− f(z1, θ
∗
−1)
)
,

(46)

where in the last step we again used (3) and (45).

C. Useful lemmas
Lemma C.1. Let x and y be two Lipschitz concentrated, independent random vectors. Let ζ(x, y) be a Lipschitz function in
both arguments, i.e., for every δ,

|ζ(x+ δ, y)− ζ(x, y)| ≤ L ∥δ∥2 ,
|ζ(x, y + δ)− ζ(x, y)| ≤ L ∥δ∥2 ,

(47)

for all x and y. Then, ζ(x, y) is a Lipschitz concentrated random variable, in the joint probability space of x and y.
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Proof. To prove the thesis, we need to show that, for every 1-Lipschitz function τ , the following holds

Pxy (|τ (ζ(x, y))− Exy [τ (ζ(x, y))]| > t) < e−ct
2

, (48)

where c is a universal constant. An application of the triangle inequality gives

|τ (ζ(x, y))− Exy [τ (ζ(x, y))]|
≤ |τ (ζ(x, y))− Ex [τ (ζ(x, y))]|+ |Ex [τ (ζ(x, y))]− EyEx [τ (ζ(x, y))]| =: A+B.

(49)

Thus, we can upper bound LHS of (48) as follows:

Pxy (|τ (ζ(x, y))− Exy [τ (ζ(x, y))]| > t) ≤ Pxy (A+B > t) . (50)

If A and B are positive random variables, it holds that P(A+B > t) ≤ P(A > t/2) + P(B > t/2). Then, the LHS of (48)
is also upper bounded by

Pxy (|τ (ζ(x, y))− Ex [τ (ζ(x, y))]| > t/2) + Pxy (|Ex [τ (ζ(x, y))]− EyEx [τ (ζ(x, y))]| > t/2) . (51)

Since τ ◦ ζ is Lipschitz with respect to x for every y, we have

Pxy (|τ (ζ(x, y))− Ex [τ (ζ(x, y))]| > t/2) < e−c1t
2

, (52)

for some absolute constant c1. Furthermore, χ(y) := Ex [τ (ζ(x, y))] is also Lipschitz, as

|χ(y + δ)− χ(y)| = |Ex [τ (ζ(x, y + δ))− τ (ζ(x, y))] | ≤ Ex [|τ (ζ(x, y + δ))− τ (ζ(x, y)) |] ≤ L ∥δ∥2 . (53)

Then, we can write

Pxy (|Ex [τ (ζ(x, y))]− EyEx [τ (ζ(x, y))]| > t/2) = Py (|χ(y)− Ey [χ(y)]| > t/2) < e−c2t
2

, (54)

for some absolute constant c2. Thus,

Pxy (|τ (ζ(x, y))− Exy [τ (ζ(x, y))]| > t) < e−c1t
2

+ e−c2t
2

≤ e−ct
2

, (55)

for some absolute constant c, which concludes the proof.

Lemma C.2. Let x ∼ PX , y ∼ PY and z = [x, y] ∼ PZ . Let Assumption 5.1 hold. Then, z is a Lipschitz concentrated
random vector.

Proof. We want to prove that, for every 1-Lipschitz function τ , the following holds

Pz (|τ (z)− Ez [τ (z)]| > t) < e−ct
2

, (56)

for some universal constant c. As we can write z = [x, y], defining z′ = [x′, y], we have

|τ (z)− τ (z′)| ≤ ∥z − z′∥2 = ∥x− x′∥2 , (57)

i.e., for every y, τ is 1-Lipschitz with respect to x. The same can be shown for y, with an equivalent argument. Since x and
y are independent random vectors, both Lipschitz concentrated, Lemma C.1 gives the thesis.

Lemma C.3. Let τ and ζ be two Lipschitz functions. Let z, z′ ∈ Rd be two fixed vectors such that ∥z∥2 = ∥z′∥2 =
√
d. Let

V be a k × d matrix such that Vi,j ∼i.i.d. N (0, 1/d). Then, for any t > 1,∣∣τ(V z)⊤ζ(V z′)− EV
[
τ(V z)⊤ζ(V z′)

]∣∣ = O
(√

k log t
)
, (58)

with probability at least 1− exp(−c log2 t) over V . Here, τ and ζ act component-wise on their arguments. Furthermore,
by taking τ = ζ and z = z′, we have that

EV
[
∥τ(V z)∥22

]
= kEρ

[
τ2(ρ)

]
, (59)

where ρ ∼ N (0, 1). This implies that ∥τ(V z)∥22 = O (k) with probability at least 1− exp(−ck) over V .
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Proof. We have

τ(V z)⊤ζ(V z′) =

k∑
j=1

τ(v⊤j z)ζ(v
⊤
j z

′), (60)

where we used the shorthand vj := Vj:. As τ and ζ are Lipschitz, vj ∼ N (0, I/d), and ∥z∥2 = ∥z′∥2 =
√
d, we have

that τ(V z)⊤ζ(V z′) is the sum of k independent sub-exponential random variables, in the probability space of V . Thus, by
Bernstein inequality (cf. Theorem 2.8.1 in (Vershynin, 2018)), we have∣∣τ(V z)⊤ζ(V z′)− EV

[
τ(V z)⊤ζ(V z′)

]∣∣ = O
(√

k log t
)
. (61)

with probability at least 1− exp(−c log2 t), over the probability space of V , which gives the thesis. The second statement is
again implied by the fact that vj ∼ N (0, I/d) and ∥z∥2 =

√
d.

Lemma C.4. Let x, x1 ∼ PX and y1 ∼ PY be independent random variables, with x, x1 ∈ Rdx and y1 ∈ Rdy , and let
Assumption 5.1 hold. Let d = dx + dy, V be a k × d matrix, such that Vi,j ∼i.i.d. N (0, 1/d), and let τ be a Lipschitz
function. Let z1 := [x1, y1] and zs1 := [x, y1]. Let α = dy/d ∈ (0, 1) and µl be the l-th Hermite coefficient of τ . Then, for
any t > 1, ∣∣∣∣∣τ(V zs1)

⊤τ(V z1)− k
+∞∑
l=0

µ2
l α

l

∣∣∣∣∣ = O

(
√
k

(√
k

d
+ 1

)
log t

)
, (62)

with probability at least 1− exp(−c log2 t)− exp(−ck) over V and x, where c is a universal constant.

Proof. Define the vector x′ as follows

x′ =

√
dx

(
I − x1x

⊤
1

dx

)
x∥∥∥(I − x1x⊤

1

dx

)
x
∥∥∥
2

. (63)

Note that, by construction, x⊤
1 x

′ = 0 and ∥x′∥2 =
√
dx. Also, consider a vector y orthogonal to both x1 and x. Then, a fast

computation returns y⊤x′ = 0. This means that x′ is the vector on the
√
dx-sphere, lying on the same plane of x1 and x,

orthogonal to x1. Thus, we can easily compute∣∣x⊤x′
∣∣

dx
=

√
1−

(
x⊤x1

dx

)2

≥ 1−
(
x⊤x1

dx

)2

, (64)

where the last inequality derives from
√
1− a ≥ 1− a for a ∈ [0, 1]. Then,

∥x− x′∥22 = ∥x∥22 + ∥x′∥22 − 2x⊤x′ ≤ 2dx

(
1−

(
1−

(
x⊤x1

dx

)2
))

= 2

(
x⊤x1

)2
dx

. (65)

As x and x1 are both sub-Gaussian, mean-0 vectors, with ℓ2 norm equal to
√
dx, we have that

P (∥x− x′∥2 > t) ≤ P
(
|x⊤x1| >

√
dxt/

√
2
)
< exp(−ct2), (66)

where c is an absolute constant. Here the probability is referred to the space of x, for a fixed x1. Thus, ∥x− x′∥2 is
sub-Gaussian.

We now define z′ := [x′, y1]. Notice that z⊤1 z′ = ∥y1∥22 = dy and ∥zs1 − z′∥2 = ∥x− x′∥2. We can write∣∣τ(V zs1)
⊤τ(V z1)− τ(V z′)⊤τ(V z1)

∣∣ ≤ ∥τ(V zs1)− τ(V z′)∥2 ∥τ(V z1)∥2
≤ C ∥V ∥op ∥z

s
1 − z′∥2 ∥τ(V z1)∥2

≤ C1

(√
k

d
+ 1

)
∥x− x′∥2

√
k

= O

(
√
k

(√
k

d
+ 1

)
log t

)
.

(67)
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Here the second step holds as τ is Lipschitz; the third step holds with probability at least 1− exp(−c1 log
2 t)− exp(−c2k),

and it uses rTheorem 4.4.5 of (Vershynin, 2018) and Lemma C.3; the fourth step holds with probability at least 1 −
exp(−c log2 t), and it uses (66). This probability is intended over V and x. We further have∣∣τ(V z′)⊤τ(V z1)− EV

[
τ(V z′)⊤τ(V z1)

]∣∣ = O
(√

k log t
)
, (68)

with probability at least 1− exp(−c3 log
2 t)− exp(−c2k) over V , because of Lemma C.3.

We have
EV
[
τ(V z′)⊤τ(V z1)

]
= kEρ1ρ2 [τ(ρ1)τ(ρ2)] , (69)

where we indicate with ρ1 and ρ2 two standard Gaussian random variables, with correlation

corr(ρ1, ρ2) =
z⊤1 z

∥z1∥2 ∥z′∥2
=

dy
d

= α. (70)

Then, exploiting the Hermite expansion of τ , we have

Eρ1ρ2 [τ(ρ1)τ(ρ2)] =
+∞∑
l=0

µ2
l α

l. (71)

Putting together (67), (68), (69), and (71) gives the thesis.

D. Proofs for random features
In this section, we indicate with Z ∈ RN×d the data matrix, such that its rows are sampled independently from PZ (see
Assumption 5.1). We denote by V ∈ Rk×d the random features matrix, such that Vij ∼i.i.d. N (0, 1/d). Thus, the feature
map is given by (see (14))

φ(z) := ϕ(V z) ∈ Rk, (72)

where ϕ is the activation function, applied component-wise to the pre-activations V z. We use the shorthands Φ :=
ϕ(ZV ⊤) ∈ RN×k and K := ΦΦ⊤ ∈ RN×N , we indicate with Φ−1 ∈ R(N−1)×k the matrix Φ without the first row, and
we define K−1 := Φ−1Φ

⊤
−1. We call PΦ the projector over the span of the rows of Φ, and PΦ−1 the projector over the

span of the rows of Φ−1. We use the notations φ̃(z) := φ(z) − EV [φ(z)] and Φ̃−1 := Φ−1 − EV [Φ−1] to indicate the
centered feature map and matrix respectively, where the centering is with respect to V . We indicate with µl the l-th Hermite
coefficient of ϕ. We use the notation zs1 = [x, y1], where x ∼ PX is sampled independently from V and Z. We denote by Vx
(Vy) the first dx (last dy) columns of V , i.e., V = [Vx, Vy]. We define α = dy/d. Throughout this section, for compactness,
we drop the subscripts “RF” from these quantities, as we will only treat the proofs related to Section 5. Again for the sake of
compactness, we will not re-introduce such quantities in the statements or the proofs of the following lemmas.

The content of this section can be summarized as follows:

• In Lemma D.2 we prove a lower bound on the smallest eigenvalue of K, adapting to our settings Lemma C.5 of
(Bombari et al., 2023). As our assumptions are less restrictive than those in (Bombari et al., 2023), we will crucially
exploit Lemma D.1.

• In Lemma D.3, we treat separately a term that derives from EV [ϕ(V z)] = µ01k, showing that we can center the
activation function, without changing our final statement in Theorem 5.4. This step is necessary only if µ0 ̸= 0.

• In Lemma D.4, we show that the non-linear component of the features φ̃(z1) − µ1V z1 and φ̃(zs1) − µ1V zs1 have a
negligible component in the space spanned by the rows of Φ−1.

• In Lemma D.7, we provide concentration results for φ(zs1)
⊤P⊥

Φ−1
φ(z1), and we lower bound this same term in Lemma

D.6, exploiting also the intermediate result provided in Lemma D.5.

• Finally, we prove Theorem 5.4.
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Lemma D.1. Let A := (Z∗m) ∈ RN×dm , for some natural m ≥ 2, where ∗ refers to the Khatri-Rao product, defined in
Appendix A. We have

λmin

(
AA⊤) = Ω(dm), (73)

with probability at least 1− exp(−c log2 N) over Z, where c is an absolute constant.

Proof. As m ≥ 2, we can write A =
(
Z∗2) ∗ (Z∗(m−2)

)
=: A2 ∗Am (where

(
Z∗0) is defined to be the vector full of ones

1N ∈ RN ). We can provide a lower bound on the smallest eigenvalue of such product through the following inequality
(Schur, 1911):

λmin

(
AA⊤) = λmin

(
A2A

⊤
2 ◦AmA⊤

m

)
≥ λmin

(
A2A

⊤
2

)
mini ∥(Am)i:∥22 . (74)

Note that the rows of Z are mean-0 and Lipschitz concentrated by Lemma C.2. Then, by following the argument of Lemma
C.3 in (Bombari et al., 2023), we have

λmin

(
A2A

⊤
2

)
= Ω(d2), (75)

with probability at least 1− exp(−c log2 N) over Z. We remark that, for the argument of Lemma C.3 in (Bombari et al.,
2023) to go through, it suffices that N = o(d2/ log4 d) and N log4 N = o(d2) (see Equations (C.23) and (C.26) in (Bombari
et al., 2023)), which is implied by Assumption 5.2, despite it being milder than Assumption 4 in (Bombari et al., 2023).

For the second term of (74), we have
∥(Am)i:∥22 = ∥zi∥2(m−2)

2 = dm−2, (76)

due to Assumption 5.1. Thus, the thesis readily follows.

Lemma D.2. We have that
λmin (K) = Ω(k), (77)

with probability at least 1−exp
(
−c log2 N

)
over V and Z, where c is an absolute constant. This implies that λmin (K−1) =

Ω(k).

Proof. The proof follows the same path as Lemma C.5 of (Bombari et al., 2023). In particular, we define a truncated version
of Φ as follows

Φ̄:j = ϕ(Zvj)χ
(
∥ϕ(Zvj)∥22 ≤ R

)
, (78)

where χ is the indicator function and we introduce the shorthand vi := Vi:. In this case, χ = 1 if ∥ϕ(Zvj)∥22 ≤ R, and
χ = 0 otherwise. As this is a column-wise truncation, it’s easy to verify that ΦΦ⊤ ⪰ Φ̄Φ̄⊤. Over such truncated matrix, we
can use Matrix Chernoff inequality (see Theorem 1.1 of (Tropp, 2012)), which gives that λmin

(
Φ̄Φ̄⊤) = Ω(λmin

(
Ḡ
)
),

where Ḡ := EV
[
Φ̄Φ̄⊤]. Finally, we prove closeness between Ḡ and G, which is analogously defined as G := EV

[
ΦΦ⊤].

To be more specific, setting R = k/ log2 N , we have

λmin (K) ≥ λmin

(
Φ̄Φ̄⊤) ≥ λmin

(
Ḡ
)
/2 ≥ λmin (G) /2− o(k), (79)

where the second inequality holds with probability at least 1− exp(c1 log
2 N) over V , if λmin (G) = Ω(k) (see Equation

(C.47) of (Bombari et al., 2023)), and the third comes from Equation (C.45) in (Bombari et al., 2023). To perform these
steps, our Assumptions 5.2 and 5.3 are enough, despite the second one being milder than Assumption 2 in (Bombari et al.,
2023).

To conclude the proof, we are left to prove that λmin (G) = Ω(k) with probability at least 1− exp(−c2 log
2 N) over V and

Z.

We have that

G = EV [K] = EV

[
k∑
i=1

ϕ(ZV ⊤
i: )ϕ(ZV ⊤

i: )
⊤

]
= kEv

[
ϕ(Zv)ϕ(Zv)⊤

]
:= kM, (80)
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where we use the shorthand v to indicate a random variable distributed as V1:. We also indicate with zi the i-th row of Z.
Exploiting the Hermite expansion of ϕ, we can write

Mij = Ev
[
ϕ(z⊤i v)ϕ(z

⊤
j v)

]
=

+∞∑
l=0

µ2
l

(
z⊤i zj

)l
dl

=

+∞∑
l=0

µ2
l

[(
Z∗l) (Z∗l)⊤]

ij

dl
, (81)

where µl is the l-th Hermite coefficient of ϕ. Note that the previous expansion was possible since ∥zi∥ =
√
d for all i ∈ [N ].

As ϕ is non-linear, there exists m ≥ 2 such that µ2
m > 0. In particular, we have M ⪰ µ2

m

dm AA⊤ in a PSD sense, where we
define

A := (Z∗m) . (82)

By Lemma D.1, the desired result readily follows.

Lemma D.3. Let µ0 ̸= 0. Then, ∥∥∥P⊥
Φ−1

1k

∥∥∥
2
= o(

√
k), (83)

with probability at least 1− e−cd − e−cN over V and Z, where c is an absolute constant.

Proof. Note that Φ⊤
−1 = µ01k1

⊤
N−1 + Φ̃⊤

−1. Here, Φ̃⊤
−1 is a k × (N − 1) matrix with i.i.d. and mean-0 rows, whose

sub-Gaussian norm (in the probability space of V ) can be bounded as∥∥∥Φ̃:i

∥∥∥
ψ2

= ∥ϕ(ZVi:)− EV [ϕ(ZVi:)]∥ψ2
≤ L

∥Z∥op√
d

= O
(√

N/d+ 1
)
, (84)

where first inequality holds since ϕ is L-Lipschitz and Vi: is a Gaussian (and hence, Lipschitz concentrated) vector with
covariance I/d. The last step holds with probability at least 1− e−cd over Z, because of Lemma B.7 in (Bombari et al.,
2022b).

Thus, another application of Lemma B.7 in (Bombari et al., 2022b) gives∥∥∥Φ̃⊤
−1

∥∥∥
op

= O
((√

k +
√
N
)(√

N/d+ 1
))

= O
(√

k
(√

N/d+ 1
))

, (85)

where the first equality holds with probability at least 1−e−cN over V , and the second is a direct consequence of Assumption
5.2.

We can write

Φ⊤
−1

1N−1

µ0(N − 1)
=
(
µ01k1

⊤
N−1 + Φ̃⊤

−1

) 1N−1

µ0(N − 1)
= 1k + Φ̃⊤

−1

1N−1

µ0(N − 1)
=: 1k + v, (86)

where

∥v∥2 ≤ 1

µ0(N − 1)

∥∥∥Φ̃⊤
−1

∥∥∥
op
∥1N−1∥2 = O

(√
k

N

(√
N/d+ 1

))
= o(

√
k). (87)

Thus, we can conclude ∥∥∥P⊥
Φ−1

1k

∥∥∥
2
=

∥∥∥∥P⊥
Φ−1

(
Φ⊤

−1

1N−1

µ0(N − 1)
− v

)∥∥∥∥
2

≤
∥∥∥∥P⊥

Φ−1
PΦ−1

Φ⊤
−1

1N−1

µ0(N − 1)

∥∥∥∥
2

+ ∥v∥2 = o(
√
k),

(88)

where in the second step we use the triangle inequality, Φ⊤
−1 = PΦ−1

Φ⊤
−1, and

∥∥∥P⊥
Φ−1

v
∥∥∥
2
≤ ∥v∥2.

Lemma D.4. Let z ∼ PZ , sampled independently from Z−1, and denote ϕ̃(x) := ϕ(x)− µ0. Then,∥∥∥PΦ−1

(
ϕ̃(V z)− µ1V z

)∥∥∥
2
= o(

√
k), (89)

with probability at least 1− exp
(
−c log2 N

)
over V , Z−1 and z, where c is an absolute constant.
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Proof. As PΦ−1
= Φ+

−1Φ−1, we have∥∥∥PΦ−1

(
ϕ̃(V z)− µ1V z

)∥∥∥
2
≤
∥∥Φ+

−1

∥∥
op

∥∥∥Φ−1

(
ϕ̃(V z)− µ1V z

)∥∥∥
2

= O


∥∥∥Φ−1

(
ϕ̃(V z)− µ1V z

)∥∥∥
2√

k

 ,
(90)

where the last equality holds with probability at least 1− exp
(
−c log2 N

)
over V and Z−1, because of Lemma D.2.

An application of Lemma C.3 with t = N gives

|ui − EV [ui]| = O
(√

k logN
)
, (91)

where ui is the i-th entry of the vector u := Φ−1

(
ϕ̃(V z)− µ1V z

)
. This can be done since both ϕ and ϕ̃ ≡ ϕ− µ0 are

Lipschitz, vj ∼ N (0, I/d), and ∥z∥2 = ∥zi+1∥2 =
√
d. Performing a union bound over all entries of u, we can guarantee

that the previous equation holds for every 1 ≤ i ≤ N − 1, with probability at least 1 − (N − 1) exp(−c log2 N) ≥
1− exp(−c1 log

2 N). Thus, we have

∥u− EV [u]∥2 = O
(√

k
√
N logN

)
= o(k), (92)

where the last equality holds because of Assumption 5.2.

Note that the function f(x) := ϕ̃(x) − µ1x has the first 2 Hermite coefficients equal to 0. Hence, as v⊤i z and v⊤i zi are
standard Gaussian random variables with correlation z⊤zi

∥z∥2∥zi∥2
, we have

|EV [ui]| ≤ k

+∞∑
l=2

µ2
l

( ∣∣z⊤zi∣∣
∥z∥2 ∥zi∥2

)l

≤ kmaxl µ
2
l

+∞∑
l=2

( ∣∣z⊤zi∣∣
∥z∥2 ∥zi∥2

)l

= kmaxl µ
2
l

(
z⊤zi

∥z∥2 ∥zi∥2

)2
1

1− |z⊤zi|
∥z∥2∥zi∥2

≤ 2kmaxl µ
2
l

(
z⊤zi

∥z∥2 ∥zi∥2

)2

= O
(
k log2 N

d

)
,

(93)

where the last inequality holds with probability at least 1− exp
(
−c log2 N

)
over z and zi, as they are two independent,

mean-0, sub-Gaussian random vectors. Again, performing a union bound over all entries of EV [u], we can guarantee
that the previous equation holds for every 1 ≤ i ≤ N − 1, with probability at least 1 − (N − 1) exp(−c log2 N) ≥
1− exp(−c1 log

2 N). Then, we have

∥EV [u]∥2 = O
(√

N
k log2 N

d

)
= o(k), (94)

where the last equality is a consequence of Assumption 5.2.

Finally, (92) and (94) give ∥∥∥Φ−1

(
ϕ̃(V z)− µ1V z

)∥∥∥
2
≤ ∥EV [u]∥2 + ∥u− EV [u]∥2 = o(k), (95)

which plugged in (90) readily provides the thesis.
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Lemma D.5. We have ∣∣∣∣(V zs1)
⊤
P⊥
Φ−1

V z1 −
∥∥∥P⊥

Φ−1
Vyy1

∥∥∥2
2

∣∣∣∣ = o(k), (96)

with probability at least 1− exp(−c log2 N) over x, z1 and V , where c is an absolute constant.

Proof. We have
V zs1 = Vxx+ Vyy1, V z1 = Vxx1 + Vyy1. (97)

Thus, we can write ∣∣∣∣(V zs1)
⊤
P⊥
Φ−1

V z1 −
∥∥∥P⊥

Φ−1
Vyy1

∥∥∥2
2

∣∣∣∣ = ∣∣∣(Vxx)⊤ P⊥
Φ−1

V z1 + (Vyy1)
⊤
P⊥
Φ−1

Vxx1

∣∣∣
≤
∣∣∣x⊤V ⊤

x P⊥
Φ−1

V z1

∣∣∣+ ∣∣∣y⊤1 V ⊤
y P⊥

Φ−1
Vxx1

∣∣∣ . (98)

Let’s look at the first term of the RHS of the previous equation. Notice that ∥V ∥op = O
(√

k/d+ 1
)

with probability at

least 1 − 2e−cd, because of Theorem 4.4.5 of (Vershynin, 2018). We condition on such event until the end of the proof,
which also implies having the same bound on ∥Vx∥op and ∥Vy∥op. Since x is a mean-0 sub-Gaussian vector, independent
from V ⊤

x P⊥
Φ−1

V z1, we have ∣∣∣x⊤V ⊤
x P⊥

Φ−1
V z1

∣∣∣ ≤ logN
∥∥∥V ⊤

x P⊥
Φ−1

V z1

∥∥∥
2

≤ logN ∥Vx∥op

∥∥∥P⊥
Φ−1

∥∥∥
op
∥V ∥op ∥z1∥

= O
(
logN

(
k

d
+ 1

)√
d

)
= o(k),

(99)

where the first inequality holds with probability at least 1 − exp(−c log2 N) over x, and the last line holds because∥∥∥P⊥
Φ−1

∥∥∥
op

≤ 1, ∥z1∥ =
√
d, and because of Assumption 5.2.

Similarly, exploiting the independence between x1 and y1, we can prove that
∣∣∣y⊤1 V ⊤

y P⊥
Φ−1

Vxx1

∣∣∣ = o(k), with probability

at least 1− exp(−c log2 N) over y1. Plugging this and (99) in (98) readily gives the thesis.

Lemma D.6. We have ∣∣∣∣∣φ(zs1)⊤P⊥
Φ−1

φ(z1)−

(
k

(
+∞∑
l=2

µ2
l α

l

)
+ µ2

1

∥∥∥P⊥
Φ−1

Vyy1

∥∥∥2
2

)∣∣∣∣∣ = o(k), (100)

with probability at least 1− exp(−c log2 N) over V and Z, where c is an absolute constant.

Proof. An application of Lemma C.3 and Assumption 5.2 gives

∥φ(z1)∥2 = O
(√

k
)
, ∥φ(zs1)∥2 = O

(√
k
)
,

∥V z1∥2 = O
(√

k
)
, ∥V zs1∥2 = O

(√
k
)
,

(101)

with probability at least 1 − exp(−c1 log
2 N) over V , where c1 is an absolute constant. We condition on such high

probability event until the end of the proof.

Let’s suppose µ0 ̸= 0. Then, we have∣∣∣φ(zs1)⊤P⊥
Φ−1

φ(z1)− ϕ̃(V zs1)
⊤P⊥

Φ−1
ϕ̃(V z1)

∣∣∣ = o(k), (102)
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with probability at least 1− exp(c2 log
2 N) over V and Z, because of (101) and Lemma D.3. Note that (102) trivially holds

even when µ0 = 0, as ϕ ≡ ϕ̃. Thus, (102) is true in any case with probability at least 1− exp(c2 log
2 N) over V and Z.

Furthermore, because of (101) and Lemma D.4, we have∣∣∣ϕ̃(V zs1)
⊤PΦ−1

ϕ̃(V z1)− µ2
1(V zs1)

⊤PΦ−1
(V z1)

∣∣∣ = o(k), (103)

with probability at least 1− exp(−c3 log
2 N) over V and Z.

Thus, putting (102) and (103) together, and using Lemma D.5, we get∣∣∣∣φ(zs1)⊤P⊥
Φ−1

φ(z1)−
(
ϕ̃(V zs1)

⊤ϕ̃(V z1)− µ2
1(V zs1)

⊤(V z1) + µ2
1

∥∥∥P⊥
Φ−1

Vyy1

∥∥∥2
2

)∣∣∣∣
≤
∣∣∣φ(zs1)⊤P⊥

Φ−1
φ(z1)− ϕ̃(V zs1)

⊤P⊥
Φ−1

ϕ̃(V z1)
∣∣∣

+
∣∣∣−ϕ̃(V zs1)

⊤PΦ−1
ϕ̃(V z1) + µ2

1(V zs1)
⊤PΦ−1

(V z1)
∣∣∣

+

∣∣∣∣µ2
1(V zs1)

⊤P⊥
Φ−1

(V z1)− µ2
1

∥∥∥P⊥
Φ−1

Vyy1

∥∥∥2
2

∣∣∣∣ = o(k),

(104)

with probability at least 1 − exp(−c4 log
2 N) over V and X and x. To conclude we apply Lemma C.4 setting t = N ,

together with Assumption 5.2, to get∣∣∣∣∣ϕ̃(V zs1)
⊤ϕ̃(V z1)− k

(
+∞∑
l=1

µ2
l α

l

)∣∣∣∣∣ = O

(
√
k

(√
k

d
+ 1

)
logN

)
= o(k), (105)

and ∣∣µ2
1(V zs1)

⊤(V z1)− kµ2
1α
∣∣ = O

(
√
k

(√
k

d
+ 1

)
logN

)
= o(k), (106)

which jointly hold with probability at least 1− exp(−c5 log
2 N) over V and x.

Applying the triangle inequality to (104), (105), and (106), we get the thesis.

Lemma D.7. We have that ∣∣∣∣∥∥∥P⊥
Φ−1

φ(z1)
∥∥∥2
2
− Ez1

[∥∥∥P⊥
Φ−1

φ(z1)
∥∥∥2
2

]∣∣∣∣ = o(k), (107)∣∣∣φ(zs1)⊤P⊥
Φ−1

φ(z1)− Ez1,zs1
[
φ(zs1)

⊤P⊥
Φ−1

φ(z1)
]∣∣∣ = o(k), (108)

jointly hold with probability at least 1− exp(−c log2 N) over z1, V and x, where c is an absolute constant.

Proof. Let’s condition until the end of the proof on both ∥Vx∥op and ∥Vy∥op to be O
(√

k/d+ 1
)

, which happens with

probability at least 1− e−c1d by Theorem 4.4.5 of (Vershynin, 2018). This also implies that ∥V ∥op = O
(√

k/d+ 1
)

.

We indicate with ν := Ez1 [φ(z1)] = Ezs1 [φ(z
s
1)] ∈ Rk, and with φ̂(z) := φ(z)− ν. Note that, as φ is a C

(√
k/d+ 1

)
-

Lipschitz function, for some constant C, and as z1 is Lipschitz concentrated, by Assumption5.2, we have

|∥φ(z1)∥2 − Ez1 [∥φ(z1)∥2]| = o
(√

k
)
, (109)

with probability at least 1−exp(−c2 log
2 N) over z1 and V . In addition, by the last statement of Lemma C.3 and Assumption

5.2, we have that ∥φ(z1)∥2 = O
(√

k
)

with probability 1−exp(−c3 log
2 N) over V . Thus, taking the intersection between

these two events, we have
Ez1 [∥φ(z1)∥2] = O

(√
k
)
, (110)
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with probability at least 1− exp(−c4 log
2 N) over z1 and V . As this statement is independent of z1, it holds with the same

probability just over the probability space of V . Then, by Jensen inequality, we have

∥ν∥2 = ∥Ez1 [φ(z1)]∥2 ≤ Ez1 [∥φ(z1)∥2] = O
(√

k
)
. (111)

We can now rewrite the LHS of the first statement as∣∣∣∣∥∥∥P⊥
Φ−1

φ(z1)
∥∥∥2
2
− Ez1

[∥∥∥P⊥
Φ−1

φ(z1)
∥∥∥2
2

]∣∣∣∣
=

∣∣∣∣∥∥∥P⊥
Φ−1

(φ̂(z1) + ν)
∥∥∥2
2
− Ez1

[∥∥∥P⊥
Φ−1

(φ̂(z1) + ν)
∥∥∥2
2

]∣∣∣∣
=
∣∣∣φ̂(z1)⊤P⊥

Φ−1
φ̂(z1) + 2ν⊤P⊥

Φ−1
φ̂(z1)− Ez1

[
φ̂(z1)

⊤P⊥
Φ−1

φ̂(z1)
]∣∣∣

≤
∣∣∣φ̂(z1)⊤P⊥

Φ−1
φ̂(z1)− Ez1

[
φ̂(z1)

⊤P⊥
Φ−1

φ̂(z1)
]∣∣∣+ 2

∣∣∣ν⊤P⊥
Φ−1

φ̂(z1)
∣∣∣ .

(112)

The second term is the inner product between φ̂(z1), a mean-0 sub-Gaussian vector (in the probability space of z1) such that
∥φ̂(z1)∥ψ2

= O
(√

k/d+ 1
)

, and the independent vector P⊥
Φ−1

ν, such that
∥∥∥P⊥

Φ−1
ν
∥∥∥
2
≤ ∥ν∥2 = O

(√
k
)

, because of
(111). Thus, by Assumption5.2, we have that ∣∣∣ν⊤P⊥

Φ−1
φ̂(z1)

∣∣∣ = o(k), (113)

with probability at least 1 − exp(−c5 log
2 N) over z1 and V . Then, as

(√
k/d+ 1

)−1

φ̂(z1) is a mean-0, Lipschitz
concentrated random vector (in the probability space of z1), by the general version of the Hanson-Wright inequality given
by Theorem 2.3 in (Adamczak, 2015), we can write

P
(∣∣∣∣∥∥∥P⊥

Φ−1
φ̂(z1)

∥∥∥2
2
− Ez1

[∥∥∥P⊥
Φ−1

φ̂(z1)
∥∥∥2
2

]∣∣∣∣ ≥ k/ logN

)

≤ 2 exp

−c6 min

 k2

log2 N ((k/d)2 + 1)
∥∥∥P⊥

Φ−1

∥∥∥2
F

,
k

logN (k/d+ 1)
∥∥∥P⊥

Φ−1

∥∥∥
op




≤ 2 exp

(
−c6 min

(
k

log2 N ((k/d)2 + 1)
,

k

logN (k/d+ 1)

))
≤ exp

(
−c7 log

2 N
)
,

(114)

where the last inequality comes from Assumption 5.2.This, together with (112) and (113), proves the first part of the
statement.

For the second part of the statement, we have∣∣∣φ(zs1)⊤P⊥
Φ−1

φ(z1)− Ez1,zs1
[
φ(zs1)

⊤P⊥
Φ−1

φ(z1)
]∣∣∣

≤
∣∣∣φ̂(zs1)⊤P⊥

Φ−1
φ̂(z1)− Ez1,zs1

[
φ̂(zs1)

⊤P⊥
Φ−1

φ̂(z1)
]∣∣∣+ ∣∣∣ν⊤P⊥

Φ−1
φ̂(z1)

∣∣∣+ ∣∣∣ν⊤P⊥
Φ−1

φ̂(zs1)
∣∣∣ . (115)

Following the same argument that led to (113), we obtain∣∣∣ν⊤P⊥
Φ−1

φ̂(zs1)
∣∣∣ = o(k), (116)

with probability at least 1− exp(−c8 log
2 N) over zs1 and V . Let us set

P2 :=
1

2

(
0 P⊥

Φ−1

P⊥
Φ−1

0

)
, V2 :=

(
Vx Vy 0
0 Vy Vx

)
, (117)
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and
φ̂2 := ϕ

(
V2[x1, y1, x]

⊤)− Ex1,y1,x

[
ϕ
(
V2[x1, y1, x]

⊤)] ≡ [φ̂(z1), φ̂(z
s
1)]

⊤. (118)

We have that ∥P2∥op ≤ 1, ∥P2∥2F ≤ k, ∥V2∥op ≤ 2 ∥Vx∥op + 2 ∥Vy∥op = O
(√

k/d+ 1
)

, and that [x1, y1, x]
⊤ is a

Lipschitz concentrated random vector in the joint probability space of z1 and zs1, which follows from applying Lemma C.2
twice. Also, we have

φ̂(zs1)
⊤P⊥

Φ−1
φ̂(z1) = φ̂⊤

2 P2φ̂2. (119)

Thus, as
(√

k/d+ 1
)−1

φ̂2 is a mean-0, Lipschitz concentrated random vector (in the probability space of z1 and zs1),
again by the general version of the Hanson-Wright inequality given by Theorem 2.3 in (Adamczak, 2015), we can write

P
(∣∣φ̂⊤

2 P2φ̂2 − Ez1,zs1
[
φ̂⊤
2 P2φ̂2

]∣∣ ≥ k/ logN
)

≤ 2 exp

(
−c9 min

(
k2

log2 N ((k/d)2 + 1) ∥P2∥2F
,

k

logN (k/d+ 1) ∥P2∥op

))

≤ 2 exp

(
−c9 min

(
k

log2 N ((k/d)2 + 1)
,

k

logN (k/d+ 1)

))
≤ exp

(
−c10 log

2 N
)
,

(120)

where the last inequality comes from Assumption 5.2. This, together with (115), (113), (116), and (119), proves the second
part of the statement, and therefore the desired result.

Finally, we are ready to give the proof of Theorem 5.4.

Proof of Theorem 5.4. We will prove the statement for the following definition of γRF, independent from z1 and zs1,

γRF :=
Ez1,zs1

[
φ(zs1)

⊤P⊥
Φ−1

φ(z1)
]

Ez1
[∥∥∥P⊥

Φ−1
φ(z1)

∥∥∥2
2

] . (121)

By Lemma B.1 and D.2, we have ∥∥∥P⊥
Φ−1

φ(z)
∥∥∥2
2
= Ω(k) (122)

with probability at least 1− exp(−c1 log
2 N) over V , Z−1 and z. This, together with Lemma D.7, gives∣∣∣∣∣∣∣∣

φ(zs1)
⊤P⊥

Φ−1
φ(z1)∥∥∥P⊥

Φ−1
φ(z1)

∥∥∥2
2

−
Ez1,zs1

[
φ(zs1)

⊤P⊥
Φ−1

φ(z1)
]

Ez1
[∥∥∥P⊥

Φ−1
φ(z1)

∥∥∥2
2

]
∣∣∣∣∣∣∣∣ = o(1), (123)

with probability at least 1− exp(−c2 log
2 N) over V , Z and x, which proves the first part of the statement.

The upper-bound on γRF can be obtained applying Cauchy-Schwarz twice

Ez1,zs1
[
φ(zs1)

⊤P⊥
Φ−1

φ(z1)
]

Ez1
[∥∥∥P⊥

Φ−1
φ(z1)

∥∥∥2
2

] ≤
Ez1,zs1

[∥∥∥P⊥
Φ−1

φ(zs1)
∥∥∥
2

∥∥∥P⊥
Φ−1

φ(z1)
∥∥∥
2

]
Ez1

[∥∥∥P⊥
Φ−1

φ(z1)
∥∥∥2
2

]

≤

√
Ezs1

[∥∥∥P⊥
Φ−1

φ(zs1)
∥∥∥2
2

]√
Ez1

[∥∥∥P⊥
Φ−1

φ(z1)
∥∥∥2
2

]
Ez1

[∥∥∥P⊥
Φ−1

φ(z1)
∥∥∥2
2

] = 1.

(124)
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Let’s now focus on the lower bound. By Assumption5.2 and Lemma C.4 (in which we consider the degenerate case α = 1
and set t = N ), we have ∣∣∣∣∣∥∥∥ϕ̃ (V z1)

∥∥∥2
2
− k

+∞∑
l=1

µ2
l

∣∣∣∣∣ = o(k), (125)

with probability at least 1− exp(−c3 log
2 N) over V and z1. Then, a few applications of the triangle inequality give

Ez1,zs1
[
φ(zs1)

⊤P⊥
Φ−1

φ(z1)
]

Ez1
[∥∥∥P⊥

Φ−1
φ(z1)

∥∥∥2
2

] ≥
φ(zs1)

⊤P⊥
Φ−1

φ(z1)∥∥∥P⊥
Φ−1

φ(z1)
∥∥∥2
2

− o(1)

≥
φ(zs1)

⊤P⊥
Φ−1

φ(z1)∥∥∥P⊥
Φ−1

φ̃(z1)
∥∥∥2
2

− o(1)

≥
k
(∑+∞

l=2 µ2
l α

l
)
+ µ2

1

∥∥∥P⊥
Φ−1

Vyy1

∥∥∥2
2

∥φ̃(z1)∥22
− o(1)

≥
k
(∑+∞

l=2 µ2
l α

l
)
+ µ2

1

∥∥∥P⊥
Φ−1

Vyy1

∥∥∥2
2

k
∑+∞
l=1 µ2

l

− o(1)

≥
∑+∞
l=2 µ2

l α
l∑+∞

l=1 µ2
l

− o(1),

(126)

where the first inequality is a consequence of (123), the second of Lemma D.3 and (122), the third of Lemma D.6 and again
(122), and the fourth of (125), and they jointly hold with probability 1− exp(−c4 log

2 N) over V , Z−1 and z1. Again, as
the statement does not depend on z1, we can conclude that it holds with the same probability only over the probability
spaces of V and Z−1, and the thesis readily follows.

E. Proofs for NTK features
In this section, we will indicate with Z ∈ RN×d the data matrix, such that its rows are sampled independently from PZ (see
Assumption 5.1). We denote by W ∈ Rk×d the weight matrix at initialization, such that Wij ∼i.i.d. N (0, 1/d). Thus, the
feature map is given by (see (24))

φ(z) := z ⊗ ϕ′(Wz) ∈ Rdk, (127)

where ϕ′ is the derivative of the activation function ϕ, applied component-wise to the vector Wz. We use the shorthands
Φ := Z ∗ ϕ′(ZW⊤) ∈ RN×p and K := ΦΦ⊤ ∈ RN×N , where ∗ denotes the Khatri-Rao product, defined in Appendix A.
We indicate with Φ−1 ∈ R(N−1)×k the matrix Φ without the first row, and we define K−1 := Φ−1Φ

⊤
−1. We call PΦ the

projector over the span of the rows of Φ, and PΦ−1 the projector over the span of the rows of Φ−1. We use the notations
φ̃(z) := φ(z) − EW [φ(z)] and Φ̃−1 := Φ−1 − EW [Φ−1] to indicate the centered feature map and matrix respectively,
where the centering is with respect to W . We indicate with µ′

l the l-th Hermite coefficient of ϕ′. We use the notation
zs1 = [x, y1], where x ∼ PX is sampled independently from V and Z. We define α = dy/d. Throughout this section, for
compactness, we drop the subscripts “NTK” from these quantities, as we will only treat the proofs related to Section 6.
Again for the sake of compactness, we will not re-introduce such quantities in the statements or the proofs of the following
lemmas.

The content of this section can be summarized as follows:

• In Lemma E.1, we prove the lower bound on the smallest eigenvalue of K, adapting to our settings the main result of
(Bombari et al., 2022b).

• In Lemma E.5, we treat separately a term that derives from EW [ϕ′(Wz)] = µ′
01k, showing that we can center the

derivative of the activation function (Lemma E.9), without changing our final statement in Theorem 6.3. This step
is necessary only if µ′

0 ̸= 0. Our proof tackles the problem proving the thesis on a set of “perturbed” inputs Z̄−1(δ)
(Lemma E.4), critically exploiting the non degenerate behaviour of their rows (Lemma E.3), and transfers the result on
the original term, using continuity arguments with respect to the perturbation (Lemma E.2).
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• In Lemma E.8, we show that the centered features φ̃(z1) and φ̃(zs1) have a negligible component in the space spanned
by the rows of Φ−1. To achieve this, we exploit the bound proved in Lemma E.7.

• To conclude, we prove Theorem 6.3, exploiting also the concentration result provided in Lemma E.6.

Lemma E.1. We have that
λmin (K) = Ω(kd), (128)

with probability at least 1−Ne−c log
2 k − e−c log

2N over Z and W , where c is an absolute constant.

Proof. The result follows from Theorem 3.1 of (Bombari et al., 2022b). Notice that our assumptions on the data distribution
PZ are stronger, and that our initialization of the very last layer (which differs from the Gaussian initialization in (Bombari
et al., 2022b)) does not change the result. Assumption 6.1, i.e., k = O (d), satisfies the loose pyramidal topology condition
(cf. Assumption 2.4 in (Bombari et al., 2022b)), and Assumption 6.1 is the same as Assumption 2.5 in (Bombari et al.,
2022b). An important difference is that we do not assume the activation function ϕ to be Lipschitz anymore. This, however,
stops being a necessary assumption since we are working with a 2-layer neural network, and ϕ doesn’t appear in the
expression of NTK.

Lemma E.2. Let A ∈ R(N−1)×d be a generic matrix, and let Z̄−1(δ) and Φ̄−1(δ) be defined as

Z̄−1(δ) := Z−1 + δA, (129)

Φ̄−1(δ) := Z̄−1(δ) ∗ ϕ′ (Z−1W
⊤) . (130)

Let P̄Φ−1(δ) ∈ Rdk×dk be the projector over the Span of the rows of Φ̄−1(δ). Then, we have that P̄⊥
Φ−1

(δ) is continuous in

δ = 0 with probability at least 1−Ne−c log
2 k − e−c log

2N over Z and W , where c is an absolute constant and where the
continuity is with respect to ∥·∥op.

Proof. In this proof, when we say that a matrix is continuous with respect to δ, we always intend with respect to the operator
norm ∥·∥op. Then, Φ̄−1(δ) is continuous in 0, as∥∥Φ̄−1(δ)− Φ̄−1(0)

∥∥
op =

∥∥δA ∗ ϕ′ (Z−1W
⊤)∥∥

op ≤ δ ∥A∥op max2≤i≤N ∥ϕ′ (Wzi)∥2 , (131)

where the second step follows from Equation (3.7.13) in (Johnson, 1990).

By Weyl’s inequality, this also implies that λmin

(
Φ̄−1(δ)Φ̄−1(δ)

⊤) is continuous in δ = 0. Recall that, by Lemma E.1,
det
(
Φ̄−1(0)Φ̄−1(0)

⊤) ≡ det
(
Φ−1Φ

⊤
−1

)
̸= 0 with probability at least 1−Ne−c log

2 k − e−c log
2N over Z and W . This

implies that
(
Φ̄−1(δ)Φ̄−1(δ)

⊤)−1
is also continuous, as for every invertible matrix M we have M−1 = Adj(M)/ det(M)

(where Adj(M) denotes the Adjugate of the matrix M ), and both Adj(·) and det(·) are continuous mappings. Thus, as
P̄Φ−1

(0) = Φ̄−1(0)
⊤ (Φ̄−1(0)Φ̄−1(0)

⊤)−1
Φ̄−1(0) (see (38)), we also have the continuity of P̄Φ−1

(δ) in δ = 0, which
gives the thesis.

Lemma E.3. Let A ∈ R(N−1)×d be a matrix with entries sampled independently (between each other and from everything
else) from a standard Gaussian distribution. Then, for every δ > 0, with probability 1 over A, the rows of Z̄−1 := Z−1+ δA
span Rd.

Proof. As N − 1 ≥ d, by Assumption 6.1,negating the thesis would imply that the rows of Z̄−1 are linearly dependent,
and that they belong to a subspace with dimension at most d − 1. This would imply that there exists a row of Z̄−1, call
it z̄j , such that z̄j belongs to the space spanned by all the other rows of Z̄−1, with dimension at most d− 1. This means
that Aj: has to belong to an affine space with the same dimension, which we can consider fixed, as it’s not a function of
the random vector Aj:, but only of Z−1 and {Ai:}i ̸=j . As the entries of Aj: are sampled independently from a standard
Gaussian distribution, this happens with probability 0.

27



How Spurious Features are Memorized: Precise Analysis for Random and NTK Features

Lemma E.4. Let A ∈ R(N−1)×d be a matrix with entries sampled independently (between each other and from everything
else) from a standard Gaussian distribution. Let Z̄−1(δ) := Z−1 + δA and Φ̄−1(δ) := Z̄−1(δ) ∗ ϕ′ (Z−1W

⊤). Let
P̄Φ−1(δ) ∈ Rdk×dk be the projector over the Span of the rows of Φ̄−1(δ). Let µ′

0 ̸= 0. Then, for z ∼ PZ , and for any δ > 0,
we have ∥∥∥P̄⊥

Φ−1
(δ) (z ⊗ 1k)

∥∥∥
2
= o(

√
dk), (132)

with probability at least 1− exp(−c log2 N) over Z, W , and A, where c is an absolute constant.

Proof. Let B−1 := ϕ′(Z−1W
⊤) ∈ R(N−1)×k. Notice that, for any ζ ∈ RN−1, the following identity holds

Φ̄⊤
−1(δ)ζ =

(
Z̄−1(δ) ∗B−1

)⊤
ζ =

(
Z̄⊤
−1(δ)ζ

)
⊗
(
B⊤

−11N−1

)
. (133)

Note that B⊤
−1 = µ′

01k1
⊤
N−1 + B̃⊤

−1, where B̃⊤
−1 = ϕ′(WZ⊤

−1)−EW
[
ϕ′(WZ⊤

−1)
]

is a k× (N − 1) matrix with i.i.d. and
mean-0 rows. For an argument equivalent to the one used for (84) and (85), we have∥∥∥B̃⊤

−1

∥∥∥
op

= O
((√

k +
√
N
)(√

N/d+ 1
))

, (134)

with probability at least 1− exp(−c log2 N) over Z−1 and W . Thus, we can write

B⊤
−1

1N−1

µ′
0(N − 1)

=
(
µ′
01k1

⊤
N−1 + B̃⊤

−1

) 1N−1

µ′
0(N − 1)

= 1k + B̃⊤
−1

1N−1

µ′
0(N − 1)

=: 1k + v, (135)

where we have

∥v∥2 ≤
∥∥∥B̃⊤

−1

∥∥∥
op

∥∥∥∥ 1N−1

µ′
0(N − 1)

∥∥∥∥
2

= O
((√

k/N + 1
)(√

N/d+ 1
))

= o(
√
k), (136)

where the last step is a consequence of Assumption 6.1. Plugging (135) in (133) we get

1

µ′
0(N − 1)

Φ̄⊤
−1(δ)ζ =

1

µ′
0(N − 1)

(
Z̄−1(δ) ∗B−1

)⊤
ζ =

(
Z̄⊤
−1(δ)ζ

)
⊗ (1k + v) . (137)

By Lemma E.3, we have that the rows of Z̄−1(δ) span Rd, with probability 1 over A. Thus, conditioning on this event, we
can set ζ to be a vector such that z = Z̄⊤

−1(δ)ζ. We can therefore rewrite the previous equation as

1

µ′
0(N − 1)

Φ̄⊤
−1(δ)ζ = z ⊗ 1k + z ⊗ v. (138)

Thus, we can conclude ∥∥∥P̄⊥
Φ−1

(δ) (z ⊗ 1k)
∥∥∥
2
=

∥∥∥∥P⊥
Φ−1

(
Φ⊤

−1(δ)ζ

µ′
0(N − 1)

− z ⊗ v

)∥∥∥∥
2

≤
∥∥∥∥P̄⊥

Φ−1
(δ)Φ⊤

−1(δ)
ζ

µ′
0(N − 1)

∥∥∥∥
2

+ ∥z ⊗ v∥2

= ∥z∥2 ∥v∥2 = o(
√
dk),

(139)

where in the second step we use the triangle inequality, in the third step we use that Φ⊤
−1(δ) = P̄Φ−1

(δ)Φ⊤
−1(δ), and in the

last step we use (136). The desired result readily follows.

Lemma E.5. Let µ′
0 ̸= 0. Then, for any z ∈ Rd, we have∥∥∥P⊥

Φ−1
(z ⊗ 1k)

∥∥∥
2
= o(

√
dk), (140)

with probability at least 1−Ne−c log
2 k − e−c log

2N over Z and W , where c is an absolute constant.
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Proof. Let A ∈ R(N−1)×d be a matrix with entries sampled independently (between each other and from everything
else) from a standard Gaussian distribution. Let Z̄−1(δ) := Z−1 + δA and Φ̄−1(δ) := Z̄−1(δ) ∗ ϕ′ (Z−1W

⊤). Let
P̄Φ−1(δ) ∈ Rdk×dk be the projector over the Span of the rows of Φ̄−1(δ).

By triangle inequality, we can write∥∥∥P⊥
Φ−1

(z ⊗ 1k)
∥∥∥
2
≤
∥∥∥P⊥

Φ−1
− P̄⊥

Φ−1
(δ)
∥∥∥

op
∥z ⊗ 1k∥2 +

∥∥∥P̄⊥
Φ−1

(δ) (z ⊗ 1k)
∥∥∥
2
. (141)

Because of Lemma E.2, with probability at least 1 − Ne−c log
2 k − e−c log

2N over Z and W , P̄⊥
Φ−1

(δ) is continuous in
δ = 0, with respect to ∥·∥op. Thus, there exists δ∗ > 0 such that, for every δ ∈ [0, δ∗],∥∥∥P⊥

Φ−1
− P̄⊥

Φ−1
(δ)
∥∥∥

op
≡
∥∥∥P̄⊥

Φ−1
(0)− P̄⊥

Φ−1
(δ)
∥∥∥

op
<

1

N
. (142)

Hence, setting δ = δ∗ in (141), we get∥∥∥P⊥
Φ−1

(z ⊗ 1k)
∥∥∥
2
≤
∥∥∥P⊥

Φ−1
− P̄⊥

Φ−1
(δ∗)

∥∥∥
op
∥z ⊗ 1k∥2 +

∥∥∥P̄⊥
Φ−1

(δ∗) (z ⊗ 1k)
∥∥∥
2

≤ ∥z∥2 ∥1k∥2 /N +
∥∥∥P̄⊥

Φ−1
(δ∗) (z ⊗ 1k)

∥∥∥
2

= o(
√
dk),

(143)

where the last step is a consequence of Lemma E.4, and it holds with probability at least 1− exp(−c log2 N) over Z, W ,
and A. As the LHS of the previous equation doesn’t depend on A, the statements holds with the same probability, just over
the probability spaces of Z and W , which gives the desired result.

Lemma E.6. We have ∣∣∣∣∣ φ̃(zs1)⊤φ̃(z1)∥φ̃(z1)∥22
− α

∑+∞
l=1 µ′

l
2
αi∑+∞

l=1 µ′
l
2

∣∣∣∣∣ = o(1), (144)

with probability at least 1− exp(−c log2 N)− exp(−c log2 k) over W and z1, where c is an absolute constant. With the
same probability, we also have

φ̃(zs1)
⊤φ̃(z1) = Θ(dk), ∥φ̃(z1)∥22 = Θ(dk). (145)

Proof. We have

∥φ̃(z1)∥22 =
∥∥∥z1 ⊗ ϕ̃′ (Wz1)

∥∥∥2
2
= ∥z1∥22

∥∥∥ϕ̃′ (Wz1)
∥∥∥2
2
= d

∥∥∥ϕ̃′ (Wz1)
∥∥∥2
2
. (146)

By Assumption 6.1 and Lemma C.4 (in which we consider the degenerate case α = 1 and set t = k), we have∣∣∣∣∣∥∥∥ϕ̃′ (Wz1)
∥∥∥2
2
− k

+∞∑
l=1

µ′
l
2

∣∣∣∣∣ = o(k), (147)

with probability at least 1− exp(−c log2 k) over W and z1. Thus, we have∣∣∣∣∣∥φ̃(z1)∥22 − dk

+∞∑
l=1

µ′
l
2

∣∣∣∣∣ = o(dk). (148)

Notice that the second term in the modulus is Θ(dk), since the µ′
l-s cannot be all 0, because of Assumption 6.2; this shows

that ∥φ̃(z1)∥22 = Θ(dk).

Similarly, we can write
φ̃(zs1)

⊤φ̃(z1) =
(
z⊤1 zs1

) (
ϕ̃′ (Wz1)

⊤
ϕ̃′ (Wzs1)

)
. (149)

We have ∣∣z⊤1 zs1 − αd
∣∣ = ∣∣x⊤

1 x
∣∣ ≤√dx log d = o(d), (150)
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where the inequality holds with probability at least 1− exp(−c1 log
2 d) ≥ 1− exp(−c2 log

2 N) over x1, as we are taking
the inner product of two independent and sub-Gaussian vectors with norm

√
dx. Furthermore, again by Assumption6.1 and

Lemma C.4, we have ∣∣∣∣∣ϕ̃′ (Wz1)
⊤
ϕ̃′ (Wzs1)− k

+∞∑
l=1

µ′
l
2
αl

∣∣∣∣∣ = o(k), (151)

with probability at least 1− exp(−c3 log
2 k) over W and z1. Notice that the second term in the modulus is Θ(k), because

of Assumption 6.2.

Thus, putting (149), (150) and (151) together, we get∣∣∣∣∣φ̃(zs1)⊤φ̃(z1)− dkα

+∞∑
l=1

µ′
l
2
αl

∣∣∣∣∣ = o(dk), (152)

with probability at least 1− exp(−c3 log
2 k)− exp(−c2 log

2 N) over W and z1; this shows that φ̃(zs1)
⊤φ̃(z1) = Θ(dk).

Finally, merging (152) with (148) and applying triangle inequality, (144) follows and the proof is complete.

Lemma E.7. Let z ∼ PZ be sampled independently from Z−1. Then,

∥Φ−1φ̃(z)∥2 = o (dk) , (153)

with probability at least 1− exp(−c log2 N) over W and z, where c is an absolute constant.

Proof. Let’s look at the i-th entry of the vector Φ−1φ̃(z), i.e.,

φ(zi+1)
⊤φ̃(z) =

(
z⊤i+1z

) (
ϕ′(Wzi+1)

⊤ϕ̃′(Wz)
)
. (154)

As z and zi+1 are sub-Gaussian and independent with norm
√
d, we can write

∣∣z⊤zi+1

∣∣ = O
(√

d logN
)

with probability

at least 1− exp(−c log2 N) over z. We will condition on such high probability event until the end of the proof.

By Lemma C.3, setting t = N , we have∣∣∣ϕ′(Wzi+1)
⊤ϕ̃′(Wz)− EW

[
ϕ′(Wzi+1)

⊤ϕ̃′(Wz)
]∣∣∣ = O

(√
k logN

)
, (155)

with probability at least 1− exp(−c1 log
2 N) over W . Exploiting the Hermite expansion of ϕ′ and ϕ̃′, we have

∣∣∣EW [ϕ′(Wzi+1)
⊤ϕ̃′(Wz)

]∣∣∣ ≤ k

+∞∑
l=1

µ′
l
2

( ∣∣z⊤i+1z
∣∣

∥zi+1∥2 ∥z∥2

)l

≤ kmaxl µ
′
l
2

+∞∑
l=1

( ∣∣z⊤i+1z
∣∣

∥zi+1∥2 ∥z∥2

)l

= kmaxl µ
′
l
2

∣∣z⊤i+1z
∣∣

∥zi+1∥2 ∥z∥2
1

1− |z⊤i+1z|
∥zi+1∥2∥z∥2

≤ 2kmaxl µ
′
l
2

∣∣z⊤i+1z
∣∣

∥zi+1∥2 ∥z∥2
= O

(
k logN√

d

)
.

(156)

Putting together (155) and (156), and applying triangle inequality, we get∣∣∣ϕ′(Wzi+1)
⊤ϕ̃′(Wz)

∣∣∣ = O
(√

k logN +
k logN√

d

)
= O

(√
k logN

)
, (157)
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where the last step is a consequence of Assumption 6.1.Comparing this last result with (154), we obtain∣∣φ(zi+1)
⊤φ̃(z)

∣∣ = O
(√

dk log2 N
)
, (158)

with probability at least 1− exp(−c2 log
2 N) over W and z.

We want the previous equation to hold for all 1 ≤ i ≤ N − 1. Performing a union bound, we have that this is true with
probability at least 1− (N − 1) exp(−c2 log

2 N) ≥ 1− exp(−c3 log
2 N) over W and z. Thus, with such probability, we

have
∥Φ−1φ̃(z)∥2 ≤

√
N − 1maxi

∣∣φ(zi+1)
⊤φ̃(z)

∣∣
=O

(√
dk

√
N log2 N

)
= o(dk),

(159)

where the last step follows from Assumption 6.1.

Lemma E.8. We have ∣∣∣∣∣ φ̃(zs1)⊤φ̃(z1)− φ̃(zs1)
⊤PΦ−1

φ̃(z1)∥∥φ̃(z1)− PΦ−1 φ̃(z1)
∥∥2
2

− φ̃(zs1)
⊤φ̃(z1)

∥φ̃(z1)∥22

∣∣∣∣∣ = o(1), (160)

with probability at least 1−N exp(−c log2 k)− exp(−c log2 N) over Z, x and W , where c is an absolute constant. With
the same probability, we also have

φ̃(zs1)
⊤φ̃(z1)− φ̃(zs1)

⊤PΦ−1 φ̃(z1) = Θ(dk),
∥∥φ̃(z1)− PΦ−1 φ̃(z1)

∥∥2
2
= Θ(dk). (161)

Proof. Notice that, with probability at least 1− exp(−c log2 N)− exp(−c log2 k) over W and z1, we have both

φ̃(zs1)
⊤φ̃(z1) = Θ(dk) ∥φ̃(z1)∥22 = Θ(dk). (162)

by the second statement of Lemma E.6. Furthermore,∣∣φ̃(zs1)⊤PΦ−1
φ̃(z1)

∣∣ = ∣∣φ̃(zs1)⊤Φ⊤
−1K

−1
−1Φ−1φ̃(z1)

∣∣
≤∥Φ−1φ̃(z

s
1)∥2 λmin (K−1)

−1 ∥Φ−1φ̃(z1)∥2

=o(dk)O
(

1

dk

)
o(dk) = o(dk),

(163)

where the third step is justified by Lemmas E.1 and E.7, and holds with probability at least 1−Ne−c log
2 k − e−c log

2N

over Z, x, and W . A similar argument can be used to show that
∥∥PΦ−1

φ̃(z1)
∥∥2
2
= o(dk), which, together with (163) and

(162), and a straightforward application of the triangle inequality, provides the thesis.

Lemma E.9. We have ∣∣∣∣∣∣∣
φ(zs1)

⊤P⊥
Φ−1

φ(z1)∥∥∥P⊥
Φ−1

φ(z1)
∥∥∥2
2

−
φ̃(zs1)

⊤P⊥
Φ−1

φ̃(z1)∥∥∥P⊥
Φ−1

φ̃(z1)
∥∥∥2
2

∣∣∣∣∣∣∣ = o(1), (164)

with probability at least 1−N exp(−c log2 k)− exp(−c log2 N) over Z, x and W , where c is an absolute constant.

Proof. If µ′
0 = 0, the thesis is trivial, as φ ≡ φ̃. If µ′

0 ̸= 0, we can apply Lemma E.5, and the proof proceeds as follows.

First, we notice that the second term in the modulus in the statement corresponds to the first term in the statement of Lemma
E.8. We will condition on the result of Lemma E.8 to hold until the end of the proof. Notice that this also implies

φ̃(zs1)
⊤P⊥

Φ−1
φ̃(z1) = Θ(dk),

∥∥∥P⊥
Φ−1

φ̃(z1)
∥∥∥2
2
= Θ(dk), (165)

with probability at least 1−N exp(−c log2 k)− exp(−c log2 N) over Z, x, and W . Due to Lemma E.5, we jointly have∥∥∥P⊥
Φ−1

(z1 ⊗ 1k)
∥∥∥
2
= o(

√
dk),

∥∥∥P⊥
Φ−1

(zs1 ⊗ 1k)
∥∥∥
2
= o(

√
dk), (166)
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with probability at least 1− exp(c log2 N) over Z−1 and W . Also, by Lemma C.3 and Assumption 5.2, we jointly have∥∥∥P⊥
Φ−1

φ(zs1)
∥∥∥
2
≤ ∥φ(zs1)∥2 = ∥zs1∥2 ∥ϕ

′(Wzs1)∥2 = O
(√

dk
)
, (167)

and ∥∥∥P⊥
Φ−1

φ̃(z1)
∥∥∥
2
≤ ∥φ̃(z1)∥2 = ∥z1∥2

∥∥∥ϕ̃′(Wz1)
∥∥∥
2
= O

(√
dk
)
, (168)

with probability at least 1− exp(−c1 log
2 N) over W . We will condition also on such high probability events ((166), (167),

(168)) until the end of the proof. Thus, we can write∣∣∣φ(zs1)⊤P⊥
Φ−1

φ(z1)− φ̃(zs1)
⊤P⊥

Φ−1
φ̃(z1)

∣∣∣
≤
∣∣∣φ(zs1)⊤P⊥

Φ−1
(φ(z1)− φ̃(z1))

∣∣∣+ ∣∣∣(φ(zs1)− φ̃(zs1))
⊤
P⊥
Φ−1

φ̃(z1)
∣∣∣

≤
∥∥∥P⊥

Φ−1
φ(zs1)

∥∥∥
2

∥∥∥P⊥
Φ−1

(z1 ⊗ µ01k)
∥∥∥
2
+
∥∥∥P⊥

Φ−1
φ̃(z1)

∥∥∥
2

∥∥∥P⊥
Φ−1

(zs1 ⊗ µ01k)
∥∥∥
2
= o(dk),

(169)

where in the last step we use (166), (167), and (168). Similarly, we can show that∣∣∣∥∥∥P⊥
Φ−1

φ(z1)
∥∥∥
2
−
∥∥∥P⊥

Φ−1
φ̃(z1)

∥∥∥
2

∣∣∣ ≤ ∥∥∥P⊥
Φ−1

φ(z1)− P⊥
Φ−1

φ̃(z1)
∥∥∥
2

≤
∥∥∥P⊥

Φ−1
(z1 ⊗ µ01k)

∥∥∥
2
= o(

√
dk).

(170)

By combining (165), (169), and (170), the desired result readily follows.

Finally, we are ready to give the proof of Theorem 6.3.

Proof of Theorem 6.3. We have∣∣∣∣∣∣∣
φ(zs1)

⊤P⊥
Φ−1

φ(z1)∥∥∥P⊥
Φ−1

φ(z1)
∥∥∥2
2

− α

∑+∞
l=1 µ′

l
2
αi∑+∞
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l
2

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣
φ(zs1)

⊤P⊥
Φ−1

φ(z1)∥∥∥P⊥
Φ−1

φ(z1)
∥∥∥2
2

−
φ̃(zs1)

⊤P⊥
Φ−1

φ̃(z1)∥∥∥P⊥
Φ−1

φ̃(z1)
∥∥∥2
2

∣∣∣∣∣∣∣
+

∣∣∣∣∣ φ̃(zs1)⊤φ̃(z1)− φ̃(zs1)
⊤PΦ−1 φ̃(z1)∥∥φ̃(z1)− PΦ−1 φ̃(z1)

∥∥2
2

− φ̃(zs1)
⊤φ̃(z1)

∥φ̃(z1)∥22

∣∣∣∣∣
+

∣∣∣∣∣ φ̃(zs1)⊤φ̃(z1)∥φ̃(z1)∥22
− α

∑+∞
l=1 µ′

l
2
αi∑+∞

l=1 µ′
l
2

∣∣∣∣∣
= o(1),

(171)

where the first step is justified by the triangle inequality, and the second by Lemmas E.9, E.8, and E.6, and it holds with
probability at least 1−N exp(−c log2 k)− exp(−c log2 N) over Z, x, and W .

F. Additional experiments
Figure 6 reports the experiments on NTK features for the same setting considered in Figure 2 for random features. We
consider binary classification tasks involving synthetic (first two plots) and standard (last two plots) datasets. As predicted
by Theorem 6.3, when the number of samples N increases, the test accuracy increases and, correspondingly, the spurious
accuracy decreases. Furthermore, for the synthetic dataset, while the test accuracy does not depend on α and on the activation
function, the spurious accuracy increases with α and by taking an activation function with dominant low-order Hermite
coefficients.

In Figure 7, we plot the test and the spurious accuracies as a function of 0 < α < 1. While the test accuracy does not depend
on α, the spurious accuracy monotonically grows with α. This is in agreement with the results of Theorems 5.4 and 6.3.
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Figure 6. Test and spurious accuracies as a function of the number of training samples N , for various binary classification tasks. In the
first two plots, we consider the NTK model in (24) with k = 100 trained over Gaussian data with d = 1000. The labeling function is
g(x) = sign(u⊤x). We repeat the experiments for α = {0.25, 0.5}, and for the two activations whose derivatives are ϕ′

2 = h0 + h1 and
ϕ′
4 = h0 + h3, where hi denotes the i-th Hermite polynomial (see Appendix A.1). In the last two plots, we consider the same model with

ReLU activation, trained over two MNIST and CIFAR-10 classes. The width of the noise background is 10 pixels for MNIST and 8 pixels
for CIFAR-10, see Figure 1. The spurious accuracy is obtained by querying the model only with the noise background from the training
set, replacing all the other pixels with 0, and taking the sign of the output. As we consider binary classification, an accuracy of 0.5 is
achieved by random guessing. We plot the average over 10 independent trials and the confidence band at 1 standard deviation.
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Figure 7. Test and spurious accuracies as a function of α. We consider RF (first and second plot) and NTK (third and fourth plot) models
trained on a synthetic dataset. The settings are the same as in Figures 2 and 6, and we use a ReLU activation function. The number of
training samples is fixed to N = 200.
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