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Abstract
We study the problem of unsupervised represen-
tation learning in slightly misspecified settings,
and thus formalize the study of robustness of non-
linear representation learning. We focus on the
case where the mixing is close to a local isometry
in a suitable distance and show based on existing
rigidity results that the mixing can be identified
up to linear transformations and small errors. In a
second step, we investigate Independent Compo-
nent Analysis (ICA) with observations generated
according to x = f(s) = As + h(s) where A
is an invertible mixing matrix and h a small per-
turbation. We show that we can approximately
recover the matrix A and the independent compo-
nents. Together, these two results show approxi-
mate identifiability of nonlinear ICA with almost
isometric mixing functions. Those results are a
step towards identifiability results for unsuper-
vised representation learning for real-world data
that do not follow restrictive model classes.

1. Introduction
One of the fundamental problems of data analysis is the
unsupervised learning of representations. Modern machine
learning algorithms excel at learning accurate representa-
tions of very complex data distributions. However, those
representations are, in general, not related to the true un-
derlying latent factors of variations that generated the data.
Nevertheless, it is desirable to not only match the training
distribution, but also to identify the underlying causal struc-
ture because such representations are expected to improve
the downstream performance and improve explainability
and robustness (Schölkopf et al., 2021).

Generally, we can only hope to learn the ground truth model
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in identifiable settings, i.e., when, up to certain symmetries,
there is a unique model in the considered class generating
the observations. The simplest example of such a setting is
linear ICA where we observe linear mixtures of independent
variables. Identifiability of linear ICA was shown under
mild assumptions in Comon (1994). On the other hand, it
is well known that for general nonlinear functions ICA is
not identifiable (Hyvärinen & Pajunen, 1999). However,
recently, a flurry of results was proved that showed various
identifiability results under additional assumptions. Those
results rely among others on restrictions of the function
class (Taleb & Jutten, 1999; Horan et al., 2021; Gresele
et al., 2021; Buchholz et al., 2022; Kivva et al., 2022), multi-
environment data (Khemakhem et al., 2020; Hyvarinen et al.,
2019), or interventional data (Ahuja et al., 2022; Squires
et al., 2023; von Kügelgen et al., 2023; Buchholz et al.,
2023), for a broader overview we refer to the recent survey
Hyvärinen et al. (2023).

While those results brought significant progress to the field
of Causal Representation Learning (CRL) they also gener-
ally require strong assumptions which will typically only
hold approximately for real data. Thus, it is of great im-
portance to understand the various robustness properties of
such identifiability results. A first step in this direction is
the investigation of whether the latent variables can still be
approximately identified in settings where a small amount
of misspecification is allowed, i.e., when the model assump-
tions are mildly violated. Our analysis here focuses on
theoretical questions regarding identifiability in misspeci-
fied settings, but this has nevertheless profound implications
for the empirical side because it clarifies what assumptions
generate or do not generate useful learning signals that can
be exploited by suitable algorithms. This is particularly
important since there is still a lack of algorithms that un-
cover the true latent structure for complex data beyond toy
settings.

In this work, we study the problem of approximate identi-
fiability in a setting where the mixing function is close to
a local isometry and the latent variables are independent
(ICA). In particular, our results can be seen as a general-
ization of the identifiability result of Horan et al. (2021).
The main contributions of this work can be summarized as
follows:
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1. We initiate the study of robustness for representation
learning and clarify that some existing results are not
robust to arbitrarily small amount of misspecification.

2. We show based on existing rigidity results from ma-
terial science that we can identify the latent variables
up to a linear transformation and a small perturbation
when the mixing function f is close to a local isometry.

3. Then we carefully investigate slightly non-linear ICA,
a setting of independent interest. We show that then
the linear part of the mixing can be identified up to
a small error, which depends on the strength of the
perturbation.

4. Finally, we combine the previous two results to show
robustness for representation learning problems with
independent latent variables and a mixing function
close to a local isometry.

The rest of this paper is structured as follows. In Section 2
we introduce the general setting of representation learning,
ICA, and local isometries, and we then consider the robust-
ness of identifiability in representation learning in Section 3.
Our results on approximate linear identifiability for approx-
imate local isometries can be found in Section 4 followed
by our analysis of perturbed linear ICA and a combination
of the two results in Section 5. We conclude in Section 6.
In Appendix A we collect some notation. In this work, C
denotes a generic constant that is allowed to change from
line to line. We denote by D

= equality of the distributions of
two random variables.

2. Setting
In this section, we introduce and motivate our main setting.
We assume that we have d-dimensional latent variables S
such that their distribution satisfies P ∈ P for some class
of probability distributions P . For our analysis of local
isometries we make the following mild assumption.

Assumption 2.1. We assume that the class of probability
distributions P has bounded support Ω ⊂ Rd with density
lower and upper bounded.

In the second part of this work we focus on independent
component analysis, i.e., we make the following assump-
tion.

Assumption 2.2. All P ∈ P have independent components,
i.e., P =

⊗d
i=1 Pi for some measures Pi on R and we

furthermore assume that the Pi are non-Gaussian and have
connected support.

The latent variables S are hidden, and we assume that we
observe X = f(S) for some mixing function f ∈ F(Ω).

Note that the distribution of X is then given by the push-
forward f∗P. Here F is some function class consisting of
functions f : Ω ⊂ Rd → RD and we will always assume
without further notice that f is a diffeomorphism on its
image (i.e., injective, differentiable and with differentiable
inverse on its domain which is a submanifold of RD). Our
main interest concerns the function class of local isometries,
i.e.,

Fiso = {f : Ω ⊂ Rd →RD : Df⊤(s)Df(s) = Id

for all s ∈ Ω}
(1)

for some connected domain Ω ⊂ Rd. The class of local
isometries has attracted substantial attention in represen-
tation learning because it locally preserves the structure
of the data, which is a desirable feature in many settings
(Tenenbaum et al., 2000; Donoho & Grimes, 2003; Belkin &
Niyogi, 2003). Closely connected notions like the restricted
isometry property play a crucial role in signal processing
(Candes & Tao, 2005), and several works show that making
(parts) of neural networks isometric improves performance
(Qi et al., 2020; Liu et al., 2021; Miyato et al., 2018). In
Gresele et al. (2021) it is argued based on the independent
mechanism principle that the closely related function class
of orthogonal coordinate transformations is a natural func-
tion class for representation learning. Essentially, the argu-
ment relies on the well-known fact that two isotropic random
vectors are very close to orthogonal up to an exponentially
small probability. In Appendix J we show a construction
of a family of random functions that becomes increasingly
isometric as D → ∞. Let us finally remark that the investi-
gation of the inductive bias of VAEs in Rolı́nek et al. (2019);
Zietlow et al. (2021); Reizinger et al. (2022) revealed that
their loss function and architecture promote that the encoder
implements an orthogonal coordinate transformation. The
empirical success of VAEs on disentanglement tasks is there-
fore a further motivation to study theoretical properties of
orthogonal coordinate transformations and local isometries.

For ICA with locally isometric mixing function the follow-
ing identifiability result was shown.

Theorem 2.3 (Theorem 1, Horan et al. (2021)). We assume
that P satisfies Assumption 2.2. Suppose X = f(S) where

S ∼ P ∈ P and f ∈ Fiso. If X D
= f̃(S̃) for some f̃ ∈ Fiso

and S̃ ∼ P̃ ∈ P , then f = f̃ ◦ P for some linear map P
which is a product of a permutation and reflections.

Note that Horan et al. (2021) only claimed disentanglement,
but the stronger version stated presently follows as sketched
below and is also a special case of Theorem 2 of Buchholz
et al. (2022). The proof of this result proceeds in two steps.
First, we can identify f up to an orthogonal linear transfor-
mation A by general results. Indeed, f̃−1 ◦ f : Ω → Rd is a
local isometry and local isometries from Ω ⊂ Rd → Rd are
affine. This is a result first shown by Liouville in the 19th
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century, a simple proof can be found in the recent review of
Hyvärinen et al. (2023). A slightly different viewpoint show-
ing the same result was given by Tenenbaum et al. (2000).
After identifying S up to linear transformations, we can as
a second step apply the standard identifiability result for
linear ICA to identify A up to permutations and reflection
(there is no scale ambiguity here because we consider local
isometries).

We emphasize that this separation into two steps, where first
identifiability up to linear transformations and then full iden-
tifiability are shown, is very common, e.g., a similar proof
strategy has been applied for polynomial mixing functions
(Ahuja et al., 2022), piecewise linear functions (Kivva et al.,
2022), or for general mixing functions and interventional
data (Buchholz et al., 2023).

3. Robustness and approximate Identifiabilility
Theorem 2.3 proves identifiability, i.e., all data representa-
tions agree up to permutation and reflections. However, this
uses crucially that the assumptions are exactly satisfied, i.e.,
f is a true local isometry, the coordinates of S are perfectly
independent, and we know the distribution of X exactly.

In real-world settings, typically none of these assumptions
will hold exactly but at best approximately (’all models are
wrong’ (Box, 1976)). Thus, identifiability results can only
be relevant for applications when they are robust, i.e., they
continue to hold in some approximate sense when the as-
sumptions are mildly violated. For, e.g., supervised learning
or distribution learning, there is a large body of research (es-
sentially the field of learning theory) addressing in particular
the dependence on the sample size but also misspecification
attracted considerable attention, e.g., White (1980; 1982).
For representation learning there are much fewer results.
The sample complexity of linear ICA algorithms has been
studied, e.g., by Yau & Bresler (1992); Tichavsky et al.
(2006); Wei (2015). Moreover, Zhang & Chan (2008) inves-
tigated ICA for a perturbed linear model, although mostly
empirically and without stringent quantitative results. To the
best of our knowledge, no robustness results are known for
non-linear mixing functions f . The main focus of this work
is to show a first robustness result for a misspecification of
the function class, while we do not consider misspecifica-
tion of independence of the ground truth samples and finite
sample effects here.

Let us emphasize that it is an important question because
not all identifiability results have a meaningful extension
to slight misspecification. As a simple motivating exam-
ple, consider analytic functions (i.e., functions that can be
expressed as a power series) and smooth functions (i.e.,
functions that have arbitrary many derivatives). While those
function classes are superficially similar, they exhibit pro-

found differences: Analytic functions f : R → R have the
property that there is a unique continuation of f |U from any
arbitrarily small open set U to a maximal domain of defini-
tion (this can be seen as arbitrary far o.o.d. generalization)
while for smooth functions virtually no information about
f |U∁ can be deduced from f |U . This indicates that minor
misspecification (analytic vs. smooth) can render identifia-
bility results void, while the representation capacity remains
almost the same and the difference can hardly be detected
from data. To connect this more closely to identifiability
in representation learning, consider, e.g., an identifiability
result such that the following properties hold (a similar dis-
cussion can be found in the Appendix of Buchholz et al.
(2023))

• When assuming that the mixing f is in some function
class F then f is identifiable (up to certain symmetries,
e.g., permutations or linear maps)

• When the mixing is just assumed to be an injective
and continuous function f is not identifiable, i.e., for
f ∈ F there is f ′ giving rise to the same observational
distribution (for suitable latent distributions) but f and
f ′ are entirely different data representations that are
not related by the allowed symmetries.

• The function space F is dense in the space of injec-
tive continuous functions, i.e., every injective and con-
tinuous function f ′ can be approximated to arbitrary
precision by f ∈ F .

Note that the last property implies that for f ′ /∈ F no mean-
ingful distance to F can be defined, as it can be approxi-
mated arbitrarily well by functions in F . This also makes the
identifiability result brittle: While f ∈ F can be identified,
there is a sequence of functions F ∋ fi → f ′ converging
to the spurious solution f ′. Thus, it can be arbitrarily dif-
ficult to decide in practice whether f generated the data
or an approximation fi ∈ F of the spurious solution f ′.
Concrete examples of this setting include polynomial mix-
ing functions and piecewise linear mixing functions which
can be used to identify, e.g., Gaussian or rectangular base
distributions (Ahuja et al., 2022; Kivva et al., 2022). We
emphasize that these results nevertheless are important the-
oretical contributions, however, these identifiability results
might be difficult to exploit in practice. Our observations
here are in spirit similar to a no free lunch theorem (Wolpert
& Macready, 1997) because it clarifies the fundamental
tradeoff between representation capacity of the function
class and identifiability. Note that the lack of identifiabil-
ity can also harm downstream performance, as shown by
Saengkyongam et al. (2023).

Let us try to make the point above concrete in a toy setting.
We consider two-dimensional Gaussian latent variables Z.

3



Robustness of Nonlinear Representation Learning

Figure 1. (Left) Color map of Gaussian latent variable Z, (Center) Color map of the transformed data X = f(Z) where f is a piecewise

linear approximation of a radius dependent rotation (i.e., f(Z)
D
≈ Z), (Right) Representation X ′ = f ′(Z) learned by a VAE with ReLU

activation functions initialized with f and f−1 for decoder and encoder and small variance.

Let f be a piecewise linear mixing function f that approxi-
mates a radius dependent rotation m (Hyvärinen & Pajunen,
1999) which is a map such that m(Z)

D
= Z. Consider obser-

vations X = f(Z)
D
≈ Z. Note that f and the identity map

generate similar observations so it is hard to distinguish be-
tween the mixing function f and the identity id even though
f is identifiable for Gaussian latent variables up to linear
transformations (see Kivva et al. (2022)). However, if we
train a VAE with ReLU activations that is initialized with f
and f−1 as decoder and encoder, i.e., we initialize it with
the true mixing, it nevertheless fails to preserve this rep-
resentation. Instead, the VAE learns a simple orthogonal
transformation of the data, i.e., even though the map f is
in theory identifiable the learning signal is not sufficient to
overcome the inductive bias of the learning method (here the
VAE) towards simple functions that, e.g., preserve simple
geometric properties. An illustration of the learned mixing
can be found in Figure 1. Additional details for the setting
can be found in Appendix H.

The main purpose of this work is to show that the function
class Fiso behaves differently, i.e., robust representation
learning results can be proved. To formalize this, we first
need to introduce a way to measure the distance Θ(f) of
a function f to the space of local isometries Fiso. This
quantity should vanish (Θ(f) = 0) when f ∈ Fiso and
our goal is to show that when Θ(f) is small we can still
approximately identify f . For functions f : Ω ⊂ Rd → Rd

we use the following quantity

Θp
p(f,Ω) =

∫
Ω

dist(Df(s),SO(d))p

+ dist
(
(Df)−1(s),SO(d)

)p
ds.

(2)

Here dist2(A,SO(d)) = minQ∈SO(d) |Q − A|2 refers to

the euclidean distance to the space SO(d) = {A ∈ Rd×d :
AA⊤ = Id, detA = 1} of all rotations. We discuss the
definition and properties of the distance in more detail in
Appendix C. The distance Θ (which is not a distance in the
mathematical sense) measures how close a function f is to a
local isometry pointwise and integrates this. If f ∈ Fiso(Ω)
is a local isometry and if detDf > 0 everywhere (which
is no loss of generality by reflecting one coordinate), then
indeed Θp(f,Ω) = 0 because Df ∈ SO(d) pointwise.
For our results we need the second term in (2), i.e., we
measure the local deviation from being an isometry of the
map and its inverse. One could also define the metric by
integrating with respect to the latent distribution P instead of
the Lebesgue measure, but we think that the latter is slightly
more natural because a common assumption based on the
independent mechanism assumption (Janzing & Schölkopf,
2010; Schölkopf et al., 2012; Janzing et al., 2016) is that P
and f are sampled independently. This also simplifies our
analysis slightly.

Our main interest concerns high dimensional embeddings,
i.e., mixing function f : Rd → M ⊂ RD for d ≪ D where
M is an embedded submanifold. In this case, the definition
(2) needs to be slightly adapted, by essentially restricting
the target of Df to the tangent space of M . For D ≥ d we
define

Θp
p(f,Ω) =

∫
Ω

distp(Df(z),SO(d, Tf(z)M))

+ distp
(
(Df)−1(z),SO(Tf(z)M,d)

)
dz

(3)

where Tf(z)M denotes the tangent space of M at f(z)
and SO(d, Tf(z)M) denotes the set of orthogonal matri-
ces Q ∈ RD×d (i.e., Q⊤Q = Idd) with range in Tf(z)M
that are orientation preserving (here we fix any orientation
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on M ). To interpret the second summand, we need to asso-
ciate certain matrix representations to the maps (Df)−1 and
SO(Tf(z)M,d) and we refer to Appendix D for a careful
definition.

Let us now discuss and motivate the choice of distance in
a bit more detail. First, we emphasize that (2) does not
(directly) quantify how well f is globally approximated by
a local isometry, i.e., whether there exists a g ∈ Fiso such
that, e.g., ∥f − g∥1 is small. We note that from a modelling
standpoint, it seems more reasonable to assume that (2) is
small for the ground truth mixing function than assuming
that f can be globally well approximated by a local isometry
because the former corresponds to the common assumption
that f preserves the structure of the data locally (in particular
distances) while it is not clear why f should be globally
constrained. In Appendix J we show that for d ≪ D and
certain classes of random functions Θ will be indeed small.
This quantifies the observation that those random functions
become isometric as D → ∞ (similar results can be found
in Reizinger et al. (2023)).

One difficulty in the setting is that as soon as we allow mis-
specification of f the mixing function f will typically be
no longer identifiable (otherwise the existing identifiability
result could be strengthened to a larger function class). We
focus mostly on the setting of nonlinear ICA and in this
case, it is well known that f is not identifiable. Thus, we
can only hope to prove a version of approximate identifi-
ability that gracefully recovers the classical identifiability
result as the misspecification disappears. We here define ap-
proximate identifiability of the latent variables based on the
mean correlation coefficient (MCC) which has been used be-
fore to evaluate the empirical performance of representation
learning algorithms. For a pair of d dimensional random
variables (S, S̃) the MCC is defined by

MCC(S, S̃) = max
π∈Sd

d−1
d∑

i=1

|ρ(Si, S̃π(i))| (4)

where ρ(X,Y ) = Cov(X,Y )/(Var(X)Var(Y ))1/2 de-
notes the correlation coefficient. Note that MCC(S, S̃) = 1
implies that Si = λiS̃π(i), for a vector λ ∈ Rd, i.e., we re-
cover Z up to permutation and scale. For MCC values close
to 1 this is approximately true, in particular S̃ = PS + ε
holds for a scaled permutation P and some error ε that van-
ishes as the MCC goes to 1. More generally, one could also
allow coordinatewise reparametrizations of S̃ when those
are not identifiable (Gresele et al., 2021), but this is not
necessary when considering (perturbed) local isometries.

Let us elaborate on the difference between proper identifia-
bility (Xi & Bloem-Reddy, 2023) and approximate identi-
fiability. Recall that a proper identifiability results is of
the form f∗P = f̃∗P̃ for f, f̃ ∈ F and P, P̃ ∈ P im-
plies that f̃−1 ◦ f is a tolerable ambiguity, e.g., a com-

bination of permutation and reflection in Theorem 2.3. In
this case, an equivalent statement is that f∗P = f̃∗P̃ implies
MCC(f̃−1 ◦ f(S), S) = 1 for S ∼ P. In contrast, for ap-
proximate identifiability results we cannot simply take any
f̃ such that f̃∗P̃ = f∗P because there will typically exist
arbitrarily chaotic spurious solutions with no guarantee on
MCC(f̃−1 ◦ f(S), S) for S ∼ P. Instead, we need to make
a specific choice for the function f̃ such that f̃∗P̃ = f∗P
which ensures that MCC(f̃−1 ◦ f(S), S) ≈ 1 for a suitable
class of f . In our case those will be functions such that
Θp(f,Ω) is small. Of course, our choice of f̃ is only al-
lowed to depend on the observations X = f(S) but not on
f itself. Here the basic idea is to choose f̃ as close as possi-
ble to being a local isometry, i.e., we roughly chose f̃ such
that Θ(f̃ , Ω̃) is minimal under the constraint f̃∗P̃ = f∗P.
Let us now provide a very informal version of our final
approximate identifiability result.

Theorem 3.1 (Informal sketch). Suppose S ∼ P where P
has independent components, and we observe X = f(S)
for some mixing function f . Then we can find f̃ such that
Ŝ = f̃−1(X) satisfies for some C > 0, p > 1

MCC(Ŝ, S) ≥ 1− CΘ2
p(f) (5)

where C depends on everything except f .

Note that if f is far away from a local isometry, i.e., Θp(f)
is large then the right-hand side is negative, and the obtained
recovery guarantee is void which is not surprising as non-
linear ICA is not identifiable. The actual statement can be
found in Theorem 5.11. We emphasize again that robustness
is an aspect of representation learning that has previously
attracted little attention, and we study one specific example,
namely robustness of learning approximate local isometries.
However, there are many alternative robustness questions
and possible misspecifications, e.g, we could consider latent
sources that are only approximately independent or settings
where MCC might not be the right measure of identifiability.

4. Approximate linear Identifiability for
approximate local Isometries

We now extend linear identifiability for locally isometric
embeddings to approximate isometric embeddings. Restrict-
ing the ambiguity to a linear transformation is already an
important first step which can be in principle combined with
any result on causal representation learning for linear mix-
ing functions, examples of recent results for linear mixing
functions include Ahuja et al. (2023); Squires et al. (2023);
Varici et al. (2023). The key ingredient for our results is
the rigidity statement Theorem E.1 in Appendix E which
played an important role in the mathematical analysis of
elastic materials (see Ciarlet (1997) for an overview).

The main consequence of this theorem that is relevant for
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our work here is the bound

min
L

∥u− L∥Lq(Ω)

≤ C(Ω, p)

(∫
Ω

dist(Du(s),SO(d))p ds

) 1
p (6)

for all u and q = pd/(d − p) where the minimum is over
functions of the form L(s) = As+b with A ∈ SO(d). This
result shows that when a map u has gradient pointwise close
to any, potentially varying, rotation, it is globally close to
an affine map. We emphasize that this is highly non-trivial,
naively one would expect that the rotation could change with
s. Note that when the right hand-side is zero, i.e., f is a local
isometry then we conclude that u is affine recovering the
fact that local isometries from Rd to Rd are already affine
which is the key observation underlying Theorem 2.3. This
rigidity property of almost isometries renders them almost
identifiable. This then generalizes Theorem 2.3.

For simplicity, we mostly present our results for the case
where D = d in the main paper. The additional technical-
ities for d < D (which is the main interest of our results)
will be discussed in Appendix D. For a measure P ∈ P with
support Ω ⊂ Rd we introduce the set of models

M(f∗P) = {(g,Q,Ω′) : g ∈ F(Ω′), where
g∗Q = f∗P, supp(Q) = Ω′}

(7)

that generate the observed distribution of X = f(S). We
now consider for a fixed p the triple

(g,Q,Ω′) ∈

argmin
(ḡ,Q̄,Ω̄)∈M(f∗P)

∫
Ω̄

dist((Dḡ)−1(g(s)),SO(d))p Q̄(ds),

(8)

i.e., we pick (g,Q,Ω′) such that X ∼ g∗Q so that it gen-
erates the observational distribution and in addition make
its inverse as isometric as possible. For D > d we replace
the distance to SO(d) by the distance to SO(Tg(s)M,d)
(see (73) in Appendix E for details). We emphasize that
M(f∗P) and therefore g only depends on the observational
distribution f∗P but not on f directly. Note that we could
also minimize a variant of Θ(g,Ω′) where we integrate with
respect to Q. We remark in passing that we do not prove
the existence of a minimizer of (8) (although this should be
possible using the direct method of the calculus of varia-
tions). Since the functional is lower bounded, a minimizing
sequence gn exists and we can instead approximate the in-
fimum up to arbitrarily small ε adding an arbitrarily small
additional error term to Theorem 4.1 below (see Appendix E
for details).

Theorem 4.1. Suppose we have a latent distribution P ∈ P
satisfying Assumption 2.1 with support Ω ⊂ Rd where Ω is

a bounded connected Lipschitz domain. The observational
distribution is given by X = f(S) ∈ M ⊂ RD where
S ∼ P and f ∈ F(Ω). Fix a 1 < p < ∞. Define (g,Q,Ω′)
as in (8) (as in (73) in Appendix D in the undercomplete
case). Then there is A ∈ SO(d) such that g−1 ◦ f(s) =
As+h(s)+ b and h satisfies for p < d and q = pd/(d− p)
the bound

∥h∥P,q ≤ C1Θp(f,Ω). (9)

Here C1 is a constant depending on d, p, Ω, and the lower
and upper bound on the density of P.

The proof of this result, including the extension to the under-
complete case can be found in Appendix E. Let us continue
our discussion on the meaning of approximate identifiability
in the context of this theorem. First, we note that if Θp(f,Ω)
is not small we obtain no useful statement, except that our
transformed data is some function of the original data. This
is not surprising: We cannot hope to recover any mixing
function because the problem of learning f from f∗P is not
identifiable (even when assuming P known). Moreover, our
statement only applies to one specific unmixing g which
is again unavoidable for the same reason. What we show
is that if f and g are both close to being locally isometric,
then the concatenation g−1f will be close to a linear (even
orthogonal) map. Note that g does not appear on the right-
hand side of (9) because we choose g to be the maximally
isometric representation of our observations, but we know
that this representation is more isometric than any alterna-
tive representation, in particular more isometric than f . This
allows us to bound the non-linearity h in terms of f only.
While this result does not have the simplicity of a standard
identifiability result it provides a more general viewpoint.
Indeed, if Θp(f,Ω) = 0, i.e., when f is a local isometry we
have h = 0 and we recover f up to a linear transformation
which is the standard identifiability result for local isome-
tries (see Theorem 2 of Horan et al. (2021)). Our result
extends this gracefully to functions that are approximate
local isometries in the sense that Θp(f,Ω) is small. Let us
add some remarks about this result.
Remark 4.2. • The optimization problem for g in (8) is

non-convex, and difficult to optimize in practice.

• For D = d the introduction of g is not necessary, in-
stead we can directly apply Theorem E.1 to f and
just work with the original data X and directly apply
Theorem E.1 to X = f(S).

• The assumptions that Ω is connected and that the den-
sity of P is lower bounded are necessary. In particular
the result does not apply to distributions P with discon-
nected support.

• There are alternative assumptions that allow us to re-
move (or bound) the second term in (2), e.g., assuming

6
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Df⊤Df > c1 > 0, i.e., the smallest singular value of
Df is bounded below is sufficient (see Lemma C.2).

5. Perturbed linear ICA
In this section, we consider the problem of independent
component analysis where the mixing is a slight perturbation
of a linear function. This is a problem of general interest
beyond the main setting considered in this paper because
in typical real-world applications the mixing will only be
approximately linear, so understanding the effect of the non-
linear part is important. Concretely, we assume that data is
generated by a perturbed linear model

x = f(s) = As+ ηh(s) (10)

where h : Rd → Rd is a non-linear function and η ∈ R
is a small constant. We can assume that h is centered,
i.e., E(h(S)) = 0 and that A is the regression matrix
when regressing X on S. This is equivalent to the rela-
tion ES(Sh(S)

⊤) = 0d×d.
Remark 5.1. We decided to express the nonlinear part of the
model as ηh which allows us to consider η → 0 to shrink
the size of the perturbation. As we check carefully in the
proofs, all bounds only depend on h through its norm ∥h∥P,q
for some q specified below.

It is clear that f cannot be identified from the distribution of
X as the mixing is nonlinear. Instead, we investigate how
well the linear part given by the matrix A can be recovered
and to what degree we can recover the ground truth sources
S. Our results show that as η → 0 we recover the identi-
fiability results for linear ICA. One issue that creates sub-
stantial theoretical problems in this work and in general is
that there is a gap between the statistical and computational
aspects of ICA, in the sense that linear ICA is identifiable
for non-Gaussian latent variables, however ICA algorithms
typically require a stronger non-degeneracy condition on
the latent distribution than non-Gaussianity of the latent
variables. In the misspecified setting we need to define a
(not necessarily computationally feasible) algorithm to pick
a mixing function for the observed data, which then results
in the same limitations as the conventional algorithms face.

Let us now quickly review how the independent components
can be identified. Most ICA algorithms consider a function
H : Sd−1 → R defined by

H(w) = EG
(
w⊤Σ

− 1
2

X X
)

(11)

where ΣX denotes the covariance matrix of X so that
Σ

− 1
2

X X is whitened and G is the so-called contrast func-
tion. Then, under a suitable degeneracy assumption, the
independent components correspond to an orthogonal set of
local extrema of H .

Indeed, as a motivation for the nonlinear case we discuss
in Appendix F the well-known calculation that for linear
mixing functions (i.e., η = 0) H has a local extremum if
w⊤Σ

− 1
2

X X = Si for some i, i.e., when A⊤Σ
− 1

2

X w = ei.
Note that for linear mixing A the relation ΣX = AA⊤

holds, and the vectors

w̄i = (AA⊤)
1
2A−⊤ei (12)

thus satisfy w̄⊤
i Σ

− 1
2

X X = Si and |w̄i| = 1. We also consider
the matrix W̄ = A−1(AA⊤)

1
2 which has rows w̄i = W̄⊤ei

and satisfies W̄Σ
− 1

2

X X = S for η = 0.

The main goal of this section is to show that this general
picture remains approximately true in the perturbed setting,
i.e., under minor regularity assumptions on G there is a
matrix W close to W̄ such that its rows are local extrema of
H . Let us collect the necessary assumptions for our results.

Assumption 5.2. The function G is even, three times dif-
ferentiable, and there are constants Cg and dg such that for
k ≤ 3

|G(k)(x)| ≤ Cg(1 + |x|)max(dg−k,0) (13)

where G(k) denotes the k-th derivative of G.

We will write g = G′ from now on following the notation
in the field. Note that commonly used contrast functions
like G = ln ◦ cosh or G = | · |4 satisfy this assumption. We
need some regularity assumption on the source variables.

Assumption 5.3. Write q = max(dg, 3). Assume that the
latent sources S satisfy for some constant M < ∞

E(|S|q) = M (14)

Finally, we need a condition that ensures that the contrast
function can single out the latent variable Si which is also
necessary in the linear case.

Assumption 5.4. The latent variables S satisfy for an αi ̸=
0

E(Sig(Si)− g′(Si)) = αi. (15)

Then we have the following result.

Theorem 5.5. Suppose that X and S are random variables
satisfying the relation (10) and the distribution P of S has in-
dependent components (see Assumption 2.2) and E(S) = 0
and E(S2

i ) = 1. Assume G is an even contrast function that
satisfies the pointwise bounds in Assumption 5.2 and that S
and G satisfy Assumptions 5.3 and 5.4 for some 1 ≤ i ≤ d.
Assume that ∥h∥P,q ≤ 1 where q = max(dg, 3) is defined
in Assumption 5.3. Let w̄i be defined as in (12). Then, there
is an η0 > 0 (depending on d, αd, A, M , Cg , and q but not
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on h) such that for η < η0 there is a local extremum wi of
H close to w̄i satisfying |w̄i − wi| = O(η). In addition, H
is strictly convex or concave (depending on the sign of αi)
in a neighborhood Bκ(w̄i) with κ independent of η < η0.

Remark 5.6. In fact, we can characterize wd a bit more
precisely by

wd = Σ
1
2

XA−⊤
(
ηα−1

d v
1

)
+O(η2) = w̃d +O(η2) (16)

where vi = E((A−1h)d(S)g
′(Sd)Si) + E((A−1h)ig(Sd))

for i < d and αd = E(Sdg(Sd) − g′(Sd)) as in (15) and
similar expressions hold for i < d.

The proof can be found in Appendix F. We can apply the
result to all coordinates simultaneously and obtain the fol-
lowing slight generalization.

Theorem 5.7. Under the same assumptions as in Theo-
rem 5.5 where we assume that the Assumption 5.4 holds
for all Si with 1 ≤ i ≤ d there is a matrix W whose rows
wi = W⊤ei satisfy |wi| = 1, wi is a local extremum of H ,

A⊤Σ
− 1

2

X wi = ei +O(η), and |W − W̄ | = O(η).

The main message of these results is that all standard ICA
algorithms based on a contrast function G can extract wi

approximately in this setting, and the resulting matrix W
is close to W̄ the ground truth unmixing of the linear part.
Let us clarify this through the example of gradient-based
algorithms.

Corollary 5.8. Under the same assumptions as in Theo-
rem 5.5 and for η < η0 gradient ascent (if αi > 0) or
descent (if αi < 0) with sufficiently small step size will
converge to wi locally.

This result is a direct consequence of Theorem 5.5 and
convergence of gradient descent for strictly convex func-
tions. We provide some more details in Appendix F. The
results above established that we can approximately find A
as η → 0. Next we show that we do not only approximately
recover the linear mixing, but we can also approximately
recover the sources S.

Theorem 5.9. Consider the same assumptions as in The-
orem 5.7 and let W be (for η < η0) the matrix as in the
statement of Theorem 5.7. Define Ŝ = WΣ

− 1
2

X X . Then
there is a constant C2 depending on d, αi, A, M , Cg , and q
such that

MCC(Ŝ, S) ≥ 1− C2η
2. (17)

The proof of this result can be found in Appendix F. It is
based on a general bound for the MCC stated in Lemma B.2
in Appendix B. We provide some experimental evidence
that the derived bounds have the optimal scaling in η in
Appendix I.

Remark 5.10. The results might appear a bit unsatisfactory
because we only show existence of local extrema of H that
allow us to recover the sources approximately and local
convergence of gradient descent or ascent to these extrema.
However, we do not claim that these are the only extrema
or there is an efficient algorithm to find all extrema in poly-
nomial time. This problem is, however, not a feature of the
perturbed setting, but the same issue arises already for linear
ICA (Hyvarinen, 1999). Note that for the special case of the
kurtosis-based contrast function G(s) = s4 − 3 with linear
mixing it can be shown (under additional assumptions) that
the vectors w̄i are the only local maxima (or minima) of
H and they can be found in polynomial time as shown by
Arora et al. (2012). We expect that this result generalizes to
our perturbed setting.

Finally, we combine the two parts of the analysis to show
approximate identifiability of ICA with approximately lo-
cally isometric mixing. To simplify the analysis we assume
that the support of P is compact. Then we can combine our
previous results to obtain the following theorem.

Theorem 5.11. Assume that S ∼ P with bounded and con-
nected support Ω satisfies Assumptions 2.1 and 2.2. Suppose
observations are given by X = f(S) ∈ M ⊂ RD for some
f ∈ F(Ω). Assume that P satisfies Assumption 5.2, 5.3, and
5.4 for some contrast function G. Let q = max(dg, 3) and
p = dq/(d + q). Define (g,Q,Ω′) as in (8) (for d = D
and as in (73) in Appendix D for d < D) and shift g such
that X̃ = g(X) is centered. Define Ŝ = WΣ

− 1
2

X̃
X̃ as in

Theorem 5.7 for observations X̃ . Then the following bound
holds for Θp(f,Ω) sufficiently small and some C3 > 0

MCC(Ŝ, S) ≥ 1− C3Θ
2
p(f,Ω). (18)

Here C3 depends on C1 and C2 from Theorem 4.1 and 5.9
and the bounds on the density of P.

The informal version of this theorem is that by learning
a maximally locally isometric transformation of our data
followed by running a linear ICA-algorithm we can approx-
imately recover the true sources if the ground truth mixing
is close to a local isometry. A proof of this theorem can be
found in Appendix G. Let us add a few remarks about this
result.

• For local isometries (Θp(f,Ω) = 0) we essentially
recover Theorem 2 in (Horan et al., 2021).

• The assumption that P has bounded support combined
with the independence assumption implies that P is
supported on a cuboid. It was shown in (Ahuja et al.,
2023; Roth et al., 2023) that then linear transformations
of P are identifiable (up to scaling and permutation)
and we expect that this can be generalized to perturbed
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linear maps, but it is non-trivial to prove this and to
obtain a quantitative statement as we obtain above.

• In Appendix G we also show how to relax the condition
that P has compact support, which comes at a price of
additional technical difficulties.

6. Conclusion
In this paper, we initialized the theoretical investigation
of robustness results for representation learning with mis-
specified models. While we showed robustness results for
linear ICA and for almost isometric embeddings there are
several closely related questions, of which we name a few.
First, it would be of interest to show for the perturbed lin-
ear ICA model finite sample guarantees, local convergence
guarantees for algorithms not relying on gradient descent,
e.g., for the fast-ICA algorithm, and analyze the effects of
additive noise. Secondly, one limitation of this work is that
we assume that the observational distribution f∗P and the
manifold it is supported on are exactly known in the under-
complete case. Note that by the Nash embedding theorem
(Nash, 1954) we can approximate uniformly any submani-
fold by a sequence of local isometries. Thus, here additional
regularization by, e.g., penalizing higher order derivatives is
necessary to extend robustness results to, e.g., finite sample
size or noisy settings. The broader questions that this work
motivates is what class of identifiability results are brittle
and which are robust to misspecification (or finite sample
bias). A deeper understanding of this landscape (and its in-
tersection with real-world datasets) will help to understand
which identifiability results give rise to useful learning sig-
nals, and thus provide some guidance for the development
of novel algorithms for (causal) representation learning.

Acknowledgements
This work was supported by the Tübingen AI Center.
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Supplementary Material
Here we collect additional results, details, and proofs for the main paper. This appendix is structured as follows. We first
introduce some notation and definitions used throughout the paper in Appendix A then we state and prove a lemma that can
be used to bound the MCC in our setting in Appendix B. We gather some elementary results about the distance of matrices
to the orthogonal group in Appendix C, and we extend these results to mappings to submanifolds M ⊂ RD and define our
measure of non-isometry also in this setting in Appendix D. In Appendix E we prove our results on approximate linear
identifiability for approximate local isometries, followed by our careful analysis of perturbed linear ICA in Appendix F. The
proof of our combination of the two results can be found in Appendix G. In Appendix H we provide the missing details for
the experimental illustration of non-robustness and in Appendix I we confirm empirically the theoretical convergence rates
which we derived for perturbed linear ICA. Finally, in Appendix J we show that a certain class of random functions becomes
increasingly isometric as the ambient dimension grows.

A. Notation and Mathematical Definitions
In the paper we use notation from different fields. Let us collect a few definitions and references to the literature.

Linear Algebra We denote by |A| = |A|F the Frobenius norm on matrices, i.e., |A|2 = TrAA⊤ =
∑

i,j |Aij |2. We will
frequently use unitary invariance |X|F = |QX|F for Q ∈ SO(d) of the Frobenius norm. The symbol A−⊤ = (A−1)⊤

denotes the inverse of the transpose.

Probability Theory We denote by f∗P the pushforward of a measure P along f . It is defined by f∗P(A) = P(f−1A) and
the distribution of f(Z) is f∗P if Z ∼ P. We denote by ∥f∥P,p = (EP|f ||p)1/p the Lp norm.

Sobolev spaces For differentiable functions u : Ω → R we define the Sobolev norm

∥u∥pW 1,p(Ω) =

∫
Ω

|u|p(s) + |Du|p(s) ds. (19)

The Sobolev embedding W 1,p(Ω) ↪→ Lq(Ω) is continuous for q = pd/(d − p). For details and a proper definition of
Sobolev spaces we refer to Adams & Fournier (2003). We denote by ∥f∥p the usual Lp norm with respect to the Lebesgue
measure.

Differential Geometry We consider mixing functions f : Rd → M ⊂ RD where M is an embedded submanifold. In this
case, we need some notions from differential geometry such as the tangent space TpM whose definitions can be found in,
e.g., Lee (2013).

B. Bounding MCC for almost Permutations
Here, we provide a Lemma that allows us to control the MCC between two data representations when the transformation is
perturbed linear and the linear part is close to a permutation matrix.

Lemma B.1. Let P be a centered probability measure. Assume that for Z ∼ P the bound

max
i,j

∥Zi∥P,2
∥Zj∥P,2

≤ c1 (20)

holds for some constant c1. Let T (z) = Az + h(z) where A is a matrix such that there is a permutation ρ and a constant c2
with

max
i

1

|Ai,ρ(i)|
∑

j ̸=ρ(i)

|Ai,j | ≤ c2 (21)

and h has the property that for some constant c3

∥hi∥P,2
|Ai,ρ(i)|∥Zρ(i)∥P,2

≤ c3. (22)
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Then the bound

MCC(T (Z), Z) ≥ 1− 2c3 − 2c1c2 (23)

holds.

Proof. We lower bound the expression (4) for the permutation π = ρ−1 in the statement of the lemma. Let Z ∼ P and
Z̃ = T (Z). Consider the correlation coefficients

ρ(Zρ(i), Ẑi) =
Cov(Zρ(i), Ẑi)

σZρ(i)
σẐi

. (24)

We find, using that Zρ(i) is centered

∣∣∣Cov(Zρ(i), Ẑi)−Ai,ρ(i)E(Z2
ρ(i))

∣∣∣ = ∣∣∣E(Zρ(i)Ẑi)−Ai,ρ(i)E(Z2
ρ(i))

∣∣∣
=

∣∣∣∣∣∣
∑
j

Ai,jE(Zρ(i)Zj) + E(Zρ(i)hi(Z))−Ai,ρ(i)E(Z2
ρ(i))

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

j ̸=ρ(i)

Ai,jE(Zρ(i)Zj) + E(Zρ(i)hi(Z))

∣∣∣∣∣∣
≤ ∥Zρ(i)∥P,2

∥hi(Z)∥P,2 +
∑

j ̸=ρ(i)

|Ai,j |∥Zi∥P,2


≤ |Ai,ρ(i)|∥Zρ(i)∥2P,2(c3 + c2c1).

(25)

Note that the first terms vanish for independent latent variables. Next we control the variance of Ẑi. We find using the
triangle inequality

σ2
Ẑi

≤ E(Ẑ2
i ) ≤

∥hi(Z)∥P,2 +
∑
j

|Aij |∥Zj∥P,2

2

≤ ∥Zρ(i)∥2P,2

c3|Ai,ρ(i)|+ |Ai,ρ(i)|+ c1
∑
j

|Ai,j |

2

≤ ∥Zρ(i)∥2P,2|Ai,ρ(i)|2 (1 + c3 + c2c1)
2
.

(26)

We now combine (25) and (26) with (1 + x)−1 ≥ 1− x and find

|ρ(Zρ(i), Ẑi)| ≥
|Ai,ρ(i)|∥Zρ(i)∥2P,2(1− c3 − c1c2)

∥Zρ(i)∥P,2 · ∥Zρ(i)∥P,2|Ai,ρ(i)| (1 + c3 + c2c1)
≥ (1− c3 − c1c2)

2 ≥ 1− 2c3 − 2c1c2. (27)

The claim follows by bounding

MCC(T (Z), Z) ≥ d−1
∑
i

|ρ(Zρ(i), Ẑi)| ≥ 1− 2c3 − 2c1c2. (28)

The previous lemma has minimal assumptions on P and h. We now show that the lemma can be improved when assuming
independence of the coordinates of P. Otherwise, the statement and proof are similar.
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Lemma B.2. Let P be a centered probability measure on Rd satisfying Assumption 2.2, i.e., with independent components.
Assume that for Z ∼ P the bound

max
i,j

∥Zi∥P,2
∥Zj∥P,2

≤ c1 (29)

holds for some constant c1. Suppose that T (z) = Az + h(z) and EP(Zihj(Z)) = 0 for all 1 ≤ i, j ≤ d. Assume that A is
a matrix such that there is a permutation ρ and a constant c2 with

max
i

1

|Ai,ρ(i)|2
∑

j ̸=ρ(i)

|Ai,j |2 ≤ c22 (30)

and h has the property that for some constant c3

∥hi∥P,2
|Ai,ρ(i)|∥Zρ(i)∥P,2

≤ c3. (31)

Then the bound

MCC(T (Z), Z) ≥ 1− c23
2

− (c1c2)
2

2
(32)

holds.

Proof. Again, we lower bound the expression (4) for the permutation π = ρ−1 in the statement of the lemma. Let Z ∼ P
and Z̃ = T (Z). We first control

ρ(Zρ(i), Ẑi) =
Cov(Zρ(i), Ẑi)

σZρ(i)
σẐi

. (33)

Using that Zρ(i) is centered followed by E(ZiZj) = E(Zihj(Z)) = 0 (by independence and the assumption for h) we get

Cov(Zρ(i), Ẑi) = E(Zρ(i)Ẑi)

=
∑
j

Ai,jE(Zρ(i)Zj) + E(Zρ(i)hi(Z))

= Ai,ρ(i)E(Z2
ρ(i)).

(34)

Next we control the variance of Ẑi. We expand the product and find (exploiting again independence and that h and Z are
uncorrelated)

σ2
Ẑi

= E(Ẑ2
i ) = E

hi(Z) +
∑
j

Ai,jZj

2

= ∥hi∥2P,2 +
∑

j ̸=ρ(i)

|Ai,j |2∥Zj∥2P,2 + |Ai,ρ(i)|2∥Zρ(i)∥2P,2

≤ |Ai,ρ(i)|2 · ∥Zρ(i)∥2P,2

1 + c23 + c21
1

|Ai,ρ(i)|2
∑
j

|Ai,j |2


≤ ∥Zρ(i)∥2P,2|Ai,ρ(i)|2
(
1 + c23 + (c2c1)

2
)
.

(35)

Combining again (34) and (35) with
√
1 + x ≤ 1 + x/2 (for x > 0) and (1 + x)−1 ≥ 1− x, we find

|ρ(Zρ(i), Ẑi)| ≥
|Ai,ρ(i)| · ∥Zρ(i)∥2P,2

∥Zρ(i)∥P,2 · |Ai,ρ(i)| · ∥Zρ(i)∥P,2
√

1 + c23 + (c2c1)2
≥
(
1 +

c23
2

+
(c2c1)

2

2

)−1

≥ 1− c23
2

− (c2c1)
2

2
.

(36)
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We finish by noting

MCC(T (Z), Z) ≥ d−1
∑
i

|ρ(Zρ(i), Ẑi)| ≥ 1− c23
2

− (c2c1)
2

2
. (37)

C. Auxiliary result on distances to the orthogonal group
We need some elementary and well-known facts on the distance of matrices to the orthogonal group. Let A ∈ Rd×d be a
matrix with detA > 0. Then we consider a Singular Value Decomposition (SVD) A = UΣV ⊤ where U, V ∈ SO(d) and
Σ = Diag(σ1, . . . , σd) ∈ Diag(d) contains the singular values σi > 0. The following Lemma holds.

Lemma C.1. For A ∈ Rd×d with detA > 0 and any SVD A = UΣV ⊤ as above, the relation

dist(A,SO(d))2 = |(A⊤A)
1
2 − Id|2F = |Σ− Id|2F =

d∑
i=1

(σi − 1)2 (38)

holds, moreover the minimizer of |A−Q|2F is given by Q = UV ⊤.

Proof. First, we note that the last three expressions agree. For the last two this is obvious, and we find
√
A⊤A =

√
V Σ2V ⊤ = V

√
Σ2V ⊤ = V ΣV ⊤. (39)

Then we conclude by unitary invariance |RX|F = |X|F for R ∈ SO(d) of the Frobenius norm that

|
√
A⊤A− Id|F = |V ΣV ⊤ − Id|F = |Σ− Id|F (40)

It remains to show that also the first expression agrees with the other three expressions. We find for Q ∈ SO(d) using again
unitary invariance that

|A−Q|2F = |UΣV ⊤ −Q|2F = |Σ− U⊤QV |2F

= |Σ|2F + |U⊤QV |2F − 2TrΣ(U⊤QV ) = |Σ|2F + d− 2

d∑
i=1

σi(U
⊤QV )ii.

(41)

Here we used |R|2F = TrRR⊤ = d in the last step. Since σi > 0 and since Rii ≤ 1 for R ∈ SO(d) we conclude

|A−Q|2F ≥ |Σ|2F + d−
d∑

i=1

σi (42)

with equality if (U⊤QV )ii = 1 for 1 ≤ i ≤ d and thus U⊤QV = Id and therefore Q = UV ⊤. From (41) we find

|A− UV ⊤|2F = |Σ|2F + d− 2

d∑
i=1

σi =

d∑
i=1

(σ2
i − 2σi + 1). (43)

This has the following consequence.

Lemma C.2. Let A ∈ Rd×d with detA > 0 and denote the smallest singular value of A by σmin. Then

dist(A−1,SO(d))2 ≤ 1

σ2
min

dist(A,SO(d))2 (44)
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Proof. Note that the singular values of A−1 are σ−1
i where σi denote the singular values of A. Using Lemma C.1 we then

find

dist(A−1,SO(d))2 =

d∑
i=1

(σ−1
i − 1)2 =

d∑
i=1

σ−2
i (σi − 1)2 ≤ σ−2

min dist(A,SO(d))2. (45)

We need one further lemma that concerns the distance to SO(d) of a product of matrices.

Lemma C.3. Let A,B ∈ Rd×d with detA > 0, detB > 0. Then

dist(AB, SO(d)) ≤ 3

2
dist(A,SO(d)) +

3

2
dist(B, SO(d)). (46)

This implies for p > 1

distp(AB, SO(d)) ≤ 3p (distp(A,SO(d)) + distp(B, SO(d))) . (47)

Proof. Denote the projections of A and B on SO(d) by Q and R respectively. Then

dist(AB, SO(d)) ≤ |AB −QR|F
= |(A−Q)R+Q(B −R) + (A−Q)(B −R)|F
≤ |(A−Q)R|F + |Q(B −R)|F + |(A−Q)(B −R)|F
≤ |A−Q|F + |B −R|F +

√
|A−Q|F |B −R|F

≤ 3

2
|A−Q|F +

3

2
|B −R|F

=
3

2
dist(A,SO(d)) +

3

2
dist(B, SO(d)).

(48)

Here we used again unitary equivalence of the Frobenius norm and the Cauchy-Schwarz inequality. This proves (46) and
observe that by the generalized mean inequality (a+ b)p ≤ 2p−1(ap + bp) ≤ 2p(ap + bp) we obtain (47).

D. Extension to the undercomplete case
The main interest of representation learning concerns the case where we actually learn a representation of a low dimensional
submanifold embedded in a high dimensional space. This creates some additional technical difficulties that we address here.
We always assume that the mixing f : Ω → M ⊂ RD is a diffeomorphism on an embedded submanifold. We can identify
the tangent space Tf(s)M with an affine subspace of RD and we center this subspace at 0 instead of f(s) to obtain a linear
subspace. We consider the standard Riemannian metric on Rd and RD inducing also a metric on Tf(s)M . The differential
Df(s) defines a bijective linear map Rd ∼= TsRd → Tf(s)M .

To simplify the notation and restrict attention to the essential requirements we consider a linear subspace H ⊂ RD and
we assume that A ∈ RD×d is a full rank matrix with range(A) = H , in particular dim(H) = d. We now characterize the
matrix representations of maps Rd → H ⊂ RD. For this we consider the unique polar decomposition A = UP where
U : Rd → RD with U ∈ SO(d,D) and P : Rd → Rd is symmetric and positive definite. Note that P is given by the
expression P =

√
A⊤A. In the following U will always denote the orthogonal matrix from such a polar decomposition.

Lemma D.1. Let A = UP be the polar decomposition of A. Then every linear map T ∈ RD×d with Range(T ) ⊂ H =
Range(A) can be written uniquely as T = UB for some B ∈ Rd×d.

Proof. We first claim that UU⊤T = T . Let x ∈ Rd then Tx = Uy for some y ∈ Rd because T maps to H and U is
surjective on H . We thus find

UU⊤Tx = UU⊤Uy = Uy = V x (49)

where we used U⊤U = Idd (recall U ∈ SO(d,D)). Then we find T = UB with B = U⊤T ∈ Rd×d. Uniqueness follows
by injectivity of U .
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We now consider the space of isometries SO(d,H) consisting of all linear maps Q : Rd → RD such that Range(Q) ⊂ H
and |Qv| = |v| for all v ∈ Rd. Note that SO in addition requires preservation of orientation, but we can either just choose
the orientation induced by A or ignore this issue and think of orthogonal matrices O(d,H). We nevertheless write SO to be
consistent with the literature. Note that SO(d,H) ⊂ SO(d,D). We can now define the distance

dist(A,SO(d,H)) = min
Q∈SO(d,H)

|A−Q|F . (50)

This distance can be characterized as follows.

Lemma D.2. Let T ∈ RD×d be a linear map with Range(T ) ⊂ H . Then

dist(T, SO(d,H)) = dist(B, SO(d)). (51)

where B is the unique matrix such that T = UB (see Lemma D.1).

Proof. The crucial observation is that the relation

SO(d,H) = U · SO(d) (52)

holds where U · SO(d) = {UV : V ∈ SO(d)}. We first consider the inclusion ⊂. Consider V ∈ SO(d,H). We have seen
in the proof of Lemma D.1 that V = U(U⊤V ) so we only need to show that U⊤V ∈ SO(d). We find

(U⊤V )⊤U⊤V = V ⊤UU⊤V = V ⊤V = Idd (53)

where we used UU⊤V = V and V ∈ SO(d,D). Therefore U⊤V ∈ SO(d) and thus V ∈ U SO(d). Now we consider the
reverse inclusion ⊃. Let Q ∈ SO(d). Then we find

Range(UQ) = Range(U) = Range(UP ) = Range(A) = H. (54)

Moreover |UQv|2 = v⊤Q⊤U⊤UQv = v⊤Q⊤Qv = |v|2 and therefore UQ ∈ SO(d,H). Thus we find

dist(T, SO(d,H)) = dist(UB,U SO(d)) = dist(B, SO(d)) (55)

where the last step used the unitary invariance of the Frobenius norm, i.e., |UB| = |B| for U ∈ SO(d,D) and B ∈
Rd×d.

Recall that in the polar decomposition A = UP the matrix P is given by P = (A⊤A)
1
2 . Then the lemma above implies

that for A such that H = range(A)

dist2(A,SO(d,H)) = dist2((A⊤A)
1
2 ,SO(d)) =

∑
(σi − 1)2 (56)

where σi are the singular values of A and we used Lemma C.1 in the last step.

We also need to consider isometries mapping H → Rd and the distance to these isometries. The space of SO(H, d) consists
of all distance preserving linear maps H → Rd. Clearly, there is no unique matrix representation Rd×D of such maps
because the map is not defined on H⊥, i.e., there are many extensions to RD. We essentially consider the extension by zero
to the orthogonal complement, i.e, for a map T : H → Rd we consider the extension T : RD → Rd (not reflected in the
notation) such that Tv = 0 for any v ⊥ H , i.e., v⊤w = 0 for all w ∈ H . Using this extension, we can identify such maps T
with a unique matrix Rd×D. Then we define

dist(T, SO(H, d)) = min
Q∈SO(H,d)

|T −Q|F (57)

where we identify T and Q with matrix representations as explained before. We have the following simple lemma.

Lemma D.3. Let T : H → Rd be a linear map, which we identify with a matrix representation T ∈ RD×d as explained
above. Let U : Rd → H ⊂ RD be an isometry. Then there is a matrix B ∈ Rd×d such that T = BU⊤ and

dist(T, SO(H, d)) = dist(B, SO(d)). (58)
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Proof. Since U is an isometry to H we find U ∈ SO(d,D) and U⊤ maps H isometrically to Rd (because U⊤(Uv) =
Iddv = v). Therefore, there is a matrix B ∈ Rd×d such that Tv = BU⊤v for all v ∈ H . Let w ∈ H⊥. Then for all v ∈ Rd

we have Uv ∈ H and thus 0 = ⟨w,Uv⟩ = ⟨U⊤w, v⟩ which implies U⊤w = 0. We conclude that T = BU⊤. Next we
claim that similar to (52) the relation

SO(H, d) = SO(d) · U⊤ (59)

holds. The inclusion ⊃ follows, since the concatenation of isometries is an isometry (and U⊤H⊥ = {0}. The reverse
inclusion can be shown by using that Q ∈ SO(H, d) can be expressed as Q = BU⊤ for some B and noting that since
U⊤ ∈ SO(H, d) we find that B must be an isometry on Rd and therefore B ∈ SO(d).

Plugging everything together, we find

dist2(T, SO(H, d)) = min
Q∈SO(H,d)

|Q− T |2F = min
Q′∈SO(d)

|BU⊤ −Q′U⊤|2F = min
Q′∈SO(d)

TrU(B −Q′)⊤(B −Q′)U⊤

= min
Q′∈SO(d)

Tr(B −Q′)⊤(B −Q′)U⊤U = min
Q′∈SO(d)

Tr(B −Q′)⊤(B −Q′)Idd

= min
Q′∈SO(d)

|B −Q′|2F = dist2(B, SO(d)).

(60)

This ends the proof.

Note that an invertible matrix B induces a bijective map from Rd to H through the matrix representation UB. Its inverse
has the matrix representation B−1U⊤, indeed, then we find B−1U⊤UB = Idd. Now we can define the extension of the
distance Θ to the undercomplete case. We define for f : Ω ⊂ Rd → M ⊂ RD

Θp
p(f,Ω) =

∫
Ω

distp(Df(z),SO(d, Tf(z)M)) + distp
(
(Df)−1(z),SO(Tf(z)M,d)

)
dz (61)

where (Df)−1(z) denotes the inverse of the map Df(z) viewed as a linear map with target Tf(z)M . Note that for d = D
this definition agrees with the definition in (2).

By our results so far, we can equivalently write

Θp
p(f,Ω) =

∫
Ω

distp(P (Df(s)),SO(d)) + distp
(
P−1(Df(s)),SO(d)

)
ds

=

∫
Ω

distp((Df(s)⊤Df(s))
1
2 ,SO(d)) + distp

(
(Df(s)⊤Df(s))−

1
2 ,SO(d)

)
ds

(62)

where P (Df(s)) =
√
Df(s)⊤Df(s) denotes the unique matrix P in the polar decomposition Df(s) = UP .

We need the following extension of Lemma C.3.

Lemma D.4. Suppose H = Range(A) for a full rank matrix A ∈ RD×d. Let T ∈ RD×d with range(T ) ⊂ H and
S : H → Rd a linear map which we identify with its matrix representation S ∈ Rd×D as explained above. Then ST is the
matrix representation of the concatenation of the linear maps, and we assume that det(ST ) > 0. Then the bound

dist(ST,SO(d)) ≤ 3

2
dist(S, SO(H, d)) +

3

2
dist(T, SO(d,H)) (63)

holds. For p ≥ 1 this implies

distp(ST,SO(d)) ≤ 3p distp(S,SO(H, d)) + 3p distp(T, SO(d,H)). (64)

Proof. Denote as before the polar decomposition of A by A = UP . We have observed that there are matrices B, B′ such
that S = B′U⊤ and T = UB. Then we have ST = B′U⊤UB = B′B. Moreover, we have seen that

dist(T, SO(d,H)) = dist(B, SO(d)), dist(S, SO(H, d)) = dist(B′,SO(d)). (65)
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Thus we find using Lemma C.3 (for A = B′, B = B)

dist(ST,SO(d)) = dist(B′B, SO(d)) ≤ 3

2
dist(B′,SO(d)) +

3

2
dist(B, SO(d))

=
3

2
dist(T, SO(d,H)) +

3

2
dist(S, SO(H, d)).

(66)

E. Proof and extension of approximate linear identifiability for approximate isometries
In this section we provide the proofs for the results in Section 4. First, we state the key rigidity statement that we use in the
proof of Theorem 4.1.
Theorem E.1 (Theorem 3.1 in Friesecke et al. (2002)). Let Ω ⊂ Rd be a bounded Lipschitz domain1. Then there is for
p > 1 a constant C(Ω, p) such that for each u ∈ W 1,p(Ω,Rd) there is a linear function L(s) = As + b with b ∈ Rd,
A ∈ SO(d) such that

∥u− L∥pW 1,p(Ω) ≤ C(Ω, p)

∫
Ω

dist(Du(s),SO(d))p ds. (67)

Remark E.2. • The reference above only stated the case p = 2 the simple extension to general p can be found in
Section 2.4 in Conti & Schweizer (2006).

• The main interest for the study of elasticity is the bound on the gradient because this is related to the energy. Here, we
are only interested in the deviation L− u (where actually simpler proofs of similar results are possible (Kohn, 1982)).
Using for p < d the Sobolev embedding W 1,p(Ω) ↪→ Lq(Ω) for q = pd/(d− p) the Theorem above implies

∥u−L∥Lq(Ω) ≤ C(Ω, p)∥u− L∥W 1,p(Ω)

≤ C(Ω, p)

(∫
Ω

dist(Du(s),SO(d))p ds

) 1
p

.
(68)

Let us now discuss one lemma that we split off from the proof of Theorem 4.1 because we will use it in the proof of
Theorem G.2 below again.
Lemma E.3. Suppose that d ≤ D and f : Ω ⊂ Rd → M ⊂ RD and g : Ω′ → M are diffeomorphisms, P and Q are
measures on Ω and Ω′ such that f∗P = g∗Q. Suppose the density of P is lower bounded on Ω. Let T = g−1 ◦ f , then∫

Ω

distp(DT (z),SO(d)) dz

≤ 3p
∫
Ω

distp(Df(s),SO(d, Tf(s)M)) ds+ C

∫
Ω′

distp(Dg−1(g(s)),SO(Tg(s)M,d))Q(ds)

(69)

where C > 0 depends on the lower bound of the density and p.

Remark E.4. For d = D the formula (69) simplifies to∫
Ω

dist(DT (z),SO(d))p dz ≤ 3p
∫
Ω

distp(Df(s),SO(d)) ds+ C

∫
Ω′

distp(Dg−1(g(s)),SO(d))Q(ds). (70)

Proof. First we note that g−1 : M → Ω is by assumption differentiable and by the chain rule we have Dg−1(f(s))Df(s) =
DT (s). We now find using Lemma D.4 that∫

Ω

distp(DT (s),SO(d)) ds =

∫
Ω

distp(Dg−1(f(s))Df(s),SO(d)) ds

≤ 3p
∫
Ω

distp(Dg−1(f(s)),SO(Tf(s)M,d)) + distp(Df(s),SO(d, Tf(s)M)) ds

(71)

1A Lipschitz domain is slightly informally a set whose boundary ∂Ω can be expressed as the union of the graphs of Lipschitz functions
(see (Adams & Fournier, 2003) for a complete definition).
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Now we use the transformation formula for push-forward measures, and the assumption g∗Q = f∗P and the lower bound on
the density of P∫

Ω

distp(Dg−1(f(s)),SO(Tf(s)M,d)) ds ≤ C

∫
Ω

distp(Dg−1(f(s)),SO(Tf(s)M,d))P(ds)

= C

∫
f(Ω)

distp(Dg−1(x),SO(TxM,d)) (f∗P)(dx)

= C

∫
g(Ω′)

distp(Dg−1(x),SO(TxM,d)) (g∗Q)(dx)

= C

∫
Ω′

distp(Dg−1(g(s)),SO(Tg(s)M,d))Q(ds).

(72)

The last two displays together imply the claim.

We now provide the extensions of Theorem 4.1 to d < D. In this case, we can still define the set M(f∗P) as in (7). We
define g by

(g,Q,Ω′) ∈ argmin
(ḡ,Q̄,Ω̄)∈M(f∗P)

∫
Ω̄

dist(Dḡ−1(x),SO(TxM,d))p ḡ∗Q̄(dx). (73)

Here we need to integrate the deviation from an isometry over the observational distribution ḡ∗Q = f∗P. Again, this agrees
with the definition of (8) for d = D. To avoid the assumption that the minimum exists, we also let (gε,Q,Ω′) ∈ M(f∗P)
be any function such that∫

Ω̄

dist(Dg−1
ε (x),SO(TxM,d))p (gε)∗Q̄(dx) ≤ inf

(ḡ,Q̄,Ω̄)∈M(f∗P)

∫
Ω̄

dist(Dḡ−1(x),SO(TxM,d))p ḡ∗Q̄(dx) + ε. (74)

Then we can state and prove the following complete version of Theorem 4.1.
Theorem E.5. Suppose we have a latent distribution P ∈ P satisfying Assumptions 2.1 with support Ω ⊂ Rd where Ω is a
bounded connected Lipschitz domain. The observational distribution is given by X = f(Z) ∈ M ⊂ RD where Z ∼ P and
f ∈ F(Ω). Fix a 1 < p < ∞. Let (gε,Q,Ω′) ∈ M(f∗P) be any function satisfying (74). Then there is A ∈ SO(d) and
b ∈ Rd such that g−1

ε ◦ f(z) = Az + b+ h(z) and h satisfies the bound

∥h∥P,q ≤ CΘp(f,Ω) + Cε
1
p (75)

for q = pd/(d− p). Here C is a constant depending on d, p, Ω, and the lower and upper bound on the density of P.

It is clear that this theorem is more general than Theorem 4.1.

Proof. As before, we call the transition function T = g−1f : Ω → Ω′. First, we observe that by definition of gε∫
Ω̄

dist(Dg−1
ε (x),SO(TxM,d))p (gε)∗Q̄(dx) ≤ inf

(ḡ,Q̄,Ω̄)∈M(f∗P)

∫
Ω̄

dist(Dḡ−1(x),SO(TxM,d))p ḡ∗Q̄(dx) + ε

≤
∫
Ω

distp(Df−1(f(s)),SO(Tf(s)M,d))P(ds) + ε.

(76)

Here we used in the second step that (f,P,Ω) ∈ M(f∗P), i.e., f is a valid representation of our data so that this provides
an upper bound on the infimum. We now find using Lemma E.3 and (76)∫

Ω

distp(DT (s),SO(d))p ds

≤ 3p
∫
Ω

distp(Df(s),SO(d, Tf(s)M)) ds+ C

∫
Ω′

distp(Dg−1(g(s)),SO(Tf(s)M,d))Q(ds)

≤ 3p
∫
Ω

distp(Df(s),SO(d, Tf(s)M)) ds+ C

∫
Ω

distp(Df−1(f(s)),SO(Tf(s)M,d))P(ds) + Cε

≤ 3p
∫
Ω

distp(Df(s),SO(d, Tf(s)M)) ds+ C

∫
Ω

distp(Df−1(f(s)),SO(Tf(s)M,d)) ds+ Cε

= CΘp
p(f,Ω) + Cε.

(77)
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Note that in the second to last step we used the upper bound on the density of P.

Now we apply Theorem E.1 (or rather its consequence (68) which states that there is a matrix A ∈ SO(d) and b ∈ Rd such
that (∫

Ω

|T (s)−As− b|q ds
) 1

q

≤ C(Ω)

(∫
Ω

distp(DT (s),SO(d)) ds

) 1
p

. (78)

Using the upper bound on the density of P and the last two displays we find(∫
Ω

|T (s)−As− b|q P(ds)
) 1

q

≤ C

(∫
Ω

|T (s)−As− b|q ds
) 1

q

≤ C

(∫
Ω

distp(DT (s),SO(d)) ds

) 1
p

≤ CΘp(f,Ω) + Cε
1
p .

(79)

Here we used (a+ b)
1
p ≤ (2a)

1
p + (2b)

1
p This completes the proof.

F. Proofs for the results on perturbed linear ICA
In this section we prove Theorem 5.5 and the extension in Theorem 5.9. Two technical difficulties when proving this result is
that we consider a function defined on the sphere and that we need to whiten the data. Therefore, we first prove a linearized
result in Lemma F.1 from which the Theorem can be deduced after some technical algebraic manipulations. To motivate the
calculations, let us first briefly sketch the well-known unperturbed case of linear ICA (Hyvärinen & Oja, 2000).

Proof sketch of the Linear Result We assume that X is whitened and X = AS. Let w0 with |w0| = 1 be such that
w0X = w0AS = edS = Sd. Note that for w in a neighborhood of w0 we can write for some εi (small)

wX =
√
1− (ε21 + . . .+ ε2d−1)Sd + ε1S1 + . . .+ εd−1Sd−1. (80)

Indeed, since Si are independent and with unit variance, we find that the prefactor of Sd has to be
√

1− (ε21 + . . .+ ε2d−1)

to ensure that wX has unit variance. Note that

1−
√

1− (ε21 + . . .+ ε2d−1) =
1
2

d−1∑
i=1

ε2i +O(ε4) (81)

where ε2 =
∑d−1

i=1 ε2i is the l2 norm. Then we can Taylor expand (denoting G′ = g)

G(Xw) = G(Sd) +

(
d−1∑
i=1

εiSi −
1

2
Sd

d−1∑
i=1

ε2i

)
g(Sd) +

1

2
g′(S1)

(
d−1∑
i=1

εiSi

)2

+O(ε3). (82)

Taking the expectation over this expression, we obtain

E(G(Xw)) = E(G(Sd)) + E

((
d−1∑
i=1

εiSi −
1

2
Sd

d−1∑
i=1

ε2i

)
g(Sd)

)
+

1

2
E

g′(Sd)

(
d−1∑
i=1

εiSi

)2
+O(ε3)

= E(G(Sd))−
1

2
E (Sdg(Sd))

d−1∑
i=1

ε2i +
1

2
E(g′(Sd))

d−1∑
i=1

ε2i +O(ε3)

(83)

where we used that E(Si) = 0, E(S2
i ) = 1, and the fact that Si and Sj are independent for i ̸= j so that E(Sig(Sd)) =

E(Si)E(g(Sd)) = 0. In particular, we obtain

E(G(Xw)) = E(G(Sd)) +
1

2

(∑
i

ε2i

)
(E(g′(Sd)− E (Sdg(Sd)) +O(ε3). (84)

22



Robustness of Nonlinear Representation Learning

We conclude that under the condition

E(g′(Sd))− E (Sdg(Sd)) ̸= 0 (85)

the function w → E(G(wX)) has a local extremum at w = w0 and it is strictly convex or concave around w0.

The key lemma. We now generalize the reasoning above to the perturbed setting. To simplify this further, we first assume
A = Id so that

X = S + ηh(S). (86)

We also remove the linear whitening operation involved in H and instead consider

H̃η,h(w) = EG
(
wX

σw

)
(87)

where we used the shorthand σw =
√
E((wX)2). Clearly the function H̃ is invariant under rescaling of the argument, i.e.,

homogeneous of degree 0. Instead of restricting it to the sphere, we define the function H̄ : Rd−1 → R given by

H̄(ε) = H̃η,h((ε, 1)
⊤) (88)

around ε = 0. Then our goal is to show that H̄ has an extremum close to ε = 0 which allows us to approximately recover
the independent component Sd. We now prove the following Lemma.

Lemma F.1. Assume the contrast function G and the distribution of the sources S satisfy the Assumptions 5.2, 5.3, and 5.4
and assume that ∥h∥P,q ≤ 1 for q = max(3, dg). Define v ∈ Rd−1 by

vi = E(hd(S)g
′(Sd)Si + g(Sd)hi(S)). (89)

Then, there is η0 > 0 (depending on all problem constants, e.g., d, α, q, M but not on h) such that for η ≤ η0 the function
H̄ has a local extremum ε0 in the vicinity of ε = 0 such that |ε0| = O(η). This extremum satisfies

ε0 =
ηv

α
+O(η2). (90)

Moreover there is η′0 > 0 (depending on the same quantities as η0) such that for η ≤ η′0 there is a radius κ > 0 such that H̄
is strictly convex or concave on Bκ(0) and satisfies

D2H̄(ε) ≥ |αd|
2

· Id for αd < 0

D2H̄(ε) ≤ −αd

2
· Id for αd > 0 .

(91)

Proof. Since we are interested in small ε we will always assume that |ε| ≤ 1. We will denote w = (ε, 1)⊤. Then we have

wX = Sd +

d−1∑
i=1

εiSi + ηw · h(S). (92)

We define Ω = E(h(S)⊤h(S)), i.e., the covariance of the nonlinear part. We find

E((wX)2) = E

(
Sd +

d−1∑
i=1

εiSi + ηw · h(S)

)2

= 1 +

d−1∑
i=1

ε2i + η2w · Ωw (93)

where we used that Si are unit variance and uncorrelated and E(S⊤h(S)) = 0. In particular, we conclude that

σw =

√√√√1 +

d−1∑
i=1

ε2i + η2w · Ωw. (94)
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Note that |Ω| ≤ ∥h∥2P,2 ≤ ∥h∥2P,q ≤ 1 by assumption. Let us introduce some notation. We consider the shorthand

Sε =

d−1∑
i=1

εiSi. (95)

We also use

hw(S) = w · h(S), hε(S) =

d−1∑
i=1

εihi(S). (96)

Since w = (ε1, . . . , εd−1, 1)
⊤ we have

hw(S) = hε(S) + hd(S). (97)

Now we perform a second order Taylor expansion of G around Sd with remainder term. We obtain that for some
ξ ∈ [Sd, wX/σw]

G

(
wX

σw

)
= G (Sd) + g (Sd)

Sε + ηhw(S) + Sd(1− σw)

σw

+
1

2
g′ (Sd)

(
Sε + ηhw(S) + Sd(1− σw)

σw

)2

+
1

6
g′′(ξ)

(
Sε + ηhw(S) + Sd(1− σw)

σw

)3

.

(98)

Our goal is to extract the quadratic terms in ε and η of this expression. We now start to bound the error term and show that it
is of order 3. Since ξ ∈ [Sd, wX/σw] and σw > 1 we conclude that |ξ| ≤ max(|wX|, |Sd|). Then we can control using
Assumption 5.2

|g′′(ξ)| ≤ Cg(1 + |ξ|max(dg−3,0)) ≤ Cg(1 + max(|wX|, |Sd|)max(dg−3,0))

≤ C(1 + |S|max(dg−3,0) + |ηh(S)|max(dg−3,0)).
(99)

We have the simple bound

|σw − 1| ≤ |ε|2 + |η|2|w|2 · |Ω| ≤ |ε|2 + |η|2|w|2. (100)

Then we can bound (using η2|ε|+ |ε|2η ≤ |ε|3 + η3)∣∣∣∣Sε + ηhw(S) + Sd(1− σw)

σw

∣∣∣∣3 ≤ C(|ε|3 + η3)|S|3 + η3|h(S)|3 (101)

This implies (recall that q = max(3, dg))

1

6

∣∣∣∣∣g′′(ξ)
(
Sε + ηhw(S) + Sd(1− σw)

σw

)3
∣∣∣∣∣ ≤ C(d,Cg, q)(|ε|3 + η3) (1 + |S|q + |h(S)|q) . (102)

Next, we consider the second term

1

2
g′ (Sd)

(
Sε + ηhw(S) + Sd(1− σw)

σw

)2

(103)

which we approximate to 2nd order in ε and η and put all terms of order 3 and higher in the error term. Note that Sε = O(ε).
We expand ηhw(S) = ηhd(S) + ηhε(S) where ηhd(S) = O(η) and ηhε(S) = O(ηε). Finally (1− σw) = O(|ε|2 + η2).
We conclude that ∣∣∣∣∣

(
Sε + ηhw(S) + Sd(1− σw)

σw

)2

−
(
Sε + ηhd

σw

)2
∣∣∣∣∣ ≤ C(|S|2 + |h(S)|2) (104)
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where we again bounded mixed terms by, e.g., |ε|2η ≤ |ε|3 + η3. Using in addition that 1− σ−1
w ≤ C(|ε|2 + η2) to replace

σw in the denominator by 1 up to third order error terms, we find∣∣∣∣∣g′(Sd)

(
Sε + ηhw(S) + Sd(1− σw)

σw

)2

− g′(Sd) (Sε + ηhd(S))
2

∣∣∣∣∣ ≤ C(|ε|3 + η3)(1 + |S|max(dg−2,0))(|S|2 + |h(S)|2).

(105)

Finally we consider the term proportional to g(Sd). Here we need the sharper bound∣∣∣∣σw − 1− |ε|2

2
− η2

2
w · Ωw

∣∣∣∣ ≤ 2|ε|4 + 2η4(|w|2|Ω|)2 ≤ 2|ε|4 + 2η4|w|4 (106)

which implies using w = ed +O(ε) that w · Ωw = Ωdd +O(ε) and moreover (recall |Ω| ≤ 1)∣∣∣∣σw − 1− |ε|2

2
− η2

2
Ωdd

∣∣∣∣ ≤ 2|ε|4 + 2η4|w|4 + 3|ε|η2. (107)

Then we get, again keeping terms up to order 2 in ε or η∣∣∣∣g(Sd)
Sε + ηhw(S) + Sd(1− σw)

σw
− g(Sd)

(
Sε + ηhw(S)−

1

2
(|ε|2 + η2Ωdd)Sd

)∣∣∣∣
≤ C(|ε|3 + η3)|S|max(dg−1,0)(|S|+ |h(S)|).

(108)

Using the bounds (102), (105), and (108) in (98) we obtain∣∣∣∣G(wX)−G(Sd)− g(Sd)

(
Sε + ηhw(S)−

1

2
(|ε|2 + η2Ωdd)Sd

)
− 1

2
g′(Sd) (Sε + ηhd(S))

2

∣∣∣∣
≤ C(|ε|3 + |η|3)(1 + |S|q + |h(S)|q).

(109)

Let us call the term between the absolute value on the left-hand side T . Then we can bound using Assumption 5.3

|ET | ≤ E|T | ≤ C(|ε|3 + η3)E(|S|q + |h(S)|q) ≤ C(|ε|3 + |η|3)(M + ∥h∥qP,q) = Ξ(|ε|3 + |η|3) (110)

where Ξ = C(M + 2) was introduced for future reference and depends on Cg, d, q, and the moment bound M but is
independent of ε and η and h. We observe next, using E(SdSε) = 0, E(g(SdSε) = 0 that

ET = EG
(
wX

σw

)
− E(G(Sd))− ηE(hw(S)g(Sd)) +

1

2
(|ε|2 + η2Ωdd)E(Sdg(Sd))

− 1

2
|ε|2E(g′(Sd))− ηE(hd(S)Sεg

′(Sd))−
1

2
η2E(g′(Sd)hd(S)

2)

= EG
(
wX

σw

)
− E(G(Sd))− ηE(hd(S)g(Sd)) +

1

2
(η2Ωdd)E(Sdg(Sd))−

1

2
η2E(g′(Sd)hd(S)

2)

− ηE(hd(S)Sεg
′(Sd))− ηE(hε(S)g(Sd)) +

1

2
|ε|2 (Eg(Sd)S1 − Eg′(Sd)) .

(111)

We thus obtained an expansion of H(w) = EG (wX/σw) up to second order in ε. Note that by plugging in εi = 0 for all i,
i.e., w = ed, in (110)∣∣∣∣EG(edX

σed

)
− E(G(Sd))− ηE(hd(S)g(Sd)) +

1

2
(η2Ωdd)E(Sdg(Sd))−

1

2
η2E(g′(Sd)hd(S)

2)

∣∣∣∣ ≤ Ξη3 (112)

so we conclude using the triangle inequality from (110), (111), and (112) that∣∣∣∣EG(wX

σw

)
− EG

(
edX

σed

)
− ηE(hd(S)Sεg

′(Sd))− ηE(hε(S)g(Sd)) +
1

2
|ε|2 (Eg(Sd)Sd − Eg′(Sd))

∣∣∣∣ ≤ Ξ(|ε|3 + 2η3).

(113)
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As a next step, we consider the derivatives of H . Since the reasoning is similar to the steps above, we provide slightly fewer
details, i.e., we hide integrable terms in the O notation. First we observe that

∂iσw =
εi + η2(Ωw)i

σw
. (114)

From here we obtain

∂iG

(
wX

σw

)
=

(
Si + ηhi(S)

σw
− (εi + η2(Ωw)i)(wS + ηhw(S))

σ3
w

)
g

(
wX

σw

)
. (115)

We apply a first order Taylor expansion to g and obtain the bound g
(

wX
σw

)
= g(Sd) +O(|ε|+ η). Thus, we find

∂iH̄(ε) = ∂iEG
(
wX

σw

)
=

1

σw
E(Sig(Sd)) +O(|ε|+ η) = O(|ε|+ η) (116)

where we used that Sj and Sd are independent.

Next we show using the bound (13) from Assumption 5.2 that the function ε → w = (ε, 1)⊤ → E(G(wX/σw)) is strictly
convex or concave around ε = 0 for η sufficiently small. For this, we need to find an expression for the second derivatives
of G. To keep the length of the formulas manageable, we hide the η2(Ωw)i as a O(η2) term. We find for 1 ≤ i, j ≤ d− 1
using (115) and (114)

∂i∂jG

(
wX

σw

)
= ∂i

((
Sj + ηhj(S)

σW
− (εj + η2(Ωw)j)(wS + ηhw(S))

σ3
w

)
g

(
wX

σw

))
=

(
Sj + ηhj(S)

σw
+−εj(wS + ηhw(S))

σ3
w

)(
Si + ηhi(S)

σw
− εi(wS + ηhw(S))

σ3
w

)
g′
(
wX

σw

)
−
(
εj(Si + ηhi(S)) + δij(wS + ηhw(S)) + εi(Sj + ηhj(S))

σ3
w

− 3εiεj(wS + ηhw(S))

σ5
w

)
g

(
wX

σw

)
+O(η2)

= SjSig
′
(
wX

σw

)
− δijS1g

(
wX

σw

)
+O(|ε|+ η).

(117)

Here, we used again that σw = 1 + O(|ε| + η). Now we apply a Taylor expansion to g and g′ and obtain g(wX/σw) =
g(Sd) +O(|ε|+ η) and similarly for g′ (here similar power counting as in the first part implies that the highest moment that
needs to be bounded is q = max(3, dg), we do not show this in full detail here). Then we obtain

∂i∂jH̄(ε) = ∂i∂jEG
(
wX

σw

)
= E

(
SiSjg

′
(
wX

σw

))
− δijE (Sdg (Sd)) +O(|ε|+ η)

= δijE(g′(Sd)− Sdg(Sd)) +O(|ε|+ η) = −αdδij +O(|ε|+ η).

(118)

In particular, we find

|D2H̄(ε) + αd · Id| = O(|ε|+ η). (119)

We conclude that for η < η0 with η0 sufficiently small, there is for some κ > 0 a neighborhood Bκ(0) such that the
function Bκ(0) ∋ ε → H̄(ε) is strictly convex or concave (depending on the sign of αd = E(Sdg(Sd) − g′(Sd))) with
D2H̄ ≥ |αd|/2 · Id in the convex case. We emphasize that κ is independent of η as soon as η ≤ η0 is sufficiently small.

It remains to prove the existence of a maximum or minimum and the expansion (90). To achieve this, we compare H̄ with
its expansion to second order, i.e., we define

f(ε) = ηE(hd(S)Sεg
′(Sd)) + ηE(hε(S)g(Sd))−

1

2
|ε|2 (Eg(Sd)Sd − Eg′(Sd)) = εηv − 1

2
α|ε|2 (120)

where we recall that we defined v ∈ Rd−1 by vi = E(hd(S)Sig
′(Sd)) + E(hi(S)g(Sd)) for i = 1, . . . , d − 1 and

αd = Eg(Sd)Sd − Eg′(Sd). Then we can rewrite (113) as∣∣H̄(ε)− H̄(0)− f(ε)
∣∣ < Ξ(|ε|3 + 2η3). (121)

26



Robustness of Nonlinear Representation Learning

In other words H̄ agrees with f up to a constant term and error terms of order 3 in ε and η. If we just use this bound on
|H̄ − f | we could prove (90) but only with an error term of order η

3
2 . To obtain the better rate η2 we need to consider a

second order expansion.

We assume now that αd > 0 such that H̄ and f are concave in a neighborhood Bκ(0) (the proof for αd < 0 is very similar)
for η < η0. For αd < 0 a similar reasoning applies and only some inequalities are reversed.

We first expand the function f . The relation αd > 0 implies that f is maximized at

εmax =
ηv

αd
, and f(ε) ≤ f(εmax) =

η2|v|2

2αd
. (122)

and we have for ε = εmax +∆ε the expansion

f(ε) = f(εmax +∆ε) = f(εmax)−
1

2
αd|∆ε|2. (123)

Now we consider similar expansions for H̄ . For concreteness, we introduce the constant Ξ2 such that

|D2H̄(ε) + αd · Id| ≤ Ξ2(|ε|+ η). (124)

Such a constant exists by (119).

Recall that we assumed that αd > 0 such that H̄ is concave in a neighborhood Bκ(0) for η < η0. Suppose ε0 is the unique
global maximum of H̄ on Bρ(0) for

ρ =
2η(|v|+ 1)

|αd|
(125)

where we assume that η is sufficiently small such that H̄ is uniformly convex on Bρ. Note that then either DH̄(ε0) = 0
or ε0 ∈ ∂Bρ(0) and DH̄(ε0)(ε − ε0) < 0 for all ε ∈ Bρ(0). Now, the general heuristic is that H̄ roughly behaves like
a parabola with vertex ε0 and f is a parabola with vertex εmax and both parabolas have approximately the same second
derivative. Then, the distance between the two parabolas will increase for large arguments, leading to a contradiction to
(121).

We now define the point ε1 as the intersection of the ray from εmax to ε0 with the set ∂B2ρ(0). We define

δ = |εmax − ε0| (126)

(the quantity we want to bound) and

µ = |ε0 − ε1| ≥ ρ (127)

(since ε0 ∈ Bρ(0) and |ε1| = 2ρ). Note that ε1 is on the ray from εmax to ε0 so we have |ε1 − εmax| = |ε1 − ε0|+ |ε0 −
εmax| = δ + µ. We then find using (123)

f(ε0)− f(ε1) == (f(εmax)−
1

2
αdδ

2)− (f(εmax)−
1

2
αd(δ + µ)2) = −1

2
αdδ

2 +
1

2
αd(δ + µ)2 =

1

2
αd(µ

2 + 2µδ).

(128)

We now derive a similar bound for H̄ for which we need the second order Taylor expansion with integral remainder which
reads for g : Rd → R with g ∈ C2 as follows

g(x) = g(x0) +Dg(x0)(x− x0) +

∫ 1

0

(1− t)(x− x0)
⊤D2g(x0 + t(x− x0))(x− x0) dt. (129)

We apply this with ε0 and ε1. We observe that since ε1 − ε0 and εmax − ε0 point in opposite directions, the relation
DH̄(ε0)(εmax − ε0) ≤ 0 (since εmax ∈ Bρ(0)) implies

DH̄(ε0)(ε1 − ε0) ≥ 0. (130)
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Then we find from the second order expansion (129) using the last display and (119)

H̄(ε1)− H̄(ε0) = DH̄(ε0)(ε1 − ε0) +

∫ 1

0

(1− t)(ε1 − ε0)
⊤D2H̄(ε0 + t(ε1 − ε0))(ε1 − ε0) dt

≥ 0− (αd + Ξ2(2ρ+ η)) (ε1 − ε0)
2

∫ 1

0

(1− t) dt

= −1

2
(αd + Ξ2(2ρ+ η))µ2.

(131)

Using (121) followed by (128) and (131) we now find

4Ξ(4ρ3 + η3) ≥ |H̄(ε0)− H̄(0)− f(ε0)|+ |H̄(ε1)− H̄(0)− f(ε1)|
≥ −

(
H̄(ε0)− H̄(0)− f(ε0)

)
+
(
H̄(ε1)− H̄(0)− f(ε1)

)
= (H̄(ε1)− H̄(ε0)) + (f(ε0)− f(ε1))

≥ −1

2
(αd + Ξ2(2ρ+ η))µ2 +

1

2
αd(µ

2 + 2µδ)

= αdµδ −
1

2
Ξ2(2ρ+ η)µ2.

(132)

We conclude using ρ ≤ µ ≤ 2ρ and the definition (125) that

δ ≤ 4Ξ(4ρ3 + η3)

αdµ
+

1

2αd
Ξ2(2ρ+ η)µ

≤ 4Ξ

αd

(
4ρ2 +

η3

ρ

)
+

1

αd
Ξ2(2ρ

2 + ηρ)

≤ 4Ξ

αd

(
16η2(|v|+ 1)2

α2
d

+
αdη

2

2(|v|+ 1)

)
+

Ξ2

αd

(
8η2(|v|+ 1)2

α2
d

+
2η2(|v|+ 1)

αd

)
≤ Cη2.

(133)

For η sufficiently small this implies that δ < ρ/2 and thus ε0 ∈ Bρ(0) (i.e., in the interior and not on the boundary) so that
ε0 really is a local maximum of H̄ . The proof for αd < 0 follows similarly.

We now extend Lemma F.1 by considering A ̸= Id, including the whitening, and considering the function on the sphere,
thus proving Theorem 5.5.

Proof of Theorem 5.5. Recall that we defined H : Sd−1 → R by

Hη(w) = EG(w⊤Σ
− 1

2

X X) (134)

where ΣX = E(XX⊤) = AA⊤ + η2Ω with Ω = E(h(S)h(S)⊤). Note that ΣX depends implicitly on η so we will
indicate this dependence in the following for some quantities. We now relate this to the setting in Lemma F.1. The function
H defines a map on the manifold Sd−1. We analyze its properties by considering a suitable chart. We define the map
T : Rd−1 → Sd−1 by

Tη(ε) =

Σ
1
2

XA−⊤
(
ε
1

)
∣∣∣∣Σ 1

2

XA−⊤
(
ε
1

)∣∣∣∣ . (135)

This map defines a chart locally around ε = 0. Recall that we defined in (88) (indicating the parameter dependence for
clarity)

H̄η,h(ε) = H̃η,h (w) = EG
(
w⊤(S + ηh(S))

σw

)
(136)
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where w = (ε, 1)⊤ and σw = E(wX)2 with X = S + ηh(S). Then the relation

Hη(Tη(ε)) = H̄η,A−1h(ε) (137)

holds. Indeed, writing w = (ε, 1)⊤ we obtain

Hη(Tη(ε)) = EG


(
Σ

1
2

XA−⊤w
)⊤

Σ
− 1

2

X X∣∣∣Σ 1
2

XA−⊤w
∣∣∣


= EG

w⊤A−1(AS + ηh(S))∣∣∣Σ 1
2
η A−⊤w

∣∣∣


= EG
(
w⊤(S + ηA−1h(S))

σw

)
= H̄η,A−1h(ε)

(138)

where we used that (recall E(Sh(S)⊤) = 0)

σ2
w = E((w⊤(S + ηA−1h(S)))2) = w · E

(
(S + ηA−1h(S))(S⊤ + ηh(S)⊤A−⊤)

)
w

= w · (Id + η2A−1ΩA−⊤w = (A−⊤w) · (AA⊤ + η2Ω)A−⊤w

= (A−⊤w) · ΣXA−⊤w =
∣∣∣Σ 1

2

XA−⊤w
∣∣∣2 . (139)

Note that this is not surprising as both terms were chosen such that the argument of G has unit variance. Note that
|A−1h(S)| ≤ |A−1| · |h(S)| so we find ∥A−1h∥qP,q ≤ |A−1| · ∥h∥P,q. Now we apply Lemma F.1 to the function
H̄η,A−1h(ε) = H̄|A−1|η,|A−1|−1A−1h(ε) where ∥|A−1|−1A−1h∥P,q ≤ 1. Lemma F.1 implies that H̄ has a local extremum
at some ε0 = ηα−1

d v +O(η
3
2 ) for η < η0 and some η0 where αd = Eg(Sd)Sd − Eg′(Sd) and

vi = E((A−1h)d(S)g
′(Sd)Si + g(Sd)(A

−1h)i(S)). (140)

Thus Hη has a local extremum at

wd = Tη(ε) ∝ Σ
1
2

XA−⊤
(
ηα−1

d v
1

)
+O(η2). (141)

Since ΣX = AA⊤ + O(η2) we also find (recall w̄d = (AA⊤)
1
2A−⊤ed by (12)) that |wd − w̄d| = O(η). The estimated

independent component is given by

w⊤
d Σ

− 1
2

X X =

(
ηα−1

d v
1

)
· S + η

(
ηα−1

d v
1

)
·A−1h(S) = Sd +O(η) (142)

and

Σ
1
2

Xw0 = A−⊤
(
ηα−1

d v
1

)
+O(η2) = (A−1)d,: +O(η), (143)

i.e., we recover the d-th row of the unmixing matrix up to errors of order η.

Finally, we prove the convexity of H around Σ
1
2

XA−⊤ed for α < 0. Intuitively, this is not surprising as we proved the
convexity of H̄ around ε = 0 and the relation (137) should lift this to the map H . The formal proof requires tools from
differential geometry, which we use freely. The proof relies on the following relation from Riemannian geometry

Hess(H) =
∑
i,j

∂2H̄

∂εi ∂εj
dεi ⊗ dεj −

∑
i,j,k

Γk
ij

∂H̄

∂εk
dεi ⊗ dεj . (144)
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Here Γk
ij denotes the Christoffel symbols expressed in the chart Tη where we use the induced metric on Sd−1 as a

submanifold of Rd.

We have shown in Lemma F.1 that the matrix with entries D2H̄ satisfies for α < 0

D2H̄ ≥ |α| · Id +O(η + |ε|) (145)

and that

DH̄ = O(|ε|+ η). (146)

It is straightforward to show using the calculations below that the Christoffel symbols are bounded (in fact small, but we
do not need this). This and the last display imply that the last term in (144) is bounded O(η + |ε|). We now consider the
tangent vectors ∂εi which can be identified with the vector ∂εiTη(ε) ∈ Rd that is tangential to Sd−1. We note that∣∣∣∣Σ 1

2

XA−⊤
(
ε
1

)∣∣∣∣2 =

(
ε
1

)⊤

A−1ΣXA−⊤
(
ε
1

)
=

(
ε
1

)⊤

(Id + η2A−1ΩA−⊤)

(
ε
1

)
= 1 + |ε|2 + η2P (ε) (147)

where P denotes a quadratic polynomial in ε. This implies

∂εiTη(ε) =
Σ

1
2

XA−⊤ei∣∣∣∣Σ 1
2

XA−⊤
(
ε
1

)∣∣∣∣ +O(|ε|+ η). (148)

This implies

gSd−1(∂εi , ∂εj ) =
e⊤i A

−1ΣXA−⊤ej∣∣∣∣Σ 1
2

XA−⊤
(
ε
1

)∣∣∣∣2
+O(|ε|+ η) =

δij +O(η2)

1 +O(|ε|2 + η2
+O(|ε|+ η) = δij +O(|ε|+ η). (149)

This means that, up to higher-order terms, the metric g agrees with the standard metric. We conclude that for any tangent
vector Y =

∑d−1
i=1 yi∂εi we obtain

Hess(H)(Y, Y )

gSd−1(Y, Y )
≥ |α| · |y|2

|y|2
+O(η + |ε|). (150)

We conclude that for η ≤ η0 there is a neighborhood of Tη(0) ∝ Σ
1
2

XA−⊤ed where Hess(H) ≥ |α|/2 · Id, i.e. H is strictly
convex. The proof for α > 0 is similar.

The proof of Theorem 5.7 is now trivial.

Proof of Theorem 5.7. By the assumptions of the Theorem and Theorem 5.5 we find for each 1 ≤ i ≤ d a vector wi with
|wi| = 1 such that H has a local extremum at wi and A⊤Σ

− 1
2

X wi = ei +O(η) (when being pedantic, we apply the result to
permuted data changing coordinates i and d). Then the matrix W with rows wi = W⊤ei is the desired matrix.

The proof of Corollary 5.8 follows from standard results in convex optimization.

Proof of Corollary 5.8. It is well known that gradient descent locally converges for a convex function and sufficiently small
step size, a proof for the general case where we optimize over a Riemannian manifold (in our case the sphere) can be found,
e.g., in (Boumal, 2023). Local convergence of projected gradient descent can also be shown.

Finally, we prove that WX essentially recovers the true sources as stated in Theorem 5.9.
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Proof of Theorem 5.9. We verify the assumption of Lemma B.2 for S and

Ŝ = WΣ
− 1

2

X X = WΣ
− 1

2

X (AS + ηh(S)), (151)

i.e., we define T (s) = (WΣ
− 1

2

X A)s + ηWΣ
− 1

2

X h(s)). Since we assume that Si have unit variance, the bound (29) holds

with c1 = 1. Let us set P = WΣ
− 1

2

X A and verify condition (30) for P . By construction of W we have

e⊤i P = e⊤i WΣ
− 1

2

X A = w⊤
i Σ

− 1
2

X A = ei +O(η). (152)

This implies that when setting ρ(i) = i then we find

1

|Pi,i|2
∑
j ̸=i

|Pi,j |2 ≤ O(η2)

1−O(η)
= O(η2) (153)

for sufficiently small η. Finally, we use the bound

∥ηWΣ
− 1

2

X h(S)∥P,2 ≤ η|W | · |Σ
1
2

X | · ∥h∥P,q = O(η). (154)

Here we used that |W | = d since its rows are normalized. This implies

∥(ηWΣ
− 1

2

X h)i(S)∥P,2
|Pi,i|∥Z∥P,2

≤ O(η) (155)

and therefore (31) holds with c3 = O(η). Now we can apply Lemma B.2 and conclude that

MCC(S, Ŝ) ≥ 1− Cη2 (156)

for some constant C > 0.

G. Proof for approximate identifiability for ICA with almost locally isometric mixing
In this section we prove Theorem 5.11 and then provide some extensions that allow us to consider P with unbounded support.
However, we first prove one simple auxiliary lemma which allows us to transform a data representation X = AS+h(S)− b
to X − b′ = A′S + h′(S) such that h′ is centered and E(Sh′(S)) = 0.

Lemma G.1. Suppose S has distribution P such that E(S) = 0 and ESS⊤ ≥ α−1Id in the sense of symmetric matrices for
some α > 0. We assume that X = AS + h(S) + b for an orthogonal matrix A ∈ SO(d), some function h : Rd → Rd and
b ∈ Rd. Then there is a linear map A′, b′ ∈ Rd and h′ : Rd → Rd such that X − b′ = A′S + h′(S) and

ES(h
′(S)) = 0, ES(S

⊤h′(S)) = 0. (157)

Morevoew, for q ≥ 2,

∥h′∥P,q < 2
(
1 + α∥S∥2P,q

)
∥h(S)∥P,q. (158)

and

σmin(A
′) ≥ 1− 2α∥S∥P,2 · ∥h(S)∥P,q. (159)

Proof. First, we find

X − EX = AS + (h(S) + b− EX) = AS + hc(S) (160)

where we defined hc(S) = h(S) + b−EX . Note that Ehc(S) = EX −EX −AES = 0 and thus hc(S) = h(S)−Eh(S).
By the triangle inequality and Hölder’s inequality (which implies ∥f∥P,p ≤ ∥f∥P,q for p < q) we get

∥hc∥P,q = ∥h− EPh∥P,q ≤ ∥h∥P,q + ∥EPh∥P,q ≤ ∥h∥P,q + |EPh| ≤ 2∥h∥P,q. (161)
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Thus we find that hc is centered, and its q norm is at most larger by a factor of 2 than the corresponding norm of h. Then we
define

h′(S) = hc(S)− E(hc(S)S
⊤)E(SS⊤)−1S, A′ = A+ E(hc(S)S

⊤)E(SS⊤)−1 (162)

i.e., we regress hc(S) linearly on S so that E(h′(S)S⊤) = 0. We bound using Cauchy-Schwarz and q ≥ 2

∥E(hc(S)S
⊤)E(SS⊤)−1S∥P,q ≤ α|E(hc(S)S

⊤)|∥S∥P,q ≤ αE(|hc(S)S
⊤|)∥S∥P,q

≤ αE(|hc(S)| · |S|)∥S∥P,q ≤ α∥hc(S)∥P,2∥S∥P,2∥S∥P,q ≤ α∥hc(S)∥2P,q∥S∥P,q.
(163)

This implies

∥h′(S)∥P,q ≤
(
1 + α∥S∥2P,q

)
∥hc(S)∥P,q ≤ 2

(
1 + α∥S∥2P,q

)
∥h(S)∥P,q. (164)

Finally we conclude the lower bound on A′. We observe that

|A′ −A| = |E(hc(S)S
⊤)E(SS⊤)−1| ≤ α∥hc(S)∥P,2 · ∥S∥P,2 ≤ 2α∥S∥P,2 · ∥h(S)P,q. (165)

Using A ∈ SO(d) we conclude that

σmin(A
′) ≥ 1− 2α∥S∥P,2 · ∥h(S)P,q. (166)

We can now prove Theorem 5.11.

Proof of Theorem 5.11. The proof essentially follows by combining Theorem 4.1 and Theorem 5.9. We note that by
assumption the support of P is connected and by independence of the Si it is actually a cuboid and thus a Lipschitz domain.
Using Theorem 4.1 we find that if we define g as in (8) (or (73) for d < D), then X̃ = g−1 ◦ f(S) = g−1(X) can be
expressed as

X̃ = g−1 ◦ f(S) = AS + h(S) + b (167)

for some A ∈ SO(d) and h satisfies the bound

∥h∥P,q ≤ C1Θp(f,Ω) (168)

where p and q are as in the statement of the Theorem, i.e, q = max(3, dg) and p = dq/(d + q) which is equivalent to
q = pd/(d− p), as required in Theorem 4.1. By shifting X̃ we can assume that X̃ is centered. Now we apply Lemma G.1
from above and find that

X̃ = A′S + h′(S) (169)

where

σmin(A
′) ≥ 1− 2α∥S∥P,2 · ∥h(S)∥P,q ≥ 1− 2α∥S∥P,2C1Θp(f,Ω) >

1

2
(170)

if Θp(f,Ω) sufficiently small. Moreover, there is a constant C ′
1 > 0 depending on C1 and the distribution P such that

∥h′∥P,q < C ′
1Θp(f,Ω). (171)

We can write

h(S) = (C ′
1Θp(f,Ω)) · (C ′

1Θp(f,Ω))
−1h(S) = η · h(S)

C ′
1Θp(f,Ω)

(172)

where η = C ′
1Θp(f,Ω). Now we apply Theorem 5.7. If η = C ′

1Θp(f,Ω) < η0 we find that there is a matrix W ∈ Rd×d

with rows wi such that H (defined using the distribution of X̃) has local extrema at wi. Moreover, by Theorem 5.9 the
reconstructed sources Ŝ = WX̃ = Wg̃(X) satisfy

MCC(Ŝ, S) ≥ 1− C2η
2 ≥ 1− C3Θ

2
p(f,Ω) (173)

for C3 = C2C
′2
1 .
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We can also extend the results to ICA with approximately locally isometric mixing function and unbounded support of the
sources. To simplify the analysis, we restrict our attention to functions that are perfect local isometries away from a compact
set, i.e., we consider

Fc−iso(d,D,Ω) = {f : Rd → M ⊂ RD : f |Ω∁ is a
local isometry and f(ω) is not

isometric to (Rd, gstand) for any ω ⊂ Ω }.
(174)

Here gstand denotes the standard metric on Rd. The definition essentially ensures that Ω is the maximal set such that outside
of Ω the function f is a local isometry. Note that the second part of the condition is satisfied, e.g., when the curvature of
f(Ω) is everywhere non-vanishing. Then we have the following result.

Theorem G.2. Suppose that the mixing f ∈ Fc−iso(d,D,Ω) for some bounded set Ω such that Ω∁ is connected. Assume
that X = f(S) where S ∼ P. Assume that P of S satisfies Assumption 5.2, 5.3, and 5.4 for some contrast function G
and the density of P is bounded above and everywhere positive on Rd and lower bounded on Ω. Let q = max(dg, 3) and
p = dq/(d + q). Assume that Θp(f,Ω) is sufficiently small. Then we can find a transformation g̃ : M → Rd such that
the transformed data X̃ = g̃(X) is centered and has the property that there is a matrix W ∈ Rd×d whose rows are d

normalized vectors wi which are local extrema of the function w → E(G(w⊤Σ
− 1

2

X̃
X̃)) such that Ŝ = WX̃ satisfies

MCC(Ŝ, S) ≥ 1− CΘ2
p(f,Ω) (175)

where C depends on Ω, d, and the parameters in the Assumptions 5.2, 5.3, and 5.4.

Remark G.3. • Of course, we expect to recover the vectors wi typically by applying an algorithm for linear ICA to the
transformed data X̃ , however, due to the lack of theoretical guarantees for ICA algorithms we cannot show a stronger
statement (see Remark 5.10).

• We expect that the assumption that f is a local isometry outside Ω can be relaxed, e.g., by using bounded contrast
functions like G(s) = exp(−s2/2).

We now prove Theorem G.2. In its proof we need a slightly different rigidity result in this case (actually a simpler result
because we in addition fix the boundary) which we now state. We denote by σmax the largest singular value of a matrix.

Theorem G.4 (Theorem 2.1 in Kohn (1982)). Let 1 ≤ p ≤ d, suppose there is a rigid motion L(z) = Az + b with
A ∈ SO(d) and u ∈ W 1,p

loc (Rd,Rd). We assume that there is a bounded set Ω such that u(z) = L(z) for z /∈ Ω. Then

∥u− L∥q ≤ C(d, p)∥(σmax(Du)− 1)+∥p (176)

where q = np/(n− p).

Remark G.5. 1. Note that by Lemma C.1 we can bound

(σmax(Du)− 1)+ ≤
√∑

i

(σi − 1)2 = dist(A,SO(d)). (177)

2. The exponent q agrees with the exponent for the Sobolev embedding result.

3. There is an extension to p > d where ∥u− L∥∞ can be bounded.

4. The result Theorem E.1 is more general than this result because it does not assume affine boundary values. We cannot
directly apply Theorem E.1 in our context because we need that the linear map in (67) can be chosen as the affine
boundary values L. While this is the case, it requires to inspect the proof carefully, and it is simpler to rely on this
known result from the literature.

We can now continue with the Proof of Theorem G.2. To clarify the proof structure, we split the proof into two parts.
First, we establish that the assumptions of the Theorem imply that we can reduce the problem to perturbed linear ICA. We
summarize this result in the following proposition.
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Proposition G.6. Suppose that the mixing f ∈ Fc−iso(d,D,Ω) for some bounded set Ω and Ω∁ connected. Suppose that
X = f(S) with S ∼ P. Assume that the density of S is globally positive and upper bounded and, moreover, lower bounded
on Ω. Then we can find a map g : M → Rd such that the recovered sources X ′ = g(X) satisfies

X ′ = AS + h(S) (178)

for some rotation A ∈ SO(d) and function h such that

∥h∥q ≤ CΘp(f,Ω) (179)

where q = pd/(d− p) and C depends on d, p, and the bounds on the density of P on Ω.

Proof. For a diffeomorphism g : Rd → M we let I(g) ⊂ M be the maximal open set such that g−1|I(g) is a local isometry.
We consider the set G of diffeomorphisms from Rd to M such that I(g) is maximal. By definition of the function class
Fc−iso(d,D,Ω) there are functions g such that I(g) = f(Ω̊∁) (e.g., g = f ), moreover I(g) ∩ f(Ω) = ∅ for any g by
definition of Fc−iso(d,D,Ω). Therefore, G is well-defined. Now we consider g ∈ G such that

g ∈ argmin
ḡ∈G

∫
Rd

distp(Dḡ−1(x),SO(TxM,d)) f∗P(dx). (180)

By shifting g we can assume that g−1 ◦ f(S) is centered. Then we consider the transition function T = g−1 ◦ f . By
assumption f |Ω∁ is a local isometry, and we have shown that g−1|f(Ω∁) is a local isometry and thus T |Ω∁ is a local isometry
and therefore T (s) = As+ b = L(s) for some A ∈ SO(d) by Theorem 2.3. We now consider the restriction T |Ω and apply
Lemma E.3 to find∫

Ω

distp(DT (s),SO(d)) ds

≤ 3p
∫
Ω

distp(Df(s),SO(d, Tf(s)M)) ds+ C

∫
Ω′

distp(Dg−1(g(s)),SO(Tf(s)M,d))Q(ds).

(181)

Now since f ∈ G we can conclude (using the upper bound on the density of P) as before that∫
Ω′

distp(Dg−1(g(s)),SO(Tf(s)M,d))Q(ds) ≤
∫
Ω

distp(Df−1(f(s)),SO(Tf(s)M,d))P(ds)

≤ C

∫
Ω

distp(Df−1(f(s)),SO(Tf(s)M,d)) ds.

(182)

Combining the last two displays we find∫
Ω

distp(DT (s),SO(d)) ds ≤ CΘp
p(f,Ω). (183)

Now we apply Theorem G.4 (and the remark below this result) to conclude that

∥T − L∥q ≤ CΘp(f,Ω). (184)

Defining h = T − L and using the upper bound on the density of P we conclude that X ′ = g−1(X) = T (S) is given by

X = L(S) + h(S) (185)

and

∥h∥P,q ≤ CΘp(f,Ω). (186)

Now we can complete the proof of Theorem G.2.
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Proof of Theorem G.2. The proof is now the same as the proof of Theorem 5.11 except that we first apply Proposition G.6
instead of Theorem 4.1. Indeed, by applying Proposition G.6 and the definition of g used in the proof we find that

X̃ = g(X) = g(f(S)) = AS + h(S) + b (187)

where A ∈ SO(d) and ∥h∥P,q ≤ CΘp(f,Ω) = CΘp(f,Rd). The rest of the proof is the same as the proof of Theorem 5.11,
i.e., we apply Lemma G.1 to rewrite X̃ = A′S + h′(S) where h′(S) is centered and Eh′(S)S⊤) = 0 and then apply
Theorem 5.9. Note that those two results do not assume bounded support of S.

H. Experimental Illustration of non-robustness of piecewise linear functions
In this appendix we collect some additional details on the experimental illustration of the non-robustness of learning
piecewise linear mixing functions. Recall that we consider Z following a two-dimensional standard normal distribution. We
let m be a radius dependent rotation (Hyvärinen & Pajunen, 1999) which is given by

m(z1, z2) =

(
cos(5φ(z2))z1 + sin(5φ(z2))z2
− sin(5φ(z2))z1 + cos(5φ(z2))z2

)
(188)

where φ : R → R is a smooth bump function supported in (0, 1) and given by

φ(t) =

{
exp

(
− 1

1−(2t−1)2

)
for 0 < t < 1

0 else.
(189)

It can be checked explicitly that m(Z)
D
= Z. Now we consider a VAE model with encoder and decoder each having 3 hidden

residual layers with 64 neurons. We train encoder and decoder in a supervised way on pairs (m(Z), Z) and (Z,m(Z))
(where Z follows a standard normal distribution) using the mean squared error until the mean error is smaller than 0.001.
We define the map implemented by the decoder as f . We generate data f(Z) where Z is Gaussian and then train a VAE on
samples f(Z) and we initialize the VAE with the learned f and f−1 and give a large negative bias of −5 to the log-variance
layer to make the encoder close to deterministic.

I. Experimental Illustration of Convergence Rate for perturbed linear ICA
To illustrate the results in Section 5, we provide a small scale experimental illustration. We consider data generated
by X = AS + ηh(S) where Si follow independent Laplace distributions and all entries of A follow a centered normal
distribution with variance d−1 and hi(S) ∝ S3

i −βiSi−αi where αi, βi are chosen such that E(hi(S)Sj) = 0, E(hi(S)) = 0
and the proportionality is chosen such that E(hi(S)

2) = 1. Then we run the Fast-ICA algorithm (Hyvarinen, 1999) on

Σ̂
− 1

2

X X with n = 106 samples for η ∈ [10−3, 1] We initialize winit = w̄i (recall that w̄i denote the rows of A−1(AA⊤)
1
2 ,

i.e., the true unmixing of the whitened linear part A) to avoid problems with spurious minima and matching of minima
which are already present for linear ICA. While w̄i cannot be inferred from X , this allows us to focus here on the essential
differences of our setting to linear ICA. Recall that w̃i was defined in (16) and denotes the predicted next order expression of
the recovered source. In Figure 2 we plot the distance of the output wi of the fast-ICA algorithm to w̄i and w̃i and evaluate
the MCC of the recovered sources Ŝ and the true sources S as a function of η, the strength of the perturbation.

We find that the dependence on η roughly matches our theoretical results. Note that for η ≳ .1 the error is already of order 1
and thus independent of η while for η ≲ .01 the distance |wi − w̃i| no longer decreases due to final sample effects (note that
roughly |wi − w̃i| = O(n− 1

2 ) for such η). We also refer to (Horan et al., 2021) where small scale real-world image data
was investigated and the independent components recovered. Their mixing function is only approximately locally isometric,
and therefore our results give a theoretical justification for their observations.

J. A Class of approximately isometric random Functions
In this section we illustrate how approximate local isometries naturally appear when considering random high dimensional
functions. Note that a slightly more general class of random functions was considered in Reizinger et al. (2023). However,
their work does not quantify approximate local isometries. We consider random functions f : Rd → RD where we are
mostly interested in the case D ≫ d. Assume that each coordinate fi is given by a random draw from a smooth Gaussian
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Figure 2. (Left) Distance of recovered linear unmixing w from w̄ (see (12)) and w̃ (see (16)) as a function of η. Plotted is the median
over 5 runs with d = 5 (i.e., 25 recovered components). The shaded area shows the range from the 32% to the 68% quantile. (Right)

Difference of the Mean MCC over 5 runs of Ŝ = WΣ
− 1

2
X X from perfect recovery (MCC = 1). Regression lines are obtained by linear

regression in log-log space for 0.01 ≤ η ≤ 0.1 and β values indicate their slope.

process, e.g., a mean zero process whose covariance is given by a Matérn kernel. Assume that the kernel is isotropic
K(x, y) = K(|x− y|) with K ′(0) = 0 and K ′′(0) = −1 (can be obtained by scaling). Then the following holds for k ̸= l

E(∂kfi(x)∂lfi(x)) = lim
h→0

h−2E((fi(s+ hek)− fi(s))(fi(s+ hel)− fi(s)))

= lim
h→0

h−2E((fi(s+ hek)− fi(s))(fi(s+ hel)− fi(s)))

= lim
h→0

h−2(K(
√
2h)− 2K(h) +K(0)).

(190)

Here, we used in the last step that |(s+ hek)− (s+ hel)| = h|ek − el| =
√
2h. We then find using Taylor expansion of K

(recall K ′(0) = 0) that

E(∂kfi(s)∂lfi(s)) = lim
h→0

h−2

(
(K(0) + h2K ′′(0) + o(h2))− 2

(
K(0)− h2

2
K ′′(0)

)
+ o(h2)) +K(0)

)
= 0. (191)

We also note that

E(∂kfi(s)∂kfi(s)) = lim
h→0

h−2E((fi(s+ hek)− fi(s))(fi(s+ hek)− fi(s)))

= lim
h→0

h−2E(2K(0)− 2K(h)) = −K ′′(0) = 1.
(192)

We conclude that the matrix Df(s) has independent Gaussian entries with variance 1. To measure how isometric f is,
we need to investigate the singular values of Df . This has been investigated extensively in the field of random matrix
theory, e.g., the random matrices appearing here are a special case of the Wishart distribution. Indeed, there are explicit
expressions for the joined eigenvalue density of D−1X⊤X where Xij follow independent standard normal distributions
and fine information on the spectrum is available even when d,D → ∞ jointly with d/D fixed. Here we are only interested
in the asymptotic scaling as D → ∞, which is much simpler to obtain, and we now sketch this to provide some intuition.
We denote A = 1

DDf(s)⊤Df(s), and we introduce f̃ =
√
D

−1
f . Using the results above, we find

EAkl = E(Df̃⊤(s)Df̃(s))kl =
1

D

∑
m

E(Df(s))mk(Df(s))ml =
1

D

∑
m

E∂kfm(s)∂lfm(s) = δkl. (193)
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In other words EA = Idd. By the law of large numbers we infer that

lim
D→∞

Df̃⊤(s)Df̃(s) = Idd. (194)

In other words, we conclude that as D → ∞ the sequence f̃ becomes increasingly isometric. This can also be quantified.
Note that for k ̸= l

E(∂kfi(s)∂lfi(s))2 = E(∂kfi(s))2E(∂lfi(s))2 = 1. (195)

Here we used that uncorrelated Gaussian variables are independent. Similarly, we obtain for k = l

E(∂kfi(s)∂kfi(s))2 − (E(∂kfi(s)∂kfi(s)))2 = E(∂kfi(s))4 − 1 = 3− 1 = 2. (196)

Linearity of the variance implies that

VarAkl ≤
D

D2
(1 + δkl) =

1

D
(1 + δkl). (197)

We conclude that

E|A− E(A)|2F =
d2 + d

D
(198)

Let σi ≥ 0 be the singular values of Df̃(s). Then we bound |σi − 1| ≤ |σ2
i − 1| for σi > 0 and find∑

i

|σi − 1|2 ≤
∑
i

|σ2
i − 1|2 = |A− E(A)|2F (199)

Using (56) we conclude that

Edist2(Df̃(s),SO(d, Tf(s)M)) = E
∑
i

(σi − 1)2 ≤ E|A− E(A)|2 =
d2 + d

D
. (200)

The argument for the second term in (61) is similar but a bit more involved because we need to bound the inverse. Suitable
bounds for A−1 can be found, e.g., in Theorem 2.4.14 in (Kollo & von Rosen, 2006). They then imply that

Edist2(Df̃−1(x),SO(TxM,d)) ≤ C

D
. (201)

We then conclude that

EΘ2(f̃ ,Ω) ≤
√

EΘ2
2(f̃ ,Ω) ≤

C√
D

(202)

and therefore the functions f̃ approach local isometries as D → ∞ in a quantitative way with the expected rate. This result
can be generalized to p > 2 using stronger concentration bounds for sub-Gaussian variables.
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