
LoCoCo: Dropping In Convolutions for Long Context Compression

Ruisi Cai 1 Yuandong Tian 2 Zhangyang Wang 1 Beidi Chen 2 3

Abstract

This paper tackles the memory hurdle of of pro-
cessing long context sequences in Large Lan-
guage Models (LLMs), by presenting a novel
approach, Dropping In Convolutions for Long
Context Compression (LoCoCo). LoCoCo em-
ploys only a fixed-size Key-Value (KV) cache,
and can enhance efficiency in both inference and
fine-tuning stages. Diverging from prior methods
that selectively drop KV pairs based on heuristics,
LoCoCo leverages a data-driven adaptive fusion
technique, blending previous KV pairs with in-
coming tokens to minimize the loss of contextual
information and ensure accurate attention model-
ing. This token integration is achieved through
injecting one-dimensional convolutional kernels
that dynamically calculate mixing weights for
each KV cache slot. Designed for broad com-
patibility with existing LLM frameworks, Lo-
CoCo allows for straightforward “drop-in” inte-
gration without needing architectural modifica-
tions, while incurring minimal tuning overhead.
Experiments demonstrate that LoCoCo maintains
consistently outstanding performance across vari-
ous context lengths and can achieve a high context
compression rate during both inference and fine-
tuning phases. During inference, we successfully
compressed up to 3482 tokens into a 128-size KV
cache, while retaining comparable performance
to the full sequence - an accuracy improvement of
up to 0.2791 compared to baselines at the same
cache size. During post-training tuning, we also
effectively extended the context length from 4K to
32K using a KV cache of fixed size 512, achiev-
ing performance similar to fine-tuning with en-
tire sequences. Codes are available at: https:
//github.com/VITA-Group/LoCoCo.

1University of Texas at Austin 2Meta AI (FAIR)
3Carnegie Mellon University. Correspondence to: Ruisi
Cai <ruisi.cai@utexas.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1. Introduction
Large Language Models (LLMs) (Radford et al., 2018;
2019; Brown et al., 2020) excel across a variety of lin-
guistic tasks, including text generation (Goyal & Durrett,
2020; Yuan et al., 2022), program synthesis (Chen et al.,
2021; Li et al., 2022), question answering (Kamalloo et al.,
2023), and mathematical problem-solving (Lewkowycz
et al., 2022). These tasks typically involve processing ex-
tensive sequences, often requiring the analysis of thousands
of tokens to derive outcomes based on comprehensive con-
textual information. For example, the task of summarizing
extensive government reports, as seen in the GovReport
section of SCROLLS (Shaham et al., 2022), demands that
LLMs efficiently sift through and distill key information
from vast textual data, highlighting the need for models
capable of handling long token sequences effectively.

Yet, transformers (Vaswani et al., 2017) struggle to process
extensive token sequences due to their quadratic memory
demands, which exceed the capacity of contemporary hard-
ware. Attention computations are performed in blocks (Dai
et al., 2019), with key and value states cached for subse-
quent encoding or decoding steps to mitigate this. However,
this approach results in a Key-Value (KV) cache size that in-
creases linearly with context length, quickly depleting GPU
memory (Zhang et al., 2023b). Recently, StreamingLLM
(Xiao et al., 2023) attempted to reduce KV cache size by lim-
iting each token’s receptive field and incorporating ”atten-
tion sinks”. Concurrently, H2O (Zhang et al., 2023b) prunes
tokens based on lower accumulated attention scores to sta-
bilize KV cache size. Despite these efforts, both methods
fail to leverage full-sequence information and adequately
extend the context window. StreamingLLM’s exclusion of
all tokens in the context middle could significantly impair
the model’s ability to utilize the full long context (even
completely ignore), known as “lost in the middle” (Liu
et al., 2023), while H2O struggles to extrapolate to longer
sequences than the training context length (Han et al., 2023).

Enhancing the context length in LLMs also necessitates in-
creasing the block size during fine-tuning (Press et al., 2021;
Chen et al., 2023a), introducing a significant memory chal-
lenge. While attention approximation methods like (Choro-
manski et al., 2020; Kitaev et al., 2020; Xiong et al., 2021)
reduce training expenses, they do not alleviate memory de-

1

https://github.com/VITA-Group/LoCoCo
https://github.com/VITA-Group/LoCoCo

LoCoCo: Dropping In Convolutions for Long Context Compression

mands at inference, as the KV cache continues to explode
with longer predictions. Another representative work Lon-
gLoRA (Chen et al., 2023b) leveraged locally grouped atten-
tion alongside LoRA (Hu et al., 2021) for quick adaptation
to longer-context data. However, implementing LongLoRA
necessitates several modifications to the architecture of pre-
trained LLMs for fine-tuning, hence not yet a hassle-free
“drop-in” option. Besides, the LongLoRA-tuned model may
compromise its performance if we still use smaller context
sizes (see our experiments).

In our study, we address the challenge of efficiently manag-
ing long contexts in both inference and fine-tuning phases.
We introduce a novel method, Long Context Compressi-
son by Dropping-In Convolutions, abbreviated as LoCoCo.
This technique employs a static-size KV cache for segment-
level attention processes, ensuring peak memory usage re-
mains unchanged. LoCoCo departs from traditional meth-
ods of dropping KV pairs based on pre-defined or ad-hoc
rules (Zhang et al., 2023b; Xiao et al., 2023), instead adopt-
ing a data-driven adaptive fusion approach that merges
prior KV pairs with new tokens. This fusion minimizes the
loss of the whole context and achieves accurate attention
modeling. Specifically, LoCoCo utilizes one-dimensional
convolutional kernels to calculate mixing weights for each
KV cache slot, integrating incoming tokens efficiently (Kim,
2014; Poli et al., 2023; Massaroli et al., 2023). This strategy
is informed by the insight that autoregressive generation
benefits from the continuity provided by shifting windows,
and introducing the shift-invariant operation of convolutions
can reinforce the sequence’s stationary inductive bias. It
counters potential discontinuities that might arise from ex-
cluding tokens during the generative process (e.g., one token
in the middle might contribute to the current generation, but
“suddenly” be dropped when generating the next token).

It is important to note that LoCoCo is designed to be univer-
sally compatible with existing LLM architectures, allowing
for seamless integration without necessitating any modifi-
cations to the original model designs. It requires merely
“dropping in” a few extra convolution layers, incurs a small
tuning overhead, yet can achieve consistently effective per-
formance across various context lengths, with high context
compression rates for both inference and fine-tuning.

Our contributions could be summarized as follows:

• We introduced the novel (LoCoCo) method to manage
long contexts efficiently at both inference and fine-
tuning, employing a static-size KV cache and data-
driven adaptive fusion of context information.

• LoCoCo utilized one-dimensional convolutional ker-
nels for dynamic weight calculation in the KV cache,
enhancing accurate attention modeling while address-
ing the challenges of sequence continuity and the sta-
tionary inductive bias for autoregressive generation.

• LoCoCo highlights universal compatibility with exist-
ing LLM architectures, enabling easy “drop-in” integra-
tion without extra design modifications, and achieving
high context compression rates across different context
lengths with minimal tuning overhead.

• During inference, we successfully compress up to 3482
tokens into a 128-size KV cache, while retaining com-
parable performance to the full sequence - an accuracy
improvement of up to 0.2791 compared to baselines
at the same cache size. During post-training tuning,
we extended the context length from 4K to 32K using
a KV cache of fixed size 512, achieving performance
similar to fine-tuning with entire sequences.

2. Related Work
2.1. Long-Context Inference

Generating long contexts necessitates a KV cache for pre-
ceding tokens and incurs a significant memory overhead.
For memory-efficient inference, Zhang et al. (2023b) pro-
poses mitigating KV cache demands during long-context
generation through auto-regressive token eviction. Further-
more, Ribar et al. (2023) optimizes memory usage by selec-
tively fetching from the cached history. Approaching dif-
ferently, Jiang et al. (2023) focuses on prompt compression
techniques to create concise yet expressive prompts. Mean-
while, Xiao et al. (2023) achieves infinite-length context
generation by only storing tokens within a local window
plus “attention sink” tokens, and rolling position embed-
dings. However, they fall short of utilizing full-sequence
information and extending the context window.

2.2. Long-Context Fine-tuning

The limited sequence length of pre-trained LLMs and their
inability to handle long-context data effectively are major
concerns for practitioners. To address this, strategies such as
extending the context length through fine-tuning have been
explored Xiong et al. (2023). The work of Dai et al. (2019)
introduces a segment-level recurrence mechanism using
fixed-length training segments. Other approaches include
positional interpolation (Chen et al., 2023a), NTK-aware
embedding (ntk, 2023), Yarn (Peng et al., 2023), positional
skipping (Zhu et al., 2023), self-extension (Jin et al., 2024),
stabilized attention entropy (Zhang et al., 2024), and so
on. Additionally, landmark attention (Mohtashami & Jaggi,
2023a) introduces a gating mechanism based on landmark
tokens, each representing a block of tokens. This method
selectively retains “landmarks” in memory, utilizing other
memory resources (e.g., CPU memory or disk) for storing
the remaining tokens. Tworkowski et al. (2023) employs
contrastive learning, LongLoRA (Chen et al., 2023b) in-
troduces shifted sparse attention and parameter-efficient

2

LoCoCo: Dropping In Convolutions for Long Context Compression

fine-tuning. Zhang et al. (2023a) investigates the necessity
of attending to long-context tokens in a layer-wise manner.

2.3. Attention Approximation

Efforts to mitigate the quadratic complexity of transformers
primarily focus on attention approximation. A comprehen-
sive review of the rich literature can be found in (Tay et al.,
2022). Specifically, Child et al. (2019); Kitaev et al. (2020);
Roy et al. (2021) leverages sparsity, and Choromanski et al.
(2020); Katharopoulos et al. (2020); Wang et al. (2020) uti-
lizes low-rank approximation. Beltagy et al. (2020); Zaheer
et al. (2020) approximated the full attention with both local
and global attention. Nevertheless, none of these approaches
eliminate the memory bottleneck for the KV cache.

2.4. Language Model Design with Built-In Convolutions

(Dauphin et al., 2017) introduced the first convolutional lan-
guage model that rivaled strong recurrent models on large-
scale language tasks. More recently, (Poli et al., 2023; Arora
et al., 2023) proposed using long convolutions to completely
replace attention mechanisms in transformers. Additionally,
state-space models (SSMs) can be computed as either con-
volutions or recurrences, achieving sub-quadratic training
and constant inference complexity (Gu et al., 2021a). Ar-
chitectures utilizing implicit convolutional filters (Poli et al.,
2023) can be converted to SSMs via a simple distillation
step (Poli et al., 2023; Massaroli et al., 2023). These designs
inspired our research; however, our work has a different
focus of providing “drop-in” components to enhance the
long-context capability of pre-trained LLMs.

3. Methodology
3.1. Segment-Level Attention with Long Sequences

The attention mechanism (Vaswani et al., 2017) plays as a
crucial component in transformers. Suppose the sequence
length is L and the hidden dimension is d. In causal lan-
guage modeling, an attention block receives query, key, and
value matrices Q,K,V ∈ Rd×L, and computes outputs as:

Attn(K,Q,V) = V softmax
(
K⊤Q⊙M/

√
d
)
, (1)

where M is a lower-triangular causal mask. Intuitively,
causal attention only allows tokens to aggregate information
from past tokens. Given a sequence with L tokens X =[
x1 · · · xL

]
∈ Rd×L, the query, key, value matrices are

computed as the linear projections of X:

K = WKX,Q = WQX,V = W V X. (2)

As illustrated in the Figure 1 (a), acquiring full attention
matrix softmax(K⊤Q) requires O(L2) peak memory cost.
When L is large, i.e. handling long sequential data, full at-
tention computation tend to run out of GPU memory rapidly.

Algorithm 1 Segment-level Attention (Training Time)
Input: A full sequence of length L: x1, · · · ,xL, block
size B, the number of segments N .
Initialize an empty cached KV pairs as K̃, Ṽ .
for n = 1, · · · , N do

Step 1 - Let Xn =
[
xnB · · · x(n+1)B−1

]
∈

Rd×B collect a sequence of the n-th segment.
Step 2 - Calculate key, query, values: Qn = WQXn,
Kn = WKXn, and V n = W V Xn.
Step 3 - Perform attention as:

On ← Attn([K̃,Kn],Qn, [Ṽ ,V n])
Step 4 - Update cached KV pairs:

K̃ ← [K̃,Kn], Ṽ ← [Ṽ ,V n].
end for
Return

[
O1 · · · ON

]

Context chunking is a common practice for reducing peak
memory usage during training. Owing to the causality,
Transformer-XL (Dai et al., 2019) introduces a recurrent
computation mechanism by caching and reusing the hidden
states to extend the context length for both training and in-
ference. Specifically, the whole sequence is divided into a
couple of segments, each then processed sequentially. The
intermediate key and value states will be stored in the mem-
ory. Previously cached KV pairs will be used for computing
the token representation in the subsequent segments.

Algorithm 1 presents the detailed procedure for the training-
time attention computation. Suppose the input sequence
of length L can be divided into N segments, where each
block has B tokens, i.e. L = NB. The symbol [·, ·] therein
denotes the concatenation of two matrices’ columns.

Note that auto-regressive generation is a special case of
segment-level attention at B = 1. This is, tokens come in
sequel and attention is only computed between the incoming
query and past KV pairs. The cached KV pairs K̃, Ṽ are
known as KV cache for short in the inference mode 1.

As illustrated in Figure 1(b), by performing context chunk-
ing, the memory used by attention for the r-th block is
O(B2r), and the memory to store past KV pairs is O(Br).
Hence, the peak memory usage for computing the full atten-
tion is reduced to O(LB), which occurs at the N -th round
when the last token needs to attend all previous key and
value blocks {Kn,V n, n ∈ {1, ..., N}}. The deduction of
peak memory usage comes at the cost of increased caching
memory, which grows linearly with the sequence length.

1With a slight ambiguity, we also refer to the training-time
saved KV pairs as the KV cache since their functionality is identi-
cal to their test-time counterparts.

3

LoCoCo: Dropping In Convolutions for Long Context Compression

Raw Long Context Input

Length: L=6
Text Chunking

Chunk Size: B=2

Constant Memory (w/ Chunking)

Chunk Size: B=2 Mem Size: M=1

Current KV States

Memory

Current KV States

Compressed Memory

Memory

Current KV States

Caching

Complexity:
Peak Memory Usage:

Complexity:
Peak Memory Usage:

Cache Size:

Complexity:
Peak Memory Usage:

Cache Size: O(M)

Token Feature

Attention

Round 0

Round 1

Round 2

Round 0

Round 1

Round 2

(a) (b) (c)

(Ours)

Figure 1. Overview of our pipeline. We process the long sequences block-wisely and maintain a fixed-size compressed memory.

3.2. Convolution as a Context Compression Operator

So far, the peak memory footprint has been reduced from
quadratic to linear concerning sequence length. However,
this linear growth of the KV cache can still lead to exces-
sive memory usage as the sequence length increases (Zhang
et al., 2023b). Early attempts using k-NN lookup (Wu et al.,
2022) and gating mechanisms (Mohtashami & Jaggi, 2023b)
enable sparse token selection to save memory but still re-
quire caching all previous tokens, resulting in a cache size
of O(L). In this section, we introduce a framework that
further optimizes this linear complexity to a constant size.

Compressing past token information using a fixed-size hid-
den space is well-documented in the literature. Notably,
State Space Models (SSMs) utilize a fixed-dimension latent
vector to represent all prior tokens, showing great promise
for long-sequence modeling (Gu et al., 2021b;a; 2020; 2022;
Gupta et al., 2022; Fu et al., 2022; Gu & Dao, 2023). This
hidden vector interacts with incoming tokens on behalf of
all previous tokens.

Inspired by this, we propose allocating at most M slots to
store past KV pairs, allowing subsequent sequence blocks to
attend to these compressed KV states. We replace the simple
concatenation in Step 4 with a KV compression operator C:

K̃ ← C([K̃,Kn]), Ṽ ← C([Ṽ ,V n]), (3)

where C maps a longer sequence to a sequence of length M .
We next elaborate on our instantiation of C.

3.2.1. CONVOLUTIONAL TOKEN COMPRESSOR

There are various ways to implement the sequence function
C to meet the above definition. In this paper, we propose
modeling the update rule of the KV cache as a weighted fu-
sion between existing cache entries and newly input tokens.
Formally, for all ∀i ∈ [M]:

k̃i ←
B∑

j=1

wi,jkj +

M∑
j=1

w̃i,jk̃j (4)

q̃i ←
B∑

j=1

wi,jqj +

M∑
j=1

w̃i,j q̃j , (5)

where wi,j denotes the contribution of the j-th token in the
input block to the i-th entry in the cache, and similarly w̃i,j

the contribution of the j-th token in the existing cache to the
i-th entry in the updated cache. Here weights for keys and
queries are shared to preserve token correspondence.

We further identify three key properties desired for {wi,j}
and {w̃i,j}: 1) Efficiency: computing these weights is an
intermediate step of performing attention, and hence its
overheads should be negligible - otherwise we beat our pur-
pose. 2) Learnability: Ad-hoc {wi,j} and {w̃i,j}, such as
averaging (i.e., uniform weights) or heuristic-based token
dropping (i.e., many zero weights) (Zhang et al., 2023b),
may not be flexible enough or introduce extra bias (e.g.,
locality (Chen et al., 2023b) or “lost in the middle” (Liu
et al., 2023)). 3) Stationarity: the compression policy must

4

LoCoCo: Dropping In Convolutions for Long Context Compression

be globally informed and stable concerning token position,
ensuring that compressed KV states update continuously
as tokens are processed. This addresses the potential dis-
ruptions in KV states caused by dropping tokens during the
generative process (Zhang et al., 2023b).

It has not escaped our notice that convolutional kernels fulfill
all the aforementioned requirements. Therefore, we propose
using convolutional layers to generate wi,j and w̃i,j . Specif-
ically, a 1D convolution will process all the pairs existing
in the KV cache and the newly incoming segment, assign-
ing each token an M -dimensional output that indicates its
importance for each slot in the updated cache. Formally,
we denote g : R2d×(M+B) → RM×(M+B) as a Convolu-
tional Neural Network (CNN) with 2d input channels and
M output channels. Then weights {wi,j} and {w̃i,j} are
computed as:

W ← g ⊛

[
Kn K̃

V n Ṽ

]
∈ RM×(M+B), (6)

wi,j ←
W i,j∑M+B

k=1 W i,k

, w̃i,j ←
W i,j+B∑M+B
k=1 W i,k

, (7)

where ⊛ denotes multi-channel convolution operation along
columns of two operands. Here we normalize the prediction
from the CNN kernel g as the final blending weights. Con-
volution parameters are trained end-to-end with a small set
of calibration data.

We name our approach as Long Context Compression by
Dropping-In Convolutions, or LoCoCo for short. We sum-
marize the outline of LoCoCo in Algorithm 2, where the
major differences from Algorithm 1 are highlighted in
Steps 4 and 5. When the number of KV entries to be stored
#(K̃, Ṽ) +B surpasses the number of slots M , we apply
convolution-based compression between cached entries and
newly added KV pairs. Otherwise, we preserve all KV pairs
in the memory. In our implementation, we adopt a shallow
CNN for each attention layer. The convolutional head con-
sists of a single convolution layer with kernel size 21. In
addition, we prepend a ReLU as the activation function.

3.2.2. COMPLEXITY ANALYSIS

With negligible computational overhead, LoCoCo achieves
constant memory regardless of sequence length. In Step
3, the attention is computed between a group of M tokens
and a group of B tokens. The memory cost for this step is
maintained as O(MB). Step 4 synthesizes fusion weights
via convolution, whose computation complexity can be as
cheap as O(L logL) by Fourier transformation. Afterward,
Step 5 leads to a constant-size cache, which guarantees
the computation in the next round does not require more
memory. Therefore, the total peak memory cost isO(MB+
M) with an extra O(L logL) computation overhead.

Algorithm 2 LoCoCo Attention (Training Time)
Input: A full sequence of length L: x1, · · · ,xL, block
size B, the number of segments N , the number of total
cached KV entries M .
Initialize an empty cached KV pairs as K̃, Ṽ .
for n = 1, · · · , N do

Step 1 - Let Xn =
[
xnB · · · x(n+1)B−1

]
∈

Rd×B collect a sequence of the i-th segment.
Step 2 - Calculate key, query, values: Qn = WQXn,
Kn = WKXn, and V n = W V Xn.
Step 3 - Perform attention as:

On ← Attn([K̃,Kn],Qi, [Ṽ ,V n])

if #(K̃, Ṽ) +B ≤M then
Fill KV cache: K̃ ← [K̃,Kn], Ṽ ← [Ṽ ,V n].

else
Step 4 - Compute fusion weights as:
{wi,j} and {w̃i,j} ← Equations 6 and 7.

Step 5 - Update cached KV pairs: ∀i ∈ [M],
k̃i ← Equation 4, q̃i ← Equations 5.

end if
end for
Return

[
O1 · · · ON

]

3.2.3. CONNECTION WITH TOKEN DROPPING

Zhang et al. (2023b) proposes to use accumulated atten-
tion scores to determine the importance of tokens. The
method then auto-regressively keeps tokens with the top
scores and discards others. That can be viewed as a spe-
cial instance of operator C in Equation 3. However, the
heuristic-based method is less expressive compared to our
learnable framework. Specifically, as detailed in Section 4.2
and Section 4.3, LoCoCo, empowered by the general learn-
able token compression paradigm, demonstrates superior
performance compared to prior arts in token eviction. In
addition, our method can be executed on top of other token
eviction methods, as to be discussed in Section 5.2.

3.3. Dropping-In Integration of LoCoCo

In this section, we introduce how our technique can be
easily integrated to pre-trained LLMs, for both long-context
inference and long-context training purposes.

Long-Context Efficient Inference Standard LLMs cache
all previous KV pairs, resulting in high memory usage that
limits their applicability in memory-constrained inference.
To address this, we “drop in” a compressor on top of the
pre-trained weights. The compressor is optimized using
Algorithm 2 with a minimal fraction of the training data
(e.g., 104 million tokens, or 0.0052% of the 2 trillion tokens
used for Llama-2 pre-training (Touvron et al., 2023)).

5

LoCoCo: Dropping In Convolutions for Long Context Compression

During the pre-filling stage, prompts are split into segments
of size B before being fed into the LLM. These segments
sequentially pass through the LLM, generating and com-
pressing KVs via Equation 3, resulting in compressed KVs
of length M that encapsulate the context information. In
the generation stage, the segment length is set to 1. Detailed
results are provided in Section Section 4.2.

As our “dropping-in” term implies, the pre-trained weights
remain unchanged, allowing users to switch back to the
uncompressed mode simply by removing the compressor
heads, when sufficient resources are available for a linearly
scaled KV cache.

Long-Context Extension Our method also supports long
context extension through post-training tuning, allowing pre-
trained LLMs to handle longer contexts without incurring
the excessive memory costs. We achieve this by leveraging
positional interpolation (Chen et al., 2023a), inserting com-
pressor heads, and adding LoRA adapters to fine-tune the
pre-trained model, following Chen et al. (2023b)’s practice.
The fine-tuning procedure is detailed in Algorithm 2.

4. Experiment
We first describe our experimental settings in Sec 4.1. Then,
we demonstrate our proposed convolutional head as a plug-
in tool for pre-trained LLMs, that enables memory-efficient
inference, in Sec 4.2. Additionally, in Sec 4.3, we apply
the proposed method to long context fine-tuning, enabling
training with long sequences under fixed-size memory.

4.1. Experimental Settings

Base Models We select Llama2-7B and Llama2-13B (Tou-
vron et al., 2023) as our base models, each with a maximum
context length of 4096 tokens. For inference with context
lengths shorter than 4096 tokens (in Sec 4.2), we retain the
original model weights and fine-tune only the convolutional
heads. To extend the context window to 32768 tokens during
long context fine-tuning (in Sec 4.3), we utilize positional
interpolation for initialization (Chen et al., 2023a).

Convolutional Heads We insert convolutional heads
layer-wise to capture the diverse token relationships across
layers. Each convolutional head possesses one layer of 1-D
convolutional kernels: its input feature dimension is the di-
mension of key and value matrices, while the output feature
dimension is the target memory size. We set the kernel size
to be 21 by default, as more choices will be validated in
Sec 5.3. Within the same layer, all attention heads would
share the same set of convolutional kernel parameters. Thus,
for Llama2-7b, a 32-layer model with 256-dimension KV
states, we only add 22 million parameters for compressing
raw KV states to a memory of 128 tokens.

Compression Details For post-hoc compression without
modifying pre-trained LLMs, we experiment compressing
the sequence of length up to 4096, to fit in the memory size
of 128, 256, 512, leading to the compression ratio of 32 : 1.

For experiments on context length extending, we by default
set 512 as the memory size. We will validate more choices
ranging from 128 to 1024 in Sec 5.1.

Training Details We use RedPajama (Computer, 2023) as
our training dataset. For post-hoc compression experiments,
we only tune compression heads for 200 steps without mod-
ifying the pre-trained LLM. For context length extending,
we fine-tune the convolutional heads and LoRA adapters
(rank 8), and also allow modifying the embedding and nor-
malization layers, all following Chen et al. (2023b).

For all experiments, we use the learning rates of 5× 10−5

for LoRA adapters, embedding and normalization layers
and 5× 10−2 for convolutional heads, with linear learning
rate schedule. We use the batch size of 128, and chunk size
of 512. All experiments are run on A6000 (48GB memory)
to intentionally test our efficacy with small-memory GPUs,
and we use per-device batch size as 1.

4.2. Post-hoc Token Compression of Pre-trained Models

At inference, we validate LoCoCo on representative down-
stream tasks, under target memory sizes varying from 128
to 512. We select the reading comprehension dataset RACE
(Lai et al., 2017) (2, 4, 6 shots), the closed-book question an-
swering dataset TriviaQA (Joshi et al., 2017) (50 shots), and
the common sense reasoning dataset: HellaSwag (Zellers
et al., 2019) (10, 20, 40 shots), WinoGrande (Sakaguchi
et al., 2021) (70 shots), and ARC easy and challenge (Clark
et al., 2018) (40 shots). Note that we deliberately keep the
sequence length of each task within the maximum sequence
length of the pre-trained Llama-2 (Touvron et al., 2023).

Using the Llama-2-7b (Touvron et al., 2023) as the base
model, we compare our approach with H2O (Zhang et al.,
2023b), a recent token dropping method. As in Figure 2,
LoCoCo shows exceptional performance on various tasks,
especially on tasks whose average sequence length is long.

LoCoCo be further applied onto any long-context model.
We insert convolutional heads on the top of ChatGLM3-
6B-32k (Du et al., 2021), a representative long-context pre-
trained model. We evaluate the model on SCROLLS (Sha-
ham et al., 2022), a popular long-context dataset, and Table
1 again demonstrates our effectiveness over H2O.

4.3. Extending Context Length with Limited Memory

In this section, we set the memory size to 512 and extend
the pre-trained context length of Llama-2 (Touvron et al.,
2023) from 4096 to 8192, 16384, and 32768 using the Red-

6

LoCoCo: Dropping In Convolutions for Long Context Compression

Figure 2. Token merging via convolutional kernels as the drop-in” integration without modifying the original weights. Based on Llama-2-
7B (Touvron et al., 2023), we inserted the convolutional heads on the top of self-attention, and tested the model performance on various
few-shot downstream tasks. The input sequence typically consists of about 2000 tokens. We compare our method with Zhang et al.
(2023b), a token eviction strategy. We also provide the uncompressed case, where the model uses the full sequence.

Table 1. LoCoCo applied to the ChatGLM3-6B-32k (Du et al., 2021) base model, and validated on SCROLLS (Shaham et al., 2022).

SCORLLS Task QuALITY Qasper SummScreen GovReport QMSum NarrativeQA

H2O 0.4351 0.3919 0.2498 0.3411 0.2137 0.2433
ours 0.4689 0.4284 0.2611 0.3617 0.2310 0.2576
full sequence 0.4769 0.4314 0.2636 0.3669 0.2378 0.2605

Pajama pre-training dataset (Computer, 2023). We conduct
experiments on the 7B and 13B models and report perplexity
on Proof-Pile-2 (Azerbayev et al., 2023). We also validate
the model performance under shorter context lengths.

The results are provided in Table 2. Besides Zhang et al.
(2023b), we also compare with StreamingLLM (Xiao et al.,
2023), a method handling contexts longer than the pre-
trained length in a zero-shot manner. Additionally, we com-
pare with LongLoRA (Chen et al., 2023b), which utilizes
only local tokens without considering global information.
Finally, we evaluate the model tuned with uncompressed
full sequence length. When combining our proposed token
merging with eviction, our method demonstrates superior
performance over the aforementioned methods, and shows

comparable performance with the uncompressed scenario.

To further validate our effectiveness, we report our results on
LongBench (Bai et al., 2023) in Table 4. We adopt Llama2-
13b (Touvron et al., 2023) and extend the maximum context
length to 32K. Compared to LongLoRA (Chen et al., 2023b)
and H2O (Zhang et al., 2023b), our method again achieves
superior performance.

4.4. Memory and Throughput Measurement

We first test our GPU memory usage during training (tun-
ing): the memory is measured when extending the context
length of Llama2-7B to 16k. As shown in Table 5, perform-
ing training directly on the full sequence will exhaust all
GPU memory (resulting in “OOM”). In contrast, our method

7

LoCoCo: Dropping In Convolutions for Long Context Compression

Table 2. Perplexity evaluated on Proof-Pile-2(Azerbayev et al., 2023). We fine-tuned Llama-2-7B (Touvron et al., 2023) to extend the
context length from 4K to 8K, 16K, and 32K, respectively. Additionally, we fine-tuned Llama-2-13B, extending the 4K context length to
8K. T denotes the sequence length of the training data, whereas L indicates the chunk size.

Evaluation Context Length
Size Training

Length (T)
Method Attention

Complexity 2048 4096 8192 16384 32768

StreamingLLM O(L× (L+ 8)) 4.0373 4.0174 4.0551 - -
LongLoRA O(L2) 4.0526 3.8111 3.6877 - -
H2O O(L× (L+ 512)) 3.9653 3.7043 3.5706 - -
Ours O(L× (L+ 512)) 3.9411 3.6775 3.5414 - -8192

Full Sequence O(L× T) 3.9325 3.6558 3.5070

StreamingLLM O(L× (L+ 8)) 4.0373 4.0174 4.0551 4.0334 -
LongLoRA O(L2) 4.0704 3.8125 3.6928 3.6279 -
H2O O(L× (L+ 512)) 3.9842 3.7173 3.5974 3.5458 -
Ours O(L× (L+ 512)) 3.9628 3.6958 3.5763 3.5058 -16384

Full Sequence O(L× T) 3.9491 3.6619 3.5094 3.4801 -

StreamingLLM O(L× (L+ 8)) 4.0373 4.0174 4.0551 4.0334 4.0171
LongLoRA O(L2) 4.0891 3.8348 3.7161 3.6276 3.5916
H2O O(L× (L+ 512)) 4.0564 3.8179 3.6570 3.5634 3.5102
Ours O(L× (L+ 512)) 4.0253 3.8078 3.5807 3.5145 3.4408

7b

32768

Full Sequence O(L× T) 3.9803 3.7703 3.5011 3.4836 3.4012

StreamingLLM O(L× (L+ 8)) 3.6979 3.7013 3.7022 - -
LongLoRA O(L2) 3.7153 3.5902 3.4511 - -
H2O O(L× (L+ 512)) 3.6823 3.5482 3.4073 - -
Ours O(L× (L+ 512)) 3.6798 3.4953 3.3697 - -13b 8192

Full Sequence O(L× T) 3.6412 3.4506 3.3421 - -

Table 3. Performance on representative long-context task SCROLLS. (Shaham et al., 2022)

SCORLLS Task QuALITY Qasper SummScreen GovReport QMSum NarrativeQA

LongLoRA 0.3395 0.2421 0.1712 0.2891 0.1792 0.1754
H2O 0.3461 0.2659 0.1885 0.2924 0.1913 0.1849
LoCoCo 0.3528 0.2813 0.1903 0.3113 0.2089 0.1902
full sequence 0.3600 0.2828 0.1945 0.3125 0.2125 0.1942

Table 4. Evaluation on LongBench (Bai et al., 2023).
Method LongLoRA H2O LoCoCo

LongBench 34.7% 36.9% 37.4%

Table 5. Comparison on memory usage (during training) and
throughput (during inference).

Method LongLoRA H2O LoCoCo Full Sequence

Memory Usage 49GB 50GB 50GB OOM
Throughput (Token/s) 25 32 33 11

only requires an additional 1GB of memory compared to
LongLoRA (Chen et al., 2023b) and uses the same amount
of memory as H2O (Zhang et al., 2023b).

We then measure the throughput during inference, at the
pre-filling stage. The pre-filling length is set to be 16k. As
shown in Table 5, our method achieves superior throughput
compared to all baselines at inference. For all aforemen-
tioned experiments, we set the batch size to 1, and the block
size and the KV cache memory size to both 512. We use
Flash Attention v2 (Dao, 2023) and DeepSpeed Stage 2 by

default. The measurements are conducted on the NVIDIA
A100 80GB GPU, confirming our inference efficiency.

5. Ablation
5.1. Effectiveness under Different Memory Sizes

We vary the memory size during fine-tuning, ranging from
128 to 1024, and compare our method with (Zhang et al.,
2023b). Based on the pre-trained model Llama-2 (Tou-
vron et al., 2023) whose maximal context length is 4096,
we extend it to the length of 8192, on dataset RedPajama
(Computer, 2023). We evaluate the models on Proof-Pile-2
(Azerbayev et al., 2023) in terms of perplexity. As in Fig-
ure 3, our method shows exceptional performance especially
at large compression ratios, indicating that LoCoCo could
generate more expressive compressed tokens compared to
heavy-hitters.

8

LoCoCo: Dropping In Convolutions for Long Context Compression

Figure 3. Varying memory sizes during fine-tuning, evaluated on Proof-Pile-2 (Azerbayev et al., 2023). Compared to (Zhang et al., 2023b),
our method shows exceptional performance at large compression ratios, indicating the expressiveness of the merged token.

Table 6. Our method could be performed solely or combined with
multiple token eviction methods.

Method Perplexity

H2O 3.5714
LoCoCo 3.5451
LoCoCo w. StreamingLLM 3.5439
LoCoCo w. H2O 3.5414

5.2. Combination with Different Eviction Policies

Our method could either work alone or be integrated with
any token eviction policy. In Table 6, to extend the max-
imum context length of Llama-2-7B to 8192 tokens, we
showed our core idea of token merging via convolutional
heads (1) works well alone; (2) could be combined with
StreamingLLM (Xiao et al., 2023), by additionally storing
the initial tokens, as known as “attention sink”; and (3)
could be further augmented by heavy hitters(Zhang et al.,
2023b), the “important tokens” identified by accumulated
attention scores. All variants of our methods show supe-
rior performance to solely using the previous token eviction
method (Zhang et al., 2023b).

5.3. Effectiveness under Different Kernel Sizes

Longer convolutional kernels may also present challenges in
optimization. With the Llama-2-7B model (Touvron et al.,
2023), we extend the context length to 8192, employing
kernel sizes ranging from 3 to 21. We evaluate the fine-
tuned model on Proof-Pile-2 (Azerbayev et al., 2023), using
a context length of 8192. The results are summarized in Ta-
ble 7. We observe stable performance for most size choices,
although there are degradations with extremely small kernel
sizes. That suggests LoCoCo can work well with moderately

sized convolutions, without visible optimization hurdles.

Table 7. Ablation with different kernel sizes.
Kernel 3 7 17 21 31 41 51 61

PPL 3.68 3.57 3.53 3.53 3.54 3.53 3.57 3.58

6. Conclusions
This paper introduces LoCoCo, designed to improve both
computation and memory efficiency when dealing with long-
context inputs, through the use of a fixed-size KV Cache.
We propose a data-driven adaptive token fusion technique,
characterized by learnable convolutional kernels. LoCoCo is
compatible with any pre-trained Language Models (LLMs),
enabling seamless integration with low overhead. Exper-
iments demonstrate that LoCoCo achieves a compression
ratio of up to 32 : 1 and outperforms baseline methods by
up to 27.91% in accuracy.

Acknowledgements Portions of this research were con-
ducted with the advanced computing resources provided
by Texas A&M High Performance Research Computing2.
The work is in part supported by the gift funding from
https://moffett.ai (B. Chen) and the National AI
Institute for Foundations of Machine Learning (Z. Wang).

Impact Statement
This paper presents work whose goal is to advance the field
of efficient and green AI. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

2https://hprc.tamu.edu/aces/

9

https://moffett.ai

LoCoCo: Dropping In Convolutions for Long Context Compression

References
Ntk-aware scaled rope. https://www.reddit.
com/r/LocalLLaMA/comments/14lz7j5/
ntkaware_scaled_rope_allows_llama_
models_to_have/, 2023.

Arora, S., Eyuboglu, S., Timalsina, A., Johnson, I., Poli,
M., Zou, J., Rudra, A., and Ré, C. Zoology: Measuring
and improving recall in efficient language models. arXiv
preprint arXiv:2312.04927, 2023.

Azerbayev, Z., Schoelkopf, H., Paster, K., Santos, M. D.,
McAleer, S., Jiang, A. Q., Deng, J., Biderman, S., and
Welleck, S. Llemma: An open language model for math-
ematics, 2023.

Bai, Y., Lv, X., Zhang, J., Lyu, H., Tang, J., Huang, Z.,
Du, Z., Liu, X., Zeng, A., Hou, L., et al. Longbench: A
bilingual, multitask benchmark for long context under-
standing. arXiv preprint arXiv:2308.14508, 2023.

Beltagy, I., Peters, M. E., and Cohan, A. Long-
former: The long-document transformer. arXiv preprint
arXiv:2004.05150, 2020.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., et al. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374, 2021.

Chen, S., Wong, S., Chen, L., and Tian, Y. Extending
context window of large language models via positional
interpolation. arXiv preprint arXiv:2306.15595, 2023a.

Chen, Y., Qian, S., Tang, H., Lai, X., Liu, Z., Han, S., and
Jia, J. Longlora: Efficient fine-tuning of long-context
large language models. arXiv preprint arXiv:2309.12307,
2023b.

Child, R., Gray, S., Radford, A., and Sutskever, I. Gen-
erating long sequences with sparse transformers. arXiv
preprint arXiv:1904.10509, 2019.

Choromanski, K., Likhosherstov, V., Dohan, D., Song, X.,
Gane, A., Sarlos, T., Hawkins, P., Davis, J., Mohiuddin,
A., Kaiser, L., et al. Rethinking attention with performers.
arXiv preprint arXiv:2009.14794, 2020.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved
question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Computer, T. Redpajama: an open dataset for training
large language models, 2023. URL https://github.
com/togethercomputer/RedPajama-Data.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q. V., and
Salakhutdinov, R. Transformer-xl: Attentive language
models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860, 2019.

Dao, T. Flashattention-2: Faster attention with bet-
ter parallelism and work partitioning. arXiv preprint
arXiv:2307.08691, 2023.

Dauphin, Y. N., Fan, A., Auli, M., and Grangier, D. Lan-
guage modeling with gated convolutional networks. In
International conference on machine learning, pp. 933–
941. PMLR, 2017.

Du, Z., Qian, Y., Liu, X., Ding, M., Qiu, J., Yang, Z.,
and Tang, J. Glm: General language model pretrain-
ing with autoregressive blank infilling. arXiv preprint
arXiv:2103.10360, 2021.

Fu, D. Y., Dao, T., Saab, K. K., Thomas, A. W., Rudra,
A., and Ré, C. Hungry hungry hippos: Towards lan-
guage modeling with state space models. arXiv preprint
arXiv:2212.14052, 2022.

Goyal, T. and Durrett, G. Evaluating factuality in genera-
tion with dependency-level entailment. arXiv preprint
arXiv:2010.05478, 2020.

Gu, A. and Dao, T. Mamba: Linear-time sequence
modeling with selective state spaces. arXiv preprint
arXiv:2312.00752, 2023.

Gu, A., Dao, T., Ermon, S., Rudra, A., and Ré, C. Hippo:
Recurrent memory with optimal polynomial projections.
Advances in neural information processing systems, 33:
1474–1487, 2020.

Gu, A., Goel, K., and Ré, C. Efficiently modeling long
sequences with structured state spaces. arXiv preprint
arXiv:2111.00396, 2021a.

Gu, A., Johnson, I., Goel, K., Saab, K., Dao, T., Rudra,
A., and Ré, C. Combining recurrent, convolutional, and
continuous-time models with linear state space layers.
Advances in neural information processing systems, 34:
572–585, 2021b.

Gu, A., Goel, K., Gupta, A., and Ré, C. On the parameteri-
zation and initialization of diagonal state space models.
Advances in Neural Information Processing Systems, 35:
35971–35983, 2022.

Gupta, A., Gu, A., and Berant, J. Diagonal state spaces are
as effective as structured state spaces. Advances in Neural
Information Processing Systems, 35:22982–22994, 2022.

10

https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data

LoCoCo: Dropping In Convolutions for Long Context Compression

Han, C., Wang, Q., Xiong, W., Chen, Y., Ji, H., and Wang, S.
Lm-infinite: Simple on-the-fly length generalization for
large language models. arXiv preprint arXiv:2308.16137,
2023.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation of
large language models. arXiv preprint arXiv:2106.09685,
2021.

Jiang, H., Wu, Q., Luo, X., Li, D., Lin, C.-Y., Yang, Y., and
Qiu, L. Longllmlingua: Accelerating and enhancing llms
in long context scenarios via prompt compression. arXiv
preprint arXiv:2310.06839, 2023.

Jin, H., Han, X., Yang, J., Jiang, Z., Liu, Z., Chang, C.-
Y., Chen, H., and Hu, X. Llm maybe longlm: Self-
extend llm context window without tuning. arXiv preprint
arXiv:2401.01325, 2024.

Joshi, M., Choi, E., Weld, D. S., and Zettlemoyer, L.
Triviaqa: A large scale distantly supervised challenge
dataset for reading comprehension. arXiv preprint
arXiv:1705.03551, 2017.

Kamalloo, E., Dziri, N., Clarke, C. L., and Rafiei, D. Eval-
uating open-domain question answering in the era of
large language models. arXiv preprint arXiv:2305.06984,
2023.

Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F.
Transformers are rnns: Fast autoregressive transformers
with linear attention. In International conference on ma-
chine learning, pp. 5156–5165. PMLR, 2020.

Kim, Y. Convolutional neural networks for sentence classi-
fication. arXiv preprint arXiv:1408.5882, 2014.

Kitaev, N., Kaiser, Ł., and Levskaya, A. Reformer: The
efficient transformer. arXiv preprint arXiv:2001.04451,
2020.

Lai, G., Xie, Q., Liu, H., Yang, Y., and Hovy, E. Race:
Large-scale reading comprehension dataset from exami-
nations. arXiv preprint arXiv:1704.04683, 2017.

Lewkowycz, A., Andreassen, A., Dohan, D., Dyer, E.,
Michalewski, H., Ramasesh, V., Slone, A., Anil, C.,
Schlag, I., Gutman-Solo, T., et al. Solving quantitative
reasoning problems with language models. Advances in
Neural Information Processing Systems, 35:3843–3857,
2022.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J.,
Leblond, R., Eccles, T., Keeling, J., Gimeno, F., Dal Lago,
A., et al. Competition-level code generation with alpha-
code. Science, 378(6624):1092–1097, 2022.

Liu, N. F., Lin, K., Hewitt, J., Paranjape, A., Bevilac-
qua, M., Petroni, F., and Liang, P. Lost in the middle:
How language models use long contexts. arXiv preprint
arXiv:2307.03172, 2023.

Massaroli, S., Poli, M., Fu, D. Y., Kumbong, H., Parnichkun,
R. N., Timalsina, A., Romero, D. W., McIntyre, Q., Chen,
B., Rudra, A., et al. Laughing hyena distillery: Extracting
compact recurrences from convolutions. arXiv preprint
arXiv:2310.18780, 2023.

Mohtashami, A. and Jaggi, M. Landmark attention:
Random-access infinite context length for transformers,
2023a.

Mohtashami, A. and Jaggi, M. Random-access infinite con-
text length for transformers. In Thirty-seventh Conference
on Neural Information Processing Systems, 2023b.

Peng, B., Quesnelle, J., Fan, H., and Shippole, E. Yarn:
Efficient context window extension of large language
models. arXiv preprint arXiv:2309.00071, 2023.

Poli, M., Massaroli, S., Nguyen, E., Fu, D. Y., Dao, T.,
Baccus, S., Bengio, Y., Ermon, S., and Ré, C. Hyena
hierarchy: Towards larger convolutional language models.
arXiv preprint arXiv:2302.10866, 2023.

Press, O., Smith, N. A., and Lewis, M. Train short, test
long: Attention with linear biases enables input length
extrapolation. arXiv preprint arXiv:2108.12409, 2021.

Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.,
et al. Improving language understanding by generative
pre-training. 2018.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Ribar, L., Chelombiev, I., Hudlass-Galley, L., Blake, C.,
Luschi, C., and Orr, D. Sparq attention: Bandwidth-
efficient llm inference. arXiv preprint arXiv:2312.04985,
2023.

Roy, A., Saffar, M., Vaswani, A., and Grangier, D. Efficient
content-based sparse attention with routing transform-
ers. Transactions of the Association for Computational
Linguistics, 9:53–68, 2021.

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y.
Winogrande: An adversarial winograd schema challenge
at scale. Communications of the ACM, 64(9):99–106,
2021.

Shaham, U., Segal, E., Ivgi, M., Efrat, A., Yoran, O., Haviv,
A., Gupta, A., Xiong, W., Geva, M., Berant, J., et al.
Scrolls: Standardized comparison over long language
sequences. arXiv preprint arXiv:2201.03533, 2022.

11

LoCoCo: Dropping In Convolutions for Long Context Compression

Tay, Y., Dehghani, M., Bahri, D., and Metzler, D. Efficient
transformers: A survey. ACM Computing Surveys, 55(6):
1–28, 2022.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Tworkowski, S., Staniszewski, K., Pacek, M., Wu, Y.,
Michalewski, H., and Miłoś, P. Focused transformer:
Contrastive training for context scaling. arXiv preprint
arXiv:2307.03170, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wang, S., Li, B. Z., Khabsa, M., Fang, H., and Ma, H.
Linformer: Self-attention with linear complexity. arXiv
preprint arXiv:2006.04768, 2020.

Wu, Y., Rabe, M. N., Hutchins, D., and Szegedy, C. Mem-
orizing transformers. arXiv preprint arXiv:2203.08913,
2022.

Xiao, G., Tian, Y., Chen, B., Han, S., and Lewis, M. Ef-
ficient streaming language models with attention sinks.
arXiv preprint arXiv:2309.17453, 2023.

Xiong, W., Liu, J., Molybog, I., Zhang, H., Bhargava, P.,
Hou, R., Martin, L., Rungta, R., Sankararaman, K. A.,
Oguz, B., et al. Effective long-context scaling of founda-
tion models. arXiv preprint arXiv:2309.16039, 2023.

Xiong, Y., Zeng, Z., Chakraborty, R., Tan, M., Fung, G.,
Li, Y., and Singh, V. Nyströmformer: A nyström-based
algorithm for approximating self-attention. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 14138–14148, 2021.

Yuan, A., Coenen, A., Reif, E., and Ippolito, D. Wordcraft:
story writing with large language models. In 27th Inter-
national Conference on Intelligent User Interfaces, pp.
841–852, 2022.

Zaheer, M., Guruganesh, G., Dubey, K. A., Ainslie, J., Al-
berti, C., Ontanon, S., Pham, P., Ravula, A., Wang, Q.,
Yang, L., et al. Big bird: Transformers for longer se-
quences. Advances in neural information processing
systems, 33:17283–17297, 2020.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi,
Y. Hellaswag: Can a machine really finish your sentence?
arXiv preprint arXiv:1905.07830, 2019.

Zhang, Q., Ram, D., Hawkins, C., Zha, S., and Zhao, T.
Efficient long-range transformers: You need to attend
more, but not necessarily at every layer. arXiv preprint
arXiv:2310.12442, 2023a.

Zhang, Y., Li, J., and Liu, P. Extending llms’ context win-
dow with 100 samples. arXiv preprint arXiv:2401.07004,
2024.

Zhang, Z., Sheng, Y., Zhou, T., Chen, T., Zheng, L., Cai,
R., Song, Z., Tian, Y., Ré, C., Barrett, C., et al. H 2 o:
Heavy-hitter oracle for efficient generative inference of
large language models. arXiv preprint arXiv:2306.14048,
2023b.

Zhu, D., Yang, N., Wang, L., Song, Y., Wu, W., Wei, F.,
and Li, S. Pose: Efficient context window extension of
llms via positional skip-wise training. arXiv preprint
arXiv:2309.10400, 2023.

12

