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Abstract
Imitation learning mimics high-quality policies
from expert data for sequential decision-making
tasks. However, its efficacy is hindered in scenar-
ios where optimal demonstrations are unavailable,
and only imperfect demonstrations are present. To
address this issue, introducing additional limited
human preferences is a suitable approach as it can
be obtained in a human-friendly manner, offering
a promising way to learn the policy that exceeds
the performance of imperfect demonstrations. In
this paper, we propose a novel imitation learn-
ing (IL) algorithm, Preference Aided Imitation
Learning from imperfect demonstrations (PAIL).
Specifically, PAIL learns a preference reward by
querying experts for limited preferences from im-
perfect demonstrations. This serves two purposes
during training: 1) Reweighting imperfect demon-
strations with the preference reward for higher
quality. 2) Selecting explored trajectories with
high cumulative preference rewards to augment
imperfect demonstrations. The dataset with con-
tinuously improving quality empowers the perfor-
mance of PAIL to transcend the initial demonstra-
tions. Comprehensive empirical results across a
synthetic task and two locomotion benchmarks
show that PAIL surpasses baselines by 73.2%
and breaks through the performance bottleneck of
imperfect demonstrations.

1. Introduction
Imitation learning (IL) (Osa et al., 2018; Liu et al., 2023)
eliminates the need for manually crafting sophisticated re-
ward functions by utilizing a handful of expert demonstra-
tions, offering a significant advantage in a variety of real-
world applications (Peng et al., 2020; Zhao et al., 2023).
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Nevertheless, the applicability of IL is primarily seen in
bio-mimetic tasks or those already resolved by humans, con-
strained by its dependency on optimal expert demonstrations.
This limitation becomes pronounced in scenarios involving
novel or highly specialized tasks, where obtaining optimal
demonstrations is either impractical or prohibitively expen-
sive. Examples of such challenges include the control of
robots with highly versatile morphologies (Thor & Manoon-
pong, 2022) and the management of Tokamak fusion de-
vices (Degrave et al., 2022). In these instances, reliance on
suboptimal demonstrations is often inevitable.

Traditional methods of learning from imperfections typi-
cally involve weighting the demonstrations with a discrimi-
nator, aiming to assign higher weights to better demonstra-
tions (Wang et al., 2021a;b). The policy is then trained from
these reweighted demonstrations using weighted variants of
IL. Nevertheless, the policies learned by these methods are
constrained by the quality of the dataset, as they only imi-
tate trajectories from imperfect demonstrations, preventing
them from achieving better performance beyond the demon-
strations. To overcome these limitations, Wu et al. (2019)
and Brown et al. (2019a) proposed incorporating additional
information, such as rankings and confidence scores of the
demonstrations, enabling policies to reach or even surpass
the performance of the best demonstrations. Limited data
with scores over diverse tasks (Zhou et al., 2024) and an
extra misspecified simulator (Jiang et al., 2020) are also
considered helpful for policy learning. However, generating
such information demands significant human effort or poses
difficulties in providing precise and consistent confidence
scores (Sasaki & Yamashina, 2021). In contrast, preference-
based data, which only requires humans to make relative
judgments, emerges as a more cost-effective and human-
friendly approach and has demonstrated strong applicability
in real-world tasks (Lee et al., 2021a; OpenAI, 2023), of-
fering a promising way to learn the policy that surpass the
performance of imperfect demonstrations.

In this paper, we propose to imitate policies from an un-
labeled mixture of demonstrations with various qualities
while leveraging limited preference queries to learn policies
outperforming demonstrations with minimal human effort.
Our method, termed Preference Aided Imitation Learning
from imperfect demonstrations (PAIL), begins by utilizing
the Bradley-Terry model (Bradley & Terry, 1952) to learn a
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preference reward model from suboptimal demonstrations
supplemented by preference queries. As the potentially poor
generalization of the preference reward learned with few
queries might mislead the policy (Azar et al., 2023; Hejna &
Sadigh, 2023), PAIL does not directly utilize the preference
reward as the RL reward function. Instead, it employs the
reward to reweight the demonstrations, resulting in a dataset
consistent with the preference reward. Subsequently, PAIL
adopts IL to train a policy using the reweighted demonstra-
tions. To continuously enhance policy performance and
exceed the initial dataset performance, PAIL periodically
selects additional samples from its past experiences, based
on their freshness and the preference reward evaluations.
These samples are then incorporated into the demonstra-
tion dataset, expanding the training dataset for refining the
preference rewards.

We empirically evaluate PAIL against existing state-of-the-
art (SOTA) methods across various benchmarks, including
a synthesized grid-world task and two locomotion bench-
marks. In the grid-world task, PAIL demonstrated a signif-
icant improvement in learning accurate reward functions
from a minimal set of preference queries, thus also show-
ing a significant policy performance improvement. In the
locomotion benchmarks, PAIL surpassed the baselines in all
tasks with limited preference queries, showing a 73.2% av-
eraged performance improvement. When preference queries
were sufficiently available, PAIL can still achieve the best
performance in most tasks. Further experimental analyses
underscore the contribution of each component within the
PAIL framework, affirming its effectiveness in leveraging
preference information for policy optimization.

2. Related Work
Imitation learning from imperfection. Imitation learn-
ing from imperfection seeks to replicate optimal policy by
learning from a dataset of imperfect (suboptimal) demon-
strations, which may be noisy (Zheng et al., 2014; Choi
et al., 2019; Sasaki & Yamashina, 2021; Li et al., 2024),
supplemented with additional unlabeled suboptimal demon-
strations (Zolna et al., 2020; Valko et al., 2012; Shiarlis et al.,
2016; Yang et al., 2023), or unlabeled mixture of data with
various quality (Wang et al., 2021a; Sasaki & Yamashina,
2021) considered in this paper. Existing methods typically
require weighting the demonstrations with a discriminator,
aiming to emphasize and discard the high-quality and low-
quality demonstrations, respectively (Wang et al., 2021a;b).
The policy is then trained from these reweighted demon-
strations using weighted variants of Behavioral Cloning
(BC) (Pomerleau, 1991) or Inverse Reinforcement Learning
(IRL) (Ziebart et al., 2010). However, the quality of the
demonstrations inherently limits the performance of poli-
cies, hindering the achievement of optimal performance. To

address the limitations imposed by data constraints, Wu et al.
(2019) and Brown et al. (2019a) introduced methods that
augment the learning process with additional information,
such as confidence scores and rankings of demonstrations.
This enhancement enables policies not only to achieve but
potentially exceed the performance of the highest-quality
demonstrations. However, generating such information re-
quires substantial human effort, as humans face challenges
in providing precise and consistent confidence scores or
rankings. PAIL distinguishes itself from these methods by
utilizing human preferences, a more human-friendly infor-
mation, as the additional information.

Imitation learning with preferences supplementary. Re-
cent research has also explored the integration of preferences
into IL, taking the advantages of Preference-based Rein-
forcement Learning (PBRL) (Bradley & Terry, 1952; Chris-
tiano et al., 2017; Wirth et al., 2017). A typical paradigm
within PBRL first learns a preference reward by fitting the
preference data and then utilizes the preference reward as
the RL reward function to learn a policy (Christiano et al.,
2017; Ibarz et al., 2018; Lee et al., 2021a). As a theoretical
analysis of IL with preferences supplementary, Sekhari et al.
(2023) studied the learning regret within the IL framework
when actively soliciting preferences. On the algorithmic
front, Brown et al. (2019b) and Chen et al. (2020) employed
BC and AIL, respectively, for policy pre-training to accu-
mulate preference data. Zhang et al. (2021) learns confi-
dence score for state-action pairs from rankings between
trajectories. Other advancements by Taranovic et al. (2023)
integrated preference loss into the AIL discriminator loss,
enhancing the efficiency of AIL and demonstrating supe-
rior performance compared to pure IL or PBRL. To address
vague preferences information, Cai et al. (2023) explores
imitation learning under conditions of less explicit guidance.
PAIL differs from these methods by taking advantage of
individual approaches, rather than separately applying each
approach or directly loss summing. We additionally sum-
marize the contributions of PAIL over previous methods in
Appendix A.

3. Preliminaries
Markov Decision Process. An infinite-horizon Markov
decision process (MDP) (Sutton & Barto, 1998) can be
described by a tuple ⟨S,A,P, r, γ, ρ0⟩, where S is the state
space, A is the action space, P(s′ | s, a) represents the
dynamics, r : S ×A → [0, 1] represents the oracle reward
function of the environment, γ ∈ [0, 1) is the discount factor
and ρ0 denotes the initial state distribution. A trajectory
denoted by τ = {(sτt , aτt )}∞t=0 is a sequence of state-action
pairs, where t denotes the time step. A stochastic policy
π(a | s) ∈ Π is an action distribution conditioned on state s,
where Π is the space of policies. The quality of policy π is

2



Limited Preference Aided Imitation Learning from Imperfect Demonstrations

Discriminator 

insert

assign discriminator reward ��  
Policy �(�|�)

replay buffer ℬ imperfect  demonstration ��

3) Demonstration Augmentation 

sample by 
preference reward 

uniformreweighted

2) Reweight the Imperfect Demonstrations

��

preference query

1) Preferences Reward Learning
preference buffer

negative
samples 

positive
samples 

high ��(�)

low ��(�)

high ��(�)
low ��(�)

≻
preference reward

Figure 1. Overview of PAIL. There are three key aspects: (1) learning the preference reward using samples from a preference buffer; (2)
prioritizing demonstrations with higher preference rewards by assigning them larger weights; (3) selecting additional samples from its
past experiences, based on their freshness and the preference reward evaluations.

evaluated by its policy value, i.e. discounted accumulative
rewards, V π = Eπ [

∑∞
t=0 γ

tr(st, at)], s0 ∼ ρ0(·), at ∼
π(· | st), st+1 ∼ P(· | st, at). Reinforcement learning
(RL) aims to learn a optimal policy π∗ which maximize its
policy value, i.e. π∗ = argmaxπ V

π .

To facilitate analysis, we define the discounted state-action
distribution of policy π as dπ(s, a) = (1 − γ)π(a |
s)
∑∞

t=0 γ
tPr(st = s | π), where Pr(st = s|π) is the proba-

bility that the agent is in state s at time step twhen following
the policy π. The state-action distribution of trajectory τ is
defined as dτ (s, a) = (1− γ)

∑∞
t=0 γ

tI(st = sτt , at = aτt ).
For dataset D consisting of trajectories, we define the num-
ber of trajectories in D as |D| and the state-action distribu-
tion of dataset D as dτ (s, a) = 1

|D|
∑

τ∈D d
τ (s, a).

Inverse Reinforcement Learning. The goal of IRL (Ng &
Russell, 2000) is to recover a reward function and learn a
policy from the expert demonstrations. We useDe to denote
the expert demonstrations. The optimization problem of
maximum causal entropy IRL (Ziebart et al., 2008; 2010) is
defined as:

max
rd

min
π
L(π, rd) =−

(
E(s,a)∼π

[
rd(s, a)

]
+H(π)

)
+ E(s,a)∼De

[
rd(s, a)

]
− ψ(rd),

(1)
where H(π) = Eπ [− log π(a | s)] denotes the causal en-
tropy of policy π (Bloem & Bambos, 2014) and ψ(rd) is
a convex reward function regularizer. Garg et al. (2021)
reveals that the problem (1) is equivalent to a state-action
distribution matching problem

min
π
ψ∗(dD

e

− dπ)−H(π), (2)

where ψ∗ is the convex conjugate of ψ.

Reward learning from preferences. A segment of the tra-

jectory τ is defined as σ = {(sτt , aτt )}
k+(H−1)
t=k , where k ≥

0, H ≥ 1. Preference is defined as ordering of trajectory
segment pairs which can be described as a triple (σ0, σ1, y),
where σ0, σ1 are trajectory segments and y ∈ {0, 1} are the
ordering (y = 0 and y = 1 respectively represent σ0 ≺ σ1

and σ1 ≺ σ0).

Common methods for reward learning from preferences aim
to obtain the reward function estimate rpφ(s, a) consistent
with the preferences by supervised learning (Wilson et al.,
2012; Christiano et al., 2017; Lee et al., 2021a). Assum-
ing that the probability of preferring a trajectory segment
depends exponentially on the sum of the reward function
estimate for that segment (Bradley & Terry, 1952), a prefer-
ence predictor is modeled by the reward function estimate
rpφ(s, a) as below:

Pφ

[
σ0 ≺ σ1

]
=

exp
∑

(s,a)∈σ1 rpφ(s, a)∑
i∈{0,1} exp

∑
(s,a)∈σi r

p
φ(s, a)

, (3)

Given a preference bufferR, the optimization objective for
learning a reward function rpφ with parameters φ, aiming to
satisfy all preference orderings, is as follows:

Lp = −E(σ0,σ1,y)∼R

[
I(y = 0)Pφ

[
σ0 ≺ σ1

]
+ I(y = 1)Pφ

[
σ1 ≺ σ0

] ]
,

(4)

where I(y = a) = 1 if y = a and I(y = a) = 0 if y ̸= a.

Preferences are sampled from trajectories, and previous
work invest significant efforts to explore efficient sampling
schemes, like disagreement sampling and entropy sampling,
to obtain informative preferences (Lee et al., 2021a;b).
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4. Method
In this section, we propose PAIL: limited human Preference
Aided Imitation Learning from imperfect demonstrations.
Given imperfect demonstrations and allowed for querying
human preferences when training, PAIL aims to learn good
policies consistent with human preferences.

PAIL works by applying IRL to imitate from imperfect
demonstrations reweighted by limited human preferences,
and then augmenting the demonstrations with the trajec-
tories newly collected for learning better policies. In Sec-
tion 4.1, we show how we reweight the trajectories from
the imperfect demonstrations by using human preferences.
In Section 4.2, we describe the process of imitating the
reweighted dataset by maximum causal entropy IRL and
provide a theoretical analysis. In Section 4.3, we introduce
how to augment the demonstration dataset.

4.1. Reweighting of the Imperfect Demonstrations

With the aim of obtaining a higher-quality demonstration
dataset for imitation, we consider reweighting the dataset
consistent with human preferences. Assume that we have
imperfect demonstrationsDd = {τdi }

|Dd|
i=1 (τi denotes trajec-

tories) and a parameterized preference reward rpφ consistent
with human preferences.
Definition 4.1. Assume that D is a demonstration dataset,
Dρ denotes a dataset consisting of trajectories resampled
from D by the trajectory distribution ρ,

∑
τ∈D ρ(τ) = 1.

To identify an appropriate trajectory distribution ρ for
reweighting, we try to solve the following optimization
problem:

max
ρ

Eρ(τ)

[
rpφ(τ)

]
+ βH(ρ), s.t.

∑
τ∈Dd

ρ(τ) = 1, (5)

where H(ρ) =
∑

τ∈Dd −ρ(τ) log(ρ(τ)) denotes the en-
tropy of the reweighted trajectory distribution, and rpφ(τ) =∑∞

t=0 γ
trpφ(s

τ
t , a

τ
t ) is the accumulative preference reward

(preference return) of the trajectory τ . Intuitively, the above
optimization problem aims to find a distribution that can
maximize the preference return of the reweighted datasetDd

ρ

for human preference consistency and entropy for the diver-
sity of trajectories simultaneously. The following Theorem
presents the solution of the optimization problem (5).
Theorem 4.2. The closed-form solution to the optimization
problem (5) is formulated as

ρ̃φ(τ) =

(
exp

rpφ(τ)

β

)
/Z, (6)

where Z =
∑

τ∈Dd exp
rpφ(τ)

β .

Also, we can easily find that ρ̃φ(τ) ∝ exp
rpφ(τ)

β . That
is, trajectories with higher preference returns should have

higher weights and a larger β implies greater diversity of
the reweighted dataset.

Algorithm 1 PAIL
Input: Imperfect demonstrations Dd; entropy coefficient
β; augmentation entropy cofficient βaug;
Parameterize policy as πϕ, critic as Qθ, discriminator
reward as rdξ and ensemble preference reward as rpφ =
{rpφi

| i = 1, · · · , Np};
Initialize a replay bufffer B and a preference bufferR;
Sample K human preferences with uniform sampling
from Dd and insert them toR;
Update rpφ withR by loss (4), calculate ρ̃φ by Eq. (6);
for i = 1 to N iter do

Sample nstep transitions by πϕ from the environment
and insert them to B;
if i % N aug = 0 then

Sample m trajectories Daug from latest M trajecto-
ries by Eq. (10), Dd ← Dd

⋃
Daug;

Sample K human preferences with disagreement
sampling from Dd and insert them toR;
Update rpφ with R by loss (4), calculate ρ̃φ by
Eq. (6);

end if
for step d = 1 to ndisr do

Update rdξ by loss E(s,a)∼B

[
rdξ (s, a)

]
−

E(s,a)∼Dd
ρ̃φ

[
rdξ (s, a)

]
+ ψ(rdξ );

end for
for step p = 1 to npolicy do

Update πϕ and Qθ by SAC with B;
end for

end for

4.2. Imitation from the Reweighted Demonstrations

In order to train the preference reward, we randomly sam-
ple K trajectory segments from the imperfect demonstra-
tions Dd, query preferences, and add them to the preference
bufferR. Following the common methods for reward learn-
ing from preferences (Wilson et al., 2012; Christiano et al.,
2017; Lee et al., 2021a), we parameterize the ensemble pref-
erence reward as rpφ = 1

Np

∑Np

i=1 r
p
φi

and, based on Bradley-
Terry model (Bradley & Terry, 1952), update the preference
reward function by minimizing the loss (4). By reweighting
the imperfect demonstration dataset Dd with the trajectory
distribution ρ̃φ of Eq. (6), we obtain a reweighted dataset
Dd

ρ̃φ
consistent with human preferences.

With the intension to learn from trajectories perceived as
good and disregard those considered unfavorable, we apply
maximum causal entropy IRL (Ziebart et al., 2008; 2010) to
imitate the reweighted dataset Dd

ρ̃φ
. By parameterizing the

policy as πϕ, the critic as Qθ, and the discriminator as rdξ ,
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we optimize the following objective:

max
ξ

min
ϕ
−
(
E(s,a)∼πϕ

[
rdξ (s, a)

]
+H(πϕ)

)
+ E(s,a)∼Dd

ρ̃φ

[
rdξ (s, a)

]
− ψ(rdξ ),

(7)

where H(πϕ) = Eπϕ
[− log πϕ(a | s)]. In practical imple-

mentation, we employ SAC (Haarnoja et al., 2018a;b) to
update πϕ and Qθ. Furthermore, following DAC (Kostrikov
et al., 2019), we update the discriminator rdξ using samples
from the replay buffer of SAC, denoted as B, for sample
efficiency.

Next, we provide a theoretical analysis of imitation learn-
ing from the reweighted dataset Dd

ρ̃φ
. The problem (7) is

equivalent to the state-action distribution matching problem
minϕ ψ

∗(dD
d

ρ̃φ
−dπϕ)−H(πϕ), where ψ∗ is the convex con-

jugate of ψ. For simplicity, by letting ’ψ = 0 if |r| < 1/2
and +∞ otherwise’, we consider the optimization prob-
lem (Xu et al., 2023)

min
ϕ
∥dπ − dD

d

ρ̃φ
∥1. (8)

Assume that the trajectory τdi ∈ Dd is sampled by πd
i , i.e.

τdi ∼ πd
i , i = 1, · · · , |Dd|. We define the best policy of Dd

as πh ∈ argmaxπ∈{πd
1 ,··· ,πd

|Dd|
} V

π. Let Dh = {τ | τ ∈
Dd, τ ∼ πh} and Dl = Dd\Dh.

Theorem 4.3. If ∥dπh − dDh∥1 ≤ ϵEST, and the learned
policy π̂ satisfies ∥dπ̂ − dDd

ρ̃φ
∥1 ≤ minπ∈Π ∥dπ − dD

d

ρ̃φ
∥1 +

ϵOPT, then

V πh

− V π̂ ≤ 4|Dl|
1− γ

exp
−
(
rpφ(τ

h
max)− rpφ(τ lmax)

)
β︸ ︷︷ ︸

quality error

+
4

1− γ

(
exp

rpφ(τ
h
max)− rpφ(τhmin)

β
− 1

)
︸ ︷︷ ︸

consistency error

+
2ϵEST + ϵOPT

1− γ
(9)

where τ lmax = argmaxτ∈Dl ρpφ(τ), τhmax =

argmaxτ∈Dh ρpφ(τ) and τhmin = argminτ∈Dh ρpφ(τ).

Theorem 4.3 analyses the value gap of the best policy πh

in Dd and the policy π̂ learned by optimization objective
(8). The quality error arises from the trajectories with low
qualityDl. If any trajectory inDh has the highest preference
return, i.e. rpφ(τ

h
max) > rpφ(τ

l
max), we can mitigate the quality

error by decreasing β. The consistency error stems from
the inconsistent preference returns of trajectories in Dh. A
reduction in the consistency error can be achieved by either
obtaining more consistent preference returns in Dh or by
increasing the value of β. Therefore, a trade-off exists in
the selection of β.

4.3. Demonstration Augmentation

In pursuit of imitating trajectories that outperform the origin
demonstrations, we consider augmenting the demonstration
dataset. During the policy learning process of IRL, the
policy πϕ continuously improves and explores trajectories
that may perform well from the environment. We augment
the demonstration dataset by incorporating trajectories that
align with human preferences among the trajectories ex-
plored from the environment.

Each N aug iterations, we sample m trajectories Daug from
the latest M trajectories in replay buffer B using the follow-
ing probability distribution:

P aug
φ (τ) =

(
exp

rpφ(τ)

βaug

)
/
(∑

τ∈B[−M:]
exp

rpφ(τ)

βaug

)
, (10)

where rpφ is the preference reward, βaug is the hyperparame-
ter controlling entropy and B[−M :] denotes the latest M tra-
jectories from replay buffer B. Smaller βaug implies greater
trust in the predictive capability of preference rewards rpφ on
the newly sampled M trajectories, while conversely, larger
βaug indicates a higher degree of randomness in sampling.
Subsequently, Daug is added to the demonstration dataset,
i.e. Dd ← Dd

⋃
Daug.

Since the preference buffer R are not sampled in the aug-
mented trajectories Daug, the scoring for augmented trajec-
tories by preference reward rpφ relies on the extrapolation
ability of neural networks (Brown et al., 2019b). To enhance
the accuracy on augmented data, we employ disagreement
sampling (Lee et al., 2021a) to select pairs of trajectory seg-
ments with high variance across ensemble preference reward
std
(
{rpφi

| i = 1, · · ·Np}
)

on the datasetDd
⋃
Daug, query

for human preferences and refine the preference reward after
each demonstration augmentation. An overview of PAIL is
presented in Fig. 1, and the corresponding pseudocode is
provided in Alg. 1.

5. Experiments
We perform a series of experiments aimed at answering the
following questions: Q1: Can PAIL significantly outper-
form the primary baselines? (Table 1,2,3) Q2: How do
limited preferences facilitate PAIL success? (Fig. 2,4) Q3:
What are the effects of reweighting demonstrations, demon-
stration augmentation and the hyper-parameters? (Fig. 5)

5.1. Experimental Setup

Benchmark. We consider a synthetic task, i.e. Grid-
World, along with 5 locomotion tasks of Mujoco bench-
mark (Todorov et al., 2012), and 3 locomotion tasks of
DMControl (DMC) benchmark (Tassa et al., 2018; Tunya-
suvunakool et al., 2020).

Imperfect demonstrations and human preferences. For

5



Limited Preference Aided Imitation Learning from Imperfect Demonstrations

Table 1. Arrival rate and out rate (rate of leaving the boundary) in
GridWorld averaged over 5 seeds. ‘Demo (imp)’ represents the
imperfect demonstration dataset ‘M’ for GridWorld.

Arrival Rate (%) Out Rate (%)

Demo (imp) 58.40 0.00

PAIL 87.24 ± 4.15 1.66 ± 0.49
MCE-IRL 45.82 ± 2.27 2.66 ± 0.63
PEBBLE 0.39 ± 0.17 75.39 ± 12.63
BC-PEBBLE 0.49 ± 0.25 40.97 ± 20.54

the 5 Mujoco tasks, we use imperfect demonstrations of
three distinct quality, denoted as ‘L’, ‘M’, and ‘H’. Ad-
ditionally, for GridWorld and 3 DMC tasks, we employ
imperfect demonstrations of quality ‘M’. For human prefer-
ences, akin to Christiano et al. (2017) and Ibarz et al. (2018),
the agent queries feedback from a scripted teacher which
provides preferences between trajectory segments based on
the underlying task reward (oracle reward).

Primary baselines. We compare PAIL with 6 state-of-
art baselines, i.e. MCE-IRL (Ziebart et al., 2008; 2010),
SAIL-TRPO (Wang et al., 2021a), SAIL-SAC, AILP (Tara-
novic et al., 2023), PEBBLE (Lee et al., 2021a;b), BC-
PBBLE (Lee et al., 2021a;b; Ibarz et al., 2018). Details on
primary baselines can be seen in Appendix D.4.

5.2. Evaluation on a Synthetic Task

We first focus on the synthetic task GridWorld, enabling a
thorough analysis of algorithms through visualizations. In
GridWorld task, an agent tries to consistently remain within
a designated circular boundary with the aim of reaching
a target which is positioned randomly each episode. De-
viating outside the boundary incurs a substantial penalty,
emphasizing that the agent should prioritize staying within
the boundary even when the target is positioned outside it.
The agent’s observations comprise its current position and
the target position.

To answer Q1, we employ PAIL, MCE-IRL, PEBBLE and
BC-PEBBLE to learn policies for GridWorld. We test the
arrival rate (rate of reaching the target for different targets
inside the boundary) and the out rate (rate of leaving the
boundary) for the learned policies in Table 1. PAIL exhibits
a significantly higher arrival rate compared to the other three
methods, with the lowest rate of leaving the boundary. The
arrival rate of MCE-IRL is slightly lower than that of the
imperfect dataset ‘M’ by imitating the dataset ‘M’ directly,
while PAIL achieves a significantly higher arrival rate com-
pared to imperfect dataset ‘M’ with the assistance of limited
preferences. PEBBLE and BC-PEBBLE, as PBRL algo-
rithms, almost fail to reach the targets inside the boundary,
with a notable rate of leaving the boundary.

To answer Q2, we visualize the learned policies and the
discriminator rewards of PAIL and MCE-IRL. Note that we
learn a state-only reward like AIRL (Fu et al., 2017) to facil-
itate the visualization of the reward function. From Fig. 2,
we observe that in the case of ‘target 2’, the discriminator re-
ward of MCE-IRL exhibits high values not only at the target
position but also at another relatively conservative position.
This leads to a conservative policy that does not reach ‘target
2’. By reweighting the imperfect demonstration dataset with
limited preferences, PAIL emphasizes demonstrations that
reach the target while disregarding conservative demonstra-
tions that do not, which enables the learning of an accurate
discriminator reward. With such reward, PAIL can reach
‘target 2’ which is positioned close to the boundary.

Furthermore, we visualize the learned polices and the pref-
erence rewards of two PBRL methods, i.e. PEBBLE and
BC-PEBBLE, in Fig. 3. With limited preferences, PEBBLE
and BC-PEBBLE learn rough preference rewards which
predict high rewards across a broad spectrum. Learned by
such rewards, the policies of PEBBLE and BC-PEBBLE
fails to accurately reach the target and leaves the boundary
at times.

5.3. Performance in Mujoco and DMC tasks

To evaluate the applicability of PAIL in addressing more
intricate tasks, we compare PAIL with the primary baselines
in 5 locomotion tasks of Mujoco benchmark (Todorov et al.,
2012) and 3 locomotion tasks of DMC benchmark (Tassa
et al., 2018; Tunyasuvunakool et al., 2020). We consider ‘L’,
‘M’, ‘H’ demonstration dataset for Mujoco and ‘M’ demon-
stration dataset for DMC. 10 trajectories of the demonstra-
tion dataset are used for learning.

Overall performance. We use 60 preference queries for
learning, and the normalized average returns of PAIL and
the primary baselines are reported in Table 2. On all the
tasks from the Mujoco and DMC benchmarks, PAIL exhibits
a substantial performance improvement in comparison to all
the baseline methods which provides a strong response to
Q1. PAIL achieves an average performance improvement
of 73.2% over prior SOTAs across all the tasks. (Respec-
tively, 75.5% for Mujoco tasks and 61.8% for DMC tasks).
Moreover, PAIL outperforms the best trajectory in the initial
imperfect demonstration dataset in 16 out of 18 ‘Task &
Dataset’.

We additionally compare PAIL with other baseline methods
using preferences, i.e. PEBBLE, BC-PEBBLE and AILP,
under the setting that 1400 preference queries (the most
number of queries tested in Lee et al. (2021a)) are used. The
normalized average returns of this setting are reported in
Table 3. With much more queries for preferences, the per-
formance of PEBBLE exhibits an improvement in 3 DMC
tasks compared to the setting of 60 preference queries and
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Figure 2. The learned policies and the discriminator rewards of
PAIL and MCE-IRL in GridWorld.

Figure 3. The learned policies and the preference rewards of PEB-
BLE and BC-PEBBLE in GridWorld.

Table 2. Normalized average returns in Mujoco and DMC tasks averaged over 5 seeds with 60 preference queries. ‘Demo. (Avg.)’ and
‘Demo. (Best)’ respectively represent the average and the best return within trajectories of the demonstration dataset. The underscore
denotes that the average performance of PAIL’s policy exceeds the performance of the best trajectory of the initial demonstration dataset.

Task & Dataset Demo. (Avg.) Demo. (Best) PEBBLE BC-PEBBLE MCE-IRL SAIL-TRPO SAIL-SAC AILP PAIL (ours)

Ant-v2, L 0.46 0.61 0.29 ± 0.01 0.31 ± 0.00 0.37 ± 0.03 0.35 ± 0.01 0.39 ± 0.01 0.39 ± 0.04 0.79 ± 0.01
Ant-v2, M 0.63 0.77 0.29 ± 0.01 0.32 ± 0.00 0.58 ± 0.01 0.30 ± 0.01 0.55 ± 0.02 0.52 ± 0.06 0.87 ± 0.00
Ant-v2, H 0.80 0.93 0.29 ± 0.01 0.32 ± 0.00 0.19 ± 0.03 0.16 ± 0.02 0.67 ± 0.01 0.32 ± 0.00 0.93 ± 0.01
HalfCheetah-v2, L 0.20 0.34 0.13 ± 0.05 0.58 ± 0.02 0.28 ± 0.04 0.06 ± 0.00 0.18 ± 0.01 0.22 ± 0.04 0.62 ± 0.04
HalfCheetah-v2, M 0.39 0.57 0.13 ± 0.05 0.72 ± 0.03 0.38 ± 0.01 0.05 ± 0.02 0.35 ± 0.00 0.39 ± 0.04 0.75 ± 0.02
HalfCheetah-v2, H 0.61 0.81 0.13 ± 0.05 0.70 ± 0.15 0.53 ± 0.13 0.02 ± 0.02 0.48 ± 0.01 0.45 ± 0.10 0.88 ± 0.01
Hopper-v2, L 0.16 0.35 0.78 ± 0.05 0.69 ± 0.14 0.17 ± 0.03 0.25 ± 0.03 0.31 ± 0.00 0.22 ± 0.03 0.93 ± 0.01
Hopper-v2, M 0.41 0.61 0.78 ± 0.05 0.64 ± 0.11 0.45 ± 0.06 0.32 ± 0.05 0.34 ± 0.05 0.38 ± 0.12 0.92 ± 0.02
Hopper-v2, H 0.67 0.85 0.78 ± 0.05 0.77 ± 0.08 0.87 ± 0.07 0.54 ± 0.10 0.57 ± 0.09 0.47 ± 0.15 0.96 ± 0.01
Humanoid-v2, L 0.36 0.53 0.04 ± 0.00 0.04 ± 0.01 0.74 ± 0.06 0.06 ± 0.00 0.71 ± 0.06 0.05 ± 0.03 0.95 ± 0.02
Humanoid-v2, M 0.59 0.82 0.04 ± 0.00 0.03 ± 0.00 0.65 ± 0.14 0.05 ± 0.01 0.75 ± 0.06 0.05 ± 0.03 0.98 ± 0.02
Humanoid-v2, H 0.85 0.98 0.04 ± 0.00 0.03 ± 0.01 0.76 ± 0.11 0.05 ± 0.01 0.85 ± 0.05 0.24 ± 0.15 1.04 ± 0.02
Walker2d-v2, L 0.26 0.39 0.05 ± 0.01 0.09 ± 0.02 0.30 ± 0.03 0.21 ± 0.02 0.22 ± 0.03 0.28 ± 0.03 0.48 ± 0.02
Walker2d-v2, M 0.47 0.65 0.05 ± 0.01 0.05 ± 0.05 0.48 ± 0.02 0.22 ± 0.02 0.43 ± 0.01 0.39 ± 0.04 0.88 ± 0.01
Walker2d-v2, H 0.70 0.92 0.05 ± 0.01 0.06 ± 0.06 0.49 ± 0.14 0.37 ± 0.02 0.52 ± 0.05 0.46 ± 0.06 0.90 ± 0.03

Average 0.5 0.68 0.26 0.36 0.48 0.2 0.49 0.32 0.86

cheetah run, M 0.60 0.81 0.38 ± 0.06 0.63 ± 0.13 0.53 ± 0.04 0.12 ± 0.01 0.45 ± 0.01 0.52 ± 0.05 0.87 ± 0.00
quadruped walk, M 0.70 0.91 0.13 ± 0.02 0.13 ± 0.06 0.25 ± 0.03 0.08 ± 0.01 0.09 ± 0.01 0.63 ± 0.03 0.83 ± 0.04
walker walk, M 0.68 0.93 0.21 ± 0.03 0.05 ± 0.01 0.45 ± 0.13 0.16 ± 0.04 0.61 ± 0.03 0.50 ± 0.09 0.96 ± 0.01

Average 0.66 0.88 0.24 0.27 0.41 0.12 0.38 0.55 0.89

BC-PEBBLE’s performance shows enhancement in both
HalfCheetah-v2 and 3 DMC tasks, which indicates that
PBRL requires a large amount of preferences. Under the
setting of 1400 preference queries, PAIL still achieves the
highest score in 16 out of 18 ‘Task & Dataset’, although it
exhibits a relatively smaller advantage on DMC tasks. In
comparison, PAIL demonstrates a more pronounced advan-
tage with fewer preference queries.

Visualization of preference returns and weights. To an-
swer Q2, we visualize the preference returns and weights of
‘Walker2d-v2, M’ under the setting of 60 preference queries
in Fig. 4. From the left figure, it can be observed that the
preference reward learned with limited preferences accu-
rately estimates the preference return. From the right fig-

ure, it can be seen that trajectories exhibiting higher oracle
returns are assigned larger preference weights. In particu-
lar, trajectories with oracle returns greater than 5000 have
weights greater than 0.025, while the remaining has weights
close to 0. With such weights, PAIL mimics the trajectories
with oracle returns over 5000 while ignoring other trajecto-
ries with lower performance. Furthermore, the augmented
demonstrations outperform the initial demonstrations, al-
lowing PAIL to break through the performance bottleneck
of the imperfect demonstration dataset.

Preference reward analysis. To gain a deeper under-
standing of preference reward, the Pearson correlation co-
efficients between oracle rewards and preference rewards
learned by 60 preference queries are listed in Table 4. In
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Table 3. Normalized average returns in Mujoco and DMC tasks
averaged over 5 seeds with 1400 preference queries.

Task & Dataset PEBBLE BC-PEBBLE AILP PAIL

Ant-v2, L 0.31 ± 0.00 0.31 ± 0.00 0.33 ± 0.01 0.80 ± 0.01
Ant-v2, M 0.31 ± 0.00 0.32 ± 0.00 0.38 ± 0.03 0.88 ± 0.01
Ant-v2, H 0.31 ± 0.00 0.32 ± 0.00 0.39 ± 0.08 0.94 ± 0.00
HalfCheetah-v2, L 0.55 ± 0.08 0.75 ± 0.03 0.30 ± 0.01 0.67 ± 0.03
HalfCheetah-v2, M 0.55 ± 0.08 0.79 ± 0.02 0.43 ± 0.05 0.71 ± 0.04
HalfCheetah-v2, H 0.55 ± 0.08 0.89 ± 0.01 0.44 ± 0.10 0.89 ± 0.01
Hopper-v2, L 0.29 ± 0.02 0.22 ± 0.05 0.29 ± 0.07 0.91 ± 0.02
Hopper-v2, M 0.29 ± 0.02 0.26 ± 0.02 0.27 ± 0.03 0.94 ± 0.07
Hopper-v2, H 0.29 ± 0.02 0.28 ± 0.05 0.37 ± 0.12 0.94 ± 0.01
Humanoid-v2, L 0.05 ± 0.00 0.04 ± 0.01 0.03 ± 0.02 0.97 ± 0.01
Humanoid-v2, M 0.05 ± 0.00 0.06 ± 0.01 0.01 ± 0.01 1.01 ± 0.01
Humanoid-v2, H 0.05 ± 0.00 0.06 ± 0.01 0.02 ± 0.02 1.08 ± 0.01
Walker2d-v2, L 0.08 ± 0.02 0.08 ± 0.03 0.26 ± 0.03 0.56 ± 0.12
Walker2d-v2, M 0.08 ± 0.02 0.05 ± 0.02 0.32 ± 0.06 0.80 ± 0.02
Walker2d-v2, H 0.08 ± 0.02 0.10 ± 0.02 0.38 ± 0.06 0.74 ± 0.16

Average 0.26 0.3 0.28 0.86

cheetah run, M 0.64 ± 0.13 0.86 ± 0.15 0.37 ± 0.08 0.86 ± 0.00
quadruped walk, M 0.48 ± 0.08 0.64 ± 0.07 0.67 ± 0.04 0.90 ± 0.01
walker walk, M 0.96 ± 0.00 0.96 ± 0.02 0.51 ± 0.12 0.96 ± 0.00

Average 0.69 0.82 0.52 0.91

Figure 4. Visualization of preference returns and weights with 60
preference queries.

both ‘Task & Dataset’, preference reward of PAIL and oracle
reward within demonstrations are highly correlated (Pear-
son correlation ≥ 0.8), which enables PAIL to reweight the
demonstrations consistent with preferences. The Pearson
correlation coefficient between oracle rewards and prefer-
ence rewards for PEBBLE and BC-PEBBLE within their
respective replay buffers is less than 0.7, which implies
that with limited preferences, the learned preference reward
struggles to generalize within all samples of the entire train-
ing process and misleads the RL process. Furthermore, we
observe a significant decrease in the correlation between
PAIL’s preference reward and oracle reward when the eval-
uation dataset transitions from demonstrations to two re-
play buffers, which suggests that the extrapolation ability of
PAIL’s preference reward is also limited across the sample
space throughout a RL process.

5.4. Ablation Studies

In this subsection, we explore the impact of demonstrations
reweighting, demonstration augmentation, the entropy coef-

Figure 5. Ablation studies. Upper left: ablation studies on demon-
stration reweighting and augmentation (‘w/o’ denotes ‘without’;
‘aug.’ means ‘augmentation’). Others: sensitivity studies on the
entropy coefficient (upper right), preference queries number (bot-
tom left), and initial demonstrations number (bottom right).

ficient β in Eq. (6), the number of preference queries and
the number of initial demonstrations in response to Q3. The
experiments are conducted in ‘Walker2d-v2, M’ with 60
preference queries and the results are recorded in Fig. 5.

Reweighting demonstrations & demonstration augmen-
tation. In the upper-left figure of Fig. 5, a comparison
between the yellow and blue curves reveals that through
reweighting demonstrations, the policy’s performance ex-
hibits improvement and converges towards the optimal tra-
jectory within the initial demonstrations. In comparison of
the blue and red curves, the introduction of demonstration
augmentation enables PAIL to break through the perfor-
mance bottleneck of the initial demonstrations, resulting in
a substantial improvement in its overall performance.

The entropy coefficient β. The upper-right figure of Fig. 5
indicates that performance is diminished when β is small,
reaches its peak when β is set to 7 and 15, and gradually
declines as β continues to increase. An excessively small
beta may cause PAIL to imitate from few specific trajecto-
ries, resulting in instability and unsatisfactory performance,
while an excessively large beta prevents PAIL from disre-
garding the poorly performing demonstrations. β = ∞
means not reweighting the demonstration dataset, resulting
in significantly lower performance compared to cases where
the demonstration dataset is reweighted. Hence, a trade-off
should be considered when choosing β. Moreover, PAIL is
robust to changes in the hyper-parameter β.

The number of preference queries and initial demonstra-
tions. By observing the two figures at the bottom of Fig. 5,
it becomes apparent that as the number of preference queries
increases, the performance of PAIL shows an upward trend,
and stabilizes without significant changes once the number
of preference queries reaches 20. Even with only 2 prefer-
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Table 4. The Pearson correlation coefficient between oracle rewards and preference rewards with 60 preference queries. ‘R.B.’ denotes
‘Replay Buffer’. The preference reward of PAIL is evaluated within demonstrations (including initial the augmented demonstrations),
replay buffer of PEBBLE and replay buffer of BC-PEBBLE.

Preference Reward PAIL PEBBLE BC-PEBBLE

Evaluation Dataset Demonstrations R.B. of PEBBLE R.B. of BC-PEBBLE R.B. of PEBBLE R.B. of BC-PEBBLE

Walker2d-v2, M 0.914 0.652 0.703 0.099 0.328
cheetah run, M 0.864 0.121 0.603 0.174 0.654

ence queries, PAIL is capable of achieving an improvement
of almost 0.4 in normalized return compared to the case
with no query. A similar pattern is observed for the number
of initial demonstrations. The performance stabilizes once
the number of initial demonstrations reaches 10.

6. Discussion and Future Work
In this work, we proposed PAIL, an imitation learning
method aided by preferences, to learn a policy from im-
perfect demonstrations and limited human preferences. To
utilize the limited preferences, PAIL extract a preference
reward from the demonstrations and employ it to reweight
the demonstrations. By applying maximum causal entropy
IRL to imitate the reweighted demonstrations with demon-
stration augmentation, PAIL learns from a flow-to-better
dataset and break through the performance bottleneck of
the initial dataset. Empirical studies on a synthetic task
and two locomotion benchmarks show that PAIL requires
much less preferences than PBRL methods and significantly
outperforms various existing methods.

In practical applications, it can be difficult for human ex-
perts to provide perfect preferences for PAIL to learn from.
Regarding this issue, we will consider enabling PAIL to
learn from noisy preferences in future work, for example in-
tegrating COMPILER (Cai et al., 2023). Also, the learning
efficiency of PAIL also faces challenges. For a trajectory
consisting of both good parts and bad parts, PAIL fails to ex-
clusively consider those good parts. In subsequent research,
we aim to explore potential solutions like mimicking the
scored trajectory segments.
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A. Contributions over Existing Work
The contributions of PAIL over existing work are summarized in this section.

A.1. Compared to PBRL Methods

Compared to PEBBLE(Lee et al., 2021a;b) and BC-PEBBLE (Lee et al., 2021a;b; Ibarz et al., 2018), PAIL provides a novel
preference sampling technique and a novel usage for preference reward. In particular, PAIL queries for preferences from
the continuously expanding demonstration dataset, and use the preference reward to weight the imperfect demonstration
trajectories for imitation. PBRL methods sample preference from the whole training replay buffer and use the preference
reward to guide the policy learning process. The hypothesis space of demonstration dataset is simpler than that of the training
replay buffer, so with limited preference queries, the learned preference reward by PAIL can weight the demonstration
trajectories precisely and thereby improving the performance of the imitated policy. However, with limited preference
queries, PBRL methods learn poor preference reward over the training replay buffer, which mislead the policy learning
progress.

A.2. Compared to IL from Imperfection Methods

Compared to SAIL(Wang et al., 2021a): 1. PAIL additionally introduces human-friendly preference-based data and reweights
the imperfect demonstration trajectories by preferences for better imitation performance. In comparison, SAIL reweights the
state-action pairs from the demonstrations by the IRL discriminator. However, the IRL discriminator is trained to distinguish
from the demonstrations and the state-action pairs sampled by the learning agent, and to our best knowledge there is no
evidence that the discriminator can reweights the state-action pairs from the demonstrations precisely, which leads methods
like SAIL doesn’t perform that well. 2. PAIL novelly augments the demonstration dataset. The performance of IL from
imperfection methods is limited by the demonstrations, while PAIL outperforms the demonstrations by demonstration
augmentation.

A.3. Compared to IL with preferences supplementary methods

Compared to AILP(Taranovic et al., 2023), PAIL addtionally trains a preference reward which is used to weight the imperfect
demonstration trajectories and to choose which trajectory to augment in the process of AIL, while AILP integrates preference
loss directly into the AIL discriminator loss.

Compared to CAIL(Zhang et al., 2021): In the aspect of problem setting, there are two main differences:

1. The extra information introduced is different. For PAIL, the agent is allowed to query a small amount of preferences
during the training process. A preference is the ordering of a trajectory segment pair. In the setting of CAIL, the agent is
provided with an extra evaluation trajectory dataset which is fully ranked. Certainly, CAIL can also be extended to handle
the input of trajectory segment preferences.

2. The assumptions for demonstrations are different. For PAIL, the demonstration dataset does not necessarily contain
optimal demonstrations. In the setting of CAIL, the demonstration dataset must include optimal demonstrations and may
contain non-expert demonstrations. CAIL cannot handle the situation when all demonstrations are suboptimal.

In the aspect of algorithms, there are three main differences:

1. PAIL learns a preference reward by utilizing the Bradley-Terry model and calculate the weight by solving the optimization
problem 5. CAIL directly solves the optimization problem to maximize the IL performance.

2. PAIL reweights the demonstration trajectories, while CAIL reweights the state-action pairs of demonstrations. Ex-
perimental results in Section 4.2 of Zhang et al. (2023) reveal that scoring state-action pairs is much more harder than
scoring trajectories. The inaccurate weights of state-action pairs by CAIL make it difficult to improve the performance of
imitation learning. However, for PAIL, even for two trajectories that are good in some parts and bad in others, PAIL may
predict the according weights and mimics both trajectories simultaneously. Moreover, PAIL has the potential to explore
trajectories consisting of the good parts from the two trajectories during the learning process, and incorporate them into the
demonstration dataset through demonstration augmentation.

3. Moreover, PAIL novelly augment the demonstration dataset in the training process. When demonstrations are all
suboptimal, demonstration augmentation enables PAIL to outperform the best demonstration. However, the performance of
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CAIL is limited by the demonstration dataset in this case.

B. Proof
B.1. Proof of Theorem 4.2

Proof. Recall the optimization problem (5):

max
ρ

Eρ(τ)

[
rpφ(τ)

]
− β

∑
τ∈Dd

ρ(τ) log ρ(τ),

s.t.
∑
τ∈Dd

ρ(τ) = 1.
(11)

The Lagrangian function of the problem follows by

L(ρ, λ) =
∑
τ∈Dd

[
ρ(τ)rpφ(τ)− β · ρ(τ) log ρ(τ)

]
− λ

∑
τ∈Dd

ρ(τ)− 1

 . (12)

The partial derivative of L with respect to ρ(τ) is

∂L(ρ, λ)
∂ρ(τ)

= rpφ(τ)− β · log ρ(τ)− β − λ. (13)

Setting the partial derivative to zero yields that the closed-form solution ρ̃φ(τ) satisfies

ρ̃φ(τ) = exp

(
rpφ(τ)

β

)
/ exp

(
λ+ β

β

)
. (14)

Substitute the condition
∑

τ∈Dd ρ̃φ(τ) = 1, we obtain that exp ((λ+ β)/β) =
∑

τ∈Dd exp
(
rpφ(τ)/β

)
. Finally, the result

is as follows

ρ̃φ(τ) =

(
exp

rpφ(τ)

β

)
/

∑
τ∈Dd

exp
rpφ(τ)

β

 . (15)

B.2. Proof of Theorem 4.3

Proof. For occupancy measure of the reweighted demonstration dataset dD
d

ρ̃φ
, we have

dD
d

ρ̃φ
(s, a) =

∑
τ∈Dd

ρ̃φ(τ)d
τ (s, a) (16)

=
∑
τ∈Dl

ρ̃φ(τ)d
τ (s, a) +

∑
τ∈Dh

ρ̃φ(τ)d
τ (s, a) (17)

=
∑
τ∈Dl

(
exp

rpφ(τ)

β

)
/Z · dτ (s, a) +

∑
τ∈Dh

(
exp

rpφ(τ)

β

)
/Z · dτ (s, a), (18)

where Z =
∑

τ∈Dd exp
rpφ(τ)

β . By defining that Z l =
∑

τ∈Dl exp
rpφ(τ)

β and Zh =
∑

τ∈Dh exp
rpφ(τ)

β , we have

dD
d

ρ̃φ
(s, a) =

∑
τ∈Dl

(
exp

rpφ(τ)

β

)
/Z · dτ (s, a) +

∑
τ∈Dh

(
exp

rpφ(τ)

β

)
/Z · dτ (s, a)

(
Z − Zl

Zh

)
(19)

=
∑
τ∈Dl

(
exp

rpφ(τ)

β

)
/Zl · dτ (s, a) · Z

l

Z
+
∑
τ∈Dh

(
exp

rpφ(τ)

β

)
/Zh · dτ (s, a)

−
∑
τ∈Dh

(
exp

rpφ(τ)

β

)
/Zh · dτ (s, a) · Z

l

Z
. (20)
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Define that d1(s, a) =
∑

τ∈Dl

(
exp

rpφ(τ)

β

)
/Zl and d2(s, a) =

∑
τ∈Dh

(
exp

rpφ(τ)

β

)
/Zh. Obviously, d1 and d2 are two

state-action distributions. By substituting d1 and d2 and let wh
max = maxτ∈Dh exp

rpφ(τ)

β , we obtain

dD
d

ρ̃φ
(s, a) = (d1(s, a)− d2(s, a)) ·

Zl

Z
+
∑
τ∈Dh

(
exp

rpφ(τ)

β

)
/Zh · dτ (s, a). (21)

Consider the second term in Eq. (21)

∑
τ∈Dh

(
exp

rpφ(τ)

β

)
/Zh · dτ (s, a)

=
∑
τ∈Dh

wh
max/Z

h · dτ (s, a)−
∑
τ∈Dh

(
wh

max − exp
rpφ(τ)

β

)
/Zh · dτ (s, a) (22)

=
∑
τ∈Dh

wh
max/Z

h · dτ (s, a) · Z
h + (wh

max|Dh| − Zh)

wh
max|Dh|

−
∑
τ∈Dh

(
wh

max − exp
rpφ(τ)

β

)
/(wh

max|Dh| − Zh) · dτ (s, a) · w
h
max|Dh| − Zh

Zh
(23)

=
1

|Dh|
∑
τ∈Dh

dτ (s, a) +
1

|Dh|
∑
τ∈Dh

dτ (s, a) · w
h
max|Dh| − Zh

Zh

−
∑
τ∈Dh

(
wh

max − exp
rpφ(τ)

β

)
/(wh

max|Dh| − Zh) · dτ (s, a) · w
h
max|Dh| − Zh

Zh
. (24)

Define that d3(s, a) =
∑

τ∈Dh

(
wh

max − exp
rpφ(τ)

β

)
/(wh

max|Dh|−Zh) ·dτ (s, a), and d3 is a state-action distribution. Then

∑
τ∈Dh

(
exp

rpφ(τ)

β

)
/Zh · dτ (s, a) = dD

h

(s, a) +
(
dD

h

(s, a)− d3(s, a)
)
· w

h
max|Dh| − Zh

Zh
. (25)

Combine Eq. 21 and Eq. 25, we obtain

dD
d

ρ̃φ
(s, a) = dD

h

(s, a) + (d1(s, a)− d2(s, a)) ·
Zl

Z
+
(
dD

h

(s, a)− d3(s, a)
)
· w

h
max|Dh| − Zh

Zh
. (26)

The imitation gap follows by

(1− γ)
(
V πh

− V π̂
)
=

∑
(s,a)∈S×A

(
dπ

h

(s, a)− dπ̂(s, a)r(s, a)
)

(27)

≤ ∥dπ
h

− dπ̂∥1 (28)

≤ ∥dπ
h

− dD
d

ρ̃φ
∥1 + ∥dD

d

ρ̃φ
− dπ̂∥1 (29)

≤ ∥dD
d

ρ̃φ
− dπ

h

∥1 +min
π∈Π
∥dD

d

ρ̃φ
− dπ∥1 + ϵOPT (30)

≤ 2∥dD
d

ρ̃φ
− dπ

h

∥1 + ϵOPT (31)

≤ 2∥dD
h

+ (d1 − d2) ·
Zl

Z
+
(
dD

h

− d3
)
· w

h
max|Dh| − Zh

Zh
− dπ

h

∥+ ϵOPT (32)

≤ 2∥d1 − d2∥1 ·
Zl

Z
+ 2∥dD

h

− d3∥1 ·
wh

max|Dh| − Zh

Zh
+ 2∥dD

h

− dπ
h

∥+ ϵOPT (33)

≤ 4
Zl

Z
+ 4

wh
max|Dh| − Zh

Zh
+ 2ϵEST + ϵOPT. (34)

14



Limited Preference Aided Imitation Learning from Imperfect Demonstrations

Define that

τ lmax = arg max
τ∈Dl

exp
rpφ(τ)

β
,

τhmax = arg max
τ∈Dh

exp
rpφ(τ)

β
,

τhmin = arg min
τ∈Dh

exp
rpφ(τ)

β
.

(35)

Finally we get that

V πh

− V π̂ ≤ 1

1− γ

(
4
Zl

Z
+ 4

wh
max|Dh| − Zh

Zh
+ 2ϵEST + ϵOPT

)
(36)

≤ 1

1− γ

4

∑
τ∈Dl exp

rpφ(τ)

β∑
τ∈Dd exp

rpφ(τ)
β

+ 4

∑
τ∈Dh exp

rpφ(τh
max)

β − exp
rpφ(τ)

β∑
τ∈Dh exp

rpφ(τ)
β

+ 2ϵEST + ϵOPT

 (37)

≤ 1

1− γ

4
|Dl| exp rpφ(τ l

max)

β

exp
rpφ(τh

max)
β

+ 4

|Dh|
(
exp

rpφ(τh
max)

β − exp
rpφ(τh

min)

β

)
|Dh| exp rpφ(τh

min)

β

+ 2ϵEST + ϵOPT

 (38)

=
1

1− γ

(
4|Dl| exp

−
(
rpφ(τ

h
max)− rpφ(τ lmax)

)
β

+ 4

(
exp

rpφ(τ
h
max)− rpφ(τhmin)

β
− 1

)
+ 2ϵEST + ϵOPT

)
(39)

C. Detailed Implementation of PAIL
We developed maximum entropy IRL part of PAIL by modifying the f-IRL codebase1. From this base, we have made the
following primary modifications:

1. Train the discriminator from samples in the replay buffer instead of interacting with the environment for sample
efficiency like DAC (Kostrikov et al., 2019);

2. Implement the reweighting of demonstrations;

3. Implement demonstration augmentation.

The preference reward part of PAIL was developed by the BPref codebase2 (Lee et al., 2021b). While preserving the
original functionality, we have modified the code to support trajectories with different lengths.

D. Experiment Details
D.1. GridWorld Task Construction

In the context of the grid-world task, the environment is designed to challenge an agent’s ability to navigate towards a target
location while staying within a predefined circular boundary. The environment is formalized as follows:

The state space S ⊆ R4 is defined by the Cartesian coordinates of the agent and the target. A state s ∈ S is represented as a
vector (x, y, xtarget, ytarget), where (x, y) denotes the agent’s current position and (xtarget, ytarget) denotes the target’s position.

The action space A ⊆ R2, consists of two continuous dimensions representing the agent’s intended movement along the
horizontal (∆x) and vertical (∆y) axes. Each action a ∈ A is a vector (∆x,∆y), constrained by a maximum step size ∆max.

1https://github.com/twni2016/f-IRL
2https://github.com/rll-research/BPref
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Figure 6. Part of the imperfect demonstration dataset ‘M’ for GridWorld.

The transition function T : S ×A → S dictates the state transition dynamics. Given a current state s = (x, y, xtarget, ytarget)
and an action a = (∆x,∆y), the next state s′ = (x′, y′, xtarget, ytarget) is computed as follows:

x′ = clip(x+∆x,−W
2
,
W

2
),

y′ = clip(y +∆y,−H
2
,
H

2
),

where clip(·,min,max) ensures the agent’s position remains within the environmental boundaries of width W and height H .
The target’s position remains unchanged during the transition.

The reward function R(s, a, s′) is designed to incentivize the agent to minimize its distance to the target while staying
within the circular boundary. Specifically, the reward for a transition is defined based on the agent’s position relative to
the boundary and the target, encouraging strategic navigation and penalizing boundary violations. The reward function is
defined as:

R(s, a, s′) =

{
−P ·Dmax, if

√
x′2 + y′2 > r,

Dmax ·B −
√
(x′ − xtarget)2 + (y′ − ytarget)2, otherwise,

where P is a penalty ratio for leaving the boundary, Dmax represents the maximum possible distance within the environment,
B is a baseline reward ratio, r denotes the radius of the circular boundary, and (x′, y′) and (xtarget, ytarget) are the agent’s and
target’s positions in the next state s′, respectively. This reward structure ensures that the agent is penalized for exiting the
boundary and rewarded for proximity to the target, with the ultimate goal of reaching the target location within the circular
boundary.

D.2. Imperfect Demonstrations and Human Preferences

Imperfect demonstration dataset for GridWorld. The imperfect demonstration dataset ‘M’ for GridWorld is collected by
both policies saved at various training stages of RL and the optimal policy designed by hand. Some of the 600 trajectories
in dataset ‘M’ for GridWorld is shown in Fig. 6. All the trajectories of the dataset ‘M’ for GridWorld remain within the
boundary and 58.4% of the trajectories whose targets are positioned inside the boundary reach the target. 600 trajectories of
the demonstration dataset ‘M’ for GridWorld are used for learning.
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Imperfect demonstration dataset for Mujoco and DMC tasks. The imperfect demonstration datasets for Mujoco and
DMC tasks are collected by policies saved at different training stages of RL. Quality of different datasets for Mujoco and
DMC is as follows:

1. ‘L’ for Mujoco: trajectories have the normalized return within [0.1, 0.6) (within [0.3, 0.7) for Ant-v2);

2. ‘M’ for Mujoco: trajectories have the normalized return within [0.35, 0.85) (within [0.5, 0.9) for Ant-v2);

3. ‘H’ for Mujoco: trajectories have the normalized return within [0.6, 1.0] (within [0.7, 1.0] for Ant-v2);

4. ‘M’ for DMC: trajectories have the normalized return within [0.45, 0.95).

Demonstration datasets for Ant-v2 are sampled with higher normalized return to exclude bad trajectories with negative
oracle returns. Each experiment of Mujoco and DMC tasks uses 10 trajectories of a certain dataset, except for the ablation
study on the number of initial demonstrations.

Human preferences. We employ segments of length 100 for GridWorld and Mujoco tasks. For DMC tasks, we use
segments of length 50 by following Lee et al. (2021a). 500 preference queries are used for GridWorld. For Mujoco and
DMC tasks, 60 and 1400 preference queries are used excepted for the ablation study on preference queries number.

D.3. Return Normalization of Experiments

Table 5. The minimum and maximum returns of Mujoco and DMC tasks for return normalization in experiments.

Ant-v2 HalfCheetah-v2 Hopper-v2 Humanoid-v2 Walker2d-v2 cheetah run quadruped walk walker walk

Min. Return −2934.14 −51.90 5.00 113.06 −1.21 0.00 0.00 0.00
Max. Return 6308.78 13043.84 3767.15 5770.77 5729.49 1000.00 1000.00 1000.00

Min-max normalization is applied to the returns across the Mujoco and DMC tasks for brevity. For Mujoco tasks, the returns
of the worst trajectory and the best trajectory during the RL training process are utilized as the minimum and maximum
returns for normalization, and the minimum and maximum returns for DMC tasks are defined by Tassa et al. (2018). We
record the minimum and maximum returns for normalization in Table 5.

D.4. Introduction & Implementation of Primary Baselines

We compare PAIL with 2 kinds of baselines. The first kind is based on AIL:

* MCE-IRL (Ziebart et al., 2008; 2010), i.e. maximum casual entropy IRL, a typical IRL method. Moreover, inspired by
DAC(Kostrikov et al., 2019), we sample from replay buffer for discriminator update in MCE-IRL for sample efficiency.
For implement, we modify the f-IRL codebase3;

* SAIL-TRPO (Wang et al., 2021a), a state-of-art method to learn from imperfect demonstrations based on IRL. SAIL-
TRPO outperforms other methods learning from imperfect demonstrations like WGAIL (Wang et al., 2021b), D-
REX(Brown et al., 2019b). Corresponding results are obtained by running the official source code4 on our tasks;

* SAIL-SAC, a variant of SAIL-SAC, which use SAC instead of TRPO for policy update in the IRL process. For this
algorithm, we extended the original SAIL-TRPO source code by replace the TRPO by SAC;

* AILP (Taranovic et al., 2023), a method based on IRL paradigm which learns from both demonstrations and human
preferences. We implemented by ourselves due to the lack of open-source code. The hyperparameters are based on
those detailed in the original paper and its appendix.

The second kind is PBRL, which learns policy by RL from the preference reward obtained by human preferences:

3https://github.com/twni2016/f-IRL
4https://github.com/yunke-wang/SAIL
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* PEBBLE (Lee et al., 2021a), a feedback-efficient PBRL algorithm with unsupervised pre-training. Corresponding
results are obtained by running the official source code5 (Lee et al., 2021b) on our tasks;

* BC-PEBBLE, a variant of PEBBLE (Lee et al., 2021a) which utilizes behavior cloning (BC) to learn the initial policy
from demonstrations and samples preferences from both demonstrations and replay buffer of trajectories inspired by
Ibarz et al. (2018). For this algorithm, we extended the original Pebble source code by incorporating BC on given
demonstrations and add demonstrations into replay buffer for preference sampling and policy learning.

All the baselines including PAIL update policy by SAC (Haarnoja et al., 2018a;b), except for SAIL-TRPO which trains
policy by TRPO (Ho et al., 2016). Among them, PEBBEL learns from human preferences; MCE-IRL, SAIL-TRPO and
SAIL-SAC learn from the imperfect demonstration dataset; BC-PEBBLE, AILP along with PAIL learn from both human
preferences and the imperfect demonstration dataset.

D.5. Hyper-parameters

PAIL is based on general AIL framework. For demonstration augmentation mentioned in Section 4.3, we add 3 trajectories
with the highest preference rewards rp(τ) every 1e5 steps. Before updating discriminator reward and policy, PAIL reweights
the imperfect demonstration Dd, with the entropy coefficient β as shown in Table 6.

For discirminator learning, PAIL’s algorithm regularly updates the discriminator reward with weighted demonstrations from
Dd and agent samples from replay buffer B, with specific hyperparameters detailed in Table 8. For policy learning, the PAIL
algorithm updates the policy based on SAC, with parameters referenced in Table 9. For all tasks, we largely follow this set
of SAC parameters. Specifically, for the quadruped walk task in the DMC benchmark using the Medium dataset, we set the
SAC learning rate to 5e− 4 and enable auto alpha. To ensure stable learning between the discriminator and the policy, the
updating of the policy and the discriminator is repeated 1 times, i.e. ndisr = npolicy = 1, except for ‘HalfCheetah-v2, M’ and
‘HalfCheetah-v2, H’ (ndisr = 1, npolicy = 2). For the part of learning preference reward in PAIL, we use the hyperparameters
as shown in Table 7.

Additionally, We run GridWorld for 1e5 time steps, and Mujoco and DMC tasks for 1e6 time steps.

Table 6. Entropy Coefficient β for reweighting the imperfect demonstrations in all environments.

Task & Dataset β

Ant-v2, L,M,H 50
HalfCheetah-v2, L 50
HalfCheetah-v2, M 20
HalfCheetah-v2, H 15
Hopper-v2, L 50
Hopper-v2, M 50
Hopper-v2, H 45
Humanoid-v2, L,M,H 50
Walker2d-v2, L 45
Walker2d-v2, M 7
Walker2d-v2, H 50

cheetah run, M 50
quadruped walk, M 25
walker walk, M 50

E. Additional Experiment Results
E.1. PAIL with Imperfect preferences

To evaluate PAIL with more realistic and practical preference models, we consider the cases described in the Section 3.3 of
Lee et al. (2021b), i.e. stochastic preference model, myopic behavior, skipping queries, equally preferable and making a
mistake. For the each case above, we do experiments in the ’HalfCheetah-v2, M’ and the ’Walker2d-v2, M’ task with 60
preference queries and record the normalized return. The training curve averaged over 5 seeds are as in Fig. 7. By observing
the curves, it becomes apparent that PAIL performs stably and robustly over 5 different preference models along with the

5https://github.com/rll-research/BPref
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Table 7. Hyperparameters of Preference Reward rp.

Hyperparameter Value

Ensemble size 3
Number of layers 3
Hidden dimension 256

Activation tanh
Batch size 128

Learning rate 3e− 4
Optimizer Adam

Table 8. Hyperparameters of Discriminator Reward rd.

Hyperparameter Value

Number of layers 2
Hidden dimension 128 for mujoco, 256 for dmc

Weight decay 1e− 3
Activation relu
Batch size 5000

Learning rate 1e− 4
Optimizer Adam

Table 9. Hyperparameters of SAC.

Hyperparameter Value

Number of layers 2
Hidden dimension 128 for mujoco, 1024 for dmc

Auto Alpha False
Activation relu
Batch size 256

Learning rate 1e− 3
Optimizer Adam

’Oracle’ model. In particular, the ’Equal’ model even outperforms the ’Oracle’ model in the ’HalfCheetah-v2, M’ task.
Therefore, judging from the experimental results, PAIL is expected to perform robustly and well in practical applications.

We also evaluated the performance of PAIL under different error rates of teacher’s judgements. We conducted experiments
in the ’HalfCheetah-v2, M’ and the ’Walker2d-v2, M’ task with 60 preference queries. The training curve averaged over 5
seeds are as in Fig. 8. The results show that the perfermance of PAIL remains stable when error rate is less than 0.1, and
gradually declines as error rate continues to increase. In real scenarios, the quality of preference queries should be ensured
as much as possible. When the error rate is less than 10%, PAIL can be robust and still performs well.

E.2. Performance Compared with Automated Preference Generation Method

We additionally compare PAIL with SSRR (Chen et al., 2020). The results, summarized in Table 10, were derived from
experiments conducted with five distinct seeds. It can be consistently observed that PAIL outperformed SSRR across all
tasks. Notably, we find SSRR exhibited negative improvement in several tasks where SSRR performs worse than the scores
of the demonstrations. In Walker2d, SSRR is even inferior to the minimal demonstration return, likely due to inaccuracies in
its reward function.

E.3. Learning Curves of PAIL

The learning curves of PAIL, along with the average and the best normalized return of the initial demonstrations, for
experiments in Table 2 are depicted in Fig. 9. These curves illustrate the stable learning process of PAIL and the small
shaded areas indicate the robustness of PAIL across different seeds. Moreover, PAIL ourperforms the average normalized
return in all the tasks and breaks through the performance bottleneck of the best demonstration in 16 out of 18 ‘Task &
Dataset’.
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Figure 7. Learning curves of PAIL with preferences from 6 different scripted teachers. The curves are shaded with 1 standard error over 5
seeds.

Figure 8. Learning curves of PAIL under different error rates of preferences. The curves are shaded with 1 standard error over 5 seeds.

E.4. Additional Results for Preference Returns and Weights

The preference returns and weights for all the experiments in Table 2 are visualized in Fig. 10. It is noted that in all the
tasks, preference returns and oracle returns are almost positively correlated. The preference weights for trajectories with
high oracle returns exhibit significantly elevated values, whereas those for trajectories with low oracle returns approach
nearly zero, which enables PAIL to imitate the trajectories with high oracle returns and to disregard trajectories with poor
performance. Moreover, augmented demonstrations outperforms initial demonstrations in 17 out of 18 ‘Task & Dataset’,
which helps PAIL to break the performance bottleneck of the initial demonstration dataset.

E.5. Additional Results for Preference Reward

PAIL trains the preference reward rpφ with the demonstration dataset Dd and subsequently update it through retraining
with new queries for human preferences after each dataset augmentation. Policy improvement of PAIL is achieved through
imitating the dataset reweighted by rpφ. PAIL works by utilizing rpφ to make precise predictions within the dataset Dd and
reweighting the dataset consistent with human preferences.

PBRL (Lee et al., 2021a; Christiano et al., 2017) trains the preference reward using the human preferences sampled from all
trajectories acquired through interactions with the environment, denoted as BPBRL. The policy is then improved based on
the preference reward signal of BPBRL. Therefore, the preference reward needs to accurately predict all samples in BPBRL,
including a variety of state-action pairs ranging from bad to good, to avoid misleading the learning policy.

With the same number of human preferences, preference reward is more likely to generalize to a simpler hypothesis
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Table 10. Normalized average returns in Mujoco tasks averaged over 5 seeds with 60 preference queries. ‘Demo. (Avg.)’ and ‘Demo.
(Best)’ respectively represent the average and the best return within trajectories of the demonstration dataset.

Task & Dataset Demo. (Avg.) Demo. (Best) SSRR PAIL (ours)

Ant-v2, L 0.46 0.61 0.22 ± 0.35 0.79 ± 0.01
Ant-v2, M 0.63 0.77 0.19 ± 0.34 0.87 ± 0.00
Ant-v2, H 0.80 0.93 0.19 ± 0.32 0.93 ± 0.01
HalfCheetah-v2, L 0.20 0.01 0.05 ± 0.05 0.62 ± 0.04
HalfCheetah-v2, M 0.39 0.10 0.04 ± 0.05 0.75 ± 0.02
HalfCheetah-v2, H 0.61 0.01 0.03 ± 0.05 0.88 ± 0.01
Hopper-v2, L 0.16 0.35 0.26 ± 0.04 0.93 ± 0.01
Hopper-v2, M 0.41 0.61 0.32 ± 0.05 0.92 ± 0.02
Hopper-v2, H 0.67 0.85 0.31 ± 0.06 0.96 ± 0.01
Humanoid-v2, L 0.36 0.53 0.54 ± 0.04 0.95 ± 0.02
Humanoid-v2, M 0.59 0.82 0.49 ± 0.11 0.98 ± 0.02
Humanoid-v2, H 0.85 0.98 0.45 ± 0.08 1.04 ± 0.02
Walker2d-v2, L 0.26 0.39 −0.03 ± 0.01 0.48 ± 0.02
Walker2d-v2, M 0.47 0.65 −0.06 ± 0.01 0.88 ± 0.01
Walker2d-v2, H 0.70 0.92 −0.02 ± 0.00 0.90 ± 0.03

space (Mohri et al., 2018). Clearly, the complexity of the hypothesis space for the demonstration dataset Dd is significantly
smaller than that for all samples in the entire PBRL training process BPBRL, which potentially distributed across the whole
state-action space. With preciser predictions within a smaller dataset, PAIL works with limited human preferences.

We visualize the preference rewards for experiments of Table 4 in Fig. 11,12. It is visually evident that PAIL demonstrates
the highest correlation between preference reward and oracle reward within the demonstration dataset, whereas all preference
rewards within the replay buffers in the entire learning process exhibit poor performance. This observation elucidates the
rationale behind PAIL’s need for fewer preference queries compared to PBRL.
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Figure 9. Learning curves of PAIL, along with the average and the best normalized return of the initial demonstrations, for experiments in
Table 2. The curves are shaded with 1 standard error over 5 seeds.
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Figure 10. Visualization of preference returns and weights for all the experiments in Table 2.
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Figure 11. Visualization of preference rewards for ‘Walker2d-v2, M’ in Table 4 experiments.

Figure 12. Visualization of preference rewards for ‘cheetah run, M’ in Table 4 experiments.
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