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Abstract
Offline reinforcement learning algorithms have
proven effective on datasets highly connected to
the target downstream task. Yet, by leveraging
a novel testbed (MOOD) in which trajectories
come from heterogeneous sources, we show that
existing methods struggle with diverse data: their
performance considerably deteriorates as data
collected for related but different tasks is simply
added to the offline buffer. In light of this find-
ing, we conduct a large empirical study where we
formulate and test several hypotheses to explain
this failure. Surprisingly, we find that targeted
scale, more than algorithmic considerations, is
the key factor influencing performance. We show
that simple methods like AWAC and IQL with in-
creased policy size overcome the paradoxical fail-
ure modes from the inclusion of additional data in
MOOD, and notably outperform prior state-of-the-
art algorithms on the canonical D4RL benchmark.

1. Introduction
Offline reinforcement learning (RL) holds the promise of
overcoming the costs and dangers of direct interaction with
the environment by training agents exclusively on logged
data. However, naively applying off-policy algorithms to
this setting has been shown prone to instabilities due to their
natural tendency to extrapolate beyond the given data (Fuji-
moto et al., 2019; Kumar et al., 2019). To address this issue,
policy constrained methods propose minimal modifications
to off-policy actor-critic algorithms aimed at keeping the
learned policy close to the data distribution (Levine et al.,
2020; Fujimoto & Gu, 2021; Nair et al., 2020; Kostrikov
et al., 2022; Garg et al., 2023; Fujimoto et al., 2023). For
instance, TD3+Behavior Cloning (TD3+BC, Fujimoto &
Gu, 2021) achieves this by regularizing the actor loss with
the divergence between the learned policy and the data-
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Figure 1. The AWAC algo-
rithm learns to stand when
trained on data generated by
an agent learning to either
stand, walk, or run, but com-
pletely fails on the union of
these three datasets.

generating policy, while Advantage Weighted Actor Critic
(AWAC, Nair et al., 2020) seeks a policy maximizing the
data likelihood weighted by its exponentiated advantage
function. Later extensions of AWAC also modify the critic
loss to avoid querying actions outside the given data by
learning a value function, e.g., by expectile regression in Im-
plicit Q-learning (IQL, Kostrikov et al., 2022) and Gumbel
regression in Extreme Q-learning (XQL, Garg et al., 2023).
This class of methods can be easily integrated with online
fine-tuning, even leading to several successful applications
for real-world tasks (Lu et al., 2022; Nair et al., 2023).

However, current offline RL methods still fail in simple set-
tings. Hong et al. (2023b;c) showed that if the data contains
many low-return and few high-return trajectories, policy
constrained methods are unnecessarily conservative and fail
to learn good behavior. Singh et al. (2023) report a similar
effect on heteroskedastic datasets where the variability of
behaviors differs across different regions of the state space.

Realistic scenarios often involve data coming from many
heterogeneous sources, such as agents trained for different
tasks or demonstrations of diverse behaviors (Lu et al., 2022;
Wagener et al., 2022). Despite the richness of these data, we
show, through a novel testbed (MOOD), that existing offline
RL methods can still fail: simply concatenating datasets
collected from different tasks significantly and consistently
hurts performance. Counter-intuitively, this happens even
for tasks where training succeeds on any of the individual
subsets. This is strikingly shown in the example in Fig. 1
with the Humanoid environment: using offline datasets col-
lected for the run, walk, or stand tasks is enough to learn to
stand, yet, simply combining them into a single multi-task
superset leads AWAC to near-zero performance.

In light of this observation, our contributions are as fol-
lows. 1) We introduce MOOD, a new testbed for offline RL
based on the DeepMind Control suite (Tassa et al., 2018)
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Figure 2. Average performance on the same- and mixed-objective datasets from MOOD (left), and the locomotion and antmaze datasets
from D4RL (right). The large networks are simple MLPs for MOOD and modern architectures (Bjorck et al., 2021) for D4RL, and all
involve an ensemble of 5 critics (Sec. 4). “AW” in the last plot denotes the sampling strategy of Hong et al. (2023a) for unbalanced data.

which involves datasets with mixed data from different be-
haviors. We use it to illustrate the negative impact of data
diversity on offline RL methods. 2) We formulate several
hypotheses on the limitations that lead to such a negative
result, including over-conservatism of the algorithm, scale,
variance, and epistemic uncertainty, while proposing prin-
cipled solutions to mitigate them. 3) Through a systematic
empirical analysis, we test these hypotheses and solutions
across three representative algorithms (TD3+BC, AWAC,
IQL) and various hyperparameters, conducting over 50,000
experiments. Surprisingly, we find that scale, specifically of
the policy network, emerges as the key factor impacting per-
formance: a simple increase in the number of hidden layers
and units in significantly improves the performance of all
candidate algorithms on the diverse data in MOOD. 4) We
show similar positive results in the canonical D4RL bench-
mark, where AWAC and IQL, with increased network sizes,
surpass state-of-the-art performance on the locomotion and
antmaze datasets (Fig. 2), and match the performance of
sophisticated sampling strategies recently proposed specifi-
cally for the unbalanced variants of the locomotion datasets
(Hong et al., 2023a).

We provide access to our code at: https://github.
com/facebookresearch/offline_rl.

2. Preliminaries
Reinforcement learning problems are typically modeled by
a Markov Decision Process (MDP, Bellman, 1957), i.e., a
tuple (S,A, P, p0, r, γ) with a state space S, an action space
A, transition dynamics P : S ×A→ Prob(S), initial state
distribution p0 ∈ Prob(S), reward function r : S×A→ R,
and discount factor γ ∈ [0, 1). The goal of an RL problem is
to learn an optimal policy π⋆ : S → Prob(A), which max-
imizes the expected sum of discounted rewards (a.k.a. the
return): π⋆ ∈ argmaxπ Eπ[

∑∞
t=0 γ

tr(st, at)], where the

expectation is under trajectories τ = (s0, a0, st, . . . ) with
s0 ∼ p0, at ∼ π(st), and st+1 ∼ P (st, at) for all t ≥ 0.
The algorithms analyzed in this paper are based on the popu-
lar off-policy actor-critic framework for continuous control
(Silver et al., 2014; Lillicrap et al., 2015). To optimize a
parameterized policy πθ (i.e., the actor), these algorithms
learn critic models to approximate its action-value function
Qπθ (s, a) := Eπθ [

∑∞
t=0 γ

tr(st, at) | s0 = s, a0 = a], the
value function V πθ (s) := Ea∼πθ(s)[Q

πθ (s, a)], or the ad-
vantage function Aπθ (s, a) := Qπθ (s, a) − V πθ (s). The
algorithms we consider build on top of TD3 (Fujimoto
et al., 2018), which models the critic with two randomly-
initialized Q-functions (Qϕ1

, Qϕ2
). The parameters ϕ ∈

{ϕ1, ϕ2} of each Q-function are optimized independently
via temporal difference (TD) on a dataset B as

argmin
ϕ

E(s,a,s′,r)∼B
[
(Qϕ(s, a)− y)2

]
, (1)

where y = r+γEa′∼πθ(s′)

[
min(Qϕ̄1

(s′, a′), Qϕ̄2
(s′, a′))

]
is the TD target and (ϕ̄1, ϕ̄2) are delayed versions of the
parameters (ϕ1, ϕ2) used to stabilize training. The policy is
then optimized in alternation with the Q-functions as

argmax
θ

Es∼B,a∼πθ(s) [Qϕ1
(s, a)] . (2)

These two optimization steps are commonly referred to as
policy evaluation and policy improvement. While in the
canonical online RL setting the agent iteratively alternates
learning ϕ and θ with collecting data in the environment,
in offline RL the buffer B is collected apriori with some
unknown behavior policy πB and no further interaction with
the environment is allowed. In this case, it is well known
that applying off-policy algorithms out of the box is prone to
instabilities and several modifications have been proposed to
counteract their natural tendency to extrapolate beyond the
provided data (Kumar et al., 2019; Fujimoto et al., 2019).
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2.1. Offline RL algorithms with policy constraints

We describe the offline RL methods employed in our analy-
ses: TD3 + Behavior Cloning (TD3+BC, Fujimoto & Gu,
2021), Advantage Weighted Actor Critic (AWAC, Nair et al.,
2020), and Implicit Q-learning (IQL, Kostrikov et al., 2022).
We focus on these specific approaches due to their simplicity
and popularity: they all build on top of TD3, a state-of-the-
art algorithm for off-policy RL, while adding incremental
levels of conservatism in its actor and critic components.

TD3+BC. TD3+BC minimally deviates from TD3, by
adding a behavioral cloning term to the policy improvement
objective of Equation 2:

argmax
θ

Ea,s∼B,a′∼πθ(s)

[
Qϕ1

(s, a′) + αQ log πθ(a|s)
]
,

where Q is the absolute Q-value averaged over each mini-
batch and α is a scaling hyper-parameter. Note that maxi-
mizing log πθ(a|s) with actions from B corresponds to min-
imizing the forward KL divergence DKL(πB(·|s)||πθ(·|s)).
AWAC. Similarly to TD3+BC, AWAC keeps the same critic
update (1) as TD3 while modifying the actor update (2) as

argmax
θ

Ea,s∼B

[
exp(Aϕ1

(s, a)/β)

Z
log πθ(a|s)

]
, (3)

where Aϕ1
(s, a) = Qϕ1

(s, a)− Ea′∼πθ(s)[Qϕ1
(s, a′)] and

Z = Es,a∼B [exp(Aϕ1
(s, a)/β)], while β is a temperature

hyper-parameter. In tabular settings, this is equivalent to to
minimizing DKL(π

⋆
B(·|s)||πθ(·|s)), where π⋆B is the policy

maximizing the advantage Aϕ1
(s, a) subject to an inverse

KL constraint forcing DKL(π
⋆
B(·|s)||πB(·|s)) ≤ ϵ (Peters

& Schaal, 2007; Peng et al., 2019).

IQL. IQL keeps the policy improvement (8) of AWAC, but
modifies its critic to learn a parametric model of the value
function Vψ using expectile regression:

argmin
ψ

Es,a∼B[L
τ
2(Q(s, a)− Vψ(s))], (4)

where Q(s, a) := min(Qϕ̄1
(s, a), Qϕ̄2

(s, a)), Lτ2(u) =
|τ−1if (u<0)|u2, and τ ∈ (0, 1) is a hyper-parameter. It then
learns the action-value functions (Qϕ1

, Qϕ2
) by modifying

the TD targets in (1) as y = r + γVψ(s
′). The main advan-

tage over the critic update of TD3 is that IQL never queries
the learned Q-functions on actions outside the dataset.

3. Offline RL with Diverse Data
Prior offline RL methods have been extensively tested and
validated using well-known benchmarks such as D4RL (Fu
et al., 2020) and RL-unplugged (Gulcehre et al., 2020), but
the datasets within these benchmarks exhibit a significant
data collection bias towards the specific offline task consid-
ered for evaluation. Recent works (Hong et al., 2023b;c)

showed that offline methods tend to fail when the dataset is
unbalanced (e.g., when most trajectories have low return).
Here we provide a complementary analysis to highlight the
challenges of incorporating diverse data sources. To this
end, we introduce Multi Objective Offline DMC (MOOD), a
new testbed for offline RL to focus on this relevant problem
dimension.

3.1. The MOOD testbed

We build MOOD on top of the DeepMind Control suite
(Tassa et al., 2018), spanning four environments (15 total
tasks) of increasing complexity (cheetah, walker, quadruped,
and humanoid, see Fig. 6 in App. A) with several mixed-
or cross-task setups for each. For each environment, we
first collect data by training behavior policies for different
objectives (see Tab. 7 in App. A), including both traditional
reward maximization on DMC tasks (e.g., walk, run, or
stand) and the exploration-focused intrinsic motivation from
Random Network Distillation (RND, Burda et al., 2019).
We train agents for several million steps based on the dif-
ficulty of the environment and gather data by randomly
sub-sampling 10% of the resulting replay buffers. We then
merge the data coming from some subset of tasks, and re-
label them for a possibly different target task, thus build-
ing several datasets for benchmarking offline RL methods.
Each MOOD dataset is denoted as “domain source-tasks→
target-task”, where “domain” is the considered environment
(e.g., Walker), “source-tasks” lists the objectives whose data
was merged, and “target-task” is the task used to relabel
the rewards (i.e., the task to be solved on this dataset). De-
pending on the source and target tasks, we obtain different
classes of datasets (see App. A for the details):

• Same-objective datasets involve a single source task
equal to the target task, akin to traditional offline bench-
marks (e.g., Humanoid stand→ stand in Fig. 1).

• Cross-objective datasets involve a single source task
which is different from the target task (e.g., Humanoid
walk→ stand in Fig. 1).

• In mixed-objective datasets, the source tasks include
all the tasks available in the chosen environment plus
optionally RND (e.g., Walker mixed[+RND]→ walk).

3.2. The paradoxes of incorporating diverse data

We use MOOD to test our candidate offline RL methods
(TD3+BC, AWAC, and IQL) and highlight how they strug-
gle with increasing data diversity. We use a shallow network
architecture (2 hidden layers of 256 units with ReLUs in be-
tween) for both the actor and the critic of all algorithms, as
it is common in existing implementations. For each experi-
ment, (i.e., pair of algorithm and dataset), we perform a grid
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Env/Algorithm IQL AWAC TD3 TD3+BC

Same objective datasets

cheetah 95.1± 1.1 97.2± 0.8 58.9± 6.6 95.7± 1.3
humanoid 74.8± 3.1 70.6± 3.3 3.5± 0.9 47.1± 7.7
quadruped 94.5± 0.6 91.9± 1.7 45.5± 3.7 87.3± 3.0
walker 95.8± 0.9 95.8± 0.9 76.5± 3.5 96.5± 0.6

Total 360.3 355.5 184.4 326.7

Mixed objective datasets

cheetah 79.1± 5.1 91.1± 2.5 81.4± 6.3 88.1± 4.0
humanoid 26.1± 3.2 18.2± 4.0 3.9± 0.7 11.7± 3.2
quadruped 88.7± 1.1 74.8± 1.9 61.6± 3.7 80.8± 2.6
walker 90.9± 2.3 92.2± 2.0 92.9± 2.6 95.5± 1.6

Total 284.8 276.4 239.8 276.2

Average change −26.5% −28.65% 23.09% −18.26%

Table 1. Average performance (plus/minus standard error) over all
tasks per environment on the MOOD datasets. All algorithms use
the shallow architecture (2 hidden layers of 256 units) commonly
employed in the literature. “Average change” reports the rela-
tive performance differences when swapping the same-objective
datasets with their mixed-objective MOOD supersets.

search over the hyperparameters specific to each offline al-
gorithm using 5 random seeds, and select the configurations
that lead to the highest cumulative return after 1.5 × 106

optimization steps (5× 106 for humanoid). We report the
performance of each algorithm as the average cumulative re-
turn normalized by the highest return of a trajectory present
in the dataset. We show in Table 1 the results for the same-
and mixed-objective datasets1 averaged over all tasks in
each environment. See App. C for all the details and results.

Offline RL struggles with increased data diversity. When
examining the ability of offline RL methods to leverage
auxiliary data from different tasks on the mixed-objective
datasets, we consistently observe a counter-intuitive phe-
nomenon: adding data from various sources significantly
reduces the performance of all the considered offline RL
algorithms. Note that no subsampling occurs when merg-
ing the task-specific datasets: the mixed-objective dataset
is a superset of the same-objective dataset on which the
algorithms work seamlessly. This phenomenon seems more
pronounced in harder tasks, with a performance drop higher
than 50% for all offline RL algorithms in Humanoid.

TD3 benefits from increased data diversity. On the con-
trary, the performance of plain TD3, an algorithm originally
designed for online RL, improves significantly with more
diverse data. This is not surprising, as it is known that “ex-
ploratory data”, such as the one generated by RND, allows
non-conservative algorithms like TD3 to counteract extrap-
olation tendency and achieve higher performance in many
considered tasks (Yarats et al., 2022). It is thus natural to

1All mixed-objective datasets used in the main paper contain
RND data except for humanoid, where the complexity of the do-
main makes RND generate useless samples.
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Figure 3. Optimal advantage-weighted distribution π⋆
B (shaded ar-

eas) and its Gaussian projection (solid curves) after 1K and 1M op-
timization steps of AWAC on cheetah run with the same-objective
(left) and the mixed-objective (right) datasets. Dashed lines indi-
cate the actions chosen during evaluation using either the mean of
the learned policy (black) or ES (blue) after 1M steps. Distribu-
tions are plotted for a randomly-chosen state and action dimension.

ask why offline RL algorithms incur the opposite behavior.

4. On the Failure of Existing Algorithms
We list several hypotheses on why existing offline RL meth-
ods struggle with the mixed-objective data in MOOD. For
each of them, we propose simple remedies that can be seam-
lessly integrated without altering the nature of the method
itself. We empirically test each of these hypotheses in Sec. 5.

Hypothesis 1: over-conservatism

The first candidate hypothesis is over-conservatism: all the
considered methods force the learned policy to stay close
to the data distribution. This is clearly beneficial when the
data contains mostly high-return trajectories for the desired
task (e.g., in D4RL or MOOD same-objective datasets).
Still, it can have a detrimental effect when this condition
fails to hold (e.g., in MOOD mixed-objective datasets). In
fact, as the data contains behaviors far from the desired one
(e.g., a humanoid running or walking when the task is to
stand), the learned policy may be forced to put probability
mass over poor actions, hence drifting from optimality. This
phenomenon was observed in recent works on unbalanced
datasets containing mostly low-return trajectories (Hong
et al., 2023b;c). Other works also observed that, while
constraining or regularizing the policy stabilizes training,
it may degrade the evaluation performance in particular
cases (Kumar et al., 2019; Singh et al., 2023; Yu et al.,
2023).

This conservatism may be amplified in the considered al-
gorithms, which all fit Gaussian policies regularized by a
forward KL term to the data distribution. Hence, given that
the data distribution is often multi-modal (e.g., in the mixed-
objective datasets) and the mean-seeking tendency of the
forward KL divergence, the learned policy’s mean is un-
likely to reflect the apex of the underlying target distribution

4
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Algorithm 1 Online deployment with evaluation sampling
Input: actor πθ , critic Qϕ, number of action samples M
Get initial state: s ∼ p0
while not done do

Sample actions: a1, . . . aM ∼ πθ(·|s)
a⋆ ← argmaxa∈{a1,...,aM} Qϕ(s, a)

Play a⋆, get state s ∼ P (s, a⋆) and reward r(s, a⋆)
end while

of behaviors. We illustrate this point for AWAC in Fig. 3,
where we plot the target advantage-weighted distribution
π⋆B(a|s) ∝ exp(Aϕ(s, a)/β)πB(a|s) (estimated through an
auto-regressive density model) together with the Gaussian
policy π that minimizes DKL(π

⋆
B(·|s)||π(·|s)) (i.e., the pol-

icy we hope the algorithm to learn). The plots clearly show
that, on the mixed-objective dataset, the learned policy’s
mean is very far from the target distribution’s mean2.

Evaluation sampling (ES). If over-conservatism is really
an issue, we propose to address it entirely at test time by
sampling M actions from the learned policy and selecting
the one with the highest Q-value, thus performing a non-
parametric step of unconstrained policy improvement to
skew the action distribution towards higher performance.
We call this approach evaluation sampling (ES). See Alg. 1
and Fig. 3. In contrast to similar approaches (Wang et al.,
2020; Ghasemipour et al., 2021), ES does not alter training
at all, thus preserving the desired policy support constraints.
We expect ES to yield positive signal mostly when the whole
policy distribution is within the data support (i.e., when
the policy is really over-conservative as hypothesized), as
otherwise extrapolating beyond it may hinder performance.

Hypothesis 2: model scale

As the mixed-objective datasets are a strict superset of their
same-objective counterparts, both the actor and critic net-
works are required to model wider regions of the state-action
space. This may lead the networks to spend capacity in mod-
eling unnecessary quantities, as some of these regions may
actually be useless for the task at hand (e.g., it is not strictly
necessary to model the action values of states corresponding
to the humanoid running when learning how to stand). Thus,
with networks of limited capacity, one may expect a loss of
accuracy in regions that are actually important for learning
the given task. We thus hypothesize that network scale may
be one of the factors leading to the performance drop on
mixed-objective data. In our experiments, we first test this
hypothesis with wider and deeper variants of the network
architectures commonly employed in the literature, without

2While the fact that Gaussian policies poorly fit the target distri-
bution was initially another hypothesis behind over-conservatism,
we discarded it as we found such policies to have a useful regu-
larization effect, and the usage of more expressive distributions or
reverse (mode-seeking) KL led to performance collapse.

other changes.

Large modern architectures. Some recent works showed
that merely adopting very deep architectures can be prone to
instabilities in RL (Andrychowicz et al., 2020; Bjorck et al.,
2021; Ota et al., 2021). To make sure we do not run into
this issue, we also test an alternative modern architecture
proposed by Bjorck et al. (2021). Such an architecture was
shown to enable stable training thanks to a combination
of the fully-connected residual blocks commonly used in
transformer models (Vaswani et al., 2017) with spectral nor-
malization (Miyato et al., 2018) (illustrated Fig. 7, App. B).
This architecture was also shown to help counteract the
plasticity loss, specifically of the critic network (Cetin &
Celiktutan, 2023), a phenomenon that frequently occurs
when training with non-stationary data and objectives (Ash
& Adams, 2020; Dohare et al., 2023) as in RL (Lyle et al.,
2023; Nikishin et al., 2022; D’Oro et al., 2023; Schwarzer
et al., 2023). Hence, we examine if such a non-stationarity
may be significantly affecting training with mixed-objective
data also in the offline setting (cf. the drift of the target
policy π⋆B in Fig. 3).

Hypothesis 3: epistemic uncertainty/overestimation bias

It is well-known that off-policy actor-critic algorithms like
DDPG and TD3 are subject to the same Q-value overesti-
mation bias as in Q-learning with discrete actions (Fujimoto
et al., 2018). In online RL, some level of overestimation
may be acceptable (e.g., to encourage exploration), and the
learner could always correct wrong estimates by gathering
further data from the environment. But in offline RL it is
important to guarantee pessimistic Q-value estimates for
state-action pairs not sufficiently covered by the dataset
(Jin et al., 2021). Special care needs to be taken for algo-
rithms, like TD3+BC and AWAC, that query the learned
value functions on actions outside the given dataset: these
algorithms may result in erroneous overestimations without
the possibility to ever correct them, hence yielding poor
evaluation performance. This phenomenon may be further
exacerbated in mixed-objective data, where errors can prop-
agate due to over-generalization across different regions of
the state-action space. We thus hypothesize that the solu-
tion proposed in TD3, consisting of training an ensemble
of two independent Q-functions with TD targets involving
the minimum between them (Eq. 1), may not be sufficient
to counteract this issue. Some works (Lan et al., 2020;
Chen et al., 2021b) indeed showed that using a larger en-
semble of critics can reduce both the Q-value estimation
bias and variance. We thus test this approach in our exper-
iments by training an ensemble of n randomly-initialized
Q-functions (Qϕ1

, . . . , Qϕn
) while independently optimiz-

ing their parameters via TD learning as in (1). Following
Cetin & Celiktutan (2023), we redefine the TD targets in (1)

5
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Figure 4. Empirical bias and variance of the AWAC’s and ASAC’s
objective estimators for different batch sizes n on cheetah run.
Each point is averaged over 1000 randomly sampled minibatches
of size n at equally-spaced checkpoints saved during training.

as y = r + γEa′∼πθ(s′)

[
Q(s, a)

]
, where

Q(s, a) := 1
n

∑
i

Qϕi
(s, a)− λ

n2−n
∑
i,j

|Qϕi
(s, a)−Qϕj

(s, a)|,

with a hyperparameter λ ≥ 0. This gives us more flexibility
in the aggregation of the ensemble estimates: for n = 2 and
λ = 0.5, we recover the same update rule as TD3, while for
other choices of λ we can control the level of pessimism.

Hypothesis 4: bias and variance of advantage weighting

The final hypothesis focuses on advantage-weighted algo-
rithms (AWAC and IQL) using the policy improvement
objective from Eq. 8, which is implemented by employing a
weighted importance sampling (WIS) estimator:

JAW(θ) = E(a1:n,s1:n)∼B

[
n∑

i=1

w(si, ai) log πθ(ai|si)

]
, (5)

where the weights w(si, ai) =
exp(Aϕ(si,ai)/β)∑n

j=1 exp(Aϕ(sj ,aj)/β)
are

normalized over a minibatch of size n. It is known that this
estimator is both biased and introduces higher variance than
directly sampling from the desired target distribution (Hes-
terberg, 1995). On mixed-objective data, as the distributions
involved become more complex, it is natural to expect bias
and variance to increase (cf. Fig. 4). We thus hypothesize
this fact to be one of the reasons behind the performance
drop of the considered advantage-weighted algorithms.

If this is really the case, we propose a very simple
workaround: we can directly and tractably sample from the
desired target distribution by avoiding altogether the need
for weights in the objective. Formally, we define a modified
sampling data distribution for policy improvement:

B⋆(s, a) := 1

Z
B(s, a) exp(Aϕ(s, a)/β) (6)

where B(s, a) denotes the distribution obtained by i.i.d. sam-
pling from the buffer, while Z =

∑
s,a∈B exp(Aϕ(s, a)/β).

Algorithm 2 Advantage Sampled Actor Critic (ASAC)
Input: offline data B
while not done do

// Actor update
Sample batch bac = {(s, a)} from B⋆ (see Eq. 6)
Take gradient step on θ to maximize (7) on bac
// Critic update (TD3)
Sample batch bcr = {(s, a, s′, r)} from B
Take gradient step on ϕ to minimize (1) on bcr
// Update sum-tree for B⋆

B⋆(s, a)← exp(Aϕ(s, a)/β) for all (s, a) ∈ bcr ∪ bac
end while

To sample from B⋆ efficiently without explicitly computing
Z, we design a logsumexp-tree inspired by the sum-tree data
structure used for prioritized sampling (Schaul et al., 2015),
where we store the scaled advantages Aϕ(s, a)/β and work
entirely in log-space. Then, we simply train π to maximize
the likelihood of the data sampled from B⋆:

ĴAS(θ) = E(s,a)∼B∗ [log πθ(a|s)]. (7)

It is easy to see that this estimator, which aims at directly
projecting πθ onto π⋆B, is unbiased for the AWAC objective,
i.e., its expectation is equal to the objective in (8).

We call the resulting approach advantage sampled actor
critic (ASAC, see Alg. 2). 3 Note that it bears some similar-
ities with methods that alter the data distribution via weight-
ing techniques (Hong et al., 2023b;c; Yue et al., 2023). The
main difference is that these methods compute weights for
offline trajectories only once at the start of training based on
the returns/advantages of the behavior policy, while ASAC’s
sampling distribution adaptively evolves over time.

5. Empirical Results
We systematically evaluate three candidate algorithms
(TD3+BC, AWAC, and IQL) combined with the algorithmic
design considerations from Sec. 4: the use of a large simple
MLP network, a large modern architecture, an ensemble of
critics, evaluation sampling, and advantage sampling.

In this Section, we report the key results needed for our
claims, while referring the reader to App. C for the com-
plete evaluation. Our main findings indicate that network
capacity, specifically for the policy, is the main factor affect-
ing mixed-task performance. First, we provide the results
from our final implementations and comparisons, where
for the large architectures we employ critics with 3 hidden
layers of 256 units each and actors with 5 hidden layers of
1024 units each. For the modern architecture, we use critics
with a single modern block (cf. Fig. 7) with 256 as hidden

3Alg. 2 only updates B⋆(s, a) on each minibatch rather than the
whole buffer, so some stored values of Aϕ may grow “stale”: this
re-introduces some bias for (7). Fig. 4 shows this bias is limited.
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Env/Algorithm IQL ASAC AWAC TD3 TD3+BC

Architecture (large) Modern Simple Modern Simple Modern Simple Modern Simple Modern Simple

Total (2 critics, no ES) 369.7 373.0 347.4 331.3 359.5 355.9 228.9 202.5 358.9 370.2

Total (5 critics, no ES) 370.0 373.6 364.9 355.9 367.5 367.3 228.9 207.6 365.8 373.1

5 critics / large simple architecture

ES ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

cheetah 92.5± 1.8 89.4± 3.4 94.9± 1.1 95.4± 1.4 95.7± 1.0 95.1± 1.5 81.0± 6.8 85.1± 5.4 94.5± 1.7 94.6± 1.9
humanoid 92.1± 1.6 80.9± 2.0 91.7± 1.0 66.2± 0.5 88.3± 1.2 78.6± 3.4 4.7± 1.1 2.9± 0.9 86.2± 1.3 77.3± 3.6
quadruped 94.0± 0.7 97.1± 0.3 74.7± 1.3 89.9± 1.1 86.7± 2.0 95.6± 0.7 26.9± 2.7 31.7± 3.6 94.9± 0.6 98.1± 0.5
walker 95.0± 1.3 95.7± 1.3 94.6± 1.5 97.4± 0.8 96.6± 1.1 98.2± 0.6 95.1± 1.9 95.3± 1.8 97.5± 0.3 99.0± 0.4

Total 373.6 363.2 355.9 348.9 367.3 367.4 207.6 215.0 373.1 368.9

Total (max over ES) 378.6 372.7 378.3 218.3 378.1

5 critics / large modern architecture

ES ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

cheetah 93.2± 1.6 89.0± 3.7 94.7± 1.3 94.2± 1.2 95.0± 1.3 93.8± 1.9 76.3± 5.5 81.6± 6.6 91.9± 1.9 91.2± 3.2
humanoid 89.9± 1.8 78.2± 2.8 90.4± 0.8 79.1± 2.2 91.4± 0.6 78.5± 3.7 3.3± 0.4 3.0± 0.5 83.5± 1.4 76.4± 3.9
quadruped 92.1± 0.8 96.7± 0.3 83.2± 1.5 92.2± 0.8 85.4± 2.0 92.2± 1.5 56.1± 2.0 57.9± 3.0 92.1± 0.9 93.8± 0.9
walker 94.6± 1.4 95.3± 1.3 96.5± 0.5 96.7± 0.7 95.8± 1.1 95.5± 1.5 93.1± 1.9 94.8± 2.1 98.2± 0.4 98.1± 0.5

Total 370.0 359.2 364.9 362.2 367.5 360.0 228.9 237.4 365.8 359.4

Total (max over ES) 376.3 377.6 377.2 242.0 368.1

Table 2. Average performance computed over all the tasks per each MOOD environment on the mixed-objective datasets, with totals
denoting their sum over environments, using an ensemble of 5 critics and (optionally) ES with M = 50 samples. The top and bottom
tables report results with the large ‘simple’ and large ‘modern’ actor architectures, respectively. We highlighting improved/worsened
results from the default algorithms with shallow actor architectures in Table 1

agent IQL ASAC AWAC TD3+BC

ES ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

Antmaze-v0 (5 critics) 65.2±3.5 77.2±2.8 64.5±4.1 72.6±3.8 64.7±4.1 70.8±4.0 50.7±5.9 51.9±7.0
Antmaze-v0 (10 critics) 63.4±3.3 76.0±2.8 65.3±4.0 72.6±3.6 69.8±4.4 72.6±4.0 49.8±7.1 44.2±7.6
Locomotion-v2 (5 critics) 88.1±3.4 72.3±4.3 84.1±3.2 80.7±3.5 87.0±3.3 81.6±3.3 82.6±2.9 84.9±2.5
Locomotion-0.1-v2 (10 critics) 83.1±4.2 50.6±4.6 64.1±4.0 48.6±4.0 54.6±4.5 51.7±4.2 49.6±4.5 45.5±3.8

Table 3. Average performance across all datasets in each category of D4RL. All algorithms use the large modern architecture.

dimension and actors with 2 modern blocks with 1024 as
hidden dimension. This makes the simple and modern net-
works of equal capacity, disregarding the marginal increase
in parameters introduced by layer normalization. Then, we
provide some additional experiments that investigate and
analyze specific reasons behind our practical observations
on scaling.

For each design choice and task, we perform a hyperpa-
rameter sweep over the learning rate, the temperature β
(for AWAC and IQL), the regularization strength α (for
TD3+BC), and the expectile τ (for IQL). We then report the
cumulative return of the best configurations averaged over 5
random seeds.

5.1. MOOD evaluation

Table 2 reports the results on the mixed-objective datasets in
MOOD. We notably observe that all algorithms bridge the
performance gap with same-objective datasets by using the
larger architecture (cf Tab. 1), while all other conjectured so-
lutions either marginally help or do not help at all on top of

it. In Appendix C, we also quantitatively examine the other
hypotheses in isolation, showing how they are all generally
insufficient. Specifically, we note the following: i) The mod-
ern architecture does not appear to provide any advantage
over the simple one ii) ASAC’s performance is on par with
AWAC, indicating that the variance of the AWAC estimator
is not a limiting factor iii) Increasing the number of critics
appears to yield a consistent, though marginal, performance
improvement, but at the cost of added compute. This makes
us conclude that, among our hypotheses, insufficient policy
scale is the key factor affecting the performance drop with
mixed objective data.

Finally, to a consistently lesser extent than scale, we also
note that ES contributes to performance improvements, par-
ticularly in Quadruped, but it has a detrimental effect on Hu-
manoid. This discrepancy may be attributed to the availabil-
ity of RND data with good coverage for the non-humanoid
tasks, which makes it easier for conservative methods to
skew the whole policy distribution within the support of
the data, hence enabling ES to safely improve performance.
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This is not the case on the Humanoid datasets comprising
only “purposeful” trajectories, where extrapolation has actu-
ally a detrimental effect. Further evidence for this conjecture
is given in App. C.5, where we show that ES consistently im-
proves performance on pure RND data from ExoRL (Yarats
et al., 2022).

5.2. D4RL evaluation

Table 4 reports the results of IQL, AWAC, TD3+BC, and
ASAC with large architectures, 5 critics, and ES (in most
of the settings). We also report previously-published re-
sults for state-of-the-art algorithms: decision transformer
(DT, Chen et al., 2021a), conservative Q-learning (CQL,
Kumar et al., 2020), extreme Q-learning (XQL, Garg et al.,
2023), and Diffusion Q-learning (DQL, Wang et al., 2023).
Overall, IQL, AWAC, and ASAC with the large modern
architecture surpass the state of the art, while the perfor-
mance of TD3+BC still falls behind in the antmaze tasks.
We emphasize that, while CQL and XQL use smaller archi-
tectures, the purpose of these experiments is not to establish
which of our algorithms is best, but rather to showcase
that several existing simple strategies with increased policy
scale consistently outperform state-of-the-art more complex
approaches. We further note that the performance gap be-
tween large and small networks is particularly pronounced
for antmaze. This aligns with the observations from MOOD:
D4RL locomotion data is collected with a protocol similar to
same-objective MOOD, while the Antmaze datasets, being
generated by multi-goal reaching policies, involve increased
data diversity.

Unbalanced data. Hong et al. (2023a) observed that of-
fline RL algorithms struggle on the unbalanced locomo-
tion datasets consisting of 90% trajectories generated by
the uniform policy and 10% of expert or medium trajecto-
ries. They conjectured over-conservatism being the main
issue, as the performance of policy-constrained methods
is tightly coupled to the (poor) behavior policy. As a so-
lution, they suggested sampling trajectories proportionally
to their cumulative return, essentially rebalancing and arti-
ficially skewing the distribution trajectories back towards
higher performance. Our results (Tab. 4) suggest this ad-hoc
strategy might be superflous: simply using larger networks,
while training with standard uniform sampling, achieves
generally comparable and even some better results.

The role of ES. As shown in Tab. 3, ES improves the perfor-
mance on antmaze by a large margin, while actually hurting
in all locomotion datasets. This is likely to be due to a
similar phenomenon as in the mixed-objective MOOD data:
good data coverage from antmaze enables accurate learning
of the Q-functions within the policy support, as opposed to
the narrower distributions of the locomotion tasks where
extrapolation is more error-prone.

Figure 5. The AWAC
algorithm’s perfor-
mance on the mixed
objective cheetah
run offline task, with
different policy scales
and periodic policy
network resets.

5.3. Why policy scale?

AWAC configuration

Critic Large Large Small
Policy Small Large Large

ES ✗ ✓ ✗ ✓ ✗ ✓

cheetah 86.82 ± 3.49 94.46 ± 2.25 95.29 ± 1.04 93.83 ± 2.39 95.7 ± 1.0 95.1 ± 1.5
humanoid 26.43 ± 3.59 41.18 ± 3.18 78.21 ± 3.81 76.39 ± 3.74 88.3 ± 1.3 78.6 ± 3.4
quadruped 96.31 ± 1.7 99.58 ± 0.75 95.12 ± 0.92 98.55 ± 0.43 86.7 ± 2.0 95.6 ± 0.7
walker 89.4 ± 2.52 98.72 ± 0.25 95.51 ± 1.16 97.41 ± 0.97 96.6 ± 1.1 98.2 ± 0.6

Total 298.96 333.94 364.13 366.18 367.3 367.4

Table 5. Average performance over all tasks per environment on
the MOOD mixed objective datasets, with AWAC and different
scales for the policy and critic networks.

In this subsection, we focus on the AWAC algorithms and
perform more targeted experiments motivating and analyz-
ing our particular scaling strategy. First, in Table 5, we
show how scaling the critic network on the mixed objective
offline MOOD datasets is alone insufficient, and seems to
even slightly hinder overall performance as compared to
only scaling the actor. We additionally note that scaling the
critic tends to be also disproportionally more computation-
ally expensive. We believe the importance of actor scale is
to counteract early saturation (i.e., plasticity loss) specifi-
cally in the actor network. In fact, as shown in Figures 3 and
9 (App. E), in the offline setting the actor optimization is
very non-stationary (the optimal targets considerably differ
between 1K and 1M steps) and small actors seem to struggle
to approximate the optimal distribution later on in training.

We note our findings and analysis puts offline RL in direct
contrast to online RL where plasticity loss seems a predom-
inant issue for the critic network (Lyle et al., 2023; Nikishin
et al., 2022; D’Oro et al., 2023).

To provide further evidence to validate this hypothesis, we
introduced a new experiment where we analyze the effects
from periodic resets to the actor network. We note this was
introduced by Nikishin et al. (2022) to mitigate plasticity
loss in the critic for online RL, and is now a key prac-
tice adapted and performed in several sample-efficient algo-
rithms (D’Oro et al., 2023; Schwarzer et al., 2023). In our
case, we instead focus on the actor network and re-initialize
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Dataset/Algorithm DT CQL XQL DQL IQL ASAC AWAC TD3+BC
Architecture orig. orig. orig. orig. modern simple modern simple modern simple modern simple

halfcheetah-medium-expert-v2 86.8 91.6 94.2 96.8 93.4±0.1 93.5±0.2 94.5±0.2 88.5±1.2 94.3±0.4 100.3±1.0 92.7±0.2 94.1±0.8
halfcheetah-medium-replay-v2 36.6 45.5 45.2 47.8 49.9±0.1 52.0±0.2 54.5±0.2 54.9±0.3 54.4±0.3 57.5±0.1 57.9±0.1 59.1±0.6
halfcheetah-medium-v2 42.6 44.0 48.3 51.1 58.2±0.1 63.0±0.1 61.3±0.5 61.1±0.2 61.4±0.1 64.6±0.2 64.6±0.3 70.8±0.4
hopper-medium-expert-v2 107.6 105.4 111.2 111.1 110.5±0.2 110.0±0.2 110.9±0.2 109.8±0.2 110.3±0.1 110.4±0.2 111.8±0.3 109.6±0.4
hopper-medium-replay-v2 82.7 95.0 100.7 101.3 101.1±0.5 94.7±1.9 101.4±0.4 95.2±1.4 101.9±0.6 102.5±0.5 100.6±0.2 98.7±2.1
hopper-medium-v2 67.6 58.5 74.2 90.5 98.1±0.8 96.4±2.0 94.6±4.7 75.6±1.6 96.4±2.8 81.7±16.2 94.9±0.8 93.2±0.7
walker2d-medium-expert-v2 108.1 108.8 112.7 109.6 112.9±0.3 114.1±0.4 112.1±0.2 113.5±0.3 112.8±0.1 115.5±0.3 115.0±0.4 115.5±0.9
walker2d-medium-replay-v2 66.6 77.2 82.2 95.5 96.2±0.2 94.2±0.7 93.9±0.5 91.1±1.7 94.7±0.4 96.3±1.0 90.5±0.3 87.7±0.4
walker2d-medium-v2 74.0 72.5 84.2 87.0 90.4±0.2 89.8±0.4 86.1±0.1 84.6±0.2 87.1±0.1 87.0±0.3 87.1±0.2 87.2±0.3

Locomotion-v2 total 672.6 698.5 752.9 790.7 810.7 807.7 809.3 774.3 813.1 815.7 815.0 816.0

antmaze-large-diverse-v0 0.0 14.9 49.0 56.6 60.4±1.2 64.4±1.3 49.9±1.5 49.2±0.8 43.0±3.4 32.0±1.1 18.8±1.5 8.7±1.3
antmaze-large-play-v0 0.0 15.8 46.5 46.4 54.2±1.1 26.2±2.3 43.8±2.4 12.3±1.0 42.2±0.8 17.3±0.7 8.3±5.4 5.6±3.5
antmaze-medium-diverse-v0 0.0 53.7 73.6 78.6 82.9±1.1 85.6±0.6 82.3±0.8 89.1±1.5 83.2±1.5 85.8±1.1 75.0±7.5 61.9±14.1
antmaze-medium-play-v0 0.0 61.2 76.0 76.6 82.9±0.7 86.5±0.7 84.9±1.4 86.7±1.2 85.6±1.7 84.6±1.0 70.5±1.7 24.2±10.0
antmaze-umaze-diverse-v0 53.0 84.0 82.0 66.2 86.6±0.7 83.9±0.9 81.1±2.9 72.1±1.5 72.8±3.3 48.5±10.3 71.7±4.9 69.4±3.7
antmaze-umaze-v0 59.2 74.0 93.8 93.4 96.1±0.7 96.6±0.4 98.7±0.1 99.0±0.2 97.8±0.5 98.2±0.3 94.1±1.2 96.0±1.2

Antmaze-v0 total 112.2 303.6 420.9 417.8 463.1 443.2 440.8 408.5 424.8 366.3 338.4 265.9

Dataset/Algorithm CQL IQL TD3+BC IQL ASAC AWAC TD3+BC
Architecture orig. orig. orig. modern simple modern simple modern simple modern simple

halfcheetah-random-expert-0.1-v2 45.8 91.3 78.4 65.8±2.2 76.3±2.1 56.2±6.6 61.5±6.7 66.7±3.0 78.3±1.2 18.3±1.2 30.7±1.2
halfcheetah-random-medium-0.1-v2 45.8 43.1 47.8 48.9±0.3 52.7±0.2 53.2±0.4 53.6±4.1 54.6±0.1 58.9±0.2 57.5±0.3 60.7±0.7
hopper-random-expert-0.1-v2 109.7 111.5 107.7 109.0±0.4 95.4±2.2 73.4±5.3 41.8±2.7 32.3±4.8 78.4±1.5 80.2±4.4 77.0±2.0
hopper-random-medium-0.1-v2 66.6 57.1 56.4 93.9±2.3 70.5±3.0 69.0±2.1 66.7±2.3 71.7±1.2 76.3±3.8 71.1±1.9 60.5±1.7
walker2d-random-expert-0.1-v2 108.1 109.3 110.1 107.8±0.3 99.2±0.6 99.5±2.0 101.1±0.6 93.6±3.1 61.3±15.5 41.9±17.0 11.6±0.8
walker2d-random-medium-0.1-v2 66.3 65.8 74.2 75.0±0.5 73.3±0.6 65.9±4.7 75.0±0.9 47.0±6.9 78.4±3.1 57.5±4.3 53.1±10.4

Locomotion-0.1-v2 total 442.3 478.1 474.6 500.5 467.4 417.2 399.8 365.9 431.5 326.5 293.5

Table 4. Performance on the locomotion-v2 and antmaze-v0 datasets from the D4RL benchmark (top), and on the unbalanced variants of
the locomotion-v2 datasets (bottom). For our candidate algorithms we use large architectures, 5 critics (10 for the unbalanced data), and
report the best result between using or not ES (with M = 50 samples). The second block of the bottom table reports the performance of
the algorithms tested by Hong et al. (2023a) with their modified sampling distribution (values taken from their Github repository).

all weights every 300K steps, each time performing 50K
subsequent ‘warmup’ policy improvement steps keeping
the critic fixed (not counted when reporting performance
curves). Our results in Figure 5, illustrate that our reset
strategy visibly improves the final performance of standard
AWAC with small actors, even while facing visible periodic
instabilities after each reset. Yet, the same strategy does not
seem to benefit our scaled implementation, validating the
effectiveness of the increased policy capacity to counteract
early saturation.

6. Conclusions
We provided an empirical analysis for some of the key diffi-
culties of current offline RL methods, highlighting the unex-
pected consequences of training from mixtures of diverse
data sources. In our study, targeted scaling of the policy
appears more important than algorithmic considerations in
overcoming these and improving performance: two sim-
ple algorithms (AWAC, IQL) surpass state-of-the-art meth-
ods on the standard D4RL benchmark, and even TD3+BC
comes reasonably close. In contrast, further algorithmic

refinements yield only limited benefits. This questions the
common trend of designing increasingly more complicated
algorithms, as even simple approaches seem sufficient with
proper implementations. We believe that understanding and
analyzing what really matters is key for demystifying the
field, and hope our work will serve as a valuable resource to
empower future advancements.

Impact Statement
This paper presents work whose goal is to advance the field
of offline RL. Given the nature of our contribution, its so-
cietal implications are bound to the broad potential impli-
cations of advancing autonomous agents. In this regard,
poor regulation and misuse of such advancements may ac-
centuate inequalities and cause harm. However, we believe
these concerns to be offset by the field’s current potential in
tackling some of society’s most relevant problems.
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Appendix
A. MOOD details

Figure 6. Continuous control environments in MOOD.

As introduced in Section 3, Multi Objective Offline
DMC (MOOD) allows to evaluate offline agents
for tasks with increasing levels of complexity, and
assesses their ability to make use of additional data
coming from behavior policies trained with differ-
ent objectives. Our benchmark is based on four
environments (see Fig. 6), fifteen tasks, and eigh-
teen base datasets. Each base dataset is collected
with a unique objective. We consider either tradi-
tional reward maximization objectives for one of the DMC tasks we use for offline training, or the intrinsic objective from
Random Network Distillation (RND) (Burda et al., 2019). The only exception is for the humanoid environment, where
we only consider the reward maximization objectives. The reason for our choice is that the humanoid model appears quite
unstable, with the agent easily losing its balance and collapsing to the ground, a situation from which recovering appears
very difficult. Mainly due to this challenge, we found that optimizing an agent with an RND objective fails to capture almost
any meaningful kind of behavior, in stark contrast to the other considered environments.

To obtain each of the base datasets for the considered DMC tasks, we start by collecting replay buffer data from training five
TD3 agents using different random seeds for a varying number of steps based on the difficulty of the relative environments.
Then, we merge the different whole replay buffers, which we note contain trajectories collected throughout the full training
procedure, as we do not impose any size limitation during training. We provide the hyper-parameters of the employed TD3
agents in Table A.

Hence, as described in Section 3, we then proceed to relabel all the rewards in each base dataset for all other tasks based on
the same environment to produce the same, cross, and mixed objective datasets. When evaluating agents on any MOOD
dataset, the reported results represent a normalized percentage, which we simply computed by dividing the collected returns
with task-specific targets based on the highest trajectory returns in each of the relative datasets. We refer to Table 7 for the
task-specific details regarding dataset collection and offline training.

Online TD3 hyper-parameters

buffer size |B| ∞
batch size |b| 512
minimum data to train 5000
optimizer Adam
learning rate 0.0003
policy delay 2
discount γ 0.99
polyak coefficient ρ 0.995
policy/Q network hidden layers 2
policy/Q network hidden dimensionality 256
exploration noise 0.2

Table 6. Agent hyper-parameters used for data collection in MOOD.
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Environment |S| |A| Base dataset objective Collection steps Subsampled size Normalization return target

walk 5×1M 500K 990
run 5×1M 500K 800

cheetah 17 6 walk backward 5×1M 500K 990
run backward 5×1M 500K 550

RND 5×2M 1M N/A

walk 5×1M 500K 970
run 5×1M 500K 730

walker 24 6 stand 5×1M 500K 990
spin 5×1M 500K 990
RND 5×2M 1M N/A

walk 5×1M 500K 940
run 5×1M 500K 800

quadruped 78 12 stand 5×1M 500K 970
jump 5×1M 500K 870
RND 5×2M 1M N/A

walk 5×10M 5M 900
humanoid 67 21 run 5×10M 5M 400

stand 5×10M 5M 960

Table 7. MOOD datasets collection details.

B. Implementation Details
In this section we provide additional information about our experiments.

B.1. Network Architecture

In table 8, we report the activation functions, number of hidden layers, hidden dimension and number of modern blocks we
used for small and large networks for each of actor, critic and value networks. Note that the simple and modern networks
have equal capacity, disregarding the marginal increase in parameters introduced by layer normalization. Figure 7 portrays a
block of the modern architecture.

Components Simple-Small Simple-Large Modern

activation=ReLu activation=ReLu activation=ReLu

Actor hidden layers = 2
with hidden dim=256

hidden layers = 5
with hidden dim=1024

blocks = 2,
with hidden dim=1024

Critic hidden layers = 2
with hidden dim=256

hidden layers = 3
with hidden dim=256

blocks = 1,
with hidden dim=256

Value (only IQL) hidden layers = 2
with hidden dim=256

hidden layers = 2
with hidden dim=1024

simple hidden layers = 2
with hidden dim=1024

Table 8. Network specification for small, large and modern networks employed by different algorithms

B.2. Algorithmic details

Advantage clipping: Similarly to what done in previous papers we may use advantage clipping in the actor update to avoid
numerical overflow due the exponentiation. The actor update is then

argmax
θ

Ea,s∼B

[
exp(min{Aϕ1(s, a), Amax}/β)

Z
log πθ(a|s)

]
. (8)

where Z = Es,a∼B [exp(min{Aϕ1(s, a), Amax}/β)].
Pessimism penalty: As explained in section 4 for the ensemble of critics, we employ a hyperparameter λ to regulate the
extent to which we penalize discrepancies among the critics. We maintain a constant value of λ = 0.5 across all settings,
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Figure 7. The modern architecture proposed by Bjorck et al.
(2021) to enable stable training of very deep networks. Each
of N residual blocks (gray part) consists of a layer normal-
ization followed by two linear layers regularized via spectral
normalization (SN) with a ReLU non-linearity in between.

Testbed Alg. Parameters

Common batch size = 512
discount γ = 0.99

polyak coefficient ρ = 0.995
M = 50

mood λ = 0.5, Amax =∞
train steps (cheetah, walker, hopper) = 1.5M

train steps (humanoid) = 5M

antmaze-v0 λ = 0, Amax = 1
train steps = 2M

locomotion-0.1-v2 λ = 0.5, Amax =∞
train steps = 2M

locomotion-v2 λ = 0.5, Amax =∞
train steps = 2M

Figure 8. The parameters common across algorithms, used for each
testbed

except in antmaze, where we observe that λ = 0 (no penalty) is advantageous. This is likely due to the sparsity of rewards
in antmaze domains.

Table 8 highlights the distinct hyperparameters per each testbed.

B.3. Hyperparameter Sweep

Table 9 summarizes the range of hyperparameters sweep we used in our experiments for each algorithms and testbed.

Testbed/Algorithm IQL AWAC ASAC TD3+BC

mood β = {0.1, 0.5, 1.5, 3} α = {0, 0.01, 0.1, 1, 10}
τ = {0.7, 0.9}

learning rate = {0.0001, 0.0003}

antmaze-v0 β = {0.03, 0.06, 0.1, 0.3, 0.5} α = {0.01, 0.1, 1, 10}
τ = {0.7, 0.9}

learning rate = {0.0001, 0.0003}

locomotion-0.1-v2 β = {0.1, 0.5, 1.5, 3, 10, 20} X α = {0.01, 0.1, 1, 10}
τ = {0.7, 0.9}

learning rate = {0.0001, 0.0003}

locomotion-v2 β = {0.1, 0.5, 1.5, 3} β = {0.1, 0.3, 0.5, 1.5, 3} α = {0, 0.01, 0.1, 1, 10}
τ = {0.7, 0.9}

learning rate = {0.0001, 0.0003}

Table 9. Hyperparameter sweep range per algorithms and per testbed.
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C. Full Empirical Results
In this Section, we report our full quantitative granular results, in ‘raw’ format, listing all relevant hyperparameters for
reproducibility with the shared codebase. We provide extensive ablations, carefully validating the impact of 2 vs 5 vs 10
critics, ES vs no ES, and ASAC vs IQL vs AWAC vs TD3+BC across different architectures (simple small, simple large,
modern small, modern large). These were collected from thousands of GPU hours, across the D4RL (Locomotion and
Antmaze), MOOD, and ExoRL benchmarks, further validating how mixing all other components visibly underperforms
across domains as compared to our top baselines. We also provide some further extensions of our algorithms based on
concurrent work to improve simple algorithms (Tarasov et al., 2024).

C.1. MOOD: Full Results

mean/stdErr
agent IQL AWAC TD3 TD3+BC
actor dim 256 256 256 256
value archi dim 256 0 0 0
num cri 2 2 2 2
critic num layers 2 2 2 2
actor num layers 2 2 2 2
critic model simple simple simple simple
actor model simple simple simple simple
value archi model simple not avail not avail not avail
D same obj. data same obj. data same obj. data same obj. data
num es 1 1 1 1
task

cheetah 382.4 388.9 235.5 382.7
cheetah run 89.2 / 0.5 91.6 / 0.3 27.1 / 4.2 86.3 / 1.0
cheetah run backward 93.8 / 0.3 97.6 / 0.1 52.6 / 16.4 96.9 / 0.6
cheetah walk 99.8 / 0.1 100.0 / 0.0 66.4 / 4.0 99.8 / 0.0
cheetah walk backward 99.7 / 0.0 99.6 / 0.0 89.5 / 4.5 99.7 / 0.0
humanoid 229.1 211.8 10.5 141.4
humanoid run 72.0 / 1.3 62.1 / 1.5 2.0 / 0.7 49.3 / 1.6
humanoid stand 67.0 / 1.3 61.7 / 1.1 3.4 / 2.1 10.8 / 1.3
humanoid walk 90.2 / 0.6 88.0 / 0.8 5.1 / 1.4 81.3 / 0.5
quadruped 384.2 367.7 181.9 349.3
quadruped jump 94.6 / 0.5 91.4 / 4.7 41.5 / 7.2 77.8 / 9.4
quadruped run 96.8 / 0.7 88.7 / 5.0 47.3 / 8.9 92.3 / 3.8
quadruped stand 96.6 / 0.3 96.4 / 0.6 60.2 / 3.5 92.3 / 1.5
quadruped walk 96.1 / 0.4 91.2 / 1.1 32.9 / 4.2 86.9 / 5.8
walker 383.4 383.2 306.2 386.1
walker run 89.3 / 0.6 88.7 / 0.3 59.5 / 5.5 93.3 / 1.8
walker spin 98.1 / 0.2 98.5 / 0.2 96.9 / 0.5 98.1 / 0.5
walker stand 98.2 / 0.1 98.1 / 0.2 72.1 / 4.1 97.2 / 0.3
walker walk 97.8 / 0.1 97.8 / 0.3 77.7 / 1.9 97.5 / 0.1

Table 10. Same Objective Dataset: best scores with small ar-
chitecture

mean/stdErr
agent IQL AWAC TD3 TD3+BC
actor dim 256 256 256 256
value archi dim 256 0 0 0
num cri 2 2 2 2
critic num layers 2 2 2 2
actor num layers 2 2 2 2
critic model simple simple simple simple
actor model simple simple simple simple
value archi model simple not avail not avail not avail
load replay buffer mixed obj. data mixed obj. data mixed obj. data mixed obj. data
num es 1 1 1 1
task

cheetah 318.8 364.6 331.3 352.6
cheetah run 47.6 / 4.6 73.1 / 1.5 40.7 / 4.8 59.3 / 5.0
cheetah run backward 75.4 / 2.8 93.3 / 0.5 91.8 / 0.5 95.9 / 0.3
cheetah walk 96.3 / 1.2 98.7 / 0.3 99.8 / 0.1 97.7 / 1.1
cheetah walk backward 99.5 / 0.1 99.5 / 0.0 98.9 / 0.6 99.6 / 0.0
humanoid 84.3 54.5 11.6 35.2
humanoid run 20.6 / 0.8 15.4 / 0.4 1.5 / 0.4 7.3 / 1.1
humanoid stand 21.4 / 1.3 1.8 / 1.3 5.6 / 1.3 7.0 / 1.2
humanoid walk 42.3 / 2.2 37.3 / 2.0 4.5 / 0.9 21.0 / 8.5
quadruped 364.9 299.3 246.4 323.4
quadruped jump 91.7 / 1.5 75.5 / 3.7 60.3 / 5.3 77.9 / 1.8
quadruped run 93.9 / 0.8 72.0 / 4.1 54.1 / 2.1 78.7 / 5.4
quadruped stand 90.9 / 0.7 70.2 / 1.7 83.3 / 5.4 87.3 / 3.3
quadruped walk 88.4 / 1.5 81.6 / 4.5 48.7 / 4.2 79.5 / 8.3
walker 365.8 368.9 371.7 383.4
walker run 74.5 / 0.9 78.0 / 3.1 73.8 / 1.8 86.1 / 2.8
walker spin 97.4 / 0.1 96.4 / 0.6 99.3 / 0.1 98.9 / 0.1
walker stand 97.3 / 0.1 97.2 / 0.3 99.4 / 0.1 99.0 / 0.1
walker walk 96.6 / 0.3 97.3 / 0.3 99.3 / 0.3 99.5 / 0.2

Table 11. Mixed Objective Dataset: best scores with small
architecture

mean/stdErr
agent IQL AWAC TD3 TD3+BC
actor dim 1024 1024 1024 1024 1024
value archi dim 1024 0 0 0 0
num cri 2 2 2 2 2
critic num layers 3 3 3 3 3
actor num layers 5 5 5 5 5
critic model simple simple simple simple simple
actor model simple simple simple simple simple
value archi model simple not avail not avail not avail not avail
score processing softmax asac buffer softmax none none
load replay buffer mixed obj. data mixed obj. data mixed obj. data mixed obj. data mixed obj. data
num es 1 1 1 1 1
task

cheetah 92.6 92.6 95.5 84.5 95.2
cheetah run 80.5 / 0.4 87.3 / 1.1 88.4 / 0.6 45.2 / 9.4 84.0 / 1.7
cheetah run backward 91.1 / 0.5 83.8 / 0.8 94.2 / 0.2 95.6 / 0.7 98.1 / 0.1
cheetah walk 99.3 / 0.5 99.8 / 0.0 99.9 / 0.0 99.4 / 0.5 99.2 / 0.1
cheetah walk backward 99.7 / 0.0 99.5 / 0.1 99.6 / 0.0 97.9 / 1.6 99.5 / 0.1
humanoid 92.1 88.1 85.6 3.0 83.7
humanoid run 98.6 / 0.3 84.7 / 0.3 82.9 / 0.4 1.8 / 0.3 75.1 / 0.9
humanoid stand 84.3 / 0.5 86.2 / 0.5 80.0 / 0.5 5.1 / 1.4 85.5 / 0.7
humanoid walk 93.5 / 0.1 93.5 / 0.2 93.9 / 0.2 2.0 / 1.5 90.6 / 0.2
quadruped 93.9 62.0 78.6 20.4 94.1
quadruped jump 92.0 / 0.5 54.8 / 2.2 76.3 / 5.2 18.8 / 1.1 91.9 / 1.0
quadruped run 92.9 / 1.1 60.5 / 3.1 81.9 / 5.6 15.9 / 1.8 92.7 / 1.0
quadruped stand 94.7 / 0.2 67.1 / 1.0 76.5 / 5.3 28.6 / 2.4 95.5 / 1.1
quadruped walk 96.3 / 0.5 65.6 / 1.5 79.8 / 6.2 18.5 / 5.7 96.4 / 1.0
walker 94.2 88.6 96.1 92.5 97.4
walker run 83.7 / 1.3 63.9 / 0.9 87.2 / 3.0 72.2 / 1.7 95.2 / 0.3
walker spin 98.3 / 0.2 95.8 / 0.2 99.0 / 0.1 99.1 / 0.1 98.1 / 0.1
walker stand 98.0 / 0.1 97.1 / 0.2 98.8 / 0.0 99.5 / 0.1 97.8 / 0.0
walker walk 96.9 / 0.1 97.5 / 0.2 99.3 / 0.1 99.3 / 0.2 98.4 / 0.1

total 373.0 331.3 355.8 200.5 370.4

Table 12. Mixed Objective Dataset: best scores with large
architecture and 2 critics

mean/stdErr
agent IQL AWAC TD3 TD3+BC
actor dim 1024 1024 1024 1024 1024
value archi dim 1024 0 0 0 0
num cri 2 2 2 2 2
critic num layers 2 2 2 2 2
actor num layers 2 2 2 2 2
critic model modern modern modern modern modern
actor model modern modern modern modern modern
value archi model simple not avail not avail not avail not avail
score processing softmax asac buffer softmax none none
load replay buffer mixed obj. data mixed obj. data mixed obj. data mixed obj. data mixed obj. data
num es 1 1 1 1 1
task

cheetah 92.9 93.6 95.0 80.6 92.7
cheetah run 81.3 / 1.0 83.9 / 0.6 86.7 / 0.5 32.9 / 2.0 73.8 / 1.3
cheetah run backward 90.7 / 0.8 91.2 / 0.5 93.9 / 0.3 90.0 / 1.1 97.3 / 0.2
cheetah walk 99.9 / 0.0 99.8 / 0.0 99.9 / 0.0 99.9 / 0.0 99.9 / 0.0
cheetah walk backward 99.7 / 0.0 99.5 / 0.0 99.6 / 0.0 99.7 / 0.0 99.7 / 0.0
humanoid 91.4 89.5 90.8 2.3 83.2
humanoid run 97.9 / 0.3 87.9 / 0.5 89.3 / 0.9 1.5 / 0.3 77.4 / 0.9
humanoid stand 83.1 / 0.4 86.6 / 0.9 89.0 / 0.5 2.5 / 0.5 82.5 / 0.3
humanoid walk 93.2 / 0.1 94.0 / 0.1 94.1 / 0.2 2.9 / 0.8 89.8 / 0.4
quadruped 91.0 76.8 77.5 52.8 85.2
quadruped jump 87.9 / 0.7 77.6 / 1.0 63.7 / 10.9 56.6 / 4.4 73.7 / 8.5
quadruped run 94.0 / 0.7 77.0 / 5.7 86.8 / 3.9 50.3 / 1.9 88.9 / 2.6
quadruped stand 92.8 / 0.6 79.5 / 1.6 79.0 / 1.8 65.8 / 4.1 90.7 / 3.3
quadruped walk 89.2 / 1.0 73.0 / 1.5 80.4 / 6.6 38.3 / 2.1 87.5 / 5.5
walker 94.4 87.6 96.2 93.3 97.8
walker run 84.1 / 0.5 65.1 / 1.4 90.3 / 0.7 75.4 / 3.5 93.9 / 0.4
walker spin 98.1 / 0.1 95.7 / 0.7 97.3 / 0.3 99.3 / 0.1 98.7 / 0.3
walker stand 97.6 / 0.2 93.8 / 1.4 98.4 / 0.1 99.5 / 0.1 99.1 / 0.1
walker walk 97.9 / 0.2 95.7 / 0.5 98.8 / 0.1 99.0 / 0.3 99.7 / 0.0

total 369.7 347.4 359.5 229.0 358.9

Table 13. Mixed Objective Dataset: best scores with modern
architecture and 2 critics
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mean/stdErr
agent IQL ASAC AWAC TD3 TD3+BC
actor dim 1024 1024 1024 1024 1024
value archi dim 1024 0 0 0 0
num cri 5 5 5 5 5
critic num layers 3 3 3 3 3
actor num layers 5 5 5 5 5
critic model simple simple simple simple simple
actor model simple simple simple simple simple
value archi model simple not avail not avail not avail not avail
score processing softmax asac buffer softmax none none
load replay buffer mixed obj. data mixed obj. data mixed obj. data mixed obj. data mixed obj. data
num es 1 50 1 50 1 50 1 50 1 50
task

cheetah 92.5 89.4 94.9 95.4 95.7 95.3 81.0 85.1 94.5 94.6
cheetah run 81.0 / 0.3 64.6 / 2.2 87.9 / 0.7 85.2 / 0.8 89.5 / 0.4 85.0 / 1.2 29.4 / 0.9 45.2 / 5.1 81.6 / 1.2 80.4 / 1.0
cheetah run backward 89.4 / 0.4 94.1 / 0.4 92.5 / 0.2 96.8 / 0.3 94.0 / 0.4 96.5 / 0.1 96.4 / 0.4 96.2 / 0.7 98.2 / 0.1 98.3 / 0.3
cheetah walk 99.8 / 0.1 99.2 / 0.1 99.8 / 0.0 99.9 / 0.0 99.9 / 0.0 100.0 / 0.0 98.6 / 0.7 100.0 / 0.0 98.9 / 0.4 99.9 / 0.1
cheetah walk backward 99.7 / 0.0 99.7 / 0.0 99.1 / 0.1 99.7 / 0.0 99.6 / 0.0 99.7 / 0.0 99.4 / 0.4 99.0 / 0.8 99.4 / 0.0 99.8 / 0.0
humanoid 92.1 80.9 89.2 80.6 88.3 78.6 4.7 2.9 86.2 77.3
humanoid run 98.6 / 0.4 71.9 / 0.5 84.3 / 0.8 65.4 / 1.0 85.9 / 0.9 61.9 / 0.7 2.5 / 0.7 1.8 / 0.4 79.8 / 0.6 58.9 / 0.5
humanoid stand 84.3 / 0.5 81.0 / 0.5 88.5 / 0.4 83.7 / 0.9 84.8 / 0.8 81.4 / 0.6 6.7 / 2.7 4.5 / 1.2 87.3 / 0.4 82.6 / 1.0
humanoid walk 93.4 / 0.3 89.8 / 0.2 94.6 / 0.2 92.5 / 0.2 94.1 / 0.1 92.4 / 0.2 4.9 / 1.9 2.4 / 2.2 91.4 / 0.2 90.3 / 0.2
quadruped 94.0 97.1 74.7 89.9 86.7 95.6 26.9 31.7 94.9 98.0
quadruped jump 91.8 / 0.7 96.8 / 0.3 75.9 / 1.9 92.4 / 0.8 81.6 / 4.0 94.6 / 0.7 27.0 / 4.7 28.2 / 2.8 91.5 / 0.9 97.5 / 0.4
quadruped run 90.9 / 0.8 97.1 / 0.4 70.9 / 1.8 88.3 / 3.2 85.9 / 6.0 93.6 / 2.5 23.5 / 5.3 31.6 / 7.6 95.0 / 0.7 97.9 / 1.6
quadruped stand 96.2 / 0.2 97.1 / 0.7 74.6 / 3.4 91.1 / 2.0 89.5 / 1.2 96.7 / 0.5 33.4 / 4.8 28.4 / 5.4 96.6 / 0.3 99.4 / 0.4
quadruped walk 97.1 / 0.3 97.6 / 0.6 77.6 / 2.8 88.0 / 2.6 89.9 / 3.8 97.7 / 0.4 23.6 / 6.8 38.7 / 11.8 96.5 / 0.6 97.3 / 1.1
walker 95.0 95.7 94.6 97.4 96.6 98.2 95.1 95.3 97.5 99.0
walker run 85.1 / 1.1 86.3 / 1.3 84.7 / 3.0 91.7 / 0.3 89.3 / 2.5 94.0 / 0.3 81.7 / 2.6 82.6 / 2.6 95.3 / 0.3 96.5 / 0.3
walker spin 98.4 / 0.1 98.9 / 0.1 97.7 / 0.5 98.8 / 0.6 99.1 / 0.0 99.4 / 0.0 99.2 / 0.1 99.0 / 0.2 98.4 / 0.1 99.3 / 0.0
walker stand 98.7 / 0.0 98.9 / 0.0 98.4 / 0.3 99.4 / 0.1 98.9 / 0.1 99.6 / 0.0 99.7 / 0.1 99.5 / 0.3 97.8 / 0.1 99.9 / 0.0
walker walk 97.7 / 0.2 98.8 / 0.1 97.5 / 0.2 99.7 / 0.1 99.1 / 0.2 99.7 / 0.1 100.0 / 0.1 100.1 / 0.1 98.5 / 0.1 100.4 / 0.1
total 373.6 363.2 353.3 363.3 367.3 367.7 207.6 215.0 373.1 368.9

Table 14. Mixed Objective Dataset: best scores with large architecture and 5 critics

mean/stdErr
agent IQL ASAC AWAC TD3 TD3+BC
actor dim 1024 1024 1024 1024 1024
value archi dim 1024 0 0 0 0
num cri 5 5 5 5 5
critic num layers 2 2 2 2 2
actor num layers 2 2 2 2 2
critic model modern modern modern modern modern
actor model modern modern modern modern modern
value archi model simple not avail not avail not avail not avail
score processing softmax asac buffer softmax none none
load replay buffer mixed obj. data mixed obj. data mixed obj. data mixed obj. data mixed obj. data
num es 1 50 1 50 1 50 1 50 1 50
task

cheetah 93.2 89.0 94.7 94.3 95.0 93.8 82.2 82.2 93.3 91.5
cheetah run 83.0 / 1.0 62.1 / 3.5 86.2 / 1.1 82.0 / 0.7 86.4 / 0.2 80.1 / 2.1 34.7 / 1.2 35.6 / 2.9 75.7 / 0.8 69.0 / 2.9
cheetah run backward 90.3 / 0.6 94.4 / 0.2 93.5 / 0.3 95.6 / 0.1 94.0 / 0.3 95.4 / 0.2 94.5 / 0.4 93.7 / 0.5 97.7 / 0.1 97.1 / 0.5
cheetah walk 99.9 / 0.0 99.8 / 0.1 99.7 / 0.1 99.8 / 0.0 99.9 / 0.0 99.8 / 0.0 99.9 / 0.0 100.0 / 0.0 100.0 / 0.0 100.0 / 0.0
cheetah walk backward 99.7 / 0.0 99.7 / 0.0 99.4 / 0.2 99.7 / 0.0 99.6 / 0.0 99.7 / 0.0 99.7 / 0.0 99.7 / 0.0 99.7 / 0.0 99.7 / 0.0
humanoid 90.9 78.2 90.4 79.1 91.4 78.5 3.1 2.5 83.4 76.4
humanoid run 97.0 / 0.7 64.9 / 0.7 89.6 / 1.0 62.9 / 0.5 90.5 / 0.2 59.5 / 0.7 2.5 / 0.4 2.6 / 0.4 79.1 / 1.2 56.3 / 0.5
humanoid stand 82.4 / 0.5 79.2 / 0.2 87.8 / 0.4 83.1 / 0.6 89.2 / 0.5 84.8 / 0.4 4.4 / 0.6 3.1 / 1.0 80.9 / 1.3 82.3 / 0.2
humanoid walk 93.2 / 0.3 90.4 / 0.3 93.9 / 0.1 91.2 / 0.1 94.3 / 0.1 91.1 / 0.3 2.3 / 0.5 1.7 / 0.3 90.3 / 0.4 90.5 / 0.2
quadruped 91.8 96.7 83.2 92.2 85.4 92.2 53.4 57.9 91.5 93.8
quadruped jump 89.1 / 1.0 96.0 / 0.1 79.6 / 3.7 94.1 / 0.4 81.0 / 3.3 94.5 / 1.0 62.6 / 3.1 68.5 / 7.1 90.4 / 1.3 92.9 / 0.8
quadruped run 94.8 / 0.6 98.9 / 0.5 81.0 / 3.6 86.7 / 1.9 95.2 / 1.6 87.2 / 5.4 48.7 / 1.1 49.2 / 1.5 92.7 / 1.2 97.2 / 1.2
quadruped stand 94.2 / 0.8 95.7 / 0.3 83.6 / 1.6 95.2 / 0.7 81.6 / 0.5 94.7 / 0.9 63.8 / 2.8 66.8 / 4.2 88.3 / 3.2 91.3 / 2.5
quadruped walk 89.2 / 1.2 96.1 / 0.3 88.8 / 1.0 92.7 / 0.8 83.8 / 5.6 92.6 / 1.9 38.4 / 1.6 47.2 / 2.3 94.5 / 0.9 93.9 / 1.8
walker 94.6 95.3 96.5 96.7 95.8 95.7 94.0 94.8 98.2 98.1
walker run 84.1 / 0.4 86.1 / 1.7 93.9 / 0.4 89.7 / 0.6 88.1 / 1.5 85.2 / 1.3 76.9 / 2.4 80.1 / 3.0 94.5 / 0.3 94.2 / 0.5
walker spin 98.3 / 0.1 98.7 / 0.0 94.8 / 0.4 98.5 / 0.1 97.5 / 0.2 98.7 / 0.1 99.3 / 0.0 99.3 / 0.0 99.1 / 0.1 98.9 / 0.1
walker stand 97.8 / 0.2 98.4 / 0.0 98.7 / 0.0 99.3 / 0.0 98.7 / 0.1 99.3 / 0.1 99.7 / 0.0 99.7 / 0.0 99.3 / 0.0 99.4 / 0.1
walker walk 98.4 / 0.1 98.0 / 0.2 98.7 / 0.2 99.4 / 0.1 98.9 / 0.2 99.5 / 0.1 100.2 / 0.2 100.2 / 0.0 100.0 / 0.0 99.7 / 0.2

total 370.6 359.2 364.9 362.3 367.5 360.2 232.7 237.5 366.4 359.7

Table 15. Mixed Objective Dataset: best scores with modern architecture and 5 critics
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C.2. Locomotion-v2: Full Results

mean/stdErr
agent IQL AWAC TD3 TD3+BC
actor dim 256 256 256 256
num cri 2 2 2 2
critic num layers 2 2 2 2
actor num layers 2 2 2 2
critic model simple simple simple simple
actor model simple simple simple simple
num es 1 1 1 1
task

halfcheetah-medium-expert-v2 87.6 / 1.2 93.0 / 0.5 3.9 / nan 91.3 / 0.4
halfcheetah-medium-replay-v2 45.0 / 0.2 48.0 / 0.2 42.0 / 2.8 47.6 / 0.2
halfcheetah-medium-v2 51.6 / 0.1 51.9 / 0.2 44.9 / 7.4 66.2 / 0.2
hopper-medium-expert-v2 107.9 / 0.6 100.8 / 1.8 0.7 / 0.0 95.5 / 4.0
hopper-medium-replay-v2 96.7 / 0.7 99.1 / 1.0 64.8 / 21.3 79.8 / 4.3
hopper-medium-v2 97.4 / 3.2 79.6 / 1.6 NaN 72.9 / 18.1
walker2d-medium-expert-v2 112.2 / 0.9 109.7 / 0.1 -0.1 / 0.0 108.9 / 2.7
walker2d-medium-replay-v2 88.0 / 1.5 82.6 / 1.7 3.5 / 0.6 75.7 / 5.1
walker2d-medium-v2 85.4 / 1.3 83.5 / 2.4 -0.1 / 0.1 80.7 / 0.1

total 771.8 748.2 159.7 718.6

Table 16. Locomotion-v2: best scores with small architecture

mean/stdErr
agent IQL ASAC AWAC TD3 TD3+BC
actor dim 1024 1024 1024 1024 1024
num cri 5 5 5 5 5
critic num layers 3 3 3 3 3
actor num layers 5 5 5 5 5
critic model simple simple simple simple simple
actor model simple simple simple simple simple
num es 1 50 1 50 1 50 1 50 1 50
task

halfcheetah-medium-expert-v2 93.5 / 0.2 60.7 / 1.4 74.1 / 18.7 88.5 / 1.2 90.5 / 0.7 100.3 / 1.0 0.3 / 2.9 15.5 / 13.1 91.8 / 0.4 94.1 / 0.8
halfcheetah-medium-replay-v2 47.4 / 0.2 52.0 / 0.2 47.9 / 0.3 54.9 / 0.3 50.4 / 0.2 57.5 / 0.1 45.1 / 2.2 54.5 / 2.2 49.8 / 0.8 59.1 / 0.6
halfcheetah-medium-v2 54.9 / 0.1 63.0 / 0.1 49.4 / 0.2 61.1 / 0.2 53.4 / 0.2 64.6 / 0.2 27.9 / 17.7 20.3 / 11.5 55.8 / 0.1 70.8 / 0.4
hopper-medium-expert-v2 110.0 / 0.2 30.2 / 2.6 109.8 / 0.2 64.5 / 8.3 110.4 / 0.2 65.8 / 8.9 0.9 / 0.2 1.0 / 0.2 109.6 / 0.4 71.3 / 8.8
hopper-medium-replay-v2 94.7 / 1.9 85.7 / 4.5 72.9 / 4.9 95.2 / 1.4 90.8 / 2.7 102.5 / 0.5 12.9 / 5.4 29.6 / 13.0 60.0 / 4.3 98.7 / 2.1
hopper-medium-v2 96.4 / 2.0 67.4 / 13.9 75.6 / 1.6 57.3 / 3.6 81.7 / 16.2 55.3 / 7.4 0.9 / 0.2 0.8 / 0.0 93.2 / 0.7 59.9 / 2.9
walker2d-medium-expert-v2 110.3 / 0.1 114.1 / 0.4 110.7 / 0.0 113.5 / 0.3 110.1 / 0.1 115.5 / 0.3 0.2 / 0.4 1.0 / 0.6 110.8 / 0.1 115.5 / 0.9
walker2d-medium-replay-v2 88.7 / 1.4 94.2 / 0.7 65.5 / 2.8 91.1 / 1.7 85.3 / 0.7 96.3 / 1.0 3.8 / 0.6 2.9 / 0.9 67.1 / 1.1 87.7 / 0.4
walker2d-medium-v2 84.3 / 2.2 89.8 / 0.4 77.2 / 0.4 84.6 / 0.2 82.6 / 0.1 87.0 / 0.3 0.1 / 0.3 0.9 / 0.8 80.6 / 0.3 87.2 / 0.3

total 780.1 657.2 683.2 710.7 755.2 744.7 92.2 126.5 718.8 744.4

Table 17. Locomotion-v2: best scores with large architecture

mean/stdErr
agent IQL ASAC AWAC TD3 TD3+BC
actor dim 1024 1024 1024 1024 1024
num cri 5 5 5 5 5
critic num layers 2 2 2 2 2
actor num layers 2 2 2 2 2
critic model modern modern modern modern modern
actor model modern modern modern modern modern
num es 1 50 1 50 1 50 1 50 1 50
task

halfcheetah-medium-expert-v2 93.4 / 0.1 44.2 / 1.0 94.5 / 0.2 76.6 / 2.8 94.3 / 0.4 63.0 / 1.0 29.3 / 3.4 27.7 / 4.6 92.7 / 0.2 79.2 / 0.9
halfcheetah-medium-replay-v2 46.5 / 0.2 49.9 / 0.1 46.7 / 0.6 54.5 / 0.2 49.0 / 0.2 54.4 / 0.3 52.1 / 0.6 52.6 / 1.1 55.9 / 0.5 57.9 / 0.1
halfcheetah-medium-v2 52.9 / 0.2 58.2 / 0.1 52.9 / 0.2 61.3 / 0.5 53.1 / 0.2 61.4 / 0.1 62.2 / 1.1 63.0 / 0.3 63.4 / 0.2 64.6 / 0.3
hopper-medium-expert-v2 110.5 / 0.2 29.1 / 4.6 110.9 / 0.2 45.5 / 13.4 110.3 / 0.1 62.7 / 13.5 1.6 / 0.3 2.8 / 1.4 111.8 / 0.3 81.2 / 2.6
hopper-medium-replay-v2 100.0 / 0.8 101.1 / 0.5 84.7 / 4.6 101.4 / 0.4 101.0 / 0.4 101.9 / 0.6 35.2 / 1.3 40.6 / 12.8 72.1 / 2.9 100.6 / 0.2
hopper-medium-v2 98.1 / 0.8 73.0 / 6.1 89.1 / 2.8 94.6 / 4.7 95.1 / 2.3 96.4 / 2.8 1.3 / 0.3 1.7 / 0.2 94.9 / 0.8 88.3 / 2.0
walker2d-medium-expert-v2 111.4 / 0.6 112.9 / 0.3 109.8 / 0.0 112.1 / 0.2 111.9 / 1.0 112.8 / 0.1 -0.2 / 0.0 -0.2 / 0.0 110.9 / 0.0 115.0 / 0.4
walker2d-medium-replay-v2 91.2 / 0.3 96.2 / 0.2 87.1 / 0.3 93.9 / 0.5 90.8 / 1.3 94.7 / 0.4 5.4 / 2.4 6.3 / 1.7 68.4 / 0.5 90.5 / 0.3
walker2d-medium-v2 89.3 / 0.6 90.4 / 0.2 81.1 / 0.2 86.1 / 0.1 83.5 / 0.2 87.1 / 0.1 -0.2 / 0.0 -0.2 / 0.0 79.1 / 0.5 87.1 / 0.2

total 793.2 655.1 756.8 726.0 789.0 734.2 186.7 194.3 749.1 764.3

Table 18. Locomotion-v2: best scores with modern architecture
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C.3. Antmaze-v0: Full Results

mean/stdErr
agent IQL AWAC TD3+BC
actor dim 256 256 256
num cri 2 2 2
critic num layers 2 2 2
actor num layers 2 2 2
critic model simple simple simple
actor model simple simple simple
score processing softmax softmax none
num es 1 1 1
task

antmaze-large-diverse-v0 41.5 / 3.4 36.5 / 2.2 2.1 / 1.7
antmaze-large-play-v0 28.7 / 9.0 7.8 / 7.8 0.2 / 0.2
antmaze-medium-diverse-v0 60.7 / 7.9 31.4 / 19.3 43.9 / 3.0
antmaze-medium-play-v0 66.3 / 2.1 76.3 / 1.6 28.1 / 11.7
antmaze-umaze-diverse-v0 68.8 / 7.3 14.0 / 14.0 41.4 / 3.3
antmaze-umaze-v0 89.1 / 3.4 45.6 / 15.0 70.2 / 15.8

total 355.2 211.6 186.0

Table 19. Antmaze-v0: best scores with small architecture
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mean/stdErr
agent IQL ASAC AWAC TD3+BC
actor dim 1024 1024 1024 1024
num cri 5 5 5 5
critic num layers 3 3 3 3
actor num layers 5 5 5 5
critic model simple simple simple simple
actor model simple simple simple simple
score processing softmax asac buffer softmax none
num es 1 50 1 50 1 50 1 50
task

antmaze-large-diverse-v0 59.8 / 3.2 64.4 / 1.3 10.3 / 1.4 49.2 / 0.8 16.9 / 10.6 32.0 / 1.1 7.2 / 3.9 8.7 / 1.3
antmaze-large-play-v0 26.2 / 2.3 22.6 / 3.7 4.7 / 2.2 12.3 / 1.0 7.2 / 4.6 17.3 / 0.7 0.6 / 0.6 5.6 / 3.5
antmaze-medium-diverse-v0 77.0 / 2.0 85.6 / 0.6 63.8 / 1.6 89.1 / 1.5 48.0 / 19.6 85.8 / 1.1 17.7 / 7.2 61.9 / 14.1
antmaze-medium-play-v0 78.5 / 1.9 86.5 / 0.7 51.5 / 4.4 86.7 / 1.2 63.3 / 15.9 84.6 / 1.0 15.7 / 11.1 24.2 / 10.0
antmaze-umaze-diverse-v0 82.3 / 3.6 83.9 / 0.9 71.1 / 2.2 72.1 / 1.5 48.5 / 10.3 42.0 / 17.8 69.4 / 3.7 68.1 / 5.4
antmaze-umaze-v0 91.0 / 0.7 96.6 / 0.4 91.2 / 2.1 99.0 / 0.2 89.8 / 1.4 98.2 / 0.3 89.7 / 4.1 96.0 / 1.2

total 414.8 439.6 292.6 408.5 273.7 359.8 200.3 264.6

Table 20. Antmaze-v0: best scores with 5 critics and large architecture

mean/stdErr
agent IQL ASAC AWAC TD3+BC
actor dim 1024 1024 1024 1024
num cri 5 5 5 5
critic num layers 2 2 2 2
actor num layers 2 2 2 2
critic model modern modern modern modern
actor model modern modern modern modern
score processing softmax asac buffer softmax none
num es 1 50 1 50 1 50 1 50
task

antmaze-large-diverse-v0 42.1 / 1.7 60.4 / 1.2 40.0 / 1.6 49.9 / 1.5 43.0 / 2.2 43.0 / 3.4 18.8 / 1.5 9.9 / 9.9
antmaze-large-play-v0 38.9 / 1.7 54.2 / 1.1 33.4 / 2.4 43.8 / 2.4 32.0 / 1.8 42.2 / 0.8 7.2 / 4.3 8.3 / 5.4
antmaze-medium-diverse-v0 73.2 / 1.4 82.9 / 1.1 78.3 / 1.1 82.3 / 0.8 77.0 / 0.6 83.2 / 1.5 65.7 / 2.5 75.0 / 7.5
antmaze-medium-play-v0 71.0 / 1.5 82.9 / 0.7 74.1 / 1.3 84.9 / 1.4 77.0 / 1.4 85.6 / 1.7 70.5 / 1.7 52.4 / 17.6
antmaze-umaze-diverse-v0 77.3 / 3.5 86.6 / 0.7 65.7 / 3.3 81.1 / 2.9 62.5 / 2.6 72.8 / 3.3 67.7 / 7.8 71.7 / 4.9
antmaze-umaze-v0 88.6 / 1.0 96.1 / 0.7 95.2 / 0.8 98.7 / 0.1 96.9 / 0.7 97.8 / 0.5 74.6 / 18.6 94.1 / 1.2

total 391.1 463.1 386.7 440.8 388.3 424.8 304.3 311.5

Table 21. Antmaze-v0: best scores with 5 critics and modern architecture
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mean/stdErr
agent IQL ASAC AWAC TD3+BC
actor dim 1024 1024 1024 1024
num cri 10 10 10 10
critic num layers 3 3 3 3
actor num layers 5 5 5 5
critic model simple simple simple simple
actor model simple simple simple simple
score processing softmax asac buffer softmax none
num es 1 50 1 50 1 50 1 50
task

antmaze-large-diverse-v0 57.4 / 1.6 63.4 / 1.7 12.0 / 1.0 52.4 / 3.0 34.8 / 7.2 44.8 / 6.7 2.8 / 2.4 4.4 / 2.3
antmaze-large-play-v0 27.3 / 1.3 13.8 / 2.1 8.1 / 0.3 12.6 / 1.7 14.1 / 7.1 12.5 / 1.1 0.7 / 0.3 0.0 / 0.0
antmaze-medium-diverse-v0 78.3 / 1.3 80.2 / 1.9 65.6 / 1.6 88.7 / 0.6 83.7 / 1.4 87.1 / 0.9 12.4 / 0.6 17.3 / 1.3
antmaze-medium-play-v0 77.0 / 1.0 86.6 / 1.2 59.2 / 1.4 87.2 / 1.4 67.0 / 6.1 85.2 / 0.7 16.5 / 0.9 9.2 / 9.2
antmaze-umaze-diverse-v0 84.3 / 2.1 87.5 / 0.6 77.9 / 6.7 79.3 / 1.7 39.4 / 15.0 39.6 / 15.7 53.3 / 14.8 40.9 / 10.3
antmaze-umaze-v0 93.2 / 1.3 95.8 / 1.0 88.7 / 0.4 98.6 / 0.4 91.1 / 0.4 98.9 / 0.2 97.6 / 0.4 99.2 / 0.3

total 417.5 427.3 311.4 418.9 330.2 368.0 183.4 170.9

Table 22. Antmaze-v0: best scores with 10 critics and large architecture

mean/stdErr
agent IQL ASAC AWAC TD3+BC
actor dim 1024 1024 1024 1024
num cri 10 10 10 10
critic num layers 2 2 2 2
actor num layers 2 2 2 2
critic model modern modern modern modern
actor model modern modern modern modern
score processing softmax asac buffer softmax none
num es 1 50 1 50 1 50 1 50
task

antmaze-large-diverse-v0 40.8 / 1.3 61.7 / 1.3 42.8 / 3.6 50.9 / 1.2 44.3 / 1.3 52.4 / 3.3 11.2 / 1.7 6.5 / 3.7
antmaze-large-play-v0 40.1 / 1.2 51.4 / 1.6 36.1 / 1.9 43.3 / 1.4 31.4 / 1.6 39.9 / 1.1 0.8 / 0.5 0.0 / 0.0
antmaze-medium-diverse-v0 74.9 / 1.5 83.1 / 0.7 77.1 / 2.0 83.3 / 1.3 79.2 / 0.7 84.7 / 0.6 38.4 / 15.7 27.3 / 16.7
antmaze-medium-play-v0 65.8 / 4.5 81.4 / 1.3 77.7 / 1.4 83.6 / 1.4 79.3 / 1.2 86.2 / 0.8 68.2 / 1.6 68.0 / 1.4
antmaze-umaze-diverse-v0 71.6 / 2.1 82.3 / 0.7 63.5 / 5.6 75.5 / 1.7 86.7 / 1.0 74.4 / 2.8 83.5 / 5.9 64.1 / 17.5
antmaze-umaze-v0 87.3 / 0.6 96.2 / 0.3 94.8 / 0.6 98.8 / 0.2 97.8 / 0.1 98.7 / 0.3 96.8 / 0.3 99.3 / 0.1

total 380.4 456.1 391.9 435.4 418.7 436.1 299.0 265.1

Table 23. Antmaze-v0: best scores with 10 critics and modern architecture
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C.4. Locomotion-0.1-v2: Full Results

mean/stdErr
agent IQL ASAC AWAC TD3+BC
actor dim 1024 1024 1024 1024
num cri 10 10 10 10
critic num layers 3 3 3 3
actor num layers 5 5 5 5
critic model simple simple simple simple
actor model simple simple simple simple
score processing softmax asac buffer softmax none
num es 1 50 1 50 1 50 1 50
task

halfcheetah-random-expert-0.1-v2 76.3 / 2.1 19.7 / 0.8 61.5 / 6.7 27.0 / 1.2 78.3 / 1.2 31.5 / 1.1 29.7 / 1.1 30.7 / 1.2
halfcheetah-random-medium-0.1-v2 48.8 / 0.2 52.7 / 0.2 45.2 / 0.2 53.6 / 4.1 51.9 / 0.2 58.9 / 0.2 59.4 / 0.6 60.7 / 0.7
hopper-random-expert-0.1-v2 95.4 / 2.2 24.3 / 2.2 41.8 / 2.7 20.4 / 1.0 78.4 / 1.5 26.9 / 1.3 77.0 / 2.0 26.5 / 1.8
hopper-random-medium-0.1-v2 70.5 / 3.0 64.1 / 4.6 48.0 / 5.0 66.7 / 2.3 68.7 / 4.1 76.3 / 3.8 46.6 / 1.8 60.5 / 1.7
walker2d-random-expert-0.1-v2 99.2 / 0.6 21.7 / 0.9 101.1 / 0.6 60.3 / 3.5 61.3 / 15.5 40.0 / 10.2 3.8 / 0.3 11.6 / 0.8
walker2d-random-medium-0.1-v2 73.3 / 0.6 60.5 / 1.6 71.4 / 1.6 75.0 / 0.9 59.3 / 14.7 78.4 / 3.1 53.1 / 10.4 48.6 / 19.6
total 463.5 242.9 369.0 303.1 398.0 311.8 269.5 238.6

Table 24. Locomotion-0.1-v2: best scores with 10 critics and large architecture

mean/stdErr
agent IQL ASAC AWAC TD3+BC
actor dim 1024 1024 1024 1024
num cri 10 10 10 10
critic num layers 2 2 2 2
actor num layers 2 2 2 2
critic model modern modern modern modern
actor model modern modern modern modern
score processing softmax asac buffer softmax none
num es 1 50 1 50 1 50 1 50
task

halfcheetah-random-expert-0.1-v2 65.8 / 2.2 12.3 / 0.8 56.2 / 6.6 25.8 / 0.6 66.7 / 3.0 27.5 / 0.8 15.5 / 1.2 18.3 / 1.2
halfcheetah-random-medium-0.1-v2 47.3 / 0.4 48.9 / 0.3 47.4 / 0.5 53.2 / 0.4 51.0 / 0.2 54.6 / 0.1 56.5 / 0.5 57.5 / 0.3
hopper-random-expert-0.1-v2 109.0 / 0.4 40.2 / 1.6 73.4 / 5.3 29.6 / 2.2 32.3 / 4.8 25.8 / 2.0 80.2 / 4.4 32.1 / 1.9
hopper-random-medium-0.1-v2 93.9 / 2.3 92.3 / 1.6 52.7 / 1.2 69.0 / 2.1 53.4 / 1.0 71.7 / 1.2 50.8 / 1.0 71.1 / 1.9
walker2d-random-expert-0.1-v2 107.8 / 0.3 44.4 / 3.6 99.5 / 2.0 61.4 / 4.1 93.6 / 3.1 83.9 / 4.2 41.9 / 17.0 34.3 / 11.8
walker2d-random-medium-0.1-v2 75.0 / 0.5 65.6 / 2.1 55.4 / 5.1 65.9 / 4.7 30.9 / 13.0 47.0 / 6.9 52.6 / 4.0 57.5 / 4.3
total 498.8 303.7 384.5 304.9 327.9 310.4 297.5 270.8

Table 25. Locomotion-0.1-v2: best scores with 10 critics and modern architecture

C.5. ExoRL: Full Results

We also tested our hypotheses on the ExoRL dataset generated using RND (Yarats et al., 2022).

22



Simple Ingredients for Offline Reinforcement Learning

mean/stdErr
agent IQL AWAC TD3 TD3+BC
actor dim 256 256 256 256
num cri 2 2 2 2
critic num layers 2 2 2 2
actor num layers 2 2 2 2
critic model simple simple simple simple
actor model simple simple simple simple
num es 1 1 1 1
task

cheetah 47.1 54.1 54.1 64.7
cheetah run 16.4 / 0.3 19.0 / 0.6 23.8 / 6.2 29.5 / 2.5
cheetah run backward 29.2 / 2.9 40.5 / 4.6 56.0 / 1.7 57.9 / 3.6
cheetah walk 56.0 / 2.3 66.6 / 3.2 68.9 / 7.6 73.2 / 3.2
cheetah walk backward 86.9 / 2.8 90.4 / 6.2 67.8 / 31.0 98.1 / 0.8
quadruped 82.1 84.8 84.2 86.6
quadruped jump 88.5 / 0.8 89.0 / 0.6 95.4 / 1.5 93.1 / 0.6
quadruped run 66.3 / 0.3 64.7 / 0.8 68.2 / 1.5 68.9 / 0.5
quadruped stand 99.2 / 0.2 98.5 / 0.5 97.7 / 0.4 99.5 / 0.2
quadruped walk 74.6 / 0.3 86.9 / 2.9 75.6 / 4.6 84.7 / 2.3
walker 55.0 50.9 79.0 73.8
walker run 17.0 / 0.1 17.2 / 0.1 46.2 / 1.0 41.4 / 0.4
walker spin 92.5 / 0.3 93.5 / 0.5 99.2 / 0.1 98.7 / 0.1
walker stand 65.9 / 1.3 48.2 / 0.5 92.0 / 2.3 83.4 / 1.1
walker walk 44.7 / 0.2 44.6 / 1.4 78.7 / 1.6 71.7 / 1.8

total 184.3 189.8 217.4 225.0

Table 26. Exorl: best scores with small network

mean/stdErr
agent IQL AWAC TD3 TD3+BC
actor dim 1024 1024 1024 1024
num cri 10 10 10 10
critic num layers 3 3 3 3
actor num layers 5 5 5 5
critic model simple simple simple simple
actor model simple simple simple simple
num es 1 50 1 50 1 50 1 50
task

cheetah 54.8 61.6 63.2 71.0 70.5 74.1 80.0 80.2
cheetah run 24.5 / 0.4 29.0 / 0.3 22.5 / 0.2 27.4 / 0.4 51.5 / 0.4 52.4 / 0.7 54.0 / 0.5 53.7 / 0.3
cheetah run backward 28.6 / 0.6 42.6 / 1.0 42.0 / 0.7 60.1 / 0.9 67.6 / 1.9 68.3 / 0.9 71.6 / 1.5 70.2 / 1.3
cheetah walk 70.5 / 0.3 77.2 / 0.7 90.2 / 0.6 97.2 / 0.2 94.2 / 0.6 95.5 / 0.7 94.7 / 0.5 97.1 / 0.6
cheetah walk backward 95.5 / 0.6 97.7 / 0.3 98.4 / 0.2 99.4 / 0.1 68.7 / 17.7 80.2 / 11.0 99.5 / 0.0 99.6 / 0.0
quadruped 80.7 81.9 84.4 83.3 46.7 44.8 81.7 81.8
quadruped jump 93.9 / 0.3 96.4 / 0.3 93.0 / 0.4 94.9 / 0.8 54.3 / 15.0 51.0 / 11.0 97.1 / 0.1 99.2 / 0.1
quadruped run 61.6 / 0.1 62.1 / 0.2 61.6 / 0.4 61.2 / 0.2 44.2 / 7.4 41.1 / 8.3 62.4 / 0.1 63.6 / 0.3
quadruped stand 100.6 / 0.1 100.8 / 0.0 100.0 / 0.2 100.5 / 0.1 65.6 / 10.5 63.7 / 11.1 100.0 / 0.1 100.2 / 0.1
quadruped walk 66.8 / 0.9 68.2 / 2.1 83.2 / 1.9 76.7 / 2.0 22.8 / 6.0 23.6 / 4.0 67.2 / 1.8 64.0 / 2.0
walker 64.6 71.2 67.2 74.2 63.3 66.8 84.0 81.5
walker run 19.2 / 0.1 27.7 / 0.0 20.4 / 0.0 31.7 / 0.0 37.2 / 2.9 39.8 / 2.1 53.0 / 0.6 47.7 / 0.6
walker spin 97.6 / 0.1 98.6 / 0.0 98.4 / 0.1 99.4 / 0.0 95.2 / 1.1 97.8 / 0.7 99.0 / 0.0 99.3 / 0.0
walker stand 79.6 / 0.2 86.7 / 0.2 79.6 / 0.6 88.1 / 0.5 62.3 / 5.4 68.3 / 10.4 94.0 / 0.1 94.9 / 0.1
walker walk 61.9 / 0.1 71.6 / 0.3 70.3 / 0.3 77.5 / 0.4 58.5 / 2.5 61.3 / 6.1 90.2 / 0.8 83.9 / 1.3

total 200.0 214.6 214.8 228.5 180.5 185.7 245.7 243.4

Table 27. Exorl: best scores with 10 critics and large simple architecture

C.6. Antmaze-v2 results with IQL

C.7. D4RL locomotion results with ReBRAC: layer normalization and large batch size

We examine the increased batch size and layer norm tricks proposed in concurrent work (ReBRAC, (Tarasov et al., 2024)),
adding to our AWAC and IQL implementations with the proposed scaling strategy. We note that both these practices
considerably increase both computational demand and parameter count, yet do not seem to provide consistent and significant
benefits. (Table 29).
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mean/stdErr
agent IQL
actor dim 1024
num cri 5
critic model modern
actor model modern
num es 1 50

antmaze-large-diverse-v2 47.6 / 3.1 65.2 / 3.6
antmaze-large-play-v2 43.2 / 5.5 59.2 / 3.4
antmaze-medium-diverse-v2 73.6 / 3.7 82.0 / 1.9
antmaze-medium-play-v2 66.8 / 1.0 84.4 / 3.1
antmaze-umaze-diverse-v2 75.6 / 5.6 89.2 / 1.4
antmaze-umaze-v2 93.2 / 2.8 96.8 / 0.5
total 400.0 476.8

Table 28. Antmaze-v2: best scores with modern models and 5 critics, with and without ES. These preliminary results appear to match the
Antmaze-v0 results, indicating the changes between these versions are not particularly significant.

mean/stdErr
agent IQL AWAC
actor dim 1024 1024
num cri 5 5
critic num layers 3 3
actor num layers 5 5
critic model simple simple
actor model simple simple
num es 1 50 1 50
task

halfcheetah-medium-expert-v2 93.9 / 0.2 67.9 / 2.2 94.3 / 0.4 107.2 / 0.3
halfcheetah-medium-replay-v2 44.5 / 0.1 46.5 / 0.4 48.0 / 0.2 52.1 / 0.3
halfcheetah-medium-v2 49.7 / 0.1 57.3 / 0.2 49.6 / 0.1 61.3 / 0.3
hopper-medium-expert-v2 110.7 / 0.4 29.1 / 3.2 110.9 / 0.2 102.7 / 4.1
hopper-medium-replay-v2 100.1 / 0.1 96.7 / 2.6 94.7 / 2.6 103.6 / 0.2
hopper-medium-v2 76.8 / 1.9 88.0 / 1.0 81.0 / 2.6 98.0 / 1.2
walker2d-medium-expert-v2 109.5 / 0.1 111.8 / 0.3 109.8 / 0.0 112.9 / 0.7
walker2d-medium-replay-v2 87.1 / 2.3 96.0 / 0.3 85.1 / 1.4 95.7 / 0.6
walker2d-medium-v2 84.5 / 0.5 89.1 / 0.5 87.1 / 2.3 94.5 / 0.9
total 756.9 682.4 760.7 827.9

Table 29. D4RL locmotion: best scores with large models, 5 critics, layer normalization and batch-size=1024.
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Algorithm 3 Logsumexp-tree updating
input leaf node n
input unnormalized log probability l
n.value← l
while not n = root do

n← n.parent
a← n.leftchild.value
b← n.rightchild.value
m← max(a, b)
n.value← m+ log1p(ea−m + eb−m)

end while

Algorithm 4 Logsumexp-tree sampling
Sample u ∼ U [0, 1], r ← log u+ root.value, n← root
while not leaf(n) do

v ← n.leftchild.value
if if r < v then

n← n.leftchild
else

n← n.rightchild, r ← r + log1p(−ev−r)
end if

end while
return n

D. ASAC implementation - logsumexp tree data-structure
Implementing our new ASAC algorithm requires sampling according to the action-maximizing constrained distribution
given by B∗(s, a) := 1

ZB(s, a) exp(Aϕ(s, a)/β) in an efficient and stable manner. This introduced several challenges,
which our new logsumexp-tree data structure was designed to address.

Sum-tree summary. Sampling with unnormalized probabilities can be achieve with a traditional sum-tree. A sum-tree
is a data-structure taking the form of a binary tree where the value of each of its nodes corresponds to the value of its
children. Hence, we can store unnormalized probabilities in each of N leaf nodes, making the root correspond to the
normalizing factor Z. Hence, every time an unnormalized probability is updated, we only require O(logN) iterative
updates to recompute the values its ancestors, leaving the other nodes unmodified. Similarly, we can sample from the
true distribution via sampling a uniform r ∼ U [0, Z] and do O(logN) comparisons until we reach one of the leaves. In
particular, starting from the root, we compare r with a node’s left child value v: if v < r we descend to the left subtree,
otherwise we descend to the right subtree and update r ← r − v. Schaul et al. (2015) slightly modify the first step of this
procedure when sampling an n-sized minibatch, by dividing Z into n equal-length segments and obtaining each ri ∈ {r1:n}
by sampling from U [Z/n× (i− 1), Z/n× i]. This is done to collect more ‘spread-out’ samples across each minibatch,
something that we found did not seem to play a significant effect on bias or performance.

Logsumexp-tree. In our use case, the unnormalized probablities given by B (Equation 6) are the result of a scaled
exponentiation whose magnitude appears to notably vary across problem setting and training stage. Hence, in practice, we
found that directly recording B∗(s, a) into a sum-tree resulted in arithmetic underflow (with many of the leaves and their
sums collapsing to zeros) and overflow (leading to crashes due to exceeding the maximum representable values). To address
these challenges, the logsumexp-tree allows to record the unnormalized logits before exponentiation q(s, a) = Aϕ(s, a)/β.
Moreover, it allows to perform updating and sampling operations with the same O(log n) complexity as a sum-tree with
stable operations without having to store any explicit values outside log space. In particular, each node p in our new data
stracture stores the ’logsumexp’ of its children a, b, an operation that can be stably done via first shifting a and b by their
maximum and using the highly-precise log1p operation implemented in Numpy/Pytorch. In a similar fashion, we can now
sample by transforming a uniform variable and applying a log transformation. Hence, analogously to the sum-tree, starting
with the root node, we can descend the logsumexp-tree by comparing our sample r ∈ (−∞, log(Z)] with its left child’s
value v to choose which branch to follow. However, this time, if r ≥ v we perform a ’logsubstractexp’ operation to update
the value of r. We refer to Algorithms 3 and 4 for further details and the exact mathematical operations involved. In our
shared code, we provide an implementation of the logsumexp-tree stored in a simple array representation, allowing for
efficient fully-parallelized operations.
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Figure 9. Estimated advantage-weighted action-distribution from π∗
B and the corresponding optimal projection with a Gaussian π after 1K

and 1M optimization steps of offline training with AWAC on the cheetah run task with the same objective dataset (A) and the mixed
objective dataset (B).

E. The Role of Mean-Seeking
One of our early hypotheses to what can cause over-conservativism was that Gaussian policies are a poor fit to multi-modal
data distributions (e.g., as Fig. 3 clearly shows). Unfortunately, all our attempts to fix this issue, including the introduction
of more expressive policy models (mixture of Gaussians, normalizing flows) or the usage of a reverse (mode-seeking) KL in
the loss, led to performance collapse (Fig. 10). This failure was mostly due to early overfitting to the distribution matching
objective while disregarding Q-function maximization, a phenomenon conceptually similar to posterior collapse in density
modeling (Bowman et al., 2015; Kingma et al., 2016). This led us to discard such an hypothesis, as Gaussian policies seems
to have a useful regularizing effect (at least early in training), and to focus only on ES as a solution to over-conservativism.

We focus on the role of mean-seeking and early attempts to overcome the action-averaging phenomenon illustrated in
Figure 3. An extended version of such a figure with all action dimensions is shown in Figure 9. As detailed in the main text,
the policy improvement optimization in TD3+BC, AWAC, and IQL can be be seen as performing a forward KL projection
with respect to some inferred target distribution. Furthermore, they all parameterize a strictly unimodal policy, taking the
form of either a Gaussian or a squashed Gaussian distribution. Hence, in case the target distribution displays significant
multi-modality, using such models in conjunction with the mean-seeking nature of the forward KL loss would prevent
ever closely matching part of the behavior data, leading to the displayed action-averaging phenomenon. Based on this
considerations, we empirically analyze the effects of this induced mean-seeking regularization and the consequences from
its relaxation.

We find that, in spite of such problematic side-effects, mean-seeking regularization appears to be playing a crucial role
to avoid premature convergence to an early suboptimal equilibrium. In particular, we analyze the effects of replacing the
Gaussian policy and the forward KL objective with alternatives that allow to relax or overcome the mean-seeking regime.
First, we analyze two simple variations of TD3 by adding to its original policy improvement objective from Equation 2 an
auxiliary term to maximize either Ea∼π′

B(·|s) [log πθ(a|s)] or Ea′∼πθ(·|s) [log π
′
B(a

′|s)] using the pre-trained behavior model
π′
B described in Appendix E.1. We note that the first case is practically equivalent to the TD3+BC algorithm but with actions

sampled from the learned behavior policy rather than the dataset, still falling in the mean-seeking regime. On the other hand,
the auxiliary term in the second case corresponds to minimizing an inverse KL with the behavior policy, DKL(πθ|π′

B), and
is akin to directly optimizing for the dual objective leading to AWAC’s constrained advantage-maximizing targets π∗

B (Peters
& Schaal, 2007). In principle, this latter approach should fully preserve the canonical support constraint at the basis of most
offline RL algorithms without the detrimental action-averaging, as it would allow the agent to focus on a single subset of π∗

B
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Performance from relaxing the induced mean-seeking regularization

Figure 10. Results from using pre-trained density models (as described in Appendix E.1) to optimize for auxiliary policy improvement
losses based on forward (A) and backward (B) KL divergences, and from increasing the policy’s expressivity with affine Flows and
Gaussian mixture distributions (C and D).

Figure 11. Two-dimensional loss surface projections using the visualization method from Li et al. (2018). We produce visualizations for
the Q function maximization and auxiliary KL loss for both TD3 modifications with auxiliary forward and backward KL losses

right from the start.

As shown in part A of Figure 10, training with the mean-seeking forward KL objective expectedly yields very similar
results to TD3+BC, validating the soundness of our formulated optimizations. However, when switching to the inverse
KL objective in part B, we observe a severe degradation in performance, in direct contrast to its supposed theoretical
benefits. We further analyze this phenomenon by pre-training increasingly mean-seeking proxies for πB by fixing (rather
than learning) the standard deviation of the output mixture distributions of π′

B to high values. The scope of these alternative
parameterizations is to artificially emulate the mean-seeking regularization from behavior cloning and AWAC with the
inverse KL objective, by forcing the pre-trained models themselves onto a mode-covering regime at the expense of accuracy.
In particular, while the original π′

B with a learned standard deviation achieves a log-likelihood of 1.09 bits per dimension,
fixing the standard deviations to 0.2 and 0.5 only attain log likelihoods of 0.01 and -0.54 bits per dimension, respectively.
However, as shown in parts A and B, using these worse models paradoxically leads to higher performance, suggesting
that the induced mean-seeking regularization is actually an integral component of current algorithms whose benefits far
outweigh the downsides from modeling errors and action-averaging. As a validation check for our hypothesis, we also
show that the performance of the forward KL TD3 variant, which already inherently encourages mean-seeking behavior
regardless of the pre-trained models, does not improve and even slightly suffers from the resulting loss in precision. Finally,
in parts C and D, we also analyze relaxing the mean-seeking regularization by increasing the expressivity of the policy’s
output distribution by parameterizing either a normalizing flow or a mixture of Gaussians. In particular, we consider either
adding two additional affine flow layers conditioning on half the action dimensions and the state as in (Dinh et al., 2016) or
enlarging the output of the policy to represent parameters for five Gaussian heads. While these policies even outperform
their traditional unimodal counterpart in the online setting, when used by offline algorithms such as AWAC, they seem to
produce visibly slower learning with an analogous collapse in final performance to the one observed with the inverse KL
objective, occurring even when training for the less diverse same-objective datasets.

This observed performance stagnation suggests that optimizing the offline policy with a tractable unregularized distribution
matching objective leads to a phenomenon analogous to posterior collapse in density modeling (Bowman et al., 2015;
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Table 30. Autoregressive density model hyper-parameters used to obtain a proxy for the unknown behavior policy.

Density model hyper-parameters

batch size 256
optimizer Adam
learning rate 0.001
reserved validation data 15%
maximum epochs 100
encoder hidden layers 2
encoder hidden dimensionality 512
decoder hidden layers 2
decoder hidden dimensionality 64× |A|
decoder mixture components 10
non-linearity ReLU

Kingma et al., 2016). In particular, relaxing canonical constrains appears to enable the agent to initially focus on matching
a likely suboptimal subset of the behavior policy, incurring the risk of converging to an early equilibrium. Instead, the
mean-seeking objective induced by combining unimodal policies with the forward KL minimization avoids this early
collapsing pull but seems to incur in the aforementioned unwarranted mode-averaging. This phenomenon can also be
qualitatively identified following Li et al. (2018), by visualizing the policy improvement loss surfaces induced by training
with the TD3 variants employing the forward and backward KL auxiliary terms. As shown in Figure 11, the Q-function
term of the actor loss attains a significantly lower absolute value and appears further from local convergence after training
with the backward KL variant, reflecting its worse final performance. At the same time, the loss surface of the backward
KL auxiliary term appears bound to a steep basin, in direct contrast with the much smoother minimum attained with its
forward KL counterpart. Taken together, these visualizations appear to provide a further display of the implications of our
hypotheses, corroborating how regularization-induced mean-seeking is an integral component of current algorithms rather
than a flawed artifact.

E.1. Behavior Model Pre-training Details

To produce Figure 3 in the main text and obtain the results in Appendix E, we pre-trained powerful autoregressive density
models on the different MOOD datasets to act as a proxy for πB, which we denote π′

B. We employ a 85/15 split to partition
the trajectories into the training and validation datasets and employ early stopping based on the epoch achieving the highest
validation log-likelihood. Our model can be conceptually split into to components: i) an observation encoder, outputting
a latent representation ii) an action decoder, outputting a distribution for each action dimension by conditioning on the
output of the observation encoder and on all previous action dimensions. Hence, to sample any action, the decoder must be
queried |A| times in an autoregressive fashion. However, we still compute the density of any particular action in a single
forward pass at training time by basing our architecture on the seminal MADE model from Germain et al. (2015). The
decoder output distribution we employ for each action dimension is a mixture of squashed Gaussians with ten independent
components. Hence, for each action dimension, the autoregressive decoder outputs thirty values, representing the mean,
log standard deviation, and weight logit for all mixture components. We found to obtain marginal gains with additional
expressivity and that less-powerful models, such as simpler variational auto-encoders (Kingma & Welling, 2013) and affine
Flows (Dinh et al., 2016), are unable to closely fit the distribution of behavior policies in the mixed-objective datasets. We
refer to the shared code and Table 30 for further details and the employed hyper-parameters.
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