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Abstract
Our study addresses the challenge of distinguish-
ing human-written text from Large Language
Model (LLM) outputs. We provide evidence that
this differentiation is consistently feasible, except
when human and machine text distributions are
indistinguishable across their entire support. Em-
ploying information theory, we show that while
detecting machine-generated text becomes harder
as it nears human quality, it remains possible with
adequate text data. We introduce guidelines on
the required text data quantity, through sample
size or sequence length, for reliable AI text de-
tection, through derivations of sample complex-
ity bounds. This research paves the way for ad-
vanced detection methods. Our comprehensive
empirical tests, conducted across various datasets
(Xsum, Squad, IMDb, and Kaggle FakeNews)
and with several state-of-the-art text generators
(GPT-2, GPT-3.5-Turbo, Llama, Llama-2-13B-
Chat-HF, Llama-2-70B-Chat-HF), assess the via-
bility of enhanced detection methods against de-
tectors like RoBERTa-Large/Base-Detector and
GPTZero, with increasing sample sizes and se-
quence lengths. Our findings align with OpenAI’s
empirical data related to sequence length, mark-
ing the first theoretical substantiation for these
observations.

1. Introduction
Large Language Models (LLMs) like GPT-4 mark a signifi-
cant milestone in the field of Natural Language Processing
(NLP). Pre-trained on vast text corpora, these models excel
in generating contextually relevant and fluent text, advanc-
ing a variety of NLP tasks including language translation,
question-answering, and text classification. Notably, their

*Equal contribution 1University of Maryland, College Park,
MD, USA 2University of Central Florida, FL, USA. Correspon-
dence to: Souradip Chakraborty <schakra3@umd.edu>, Amrit
Singh Bedi <amritbedi@ucf.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

capacity for zero-shot generalization obviates the need for
extensive task-specific training. Recent research by (Shin
et al., 2021) further highlights the LLMs’ versatility in gen-
erating diverse writing styles, ranging from academic to
creative, without the need for domain-specific training. This
adaptability extends their applicability to various use cases,
including chatbots, virtual assistants, and automated content
generation.

However, the advanced capabilities of LLMs come with
ethical challenges (Bommasani et al., 2022). Their aptitude
for generating coherent, contextually relevant text opens the
door for misuse, such as the dissemination of fake news
and misinformation. These risks erode public trust and
distort societal perceptions. Additional concerns include
plagiarism, intellectual property theft, and the generation
of deceptive product reviews, which negatively impact both
consumers and businesses. LLMs also have the potential
to manipulate web content maliciously, influencing public
opinion and political discourse.

Given these ethical concerns, there is an imperative for the
responsible development and deployment of LLMs. The
ethical landscape associated with these models is complex
and multifaceted. Addressing these challenges is vital for
harnessing the societal benefits that responsibly deployed
LLMs can offer. To this end, recent research has pivoted
towards creating detectors capable of distinguishing text gen-
erated by machines from that authored by humans. These
detectors serve as a safeguard against the potential misuse
of LLMs. One central question underpinning this area of
research is:

"Is it possible to detect the AI-generated text in practice?"

Our work provides an affirmative answer to this question.
Specifically, we demonstrate that detecting AI-generated
text is nearly always feasible, provided we have access to
the sufficient length of text, as illustrated in Figure 1. The
necessity for collecting sufficient length of text data is con-
sistent with real-world settings. For instance, it would be
impossible to detect whether “hello world" is written by
AI or humans. We would need a sufficient amount of text
data for the detection to happen. To this end, recent impos-
sibility results regarding AI-generated text detection such as
Sadasivan et al. (2023) have led to widespread pessimism,
potentially hindering AI’s progress and fostering resistance
against its use. Our work counters this narrative by offer-
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Figure 1: In light of the sample complexity bound presented in Theorem 1, we show here pictorially how increasing the
number of samples n used for detection would affect the ROC of the best possible detector, which is achieved by the
likelihood-ratio-based classifier. We note that in the ROC curve on the left for TV(m,h) = 0.1, the AUROC of the best
possible detector will be 0.6 as derived in (Sadasivan et al., 2023) (shown by an orange dot in right figure). The AUROC of
0.6 would lead to the conclusion that detection is hard. In contrast, we note that by increasing the number of samples n,
the ROC upper bound starts increasing towards 1 exponentially fast (shown by the shaded blue region in the left figure for
different values of n), and hence the AUROC of the best possible detector also starts increasing as shown by corresponding
blue dots in the right figure. This implies that the detection is possible even in hard scenarios when TV(m,h) is small.

ing an optimistic perspective, showcasing that detecting
AI-generated text is not only possible but also a field ripe
for exploration and growth. This work aims to inspire and
excite the research community toward further innovations
in AI detection. This is a crucial step in advancing ethical
AI, ensuring its responsible development and application.
Our findings are a call to action, encouraging the pursuit of
solutions that can navigate and mitigate the challenges of AI,
transforming skepticism into active engagement for a more
ethical AI future. We summarize our main contributions as
follows.

(1) Possibility of AI-generated text detection. We utilize a
mathematically rigorous approach to answer the question of
the possibility of AI-generated text detection. We conclude
that there is a hidden possibility of detecting the AI text,
which improves with the text sequence (token) length.

(2) Sample complexity of AI-generated text detection.
We derive the sample complexity bounds, a first-of-its-kind
tailored for detecting AI-generated text for both IID and
non-IID settings.

(3) Comprehensive empirical evaluations. We have con-
ducted extensive empirical evaluations for real datasets
Xsum, Squad, IMDb, and Fake News dataset with state-of-
the-art generators (GPT-2, GPT3.5 Turbo, Llama, Llama-2
(13B), Llama-2 (70B)) and commercial detectors (OpenAI’s
Roberta (large), OpenAI’s Roberta (base), and GPTZero
(SOTA Detector)).

(4) Implications of possibility results and open prob-
lems. In this work, we provide an in-depth exploration of
the potential implications surrounding the detection of AI-

generated text. We delve into various open challenges and
provide valuable insights that could guide future research
endeavors in the area of AI-generated text detection. Our
discussion aims to shed light on the intricacies of this evolv-
ing area, highlighting key problems for further investigation
and development.

2. Background and Related Works
Recent research has shown promising results in developing
detection methods. Some of these methods use statistical ap-
proaches to identify differences in the linguistic patterns of
human and machine-generated text. We survey the existing
approaches here.

Traditional approaches. They involve statistical outlier
detection methods, which employ statistical metrics such
as entropy, perplexity, and n-gram frequency to differenti-
ate between human and machine-generated texts (Lavergne
et al., 2008; Gehrmann et al., 2019). However, with the ad-
vent of ChatGPT (OpenAI) (OpenAI, 2023), a new innova-
tive statistical detection methodology, DetectGPT (Mitchell
et al., 2023), has been developed. It operates on the prin-
ciple that text generated by the model tends to lie in the
negative curvature areas of the model’s log probability. De-
tectGPT (Mitchell et al., 2023) generates and compares
multiple perturbations of model-generated text to determine
whether the text is machine-generated or not based on the
log probability of the original text and the perturbed ver-
sions. DetectGPT significantly outperforms the majority of
the existing zero-shot methods for model sample detection
with very high AUC scores (note that we use the terms AUROC
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and AUC interchangeably for presentation convenience).

Classifier-based detectors. In contrast to statistical meth-
ods, classifier-based detectors are common in natural lan-
guage detection paradigms, particularly in fake news and
misinformation detection (Schildhauer, 2022; Zou & Ling,
2021). OpenAI has recently fine-tuned a GPT model (Ope-
nAI, 2023) using data from Wikipedia, WebText, and in-
ternal human demonstration data to create a web interface
for a discrimination task using text generated by 34 lan-
guage models. This approach combines a classifier-based
approach with a human evaluation component to determine
whether a given text was machine-generated or not. These
recent advancements in the field of detecting AI-generated
text have significant implications for detecting and prevent-
ing the spread of misinformation and fake news, thereby
contributing to the betterment of society (Schildhauer, 2022;
Zou & Ling, 2021; Kshetri & Voas, 2022).

Watermark-based identification. An alternative detection
paradigm that has garnered significant interest in this field
is the evolution of watermark-based identification (Verma
et al., 2009; Wadhera et al., 2022). One of the most ex-
citing works in recent times around this research revolves
around watermarking and developing efficient watermarks
for machine-generated text detection. Historically, water-
marks have been employed in the realm of image processing
and computer vision to safeguard copyrighted content and
prevent intellectual property theft (Langelaar et al., 2000).
They can also be used for data hiding, where information
is hidden within the watermark itself, allowing for secure
and discreet transmission of information. Early research
by (Atallah et al., 2001; Meral et al., 2009) was among the
first to demonstrate the potential of watermarks in language
through syntax tree manipulations. More recently with the
advent of ChatGPT, innovative work by (Kirchenbauer et al.,
2023a) has shown how to incorporate watermarks by using
only the LLM’s logits at each step. The watermarking tech-
nique proposed by (Kirchenbauer et al., 2023a) allows for
the verification of a watermark’s authenticity by employ-
ing a specific hash function. More specifically, the soft
watermarking approach by (Kirchenbauer et al., 2023a) in-
volves categorizing tokens into “green” and “red” lists for
generating distinct patterns. Watermarked language models
are more likely to select tokens from the green list, based
on prior tokens, resulting in watermarks that are typically
unnoticeable to humans. These advancements in watermark-
ing technology not only strengthen copyright protection
and content authentication but also open up new avenues
for research in areas such as privacy in language, secure
communication, and digital rights management.

Impossibility result. The interesting recent literature by
(Sadasivan et al., 2023; Krishna et al., 2023) showed the
vulnerabilities of watermark-based detection methodolo-

gies using vanilla paraphrasing attacks. (Sadasivan et al.,
2023) developed a lightweight neural network-based para-
phraser and applied it to the output text of the AI-generative
model to evade a whole range of detectors, including wa-
termarking schemes, neural network-based detectors, and
zero-shot classifiers. (Sadasivan et al., 2023) also introduced
a notion of spoofing attacks where they exposed the vul-
nerability of LLMs protected by watermarking under such
attacks. (Krishna et al., 2023) on the other hand, trained a
paraphrase generation model capable of paraphrasing para-
graphs and showed that paraphrased texts with DIPPER
(Krishna et al., 2023) evade several detectors, including
watermarking, GPTZero, DetectGPT, and OpenAI’s text
classifier with a significant drop in accuracy. Additionally,
(Sadasivan et al., 2023) highlighted the impossibility of
machine-generated text detection when the total variation
(TV) norm between human and machine-generated text dis-
tributions is small.

In this work, we show that there is a hidden possibility of
detecting the AI-generated text even if the TV norm between
human and machine-generated text distributions is small.
This result is in support of the recent detection possibility
claims by Krishna et al. (2023).

3. Proposed: Methodology and Analysis
3.1. Notations and Definitions

Before discussing the main results, let us define the nota-
tions used in this paper. We define the set of all possible
texts (textual representations) as S , a human-generated text
distribution as h(s) over s ∈ S, and machine-generated
text distribution as m(s). Here, s can be understood as
a sentence, similar to how its defined in (Sadasivan et al.,
2023) Here m(s) and h(s) are valid probability density func-
tions. We can also modify the same notation given a specific
prompt (noted by p) or context (denoted by c) or question
(denoted by q) accordingly, such as Sc, h(s | p, c, q), and
m(s | p, c, q) respectively. However, for the sake of clarity
and ease of discussion in this work, we will omit the use of
complex notation.

In the literature, the problem of detecting AI-generated text
is considered as a binary classification problem. The (po-
tentially nonlinear and complex) detector D(s) maps the
sample s ∈ S to R for possible binary classification, and
then compares it against a threshold γ to perform detection.
D(s) ≥ γ is classified as AI-generated while D(s) < γ
is categorized as human-generated. For the detector D(s)
to detect whether the text samples s is generated from the
machine or not, we need to study the receiver operating
characteristic curve (ROC curve) (Fawcett, 2006), which
involves two terms, namely True Positive Rate (TPR) and
False Positive Rate (FPR). Once we obtain ROC, we can
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study the area under the ROC curve AUROC, which charac-
terizes the detection performance of detector D. The upper
bound on AUROC describes the performance of the best pos-
sible detector.

Under a detection threshold γ, TPR and FPR are denoted as
TPRγ and FPRγ respectively:

TPRγ :Probability of detecting AI-generated text
as AI-generated under threshold γ, (1)

FPRγ :Probability of detecting human-generated text as
AI-generated under threshold γ. (2)

The rigorous definitions of TPRγ and FPRγ are as follows.

TPRγ =Ps∼m(·)[D(s) ≥ γ] =

∫
I{D(s)≥γ} ·m(s) · ds,

(3)

FPRγ =Ps∼h(·)[D(s) ≥ γ] =

∫
I{D(s)≥γ} · h(s) · ds,

(4)

where I{condition} is the indicator function which takes value
1 if the condition is true, and 0 otherwise. Note that without
loss of generality, we have chosen to consider m(s) and h(s)
as the probability density function of machine and human
on a sample s by considering continuous s (as also consid-
ered in (Sadasivan et al., 2023), but similar results hold for
discrete s by replacing the integral with a summation and by
considering m(s) and h(s) as the probability mass function
of machine and human on a sample s.

Both TPRγ and FPRγ are within the closed interval [0, 1]
for any threshold γ. For a good detector, TPRγ should be
as high as possible, and FPRγ should be as low as possible.
As a result, a high area under the ROC curve (AUROC) is
desirable for detection. AUROC is between 1/2 and 1, i.e.,
AUROC ∈ [1/2, 1]. An AUROC value of 1/2 means a random
detection and a value of 1 indicates a perfect detection. For
efficient detection, the goal is to design a detector D such
that AUROC is as high as possible.

3.2. Hidden Possibilities of AI-Generated Text Detection

To study the AUROC for any detector D, we start by invok-
ing LeCam’s lemma (Le Cam, 2012; Wasserman, 2013)
which states that for any distributions m and h, given an
observation s, the minimum sum of Type-I and Type-II error
probabilities in testing whether s ∼ m versus s ∼ h is equal
to 1− TV(m,h). Hence, mathematically, we can write

Ps∼h(·)[D(s) ≥ γ]︸ ︷︷ ︸
Type-I error (false positive)

+ Ps∼m(·)[D(s) < γ]︸ ︷︷ ︸
Type-II error (false negative)

≥ 1− TV(m,h),

(5)

for any detector D and any threshold γ. We note that the
above bound is tight and can always be achieved with equal-

ity by likelihood-ratio-based detectors for any distribution
m and h, by the Neyman-Pearson Lemma (Cover, 1999,
Chapter 11). We restate the lemma for completeness and
discuss its tightness in Appendix C.1. From the definitions
of TPR and FPR in (3)-(4), it holds that

FPRγ + 1− TPRγ ≥ 1− TV(m,h), (6)

which implies that

TPRγ ≤ min{FPRγ + TV(m,h), 1}, (7)

where min is used because TPRγ ∈ [0, 1]. The upper bound
in (7) is called the ROC upper bound and is the bound lever-
aged in one of the recent works (Sadasivan et al., 2023) to
derive AUROC upper bound AUC ≤ 1

2 + TV(m,h)− TV(m,h)2

2
which holds for any D. This upper bound led to the claim
of the impossibility of detecting the AI-generated text when-
ever TV(m,h) is small.

Hidden Possibility. However, we note that the claim of
impossibility from the AUROC upper bound could be too con-
servative for detection in practical scenarios. For instance,
we provide a motivating example of detecting whether an
account on Twitter is an AI-bot or human. It is natural
that we will have a collection of text samples from the ac-
count, denoted by {si}ni=1, and it is realistic to assume that
n is very high. Therefore, the natural practical question is
whether we can detect if the provided text set {si}ni=1 is
machine-generated or human-generated. With this motiva-
tion, we next explain that detection is always possible.

We formalize the problem setting and prove our claim by
utilizing the existing results in the information theory lit-
erature. Let us consider the same setup as detailed before,
while we are given a set of samples S := {si}ni=1. For
simplicity, we assume that the samples are i.i.d. drawn from
either the human h or machine m. Interestingly, now the
hypothesis test can be re-written as

H0 : S ∼ m⊗n v.s. H1 : S ∼ h⊗n, (8)

where m⊗n := m⊗m⊗· · ·⊗m (n times) denotes the prod-
uct distribution, as does h⊗n. This is one of the key observa-
tions that focus on the correct hypothesis-testing framework
with multiple samples. Similar to before (cf. 7), based on Le
Cam’s lemma, it holds that now 1 − TV(m⊗n, h⊗n) gives
the minimum Type-I and Type-II error rate, which implies

TPRn
γ ≤ min{FPRn

γ + TV(m⊗n, h⊗n), 1}, (9)

where TPRn
γ is given by

PS∼m⊗n [D(S) ≥ γ] =

∫
I{D(S)≥γ} ·m⊗n(S) · dS, (10)

and FPRn
γ is given by

PS∼h⊗n [D(S) ≥ γ] =

∫
I{D(S)≥γ} · h⊗n(S) · dS. (11)
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We emphasize that the term TV(m⊗n, h⊗n) is an increas-
ing sequence in n and eventually converges to 1 as n →
∞. Due to the data processing inequality, it holds that
TV(m⊗k, h⊗k) ≤ TV(m⊗n, h⊗n) when k ≤ n and natu-
rally leads to TV(m,h) ≤ TV(m⊗n, h⊗n). This is a crucial
observation, showing that even if the machine and human
distributions were close in the sentence space, by collecting
more sentences, it is possible to inflate the total variation
norm to make the detection possible.

Now, from the large deviation theory, we can show that
the rate at which total variation distance approaches 1 is
exponential with the number of samples (Polyanskiy & Wu,
2022, Chapter 7),

TV(m⊗n, h⊗n) = 1− exp (−nIc(m,h) + o(n)) , (12)

where, Ic(m,h) is known as the Chernoff information and is
given by Ic(m,h) = − log inf0≤α≤1

∫
mα(s)h1−α(s)ds.

The above expressions lead to Proposition 1 next.

Proposition 1 (Area Under ROC Curve). For any detector
D, with a given collection of i.i.d. samples S := {si}ni=1

either from human h(s) or machine m(s), it holds that

AUROC ≤ 1

2
+ TV(m⊗n, h⊗n)− TV(m⊗n, h⊗n)2

2
, (13)

where TV(m⊗n, h⊗n) := 1 − exp (−nIc(m,h) + o(n))
and Ic(m,h) is the Chernoff information. Therefore, the
upper bound of AUROC increases exponentially with respect
to the number of samples n.

The proof of the above proposition follows by integrating
the TPRn

γ upper bound in (9) over FPRn
γ . We note that

the expression in (13) and the equality of TV distance in
terms of Chernoff information presents an interesting con-
nection between the number of samples and AUROC of the
best possible detector (which archives the bound in (9) with
equality). It is evident that if we increase the number of sam-
ples, n → ∞, the total variation distance TV(m⊗n, h⊗n)
approaches 1 and that too exponentially fast, and hence in-
creasing the AUROC. This indicates that as long as the two
distributions are not exactly the same, which is rarely the
same, the detection will always be possible by collecting
more samples as established below.

3.3. Attainability of the AUROC Upper-Bound via
Likelihood-Ratio-Based Detectors

Likelihood-ratio-based Detector. Here, we discuss the
attainability of bounds in Proposition 1 to establish that the
bound is indeed tight. We note that it is a well-established
fact in the literature that a likelihood-ratio-based detector
would attain the bound for any distributions h and m and
hence is the best possible detector (detailed proof provided
in Appendix C.1). We discuss the likelihood-ratio-based

detector here for completeness in the context of LLMs as
follows. Specifically, the likelihood ratio-based detector is
given by

D∗(S) :=

{
Text from machine if m⊗n(S) ≥ h⊗n(S),

Text from human if m⊗n(S) < h⊗n(S).

(14)

We proved in Appendix C.1 that the detector in (14) attains
the bound and is the best possible detector.

Sample Complexity of Best Possible Detector. To further
emphasize the dependence on the number of samples n, we
derive the sample complexity bound of AI-generated text
detection in Theorem 1 as follows.

Theorem 1 (Sample Complexity of AI-generated Text
Detection (Possibility Result under IID Setting)). If hu-
man and machine distributions are close TV(m,h) = δ > 0,
then to achieve an AUROC of ϵ, we require

n = Ω

(
1

δ2
log

(
1

1− ϵ

))
(15)

number of samples for the best possible detector which is
likelihood-ratio-based as mentioned in (14), for any ϵ ∈
[0.5, 1). Therefore, AI-generated text detection is possible
for any δ > 0.

The proof of Theorem 1 is provided in Appendix C.2.

Remark. From the statement of Theorem 1, it is clear that,
as long as δ > 0 (which means no matter how close human
h(s) and m(s) distributions are) and ϵ < 1, there exists n
such that we can achieve high AUROC and perform the de-
tection. Here, n corresponds to the number of independent
sentences generated by either humans or machines, which
we need to detect. We provide additional detailed remarks
and insights in Appendix B.

3.4. Possibility Results with Increased Sequence Length

In the previous section, as outlined in Theorem 1, we ex-
plored the hidden possibilities in detection scenarios involv-
ing multiple independent sentences. However, acquiring
multiple sentences can be challenging in various contexts
(Ghosal et al., 2023). In contrast, obtaining longer sequence
lengths is often more feasible. Therefore, in this subsection,
we extend the sample complexity results of Theorem 1 to
include scenarios with increased sequence length, thereby
generalizing our results to more realistic scenarios as well.
To accomplish that, we make certain assumptions about
the structures present in the input, which is a well-founded
assumption that proves to be practical and applicable in
the context of various natural language tasks (for example,
present of topics in documents (Jelodar et al., 2018; Loureiro
et al., 2023)).
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Figure 2: (a)-(c) validates our theorem for real human-machine classification datasets generated with XSum (Narayan
et al., 2018) and Squad (Rajpurkar et al., 2016), showing that with an increase in the number of samples/sequence length,
detection performance improves significantly. Figure 2a shows that the AUROC achieved by the best possible detector using
the equation increases significantly from 58% to 97% with an increase in the Ngrams of the feature space for both Xsum
and Squad datasets. Figure 2b demonstrates the improvement in AUROC with respect to sequence length using various real
detectors/classifiers. Figure 2c shows using a box-plot-based comparison that if we consider 2 iid sequences (from either
machine/human) to detect instead of one, the AUROC of the real detector improves drastically from 73% to 97%, hence
validating our hypothesis.

Let us denote the strength of the association with ρ to char-
acterize the dependence between the sequences si and the
dependence is given as

E[Si|Si−1 =si−1, · · · , S1 = s1]v

= ρ

∑i−1
k=1 sk
i− 1

+ (1− ρ)E[Si], (16)

which boils down to the iid case for ρ = 0. An increasing ρ
indicates increasing dependence on the previous sequence
with ρ = 1, which means that the conditional expectation
can be completely expressed in terms of the previous sam-
ples in the sequence. The dependence assumption of (16)
embodies a natural intuition for the domain of natural lan-
guage and serves as a foundation for extending our results
to non-iid scenarios. Eq. (16) provides a way to measure the
dependence between random variables, which is later used
to extend Chernoff bound to non-iid cases. In the context of
LLMs, one can think of the sum

∑
sk as the "average mean-

ing" of these text samples, such as "woman" + "royalty"
may have a similar meaning as "queen".

Before introducing the final result, let us assume the num-
ber of sequences or samples is denoted by n, there are L
independent subsets, and the corresponding subset is rep-
resented by τj where j ∈ (1, 2 · · · , L), where τj consists
of cj samples (dependent). This is a natural assumption
in NLP where a large paragraph often consists of multiple
topics, and sentences for each topic are dependent. With the
above definitions, we state the main result in Theorem 2 for
the non-iid setting.

Theorem 2 (Sample Complexity of AI-generated Text
Detection (Possibility Result under Non-IID Setting)).

If human and machine distributions are close TV(m,h) =
δ > 0, then to achieve an AUROC of ϵ, we require

n = Ω
( 1

δ2
log

(
1

1− ϵ

)
+

1

δ

L∑
j=1

(cj − 1)ρj

+
( 1

δ2
log

(
1

1− ϵ

)
· 1
δ

( L∑
j=1

(cj − 1)ρj

))1/2)
(17)

number of (correlated, i.e., ρj ̸= 0) sequences for the best
possible detector which is likelihood-ratio-based as men-
tioned in (14), for any ϵ ∈ [0.5, 1).Therefore, AI-generated
text detection is possible for any δ > 0.

The proof is provided in Appendix C.3.

Remark. Referring to Theorem 2, we observe that for
a given δ > 0 (where h(s) and m(s) are nearly, but not
exactly, identical) and ϵ < 1, there exists a number of text
sequences, n, (potentially derived from longer texts) that
enable us to achieve a high AUROC for effective detection.

In comparison to the IID result in Theorem 1, the Non-IID
result in Theorem 2 has an additional term that depends
on cj and ρj . For ρj = 0, the sample complexity result in
Theorem 2 boils down to the result in Theorem 1.

4. Experimental Studies
In this section, we provide detailed empirical evidence to
support our detectability claims of this work. We consider
various human-machine generated datasets and general lan-
guage classification datasets.

AUROC Discussion and Comparisons: We first try to
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Figure 3: (a)-(f) validates our theorem for real human-machine classification datasets generated with XSum & Squad, with
zero-shot detection performance. We use different generator/detector pairs to show the performance comparisons. For
instance, (a) shows the detection performance (AUROC) of OpenAI’s Roberta detector (Large) on the text generated by
GPT3.5 Turbo, and we extend it to other pairs in (b)-(f). We observe that with the increase in the number of samples or
sequence length for detection, the zero-shot detection performance from both the models improves from around 50% to 90%
for both Xsum and Squad human-machine datasets. We also performed similar experiments with GPT-2 as well and results
are available in Figure 8 in the appendix.

explain the meaning of the mathematical results we obtain
via simulations. For instance, we show a pictorial repre-
sentation of AUROC bound we obtained in Proposition 1 and
compare it against the ROC upper bound we mentioned in
(9) for different values of n. In Figure 1, we show that even
if the original distributions of human h(s) and machines
m(s) are close in TV norm TV = 0.1, we can increase the
ROC area (and hence AUROC) via increasing the number of
samples we collect n to perform the detection.

4.1. Real Data Experiments

In this section, we perform a detailed experimental analy-
sis and ablation to validate our theorem with several real
human-machine generated datasets as well as general natu-
ral language datasets.

Datasets, AI-Text Generators and Detectors Description:
Our experimental analysis spans across 4 critical datasets, in-
cluding the news articles from XSum dataset (Narayan et al.,
2018), Wikipedia paragraphs from Squad dataset (Rajpurkar
et al., 2016), IMDb reviews (Maas et al., 2011), and Kaggle
FakeNews dataset (Lifferth, 2018), utilizing the datasets in
a diverse manner to validate our hypothesis. The first two
datasets (XSum and Squad) have been leveraged to gener-

ate machine-generated text by prompting an LLM with the
first 50 tokens of each article in the dataset, sampling from
the conditional distribution of the LLMs, as followed in
(Mitchell et al., 2023; Krishna et al., 2023; Sadasivan et al.,
2023). Specifically, we use a diverse set of SOTA open-
source text generators including GPT-2, GPT-3.5-Turbo,
Llama, Llama-2-13B-Chat-HF, and Llama-2-70B-Chat-HF
as the LLM for generating the machine-generated text us-
ing the token prompts as described above. We consider
500 passages from both the Xsum and Squad datasets and
subsequently 500 machine-generated texts corresponding to
them using GPT-2 and evaluate the detection performance
in 3 broad categories including (1) supervised detection,
(2) contrastive with i.i.d. samples, and (3) zero-shot perfor-
mance. Finally, we leverage two additional general language
datasets (detailed in Appendix D.1), IMDb and Kaggle Fak-
eNews, to give more insights into the separability and detec-
tion performance with an increasing sequence length.

(1) Supervised detection performance: To validate our
hypothesis from a supervised detection/classification per-
spective, we first compute the total variation distance be-
tween the human and machine-generated texts at various
n-gram levels where n-gram = 1 indicates the detection is

7
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at a word level, and as we increase it, it approaches sentence
to paragraph level. We subsequently estimate the AUROC
of the best detector using equation (14) by increasing the
length of the n-gram from 1 to 6 as shown in Figure 2a. It is
evident that with increasing n-grams, the AUROC of the best
detector increases significantly from 58% to 97% for both
Xsum and Squad datasets. This empirical observation com-
pletely aligns with our theory and intuition. To further test
our hypothesis with real detectors, we train 3 vanilla clas-
sification models including Logistic Regression, Random
Forest, and a 2-layer Neural Network with TF-IDF-based
feature representation (bag of words) on the human-machine
generated datasets including Xsum and Squad. We report
the performance of the test AUROC with increasing sequence
length in Figure 2b, which shows a significant increase in
accuracy as the sequence length increases even with real
detectors. This observation is also supported by the results
obtained from Open-AI and summarized in the report (So-
laiman et al., 2019). This impressive performance is fully
aligned with our claims and provides evidence that design-
ing a detector with high performance for AI-generated text
is always possible.

(2) Detection with pairwise IID Samples: We also design
an experiment where we assume that one can have access
to 2 iid samples (from machine or human) for detection
instead of just one example, which is practical and can be
easily obtained in several scenarios. For example, consider
detecting fake news or propaganda from a Twitter bot. We
restructure our training set of the human-machine dataset
by constructing pairwise training samples with labels of
humans and machines and perform binary classification
with only 30% of the enhanced pairwise dataset with very
limited bag-of-word based features and Logistic regression,
as shown in Figure 2c. We note that there is a statistically
significant boost in detection performance with pairwise
samples, even with a vanilla model and sampled dataset,
which indicates that detection will be almost always possible
in most scenarios where it is indeed crucial.

(3) Zero-Shot detection performance: Next, we substanti-
ate our claims using zero-shot detection performance on the
human-machine dataset for both Xsum and Squad demon-
strated in Figures 3(a)-(f). For the zero-shot detection in
Figures 3(a)-(c), we use the RoBERTa-Large-Detector and
RoBERTa-Base-Detector from OpenAI, which are trained or
fine-tuned for binary classification with datasets containing
human and AI-generated texts (AIT, b). We also perform
experiments with another state-of-the-art commercial detec-
tor called GPTZero (AIT, a) shown in Figures 3(d)-(f). We
observe that with the increase in the number of samples or
sequence length of detection, the zero-shot detection per-
formance of models improves drastically from around 50%
to 90% on both Xsum and Squad human-machine datasets.
Naturally, the performance of RoBERTa-Large-Detector

is better compared to RoBERTa-Base-Detector, but still,
the improvement in AUROC with the number of samples/se-
quence length is significant with both the models, validating
our claims. We have also tested the detection performance
with paraphrasing in additional experiments provided in
Appendix D.2

5. Conclusions, Implications & Open Problems
In this work, we provide an optimistic view of AI-generated
text detection with detailed theoretical insights and experi-
mental evidence. We start by noting that it becomes harder
to detect the AI-generated text when m(s) is close to h(s),
and paraphrasing attacks can indeed reduce the detection
performance, as shown in our experiments. However, we
assert that by collecting more text data, it will be possible
to increase the attainable area under the receiver operating
characteristic curve (AUROC) sufficiently greater than 1/2,
making the detection possible. We further remark that it
would be quite difficult to make LLMs exactly equal to
human distributions due to the vast diversity within the hu-
man population, which may require many samples from an
information-theoretic perspective and provide a lower bound
on the closeness distance to human distributions. Diversity
could lead to realistic analysis to prove that the distributions
are sufficiently separated to be detectable.

We want to emphasize that, as we show, detectability is
always possible (unless m = h in exactness), in several
scenarios when m and h are very close, it might need many
samples of text data to detect. However, watermark-based
techniques can help address this issue by introducing distri-
bution shifts. The additional insights from our work could
help to design better watermarks, which cannot be attacked
easily with paraphrases. More specifically, it is possible to
create more powerful and robust watermarks to introduce a
minor change in the machine distributions, and then collect-
ing more samples should help to perform the AI-generated
text detection.

While there are potential risks associated with detectors,
such as misidentification and false alarms, we believe that
the ideal approach is to strive for more powerful, robust,
fair, and better detectors and more robust watermarking
techniques. We believe that addressing issues such as rep-
resentation space, robust watermarks, and interpretability
is crucial for the safe and trustworthy application of gener-
ative language models and detection. To that end, we are
hopeful, based on our results, that text detection is indeed
possible under most of the settings and that these detectors
could help mitigate the misuse of LLMs and ensure their
responsible use in society. A further detailed discussion on
the various implications of our results are presented in the
Appendix A-B.
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Impact Statement
The primary objective of this work is to provide compelling
evidence of the feasibility of distinguishing between human-
written and AI-generated text, with a focus on the theoretical
foundations and empirical evidence. While our research
may not have immediate and direct implications for industry
and societal applications, it serves as a catalyst for advancing
the critical area of AI-generated text detection. The findings
of our work would encourage and foster further research
in the domain of AI-generated text detection. This work
contributes to the broader mission of harnessing the power
of language models for beneficial purposes while addressing
the need and possibilities of robust detection techniques.
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Appendix
A. Open Problems and Implications of Possibilities of Detection
1. Perspective on the Watermarking Design (prepared detection) for AI-generated text detection: We note that watermark-
ing (Kirchenbauer et al., 2023a; Aaronson, 2022), the output of language models provides a reliable solution to the problem
of AI-generated text detection. Specifically, watermarking-based methods alter the output distribution of the text (for a given
prompt) generated by the language model in some predefined manner (such as dividing the vocabulary into green and red list
as in Kirchenbauer et al., 2023) with the potential drawback of text quality degradation. Hence, one critical question here is,
what metric or objective a watermarking scheme should utilize so that the generated text quality after watermarking remains
the same is where our results can provide insights. From the statement in Theorem 1, and 2, we note that a watermarking
scheme should focus on increasing the Chernoff Information in order to increase the probability of detection with smaller
sequence length. Recent research (Kirchenbauer et al., 2023b) provides some insights on that direction, however a provable
design of watermarks utilizing the connection to Chernoff Information gain is an open problem of research. .

2. Takeaways for the Detector Design (post hoc detection) for AI-generated text detection: There is another class of
detection methods that try to directly classify the given text as either AI-generated or not based on some pre-trained/fine-
tuned classifiers (GPTZero, OpenAI’s Roberta detector, etc.). In this scenario, our results directly imply that the detector
would be more successful if the sequence length is higher. This essentially means that we can utilize our bounds’ information
to provide an estimate of minimum possible length required for reliably detecting the text, which would help in infusing
confidence among the community and reduce the false alarms.

3. Our Result Advocates the Design of Task-Specific Detectors: A critical implication of our results (Theorem 1 and 2
on Page 6) is that it connects the performance of detectors with sequence length. Interestingly, this connection could lead
to a segregation of the application domains in real world where AI-generated text detection can be easy vs hard, based on
the sequence length and Chernoff information. This indirectly highlights the need to study the problem of detection in a
domain-specific manner and not independent of the domain. For example, in scenarios, where we can have documents
of larger lengths (such as exams, news articles, conference proceedings, etc.) or multiple samples (Twitter bot, fake user
reviews, etc.) it would be easier to detect than other domains where it is hard to obtain large sequence length text (such as
medical diagnosis, hateful messages on social media, etc.) which requires dedicated research efforts.

B. Additional Insights and Remarks
Remark 1: Insights for watermark design. From a practical perspective, even though Theorem 1 shows that detection is
always possible by collecting more samples, it might be costly as well if the number n needed is extremely high. However,
one could mitigate this trade-off by developing efficient watermarking techniques as discussed in (Kirchenbauer et al.,
2023a; Aaronson, 2022), which essentially increases the Chernoff information, or in other words, increases the δ, eventually
reducing the required number of samples. Nevertheless, empirical demonstrations in (Sadasivan et al., 2023; Krishna et al.,
2023) exposed the vulnerability of the watermark-based detectors with paraphrasing-based attacks, raising a genuine concern
in the community about the detection of AI-generated texts.

To address this concern, more recently, interesting work by (Krishna et al., 2023) proposed a novel defense mechanism
based on information retrieval principles to combat prior attacks and demonstrated its effectiveness even with a corpus size
of 15M generations. This result also supports our theory, indicating that it is always possible to detect AI-generated text
depending on the detection method. In addition, there are some recent open-sourced text detection tools (AIT, a;b) whose
performances are also worth considering and validate the fact that detection is indeed possible under certain settings. We
believe that with the new insights from this work, one can design more efficient and robust watermarks spanning a larger
corpus of text, which will be hard to remove via vanilla paraphrasers.

Remark 2: Insights for detector design.

This work demonstrates that detecting AI-generated text should be almost always possible but one would need to collect
more samples depending on the hardness of the problem (controlled by the closeness of human and machine distributions).
The recent study by (Liang et al., 2023) raises an important concern regarding the bias in some of the existing detectors. The
authors in Liang et al. (2023) revealed that a significant proportion of the current detectors inaccurately classify non-native
English writing samples as AI-generated, potentially leading to unjust consequences in various contexts. Interestingly,
updating text generated by non-native speakers with prompts such as Enhance it to sound more like that of a native speaker
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(a) LLM learns different distribution. (b) LLM learns similar distribution.

Figure 4: We present the two detectability regimes for LLMs. Figure 4(a) denotes the scenario in which, when LLMs learn
a different distribution, and the detection is easy. Figure 4(b) shows a scenario when LLMs’ distribution is very close to
human’s, it is hard but possible to detect in this setting via collecting more samples. Additionally in scenarios of Figure 4(b),
efficient watermarking techniques such as (Kirchenbauer et al., 2023a; Krishna et al., 2023) could help in improving the
separability and detectability.

leads to a substantial decrease in misclassification. This evidence suggests that most current detectors prioritize low
perplexity as a crucial criterion for identifying a text as AI-generated, which might be flawed in various contexts, for example
- academic papers as shown in (Liang et al., 2023). More specifically, we want to highlight the potential for bias in detectors
relying primarily on perplexity scores, as elaborated in (Liang et al., 2023), underscoring the need for a comprehensive
and equitable redesign that takes into account other relevant metrics. Our research demonstrates a promising approach to
text detection, wherein the collection of more samples and the development of a multi-sample-based detector significantly
enhance performance from the best word-level detector, as demonstrated by our experimental results depicted in Figures 5-7.
While our results demonstrate the potential for improved detection accuracy at the paragraph level, it is important to note
that this approach requires designing detectors capable of processing multiple samples. For instance, in our IMDb example,
we developed a paragraph-level detector that can take the entire paragraph as input, in contrast to the word-level detector,
which only processes one word at a time. Thus our approach requires the detector to deal with n samples, which may be
complicated compared to processing just one sample, leading to a trade-off that could be critical for accurate detection in
practice. To summarize, our work offers valuable insights into detector design, specifically about the sample complexity
of AI-text detention and its connection to Chernoff information of human and machine distributions. We can utilize these
insights to develop robust and fair detectors that enhance the overall accuracy of text detection methods.

Remark 3: Task-specific detectability & optimistic view of LLMs.

In addition to our findings on the detectability of LLM-generated content, we want to highlight the significance of task-
specific detectability (Figure 4). While the primary focus of Theorem 1 is to detect machine-generated text, it is important
to consider the broader context of LLMs and their potential positive applications. LLMs have demonstrated significant
potential to assist in a variety of tasks, including language translation (Vaswani et al., 2017), text summarization (Rush et al.,
2015), dialogue systems (Serban et al., 2015), question answering (Pandya & Bhatt, 2021; Wang, 2022; Karpukhin et al.,
2020), information retrieval (Chowdhury et al., 2022; Zheng et al., 2022; Kim et al., 2022), recommendation engine (Kang
& McAuley, 2018; Brown et al., 2020), language grounded robotics (Ahn et al., 2022) and many others. In these scenarios,
the goal is to generate high-quality text that meets the needs of the user rather than to deceive or mislead. For example,
consider the application of an LLM as a tool to assist individuals or groups with moderate English writing skills to improve
their writing. In this case, a well-trained LLM model could have a better (and different) distribution across S than the human
distribution h(s). This difference in distributions ensures that it should be possible to detect that AI generates the text. This
understanding of detectability underscores the complexity of working with LLMs and emphasizes the importance of tailored
approaches to maximize their potential. Our work provides insights into the intricacies of LLM-generated content detection,
paving the way for more targeted and practical applications of these powerful models.

Remark 4: Realistic scenarios where m(s) and h(s) are different.

Theorem 1 suggests that even small differences between the machine-generated text m(s) and the human-generated text
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h(s) should help for AI-generated text detection. In many practical applications, this difference can be easily achieved since
we can control m(s), but not necessarily h(s). One such application is the use of LLMs to address biases and prejudices in
human-generated text. While biases can arise due to the diverse backgrounds of certain communities or clusters of humans,
LLMs can be trained to generate unbiased text by minimizing the likelihood of biased language in the training data. This
can lead to a more inclusive and equitable society, where language use is free from discrimination. Importantly, it is crucial
to maintain a gap between the bias in human-generated text and that in machine-generated text. This ensures that biased
language remains more likely to originate from the human-generated text than from LLMs. By doing so, effective detection
and separation of the two sources can be achieved, enabling us to fully harness the potential of LLMs without compromising
their integrity. With careful consideration and responsible use, LLMs can make a positive impact on our society, helping us
to communicate more effectively and promoting fairness and inclusivity in language use.

C. Detailed Proofs
C.1. Revisiting Le Cam’s Lemma and the Existence of the Optimal Detector

We first restate Le Cam’s lemma and its proof, which appears in Le Cam (2012) and many lecture notes such as (Wasserman,
2013).

Lemma 1 (Le Cam’s Lemma). Let S be an arbitrary set. For any two distributions m and h on S, we have

inf
Ψ

{
Ps∼m[Ψ(s) ̸= 1] + Ps∼h[Ψ(s) ̸= 0]

}
= 1− TV(m,h), (18)

where the infimum is taken over all detectors (measurable maps) Ψ : S → {1, 0}. Particularly, the detector with the
acceptance region A∗ := {s : m(s) ≥ h(s)}, defined as

Ψ∗(s) :=

{
1 s ∈ A∗

0 s ∈ S\A∗,

achieves the infimum. We note that Ψ∗ is the likelihood ratio-based detector.

Proof. For notation simplicity, we use m and h to denote both the probability measure and the probability density of the
machine-generated and human-generated text, respectively, with the specific meaning discernible from the context. For any
detector Ψ : S → {1, 0}, denote A as its acceptance region, where Ψ(s) = 1 for s ∈ A, and Ψ(s) = 0 for s ∈ S\A. Then
we have

Ps∼m[Ψ(s) ̸= 1] + Ps∼h[Ψ(s) ̸= 0] = m(S\A) + h(A)

= 1− (m(A)− h(A)). (19)

Taking the infimum over all acceptance regions on both sides in (19) yields

inf
Ψ

{
Ps∼m[Ψ(s) ̸= 1] + Ps∼h[Ψ(s) ̸= 0]

}
= inf

Ψ

{
1− (m(A)− h(A))

}
= 1− sup

Ψ

{
(m(A)− h(A))

}
= 1− TV(m,h).

Next, we proceed to show that the ration-based detector Ψ∗(s), defined in the statement of Lemma 1, achieves the infimum.
We first note that the acceptance region A∗ := {s : m(s) ≥ h(s)} is a measurable set that is included in the collection of all
acceptance regions since I{m(s)≥h(s)} is a measurable function. Therefore,

Ps∼m[Ψ∗(s) ̸= 1] + Ps∼h[Ψ
∗(s) ̸= 0] ≥ inf

Ψ

{
Ps∼m[Ψ(s) ̸= 1] + Ps∼h[Ψ(s) ̸= 0]

}
. (20)

On the other hand, for any measurable set B, we have B\A∗ = {s ∈ B : m(s) < h(s)} and A∗\B = {s /∈ B : m(s) ≥
h(s)} by the definition of A∗. Therefore, by the sigma-additivity of measure, we have

1− (m(A∗)− h(A∗)) = 1− (m(A∗ ∩B)− h(A∗ ∩B))− (m(A∗\B)− h(A∗\B)). (21)
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In the right-hand side of (21), we note that m(A∗\B)− h(A∗\B) ≥ 0 because our detector is likelihood-ratio-based. This
implies we can upper bound the right-hand side in (21) by dropping the negative term as follows

1− (m(A∗)− h(A∗)) ≤ 1− (m(A∗ ∩B)− h(A∗ ∩B)). (22)

Further from the definition of the ratio-based detector, we note that m(B\A∗)−h(B\A∗) < 0. This implies −(m(B\A∗)−
h(B\A∗)) > 0 and we can upper bound the right hand side of (22) by adding just the positive number −(m(B\A∗) −
h(B\A∗)) as follows,

1− (m(A∗)− h(A∗)) ≤ 1− (m(A∗ ∩B)− h(A∗ ∩B))− (m(B\A∗)− h(B\A∗)). (23)

From the sigma-additivity of measure, we can write

1− (m(A∗)− h(A∗)) ≤ 1− (m(B)− h(B)). (24)

Since the inequality in (24) holds for any measurable set B, we can write

Ps∼m[Ψ∗(s) ̸= 1] + Ps∼h[Ψ
∗(s) ̸= 0] ≤ inf

Ψ

{
Ps∼m[Ψ(s) ̸= 1] + Ps∼h[Ψ(s) ̸= 0]

}
. (25)

Hence, from the lower bound in (20) and upper bound in (25), we conclude that Ψ∗(s) achieves the infimum, which
completes the proof.

The Le Cam’s lemma directly applies to our detector D with threshold γ by noting that any detector can be implemented via
a detector with a threshold. Indeed, define Dγ : S → {1, 0} via

Dγ(s) :=

{
1 D(s) ≥ γ

0 D(s) < γ,

then it holds that {Ψ : S → {1, 0}} ⊆ {Dγ : S → {1, 0}, D : S → R, γ ∈ R} because for any Ψ, we can choose D to be
exactly the same as Ψ (since {1, 0} ∈ R) and set γ = 0.5.

In fact, the detector Ψ∗ is exactly the likelihood-ratio-based detector which, by the Neyman-Pearson lemma (Cover, 1999,
Chapter 11), is optimal in this (simple-vs.-simple) hypothesis test setting.

Relationship to the tightness analysis in Sadasivan et al. (2023). The authors of Sadasivan et al. (2023) provide a tightness
analysis for their AUROC upper bound. The main part of the proof is to show the tightness of Equation 18. Specifically, for
any given human-generated text distribution h, they construct a machine-generated text distribution m and a detector D
with some threshold γ, and show that the detector with the threshold achieves the equality in Equation 18. We note that their
constructed detector with the threshold is exactly the likelihood-ratio-based detector. Moreover, a key difference between
our result and theirs is that we show that the tightness can be achieved for any given distribution of m and h while they
construct a specific m given h. While their specific construction of the machine distribution gives many insights into the
problem, it is not necessary for achieving the tightness. This difference also implies that we can be more optimistic about
the problem since the classifier achieving the tightness exists for any machine-generated distributions.

C.2. Proof of Theorem 1

The first part of the proof follows from the standard application of Chernoff’s bounds (Vadhan, 1999, Appendix A). From
the statement of Theorem 1, we note that the AUROC of the best possible detector is given by

AUROC =
1

2
+ TV(m⊗n, h⊗n)− TV(m⊗n, h⊗n)2

2
. (26)

Let us start in a hard detection setting where m(s) and h(s) are really close and we know that TV(m,h) = δ where δ > 0 is
small. From the definition of TV distance, we know that there exists some set A ∈ S such that given the samples sm ∼ m(s)
and sh ∼ h(s) it holds

P(sm ∈ A)− P(sh ∈ A) = δ. (27)
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Let us define P(sh ∈ A) = p which implies that P(sm ∈ A) = p+ δ. Let us now collect n samples {si}ni=1 from m(s), we
know that the probability of any sample si in A is given by p+ δ. Hence, on average (p+ δ)n number of samples will be in
A. In a similar manner, if we have n samples from h(s), pn will be in A on average. Therefore, we can utilize the Chernoff
bound to write

P

(
at least

(
p+

δ

2

)
n samples of h are in A

)
≤ exp

−nδ2

2

P

(
at most

(
p+

δ

2

)
n samples of m are in A

)
≤ exp

−nδ2

2 . (28)

Now, let us denote the set of n−tuples by A′ which contains more than
(
p+ δ

2

)
n samples of A. Therefore, we can bound

TV(m⊗n, h⊗n) ≥P({smi }ni=1 ∈ A′)− P({shi }ni=1 ∈ A′)

≥(1− exp
−nδ2

2 )− exp
−nδ2

2

=1− 2 exp
−nδ2

2 . (29)

The TV norm lower bound in (29) tells us the minimum value of TV(m⊗n, h⊗n) for given n and δ. Therefore, if we need to
obtain the AUROC of the best possible detector to be equal to, or higher than say ϵ ∈ [0.5, 1], which means we want

1

2
+ TV(m⊗n, h⊗n)− TV(m⊗n, h⊗n)2

2
≥ ϵ. (30)

Now, since the left-hand side is the monotonically increasing function of TV(m⊗n, h⊗n), it holds from the minimum value
in (29) that

1

2
+ (1− 2 exp

−nδ2

2 )− (1− 2 exp
−nδ2

2 )2

2
≥ ϵ. (31)

After expanding the squares, we get

1

2
+ (1− 2 exp

−nδ2

2 )− 1

2
− 2 exp−nδ2 +2 exp

−nδ2

2 ≥ ϵ. (32)

After rearranging the terms, we get

1− ϵ

2
≥ exp−nδ2 . (33)

Taking log on both sides and rearranging terms yields

n ≥ 1

δ2
log

(
2

1− ϵ

)
. (34)

Hence proved.

C.3. Proof of Theorem 2

Before starting the analysis, let us restate the following bound from (Dhurandhar, 2013) for quick reference.

Lemma 2 (Upper Bound for Non-iid scenario). Let n be the number of samples drawn sequentially from
P(S1, S2 · · ·Sn) =

∏L
j=1 τj , where τj are independent subsets consisting of cj dependent sequences (s1, s2 · · · scj )

such that
∑L

j=1 cj = n. Under dependence structure in (16), for any δ >
∑L

l=1(cj−1)ρj

n , it holds that

P(|S̄ − E[S̄]| ≥ δ) ≤ 2 exp
−2(nδ −

∑L
j=1(cj − 1)ρj)

2

n
, (35)

where S̄ = 1
n

∑n
n=1 si and E[Si|Si−1 = si−1, · · · , S1 = s1] =

ρ
i−1

∑i−1
k=1 sk + (1− ρ)E[Si].
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Lemma 2 provided upper bounds for non-iid scenarios, with an exponential bound in sample size n along with an additional
dependence on the strength of association ρj and the size of the dependent sequence cj . It is important to note that when we
have ρ = 0, it exactly boils down to the standard Chernoff bound.

Now, we move to do the sample complexity analysis for the non-iid setting. Similar to the proof for the iid case, we define
P(sh ∈ A) = p which implies that P(sm ∈ A) = p+ δ. Let us now collect n samples sequentially {si}ni=1 from m(s), we
know that the probability of any sample si in A is given by p+ δ. Hence, on average (p+ δ)n number of samples will be in
A. In a similar manner, if we have n samples from h(s), pn will be in A on average. Therefore, we can utilize the Chernoff
bound to write

P

(
at least

(
p+

δ

2

)
n samples of h are in A

)
≤ 2e

−2

(
n δ

2
−

∑L
j=1(cj−1)ρj

)2
n

P

(
at most

(
p+

δ

2

)
n samples of m are in A

)
≤ 2e

−2

(
n δ

2
−

∑L
j=1(cj−1)ρj

)2
n , (36)

where for simplicity of notations let’s consider β = − 2(n δ
2−

∑L
j=1(cj−1)ρj)

2

n . Now, let us denote the set of n tuples by A′

which contains more than
(
p+ δ

2

)
n samples of A. Therefore, we can bound

TV(m⊗n, h⊗n) ≥P({smi }ni=1 ∈ A′)− P({shi }ni=1 ∈ A′)

=1− 4 expβ . (37)

The TV norm lower bound in (37) tells us the minimum value of TV(m⊗n, h⊗n) for given n and δ. Therefore, to obtain the
AUROC of the best possible detector to be equal to, or higher than say ϵ ∈ [0.5, 1], it should hold that

1

2
+ TV(m⊗n, h⊗n)− TV(m⊗n, h⊗n)2

2
≥ ϵ. (38)

Since the left-hand side in (38) is the monotonically increasing function of TV(m⊗n, h⊗n), it holds from the minimum value
in (29) that

1

2
+ (1− 4 expβ)− (1− 4 expβ)2

2
≥ ϵ. (39)

After expanding the squares, we get

1

2
+ 1− 4 expβ −1

2
− 8 exp2β +4 expβ ≥ ϵ, (40)

which implies

1− ϵ

8
≥ exp2β = exp−

4(n δ
2
−

∑L
j=1(cj−1)ρj)

2

n , (41)

where substitute the value of β and taking logarithm on both sides, we get

log

(
8

1− ϵ

)
≤ 4

n

n
δ

2
−

L∑
j=1

(cj − 1)ρj

2

(42)

=
4

n

n
δ

2
−

L∑
j=1

(cj − 1)ρj

2

= nδ2 − 4δ

 L∑
j=1

(cj − 1)ρj

+
4

n

 L∑
j=1

(cj − 1)ρj

2

.
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Let’s denote α =
∑L

j=1(cj − 1)ρj and γ(ϵ) = log
(

8
1−ϵ

)
, for simplicity of calculations. The quadratic inequality from the

above equation boils down to solving

δ2n2 − n(4αδ + γ(ϵ)) + 4α2 ≥ 0, (43)

which is in the form of a standard quadratic equation and the corresponding solution is given by

n ≥ γ(ϵ)

2δ2
+ 2

α

δ
+

1

2δ2

√
(4αδ + γ(ϵ))2 − 16α2δ2 (44)

=
γ(ϵ)

2δ2
+ 2

α

δ
+

1

2δ2

√
γ(ϵ)2 + 8αδγ(ϵ)

=
γ(ϵ)

2δ2
+

2

δ

L∑
j=1

(cj − 1)ρj +
1

2δ2

√√√√√(γ(ϵ))2 + 8

 L∑
j=1

(cj − 1)ρj

 δγ(ϵ).

Now, we further expand upon the expression as

n ≥ 1

2δ2
γ(ϵ) +

2

δ

L∑
j=1

(cj − 1)ρj +
1√
2δ2

√√√√√1

2

(γ(ϵ))2 + 8

 L∑
j=1

(cj − 1)ρj

 δγ(ϵ)



≥ 1

2δ2
γ(ϵ) +

2

δ

L∑
j=1

(cj − 1)ρj +
1

2
√
2δ2

γ(ϵ) +
1√
2δ2

√√√√√2

 L∑
j=1

(cj − 1)ρj

 δγ(ϵ), (45)

where, the first-term results from multiplying and dividing by a constant factor 2, and the second term is an application of
Jensen’s inequality for convex functions. Using the order notation, we obtain

n = Ω

 1

δ2
log

(
1

1− ϵ

)
+

1

δ

L∑
j=1

(cj − 1)ρj +

√√√√√ 1

δ3
log

(
1

1− ϵ

) L∑
j=1

(cj − 1)ρj


 . (46)

D. Additional Figures of Experimental Results
D.1. Additional Experimental Details

IMDb Dataset Experiments. To validate our claims on the possibilities of detection, we run experiments on the IMDb
dataset (Maas et al., 2011), which is a widely-used benchmark dataset in the field of natural language processing. The
dataset consists of 50, 000 movie reviews from the internet movie database that have been labeled as positive or negative
based on their sentiment. The goal is to classify the reviews accordingly based on their text content. The experiments
are done to validate our hypothesis on a more general class of language tasks including classification and detection. We
specifically focus on the representation space of the inputs for both the human and machine distributions and try to validate
our hypothesis by comparing the input space of words to the input space of a group of sentences. The objective is to analyze
the variations in performance of the detector when detecting at word-level versus paragraphs. Hence, there are two scenarios
to consider. The first is where we’re given a word and we have to determine whether it came from positive or negative
class. The second, and more practical case, is where we’re given a paragraph i.e a group of sentences and we have to detect
whether it came from positive or negative class.

So, we first compute the total variation distance between the positive and negative classes at the word level. This is done by
computing the divergence between the distribution over the space of words between the two classes. Figure 6(a) shows that
the best possible AUROC achieved by the detector is 0.585 at the word level. From these results, it seems almost impossible to
distinguish the two classes. However when we perform the detection at a paragraph level using a real detector (standard ML
models, including random forest, logistic regression, and a vanilla multi-layer perception), we see a remarkable improvement
in the detection performance. As shown in Figure 6(a), all the real detectors achieve a train AUROC of greater than 0.85
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i rented i am curious yellow from my video store because of all 
the controversy that surrounded it when it was first released in i 

also heard that at first it was seized by u s customs if it ever tried 
to enter this country therefore being a fan of films considered 

controversial i really had to see this for myself the plot is 
centered around a young swedish drama student named lena 

who wants to learn everything she can about life in particular she 
wants to focus her attentions to making some...

(a) IMDb dataset (Maas et al., 2011)

(b) Paragraph representation space

Figure 5: Figure 5(a) (left) shows examples of textual paragraphs and corresponding labels present in the IMDb dataset.
It also highlights part of one random paragraph (one input) showing that in general, having a lot of sentences as input for
detection is very common and practical. Figure 4(a) (right) represents the word-cloud representation of the word distribution
based on which the word-level total variation is estimated. Figure 5(b) denotes the representation of the input paragraph
using a Bag-of-Words-based count vectorizer for our algorithms and proving our hypothesis. It demonstrates paragraph
representation space with Bag-of-Words-based count vectorizer where each row indicates one review.
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Classification 
Algorithm Accuracy AUROC 

(Train)
AUROC 

(Test)

Logistic Regression 75.12 76.11 74.12

Random Forest 96.78 97.12 73.44

Vanilla MLP 96.95 96.12 72.89

Classification 
Algorithm Accuracy AUROC 

(Train)
AUROC 

(Test)

Logistic Regression 85.67 85.71 83.42

Random Forest 93.91 94.12 82.12

Vanilla MLP 94.32 94.31 83.12

Metric AUROC 
(best detector)

TV-norm = 0.088 58.47

Word-Level

Paragraph-Level

Metric AUROC 
(best detector)

TV-norm = 0.067 56.53

Word-Level

Paragraph-Level

(a)

(b)

Figure 6: The table in Figure 6(a) (left) represents the total variation norm distance at a word level i.e input to the detector is
the word and one needs to detect if it’s a positive or negative class (human or machine in our context). It also shows the
AUROC that can be achieved by the best detector based on the total variation norm as shown in (Sadasivan et al., 2023).
Figure 6(b) (right) shows the accuracy and AUROC achieved by real detectors (standard machine learning algorithms) at a
paragraph level, where each input to the detector is a paragraph or a group of sentences. It is evident that at a paragraph
level, even a simple untuned ML detector can achieve a very high AUROC of more than 85%, which was very low at a word
level. Similarly, in the tables in Figure 6(b), we observe a similar behavior as we increase the hardness of the problem by
reducing the number of sentences from the passage. We note that the AUROC achieved by the real detector decreases but is
still much larger than the word-level best detector’s AUROC which validates our claims.

(≥ 0.93 for random forest and MLP), and a test AUROC of greater than 0.8, which surpasses the upper-bounds of the best
detector at a word level, validating our theory and intuition. This impressive performance is fully aligned with our claims
and provides evidence that designing a detector with high performance for AI-generated text is always possible even for
general NLP detection tasks.

IMDb NLP Dataset Experiments with Increased Hardness. To provide additional confirmation of the efficacy of our
claim, we made the experimental setting more challenging by randomly decreasing the number of sentences in each review,
making it difficult for any genuine detector or classifier to distinguish. In this scenario, we again compared the performance
to the previous scenario and observed that all the methods were able to achieve a test AUROC greater than 0.7, which is lower
than the previous case. This result supports our hypothesis that as the number of samples/sentences increases, detection
accuracy improves.

We conducted a similar experiment on a Fake News classification dataset (Lifferth, 2018), and the results were consistent
with our previous findings. This indicates that AI-generated text can be detected, although we need to be cautious and gather
more samples as the distribution becomes closer.

We would like to emphasize that the purpose of this experimentation is to demonstrate our hypothesis regarding the feasibility
of detection rather than to showcase the accuracy of classification. This is because the accuracy of classification is already
well-established, with a simple pre-trained BERT-based model being capable of achieving high accuracy.

D.2. Detection Performance with Paraphrasing

We also perform the experiments with paraphrasing the document generated by the machine using a pre-trained Open-sourced
HuggingFace Paraphraser Parrot (Damodaran, 2021), which allows controlling the adequacy, fluency, and diversity of the
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Classification 
Algorithm Accuracy AUROC 

(Train)
AUROC 

(Test)

Logistic Regression 86.39 86.32 84.95

Random Forest 94.40 94.39 89.99

Vanilla MLP 96.10 97.01 89.91

Metric AUROC 
(best detector)

TV-norm = 0.102 59.73

Word-Level

Paragraph-Level

Figure 7: The table in Figure 7(a) (left) represents the total variation norm distance at a word level for the Fake News dataset
(Lifferth, 2018). It shows the AUROC that can be achieved by the best detector based on the total variation norm as shown
is 59.73%. Figure 7(b) (right) shows the accuracy and AUC achieved by a real detector at a paragraph level goes up to 90%,
which validates our hypothesis for a general class of NLP tasks
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Figure 8: (a)-(b) validates our theorem for real human-machine classification datasets generated with XSum & Squad, with
zero-shot detection performance. We use the RoBERTa-Base-Detector (8a) and RoBERTa-Large-Detector (8b) from OpenAI
which are trained or fine-tuned for binary classification with datasets containing human and AI-generated texts. We observe
that with the increase in the number of samples or sequence length for detection, the zero-shot detection performance from
both the models improves drastically from around 50% to 97% for both Xsum and Squad human-machine datasets.

generated text. We perform both supervised (Appendix), with pairwise IID Samples (Appendix) and Zero-shot detection
with OpenAI’s RoBERTa-Large-Detector. It is evident from Figure 10 that the detection performance decreases with
paraphrasing, as also shown in (Sadasivan et al., 2023; Krishna et al., 2023).

Although the detection performance drops by approximately 15% due to paraphrasing, the trend of performance improvement
still remains prominent as the sequence length increases, which validates our hypothesis even under attack. Hence, one can
potentially evade such attacks by considering larger sequence lengths with the sample complexity trade-off. Additionally,
we observed that the performance degradation is much lesser with pairwise iid samples, highlighting the possibilities with
fine-grained detectors.
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(a) (b)

Figure 9: (a) demonstrates the detection performance of Vanilla classifiers/detectors on the Xsum dataset (Randomly
sampled) generated by GPT-2. (b) demonstrates the detection performance of Vanilla classifiers/detectors on the Squad
dataset (Randomly sampled) generated by GPT-2. This shows that even for vanilla detectors, our result holds for random
subsets of the data.
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Figure 10: This figure demonstrates zero-shot detection performance with and without paraphrasing using RoBERTa-Large-
Detector. Although the detection performance drops by approximately 15% due to paraphrasing, the trend of performance
improvement holds as the sequence length increases.
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