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Abstract
Scribble-supervised semantic segmentation
presents a cost-effective training method that
utilizes annotations generated through scribbling.
It is valued in attaining high performance while
minimizing annotation costs, which has made
it highly regarded among researchers. Scribble
supervision propagates information from labeled
pixels to the surrounding unlabeled pixels,
enabling semantic segmentation for the entire
image. However, existing methods often ignore
the features of classified pixels during feature
propagation. To address these limitations, this
paper proposes a prototype-based feature augmen-
tation method that leverages feature prototypes
to augment scribble supervision. Experimental
results demonstrate that our approach achieves
state-of-the-art performance on the PASCAL
VOC 2012 dataset in scribble-supervised seman-
tic segmentation tasks. The code is available at
https://github.com/TranquilChan/PFA.

1. Introduction
In recent years, the rapid progress of deep learning tech-
niques has propelled deep neural networks to achieve signif-
icant advancements in image semantic segmentation tasks.
These networks play a pivotal role in aiding human com-
prehension of image content, providing precise pixel-level
segmentation. As one of the most intricate tasks in the field
of computer vision, training semantic segmentation models
typically requires a large number of high-quality annotated
samples. However, annotating samples at the pixel level
demands a substantial amount of manpower and time, and
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Figure 1. Illustration of existing scribble-supervised semantic seg-
mentation approaches. F represents the feature map, and P repre-
sents the prediction map.

the annotation process can be tedious. Therefore, in sce-
narios where data dependency is strong, researchers are
increasingly focusing on methods that utilize scribble labels
for supervised learning. Training with scribble labels falls
under weakly supervised learning, allowing annotators to
mark regions in the image using simple lines or sketches and
assign corresponding labels to those regions. Compared to
pixel-level annotation, using scribble labels can significantly
reduce the workload of annotation and improve efficiency.
Additionally, compared to point (Bearman et al., 2016; Lee
et al., 2021), bounding box (Kulharia et al., 2020; Zhang
et al., 2021), and image-level (Zhang et al., 2020; Du et al.,
2022) labels, scribble labels provide more crucial semantic
information to the models, helping them better learn the
semantic structure of the images.

As shown in Figure 1, existing methods mainly rely on
regularization loss (Tang et al., 2018a;b; Obukhov et al.,
2019; Marin et al., 2019; Liang et al., 2022), consistency
loss (Ke et al., 2021; Pan et al., 2021), pseudo proposal (Lin
et al., 2016; Zhang et al., 2021; Xu et al., 2021), auxiliary
tasks (Wang et al., 2019; Pan et al., 2021), and label diffu-
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sion (Wu et al., 2023; Zhang et al., 2024). However, these
methods exhibit certain drawbacks. Regularization methods
often overlook leveraging high-level semantic information.
Consistency loss does not provide direct supervision at the
category level. Pseudo-labeling methods require multi-stage
training, which are time-consuming. Auxiliary tasks intro-
duce additional data and predictive errors of introduced data
can influence the final outcomes. Label diffusion primar-
ily relies on local information and fails to utilize global
information to leverage the features of correctly classified
pixels. In fact, the features of pixels that have been correctly
classified can play a pivotal role in guiding the classifica-
tion of pixels in boundary regions. However, many existing
methods based on scribble supervision ignore this role.

In the context of semi-supervised classification tasks, Feat-
Match (Kuo et al., 2020) learns and extracts feature pro-
totypes from labeled samples, subsequently enhancing the
features of unlabeled data with these prototypes to improve
the classification of unlabeled samples. Inspired by this, we
seek to extend its application to scribble-level weakly super-
vised semantic segmentation. Nevertheless, in our scenario
of scribble-level weakly supervised segmentation, the labels
are assigned at the pixel level, unlike the image-level labels
in semi-supervised tasks. Our approach entails the initial
learning from labeled pixels, extraction of feature proto-
types from accurately classified pixels, and the subsequent
utilization of these prototypes to guide the classification of
remaining pixels.

Specifically, our method initiates with prototype extraction.
In contrast to conventional clustering methods employed in
semi-supervised and unsupervised approaches, we directly
extract feature prototypes from high-confidence regions of
initial predictions. To mitigate the potential loss of prototype
diversity associated with this extraction method (where clus-
tering methods may yield multiple prototypes for each cate-
gory), and recognizing the presence of labeled information
in each image within a weakly supervised environment, we
introduce both local and global prototypes. Local prototypes
are extracted from each image, while each category’s global
prototypes consist of multiple local prototypes. Throughout
the training process, local prototypes dynamically update
global prototypes, stored using a memory mechanism to
minimize additional computation. Combining these two
prototype types with prototype-based feature augmenters
enhances initial features. The augmented predictions are
regularized using a consistency loss. Leveraging feature
prototypes enables more effective utilization of information
from labeled pixels, enhancing segmentation accuracy by
guiding the classification of other pixels.

In summary, our contributions are as follows:

• We propose a prototype-based feature augmentation
method for scribble-level weak supervision, extend-

ing the application of the method from image-level to
pixel-level and significantly enhancing the efficacy of
scribble supervision.

• We propose a dynamic augmentation strategy employ-
ing local and global prototypes. This synergistic ap-
proach maximizes the utilization of information in
scribble-supervised semantic segmentation and mit-
igates the challenge of limited prototype representation
at various training stages.

• We validate the components of our method through
experiments and report the state-of-the-art performance
on the PASCAL VOC 2012 dataset.

2. Related Work
2.1. Scribble-Supervised Semantic Segmentation

Scribble-supervised semantic segmentation, a form of
weakly supervised semantic segmentation, employs scrib-
bles as annotations to label image regions. This approach
presents a cost-effective alternative to fully supervised la-
beling. Compared to other weakly supervised annotation
methods, including point, bounding-box, and image-level
labels, scribble supervision imparts more comprehensive
and detailed information, resulting in better performance.

In scribble-supervised semantic segmentation, Scribble-
Sup (Lin et al., 2016) first introduced the concept of using
scribble labels for semantic segmentation and provided the
ScribbleSup dataset. They propagated the scribble label
information to surrounding pixels using superpixels and de-
signed corresponding loss functions for supervision. Tang
et al. proposed methods based on regularization losses, such
as Normalized Cut loss (Tang et al., 2018a) and Kernel
Cut loss (Tang et al., 2018b), for model training. Gated
CRF (Obukhov et al., 2019) augmented the efficiency by
introducing gating operations on top of the Kernel Cut loss.
RAWKS (Vernaza & Chandraker, 2017) and BPG (Wang
et al., 2019) utilized boundary detectors to assist the mod-
els in achieving better results. URSS (Pan et al., 2021)
reduced uncertainty through neural representation and self-
supervision in the neural feature space. SPML (Ke et al.,
2021) improved performance by using metric learning meth-
ods and introducing a contour detector as additional su-
pervision. PSI (Xu et al., 2021) utilized latent contextual
dependency to enhance and refine segmentation results from
partially known seeds. A2GNN (Zhang et al., 2021) intro-
duced a graph neural network approach to generate pseudo-
labels and applied multi-level supervision. TEL (Liang
et al., 2022) proposed a novel tree energy loss method that
provides semantic guidance to unlabeled pixels. AGMM
(Wu et al., 2023) implemented supervision by constructing
Gaussian mixture models based on the feature distribution
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Figure 2. The overall framework of our approach. Initially, the image undergoes encoding to produce a feature map. Subsequently,
this feature map is fed into the decoder to generate a semantic segmentation prediction map. Scribble labels are employed to impose
constraints using partial cross-entropy loss. Next, local prototypes are extracted from the initial prediction map and the feature map, while
global prototypes are updated throughout the training iterations. The initial feature map is augmented separately using these two types of
prototypes, and predictions are generated using the decoder. Consistency loss is used to constrain between two predicted maps and the
initial predicted map. During the warm-up phase, partial cross-entropy is black. It turns green when global prototypes are inactive, and
yellow when global prototypes are in use.

of labeled pixels and unlabeled pixels sharing similar feature
distributions. CDSP (Zhang et al., 2024) utilized pseudo-
labels supervised by image-level class labels and global
semantics.

2.2. Prototype-based Method

Feature prototypes can be seen as ‘exemplars’ of different
categories in the feature space. Their essence lies in being
feature vectors widely used in computer vision tasks to aug-
ment the model’s recognition capability of different types of
features. In fully supervised semantic segmentation tasks,
OCRNet (Yuan et al., 2020), ACFNet (Zhang et al., 2019),
and CondNet (Yu et al., 2021) aggregate category feature
embeddings by considering the initial segmented regions.
Mask2former (Cheng et al., 2022) and CFT (Tang et al.,
2023) focus on category features through masking. The
main idea of these methods is to augment features through
prototypes, but their methods are relatively common, such
as convolution, multiplication, and attention. In weakly su-
pervised semantic segmentation, EPS (Yoon et al., 2021) uti-
lizes prototypes to guide the model in learning more accurate
feature representations, thereby improving segmentation re-
sults. PPC (Du et al., 2022) provides pixel-level supervisory
signals by contrasting pixels with prototypes to narrow the
gap between classification and segmentation. SIPE (Chen

et al., 2022) proposes an image-specific prototype explo-
ration method to capture complete regional information in
the image. They delve into the use of feature prototypes, but
they do not use prototypes for feature augmentation, or their
employed fusion approaches are relatively simple, thereby
failing to harness the guiding role of prototype. FeatMatch
(Kuo et al., 2020) augments features by fusing them with
prototypes, but it is a semi-supervised classification task.
Xu et al. further introduces prototype-augmented methods
into the field of semantic segmentation (Xu et al., 2022),
but it remains a semi-supervised task. The goal of our work
is to incorporate this idea into weakly supervised semantic
segmentation, introducing prototype augmentation at the
pixel level.

3. Method
3.1. Overview

Figure 2 illustrates the overall framework of our approach,
leveraging a Vision Transformer (Xie et al., 2021) as the
backbone for extracting initial feature maps. These feature
maps are then input to a decoder for generating semantic
segmentation prediction maps. Details of the encoder and
decoder are discussed in Section 4.2. Supervised by scrib-
ble labels through partial cross-entropy loss, the semantic
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segmentation prediction maps are refined. Subsequently,
high-confidence regions from the initial prediction maps are
identified as accurately predicted pixels, and correspond-
ing feature vectors in the initial feature maps are extracted.
Local prototypes are formed by weighting and averaging
these feature vectors based on predicted values. Through-
out training iterations, these local prototypes update global
prototypes, elucidated in Section 3.2. Both the global pro-
totypes and local prototypes are used to augment the initial
features through prototype-based feature augmenters. The
augmented feature maps are then passed through the decoder
to generate augmented prediction maps, with the weights of
the three decoders shared during this process. The consis-
tency loss is applied between the two augmented prediction
maps and the initial prediction maps for supervision, de-
tailed in Section 3.3.

3.2. Prototype Extraction and Update

3.2.1. SETTING OF THE PROTOTYPE

Augmenting features via prototypes depends heavily on pre-
cisely defined prototypes. The creation of these prototypes
is vital. We classify prototypes into two types: local proto-
types and global prototypes. Local prototypes are extracted
from image features within each batch during training iter-
ations and are specifically for augmenting features within
that batch. In contrast, global prototypes encompass more
comprehensive information and can be dynamically updated
globally. Global prototypes augment information diversity
by updating with local prototypes, rendering them more
suitable for feature augmentation.

3.2.2. EXTRACTION OF THE PROTOTYPE

Here, we outline the process of extracting prototypes from
features, namely generating local prototypes. Currently,
methods for extracting prototypes from image features are
mostly employed in semi-supervised and unsupervised se-
mantic segmentation techniques. Many of these methods
(Kuo et al., 2020; Xu et al., 2022) utilize clustering as an ef-
fective approach in scenarios where labels are either scarce
or lacking. However, the primary goal of prototype extrac-
tion is to derive highly representative features from the data
as the basis for prototype generation. Using clustering meth-
ods often fails to effectively align with the actual categories.
In a weakly supervised setting, we believe that relying solely
on clustering methods does not fully leverage the semantic
information provided by scribble labels. These labels can
significantly contribute by offering valuable insights into
the representative regions required for prototype extraction.

Therefore, we utilize the initial prediction values, repre-
sented as p, generated by the model as confidence scores.
Assisted by category labels, we compute prototypes from
high-confidence pixel-level features of the categories in

the current image. Initially, we select the top K confident
points for each category. Unlike conventional methods (Du
et al., 2022), we exclusively employ features associated
with categories present in the current image for prototype
computation by utilizing category labels. This approach
aids in eliminating prototype interference from irrelevant
categories during subsequent feature augmentation. The
formula for computing feature prototypes is:

ct = topk(pt), pt ∈ Ωp (1)

vt = topk(ft), ft ∈ Ωf (2)

fpt = norm(

∑K
i ct,ivt,i∑K

i ct,i
) (3)

Here, t represents one of all categories. The sets Ωpand
Ωf respectively denote the collections of feature values and
prediction values for all categories present in the current
image. The feature prototype fpt is the weighted average of
feature embedding, normalized accordingly.

3.2.3. DEFINITION AND UPDATE OF GLOBAL
PROTOTYPES

When extracting prototypes solely from each batch, it limits
the consideration of diversity within prototypes of the same
category. This restriction confines the analysis to the current
batch’s image features, failing to effectively aid the model
in comprehending new features. Hence, we introduced the
concepts of global and local prototypes to distinguish pro-
totypes at different stages. In contrast to local prototypes,
global prototypes encompass prototypes for each category.
Within each category, there exists a set of equally-sized lo-
cal prototype vectors, managed using Prototype Memory
Bank. The global prototypes start as empty. Throughout
the training, local prototypes continually update the global
prototypes. The update strategy is as follows: searching for
the global prototype corresponding to the same category as
the local prototype. If the global prototype is not full, it’s
directly assigned; if the current category’s global prototype
is full, the cosine similarity between the current local proto-
type and n prototypes in the global prototypes is computed,
and the most similar one is updated. The update formula is
as follows:

fpold = selectmin(
fpt · fpi

||fpt|| · ||fpi||
), fpi ∈ Ωfpglobal

(4)

fpnew = α · fpold + (1− α) · fpt, α ∈ [0,1] (5)

where fpt represents the current local prototype, Ωfpglobal

is the collection of global prototypes, || · || denotes the norm
of a tensor, · represents the tensor dot product operation,
selectmin() selects the computed minimum value among
fpi as the prototype to be updated fpold, and α is the hyper-
parameter for update speed.
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3.3. Prototype-based Feature Augmentation

Softm
ax

C
oncat

R
eLu

Linear

Linear
Linear

R
eLu

Select

f

fplocal

faug

Softm
ax

C
oncat

R
eLu

Linear

Linear
Linear

R
eLu

M
erg

e

Select

f

fpglobal

faug

Feature Augmentation Based on Local Prototypes

Feature Augmentation Based on Global Prototypes

Figure 3. The structural diagram of the prototype-based feature
augmenter. When the global prototypes are not fully updated,
only the local prototypes are used to augment the features. Once
the global prototypes are fully updated, both the local and global
prototypes are used to augment the features.

3.3.1. FEATURE AUGMENTATION BASED ON LOCAL
PROTOTYPES

Inspired by the feature prototype method FeatMatch (Kuo
et al., 2020) used in semi-supervised learning classification,
we have introduced a feature-prototype-based classification
approach into scribble-supervised semantic segmentation
tasks. In semi-supervised classification tasks, prototypes
are derived through clustering. During augmentation, pro-
totypes for each category are involved, aiming to extract
valuable information from labeled data and propagate it to
unlabeled data. However, for our task, prototypes are ex-
tracted from high-confidence regions in the current image
features. Our goal is to propagate valuable information from
correctly classified pixels to those yet to be classified. There-
fore, we believe other category prototypes aren’t necessary
for this augmentation process.

Feature augmentation based on local prototypes occurs
within each batch. Therefore, when augmenting using local
prototypes, it is essential to select the prototypes correspond-
ing to the categories of the current features for reinforcement.
In the aforementioned extraction phase, prototypes unrelated
to categories present in the current image were not extracted,
resulting in these category prototypes being zero-valued. To
select the prototypes corresponding to categories within the
current batch, we initially filter the local prototypes fp by
defining fp∗ = select(fp), thereby removing irrelevant zero-
value prototypes. Subsequently, for each feature f within the
current batch and its corresponding prototype fp, we project
them into an embedding space, obtaining ef = linear(f)
and efp = linear(fp). Then, we compute their attention
weight ω, derived from the matrix multiplication of ef and

efp, normalized using softmax. The formula is expressed
as:

ω = softmax(matmul(eTf , efp)) (6)

Then, weighting efp using attention weight ω . Next, con-
catenating the weighted prototype with image features and
subjecting them to a linear layer transformation is performed.
This process aids in propagating information from the pro-
totype to the image features, thereby enhancing the features:

e∗f = ReLu(linear(concat(matmul(ω, efp), ef )) (7)

Finally, the last feature is obtained by using residual con-
nections between the initial features and the augmented
features:

faug = ReLu(f + linear(e∗f )). (8)

3.3.2. FEATURE AUGMENTATION BASED ON GLOBAL
PROTOTYPES

As shown in the Figure 3, the overall process of feature
augmentation based on global prototypes is similar to that
based on local prototypes, with the main difference lying
in the initial handling of prototypes. However, compared
to local prototypes, global prototypes contain n ordinary
prototypes for each category. Hence, before augmentation,
it is necessary to perform a merge process on the global
prototypes to facilitate subsequent computations.

3.3.3. THE SETTING FOR AUGMENTATION

Considering that our prototypes are extracted from features,
the quality of the extracted features might not be assured
during the early stages of training. Consequently, relying
solely on prototypes for feature augmentation might not
yield optimal results. Therefore, we have established a
warm-up period during which we refrain from utilizing pro-
totypes for feature augmentation, instead employing basic
loss constraints for training. Once this warm-up period con-
cludes, we extract local prototypes from the features. These
local prototypes contribute to enhancing the features of the
current batch. Meanwhile, the global prototypes might still
contain empty values due to ongoing updates. Hence, we
have set a condition where the global prototypes do not
partake in feature augmentation until they are completely
filled. It is only after the global prototypes have been fully
updated that we utilize them for augmentation.

3.4. Loss Function

For the design of the loss function, as shown in Figure 2,
the overall loss function consists of two parts: partial cross-
entropy loss Lpce and consistency loss Lcon. The consis-
tency loss further includes the consistency loss between the
initial predicted values and the predicted values augmented
using local prototypes Ltotal, as well as the consistency loss
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between the initial predicted values and the predicted values
augmented using global prototypes Lglobal.

Partial cross-entropy loss is obtained between the pre-
dicted values and the scribble labels, and its expression is as
follows (Tang et al., 2018b; Obukhov et al., 2019; Pan et al.,
2021; Liang et al., 2022):

Lpce = − 1

|ΩL|
∑
i∈ΩL

∑
c∈C

yci log(p
c
i ) (9)

where ΩL represents the set of all labeled pixels, C repre-
sents all the categories, yci and pci represent the ground truth
and predicted values of category c at pixel i, respectively.

Consistency loss is employed to constrain the feature pre-
diction values before and after augmentation. We utilize
mean squared error (MSE) (Bauer & Kohavi, 1999) as the
consistency loss function to restrict the relationship between
these two prediction values, expressed as:

Lcon = −
h×w∑
i=1

pilog(p
aug
i ) (10)

Here, h and w represent the height and width of the pre-
dicted values, where pi and paugi denote the initial predicted
value and the augmented predicted value at the same posi-
tion, respectively.

Total loss varies at different stages of training. In the
warm-up period, when neither the local prototype nor
the global prototype is utilized, the overall loss is repre-
sented as: Ltotal = Lpce. During the phase when pro-
totypes start being used but the global prototype hasn’t
been fully updated, only the local prototype contributes
to augmentation. Hence, the overall loss at this stage is:
Ltotal = Lpce + λlLcon−l. Finally, when both the global
and local prototypes are engaged in training, the overall loss
is defined as: Ltotal = Lpce+λlLcon−l+λgLcon−g . Here,
λl and λg represent the loss weights for Lcon−l and Lcon−g

respectively.

4. Experiment
4.1. Dataset and Evaluation Metric

We use the PASCAL-Scribble Dataset, which was initially
introduced by Lin et al. in ScribbleSup (Lin et al., 2016).
The PASCAL-Scribble Dataset is a dataset with scribble
annotations applied to the PASCAL VOC 2012 (Evering-
ham et al., 2010). The PASCAL VOC 2012 dataset consists
of 12,031 images with scribble annotations. The training
set contains 10,582 images, and the validation set contains
1,449 images. The PASCAL VOC 2012 dataset has 21 cate-
gories, including 20 object categories and one background
category. Unless otherwise specified, all ablation experi-
ments are conducted on the PASCAL VOC 2012 dataset.

The evaluation metric used is the mean Intersection-over-
Union (mIoU).

4.2. Implementation Details

Our method consists of five main modules: encoder, de-
coder, prototype extraction, prototype updating, and feature
augmentation. Given the efficient and excellent performance
of the vision transformer in semantic segmentation tasks,
we adopt the Mix Transformer proposed in Segformer (Xie
et al., 2021), which is specifically optimized for semantic
segmentation tasks and achieves superior performance com-
pared to vanilla transformers. The backbone parameters of
the model are initialized with ImageNet (Deng et al., 2009)
pretrained weights, while the remaining parameters are ran-
domly initialized. We utilize the AdamW optimizer with an
initial learning rate of 3 × 10−5. We employ a multi-step
scheduler for learning rate decay during iterations, with a de-
cay weight of 0.01. Additionally, the learning rate for other
parameters is set to 10 times that of the backbone network.
Regarding data preprocessing, all training images undergo
random scaling (0.5 to 2), random rotation (-10 to 10 de-
grees), random flipping, and Gaussian blurring. Finally, the
images are cropped to a size of 512×512. In Equation (5),
the momentum of prototype updating α, is set to 0.99, and
the number of global prototypes is set to 5. The batch size
is set to 16. Our experimental code is based on the PyTorch
framework (Paszke et al., 2019), and all experiments are
conducted on an NVIDIA RTX 3090 GPU.

4.3. Comparison with State-of-the-Art Methods

As shown in Table 1, we compare our method with existing
approaches and demonstrate significant improvements in
PASCAL VOC 2012 val set. To ensure fairness, we chose
MiT-B1 as the backbone, which achieved a score of 79.2%
on fully supervised data, similar to other methods using
ResNet101 (He et al., 2016) as the backbone. MiT-B1 is
slightly lower than them. Of course, we can also choose
larger MiT series backbones, but this would compromise
the fairness of the comparison. Therefore, we will discuss
this in detail in Section 4.4.

As shown in Table 1, we compare our method with other
state-of-the-art approaches. Our method adopts a single-
stage training framework, which does not require the use of
additional supervised data during the training process and
does not use CRF (Krähenbühl & Koltun, 2011). Scribble-
Sup (Lin et al., 2016) introduced scribble labels into the
semantic segmentation field for the first time and achieved
an mIoU of 63.1%. Methods based on the design principle
of regularization loss guide pixel classification by extract-
ing pairwise relationships from low-level image informa-
tion. They also achieve good results, reaching up to 75.0%.
BPG (Wang et al., 2019) and SPML (Ke et al., 2021) use
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Table 1. Comparison with other state-of-the-art methods on PASCAL VOC 2012 val set.

Method Backbone Publication Supervision Single-stage Extra Data CRF mIoU(%)

(1) DeeplabV2 (Chen et al., 2017) VGG16 TPAMI’17 Full
√

-
√

71.6
(2) DeeplabV2 (Chen et al., 2017) ResNet101 TPAMI’17 Full

√
-

√
77.7

(3) DeepLabV3+ (Chen et al., 2018) ResNet101 ECCV’18 Full
√

- - 80.2
(4) LTF (Song et al., 2019) ResNet101 NeurIPS’19 Full

√
- - 80.9

(5) Segformer (Xie et al., 2021) MiT-B1 NeurIPS’21 Full
√

- - 79.2

KernelCut Loss (Tang et al., 2018b) (2) ECCV’18 Point - -
√

57.0
A2GNN (Zhang et al., 2021) (3) TPAMI’21 Point - -

√
66.8

Seminar (Chen et al., 2021) (3) ICCV’21 Point - - - 72.5
SPML (Ke et al., 2021) (2) ICLR’21 Point

√ √ √
73.2

TEL w. Seminar (Liang et al., 2022) (4) CVPR’22 Point - - - 74.2
Box2Seg (Kulharia et al., 2020) UperNet ECCV’20 Bounding-box - -

√
76.4

BAP (Oh et al., 2021) (2) CVPR’21 Bounding-box - -
√

74.6

ScribbleSup (Lin et al., 2016) (1) CVPR’16 Scribble - -
√

63.1
NormCut Loss (Tang et al., 2018a) (2) CVPR’18 Scribble - -

√
74.5

DenseCRF Loss (Tang et al., 2018b) (2) ECCV’18 Scribble - -
√

75.0
KernelCut Loss (Tang et al., 2018b) (2) ECCV’18 Scribble - -

√
75.0

GridCRF Loss (Marin et al., 2019) (2) ICCV’19 Scribble - - - 72.8
GatedCRF (Obukhov et al., 2019) (3) NeurIPS’19 Scribble

√
- - 75.5

BPG (Wang et al., 2019) (2) IJCAI’19 Scribble
√ √

- 76.0
SPML (Ke et al., 2021) (2) ICLR’21 Scribble

√ √ √
76.1

URSS (Pan et al., 2021) (2) ICCV’21 Scribble - -
√

76.1
PSI (Xu et al., 2021) (3) ICCV’21 Scribble

√
- - 74.9

Seminar (Chen et al., 2021) (3) ICCV’21 Scribble - - - 76.2
A2GNN (Zhang et al., 2021) (4) TPAMI’21 Scribble - -

√
76.2

TEL (Liang et al., 2022) (4) CVPR’22 Scribble
√

- - 77.3
AGMM (Wu et al., 2023) (3) CVPR’23 Scribble

√
- - 76.4

CDSP (Zhang et al., 2024) (3) AAAI’24 Scribble
√

- - 75.9
Ours-ResNet101 (2) ICML’24 Scribble

√
- - 76.2

Ours-MiT-B1 (5) ICML’24 Scribble
√

- - 77.9

edge detectors to assist semantic segmentation, but this re-
quires additional data. URSS (Pan et al., 2021) and A2GNN
(Zhang et al., 2021) also achieve good results, surpassing
76% mIoU, but they require multi-stage learning. AGMM
(Wu et al., 2023) and CDSP (Zhang et al., 2024) leverage la-
bel diffusion methodologies to achieve notable performance.
However, it is noteworthy that their respective mIoU val-
ues have not exceeded the threshold of 77%. TEL (Liang
et al., 2022) is the best method in recent years, proposing
a tree energy loss to guide the classification of unlabeled
pixels, achieving an mIoU of 77.3%. Compared to the
current state-of-the-art method TEL, despite our backbone
network, MiT-B1, performing slightly weaker than theirs on
the fully supervised dataset, our approach still achieves a
0.6% improvement in mIoU.

4.4. Ablation Study and Analysis

In this section, we investigate all the operations discussed
in Section 3. All training and validation are conducted on
the Pascal VOC 2012 dataset.

Effectiveness of each component. First, we investigate
the components of our method, which involve the usage
of three loss functions. We employ the basic MiT-B1 as

Table 2. Ablation studies of the components of our proposed
method. “basic” means the basic result, “local” means the result
augmented with local prototypes, and “global” means the result
augmented with global prototypes. The Lpce and Lpce represent
different Lpce in Figure 2, while the blue and red represent the top
two results.

Method Lpce Lcon−l Lcon−g
mIoU(%)

basic local global

Baseline
√

67.5 - -

Ours

Lpce
√

75.7 76.9 -
Lpce

√
76.0 - 77.4

Lpce
√ √

76.4 77.7 77.1
Lpce

√ √
76.8 77.3 77.9

the backbone. We designate the use of only partial cross-
entropy as the baseline for our method, and then conduct
ablation studies on the methods with local prototype aug-
mentation and global prototype augmentation. As shown
in Figure 2, our method has three prediction maps, and
all three prediction maps can generate results. When us-
ing only local prototypes, there are two prediction maps:
the basic one and the one augmented with local prototypes.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 4. Visualizing the Components of Our Method through Ab-
lation Experiments.(a) Input image. (b) Baseline (Only use partial
cross-entropy). (c) Augmented only by local prototypes. (d) Aug-
mented only by global prototypes. (e) Augmented by two types of
prototypes. (f) Ground truth.

Similarly, when using global prototype augmentation, there
are also two prediction maps: the basic one and the one
augmented with global prototypes. As shown in Table 2,
when using only local prototype augmentation, our method
achieves a 9.4% mIoU improvement compared to the base-
line. When using only global prototype augmentation, there
is a 9.9% mIoU improvement. When both methods are used
together, the best performance is achieved with a 10.4%
mIoU improvement. Therefore, we select the simultaneous
augmentation of both prototypes as our final method. In
Section 3.4, due to the different choices of Lpce at different
stages, when both augmentation methods are used, we also
conduct ablation experiments on the two choices. The re-
sults show that the prediction map augmented with global
prototype augmentation, guided by partial cross-entropy
loss with scribble labels, achieves the best results. Addition-
ally, we can observe that using both augmentation methods
can significantly improve the basic prediction map.

As shown in Figure 4, we present the visualization results for
different composition components. Compared to the base-
line results, the results augmented with prototypes show

significant improvements, especially in regions of other
categories, such as the ”fire hydrant” in the second image
and the green area in the fourth image. Through prototype
guidance, the interference from these other categories is
weakened or eliminated. There is little difference between
using only local prototypes and using only global prototypes,
with the global prototypes slightly emphasizing details. Op-
timal results are achieved when both methods are used, as
evidenced by the improvement in the hand region in the first
image and the details of the occluded edges in the fourth
image. For more detailed information, please refer to the
supplementary.

Figure 5. Impact of the number of prototypes contained in each
class of global prototypes.

Figure 6. Impact of different top-k percentage values on the com-
putation of prototype in Equations (1) and (2).

Setting of prototype. In our approach, the number of global
prototypes represents the number of local prototypes that
should be included for each class. To assess the impact of
increasing the number of global prototypes on the results,
we conducted experiments using only global prototypes for
augmentation and not utilizing local prototypes. From Fig-
ure 5, it can be observed that as the number of prototypes
increases to around 5, the increase in mIoU becomes satu-
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rated. Therefore, we have set this value as the default in our
method.

We also conduct tests on the top-k percentage involved in
Equations (1) and (2) for prototype extraction. The fewer
pixels involved in the computation indicate the use of more
confident pixels for prototype extraction. However, if the
percentage is too small, we may lose more useful informa-
tion. Similarly, to evaluate the impact of varying the value
of k on the performance, we conduct experiments using
only local prototypes. As shown in Figure 6, our method
performs better when the k percentage is 8%.

Table 3. Impact of the backbone.

Model Backbone Params FLOPs mIOU(%)
full scribble

DeeplabV2 ResNet101 43.6M 75.2G 77.7 76.2
DeeplabV3+ ResNet101 60.8M 102.3G 80.2 78.1
LTF ResNet101 91.7M 138.4G 80.9 78.2
Segformer MiT-B1 13.6M 19.4G 79.2 77.9
Segformer MiT-B3 44.6M 44.5G 81.9 79.8
Segformer MiT-B5 82.0M 72.9G 83.9 81.5

Impact of backbone. In Section 4.3, for a fair compari-
son, we only compare our method with the state-of-the-art
methods using MIT-B1. Here, we investigated the back-
bone of our method. We select the backbones commonly
used in existing methods, such as DeepLabv2 (Chen et al.,
2017), DeepLabv3+ (Chen et al., 2018) and LTF (Song
et al., 2019) based on ResNet101 (He et al., 2016), as well
as Segformer (Xie et al., 2021) based on a larger backbone
network that performs better in fully supervised scenarios.
As shown in Table 3, we present the results obtained in both
fully supervised and scribble supervised settings using the
Pascal VOC 2012 dataset, as well as the parameter counts
and floating-point operation (FLOPs) of each model during
inference. The table demonstrates that MiT-B1 Segformer
achieves comparable performance to the ResNet101-based
LTF despite its significantly lower parameter counts and
computational complexity. And under the premise of us-
ing ResNet101 as backbone, our approach is superior to
all current approaches. We observed that our method ex-
hibits superior upper bound performance on the Transformer
(77.9%/79.2%) compared to ResNet (78.2%/80.9%). This
characteristic, coupled with its exceptional efficiency, con-
stitutes a key factor in our selection of Segformer. When
utilizing a model with a similar parameter count, MiT-B3
attains a mIoU score of 79.8%. Additionally, opting for MiT-
B5 with the highest parameter count yields a peak mIoU
score of 81.5%, significantly surpassing existing methods.
However, due to the unfair advantage introduced by the
backbone, it is not included in Table 1.

5. Conclusion
This paper introduces a prototype-based feature augmenta-
tion method for scribble supervision. We extract prototypes
from the confident portion of the initial results provided
by scribble supervision. By utilizing the extracted proto-
types, we augment the initial features and employ different
prototype strategies tailored to the specific setting of scrib-
ble supervision. The method utilizes generated prototypes
from correctly classified pixels to guide the classification of
misclassified pixels, resulting in improved prediction perfor-
mance. Experimental results demonstrate that our method
achieves state-of-the-art performance. In the future, we plan
to apply our method to other tasks to harness its significant
potential and application value.
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A. More Technical Details
A.1. More Details of Encoder and Decoder
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Figure 7. The overall framework of encoder and decoder.

As shown in Figure 7, the structure of our encoder and decoder utilizes the Segfomer (Xie et al., 2021) based on MiT-B1,
and its efficiency is one of the main reasons why we chose it. We select the features from four levels, which are fused by the
MLPLayer, as our feature map F because it can contain information from multiple levels. We use the feature map F and
the prediction map P as the basis for prototype extraction. The features augmented through prototype refinement are then
passed through a feature augmenter to maintain the same size as F.

A.2. More Details of Feature Augmenter and Inference

During feature extraction, we extract feature prototypes from the feature values corresponding to the top K values of each
category contained in the prediction of the current image. Due to the uncertainty of predictions, it is inevitable to extract
prototypes from other misclassified categories. In this case, when using only local prototype augmentation, although the
prototypes are extracted from the current predicted category, they only reinforce the probability of misclassification for those
misclassified images, leading to worse prediction performance. When using global prototypes, we retrieve global prototypes
from the prototype memory bank for augmentation. Global prototypes include prototypes for each category, and if we do
not select the prototypes of the correct category contained in the current image, it will also increase the chances of model
misjudgment, resulting in counterproductive effects. Therefore, during the training process, we use category labels to filter
the prototypes and select out those irrelevant prototypes to better utilize the effects of prototypes. The scribble labels contain
category information, so we can easily obtain category labels from the scribble labels. Therefore, these can be achieved
quite well during the training process, but they pose challenges during the inference process.

As depicted in Table 4, employing the correct class labels to guide prototype augmentation yields a mIoU score of 80.4%,
surpassing even the predictions of MiT-B1 on the fully supervised dataset. However, this approach violates inference
rules, as during inference, we can only access images without direct class label information. To address this, our initial
strategy involves filtering preliminary prediction maps of unused prototypes by setting a threshold, because these pixels
with small quantities are often misclassified. Experimenting with various thresholds, as shown in Table 4, the optimal
result occurs with a threshold of 500, resulting in a mIoU of 75.7%. Nevertheless, this is lower than the 76.8% mIoU
achieved without prototype augmentation. Consequently, we incorporate the classification results of established multi-label
classification methods, Q2L (Liu et al., 2021) and MCAR (Gao & Zhou, 2021), attaining respective mAP scores of 96.6%
and 94.3% on the Pascal VOC 2012 val dataset. Utilizing their classification results, we achieve mIoU scores of 77.9% and
76.2%, respectively. This underscores the influence of superior classification results on enhancing prototype augmentation.
Conversely, incorrect classification results can misguide the model’s understanding of semantic information by employing
prototypes from incorrect categories, resulting in inferior performance. Given the potential for improving segmentation
results through category labels, our future work will focus on refining the guidance of the prototype and incorporating this
approach into multimodal tasks.
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Table 4. The impact of class labels during inference.
Method Num mAP(%) mIoU(%)

Category Labels - - 80.4
Without Augmented - - 76.8

Q2L(Liu et al., 2021) - 96.6 77.9
MCAR(Gao & Zhou, 2021) - 94.3 76.2

Prediction Map Filtering

0 - 74.1
100 - 75.2
500 - 75.7

1000 - 74.3

Table 5. Impact of the weights of loss terms.
λl λg mIoU(%)

default 0.01 0.01 77.9

0.005 77.7
0.02 77.2
0.05 76.8

0.005 77.4
0.02 77.6
0.05 77.1

B. More Experimental Results
B.1. Ablation Study

Ratio=0.5

Ratio=0.4

Ratio=0.3Ratio=0.2Ratio=0.1 Ratio=0.0 Ratio=0.2 Ratio=0.5

Ratio=0.7

Ratio=1.0

（a）scribble-drop （b）scribble-shrink

Figure 8. The experiments on scribble-drop and scribble-shrink dataset with different drop or shrink ratios.

The form of Scribble. Since doodling can vary greatly in style from person to person, it is inherently subjective. Therefore,
it becomes imperative to conduct robustness tests on the model with different degrees of drop and shrink ratios. In Figure 8,
we present the results of our method’s ablation experiments using scribble labels with varying degrees of drop and shrink.
The results clearly demonstrate that, as the drop rate and shrink ratio increase, the model’s performance declines. The
method based on global prototypes exhibits relatively greater stability compared to the method employing local prototypes.
However, overall, the model performs well even when the scribble annotations are reduced to mere dots.

Weight of the loss. In Table 5, we conducted an ablation study on the weighting of loss functions. We adjusted the weight
ratios between different loss functions. Through this study, we determined the optimal weighting configuration for the loss
functions as λl = 0.01, λg = 0.01.
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(a) (b) (c) (d) (e) (f)

Figure 9. Failure cases of the proposed method on Pascal VOC val dataset. (a) Input image. (b) Baseline (Inference without prototype
augmentation). (c) Inference with using category labels (d) Inference with using Q2L results. (e) Inference with using MCAR results. (f)
Ground truth.

B.2. Failure Cases and Analysis

Figure 9 illustrates failed cases, offering a more intuitive understanding of the impact of prototype augmentation. To deepen
the analysis, we present four types of outcomes: results without prototype augmentation, inference based on category labels,
and inference utilizing two classification results. In the upper section of Figure 9, without prototype augmentation, the
model identifies various semantic categories, including ‘person’, ‘chair’, ‘sofa’, ‘table’, ‘plant’, ‘boat’, among others, with
many misclassifications. Given that the category labels only specify ‘person’, ‘sofa’, and ‘bottle’, they direct the model
to diminish the representation of other categories in the initial prediction, especially those on the prediction periphery
like ‘table’ and ‘plant’, which vanish after augmentation. Conversely, the category ‘bottle’, absent in the initial results,
emerges after being guided by the prototype. Notably, although the category label does not contain ‘chair’, a small portion is
retained after prototype augmentation. In the Q2L (Liu et al., 2021) and MCAR (Gao & Zhou, 2021) classification results,
‘person’, ‘chair’, ‘sofa’, and ‘person’, ‘chair’, ‘sofa’, ‘bottle’ are respectively identified. The segmentation results also
align with the classification results, weakening the performance of other categories. In the lower section of Figure 9, the
results without prototype augmentation include three categories: ‘cat’, ‘dog’, and a minimal representation of ‘sofa’. Both
category labels and Q2L classification include ‘sofa’, leading to a significant increase in the sofa’s representation after
prototype augmentation. However, as MCAR’s classification does not involve ‘sofa’, the remaining small representation of
‘sofa’ disappears after prototype augmentation. Overall, the prototype augmented the model’s understanding and inference
capabilities of complex semantics by guiding the identification of edge-class categories using category labels to refine initial
results.

B.3. More Quantitative Results

As shown in Table 6, we also present the data comparison of our method with other methods on each category of Pascal
VOC 2012 val set. Our approach has yielded the best results in most categories.

Table 6. Per-class comparison between our approach and others on PASCAL VOC 2012 val dataset.

method bkg aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv Mean

KernelCut (Tang et al., 2018b) - 86.2 37.3 85.5 69.4 77.8 91.7 85.1 91.2 38.8 85.1 55.5 85.6 85.8 81.7 84.1 61.4 84.3 43.1 81.4 74.2 75.0
BPG (Wang et al., 2019) 93.4 84.8 38.4 84.6 65.5 78.8 91.4 85.9 89.5 41.0 87.3 58.3 84.1 85.2 83.7 83.6 64.9 88.3 46.0 86.3 73.9 76.0
SPML (Ke et al., 2021) - 89.0 38.4 86.0 72.6 77.9 90.0 83.9 91.0 40.0 88.3 57.7 87.7 82.8 79.1 86.5 57.1 87.4 50.5 81.2 76.9 76.1
Ours-MiT-B1 93.9 89.7 35.7 87.6 69.2 84.8 90.3 84.7 89.9 43.2 87.9 60.7 87.1 82.6 80.6 86.5 71.2 82.5 54.3 89.0 84.3 77.9

B.4. More Qualitative Results

In Figure 10, we present the visualization results of our method, along with the baseline and the SOTA methods. From the
images, it can be observed that the SOTA method is able to identify certain regions. However, the identified regions are
relatively small. This is where the advantage of our method comes into play. With the guidance of the prototype, our method
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can guide the segmentation of other pixels, resulting in superior segmentation results in the boundary regions. For instance,
in the first image, the ears of the cow; in the second image, the ‘chair’ region; in the third image, the ‘bottle’ region; and in
the fourth image, the ‘sofa’ region. These areas effectively demonstrate the guiding role of the prototype, as they direct the
classification of other pixels and augment the classification performance in the boundary regions.

We have provided more visualization results of different composition components in Figure 11.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 10. Visualization of our method and SOTA. (a) Input im-
age. (b) Baseline (Inference without prototype augmentation). (c)
URSS (Pan et al., 2021). (d) TEL(Wu et al., 2023). (e) Ours. (f)
Ground truth.

(a)

(b)

(c)

(d)

(f)

(e)

Figure 11. Visualizing the Components of Our Method through
Ablation Experiments. (a) Input image. (b) Baseline (Only use
partial cross-entropy). (c) Augmented only by local prototypes.
(d) Augmented only by global prototypes. (e) Augmented by two
types of prototypes. (f) Ground truth.
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