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Abstract

It is widely held that one cause of downstream
bias in classifiers is bias present in the training
data. Rectifying such biases may involve context-
dependent interventions such as training separate
models on subgroups, removing features with bias
in the collection process, or even conducting real-
world experiments to ascertain sources of bias.
Despite the need for such data bias investigations,
few automated methods exist to assist practition-
ers in these efforts. In this paper, we present one
such method that given a dataset X consisting of
protected and unprotected features, outcomes y,
and a regressor h that predicts y given X, outputs
a tuple (f;, g), with the following property: g cor-
responds to a subset of the training dataset (X, y),
such that the j* feature f; has much larger (or
smaller) influence in the subgroup g, than on the
dataset overall, which we call feature importance
disparity (FID). We show across 4 datasets and
4 common feature importance methods of broad
interest to the machine learning community that
we can efficiently find subgroups with large FID
values even over exponentially large subgroup
classes and in practice these groups correspond to
subgroups with potentially serious bias issues as
measured by standard fairness metrics.

1. Introduction

Machine learning is rapidly becoming a more important,
yet more opaque part of our lives and decision making —
with increasingly high stakes use cases such as recidivism
analysis (Angwin et al., 2016), loan granting and terms
(Dastile et al.,2020) and child protective services (Keddell,
2019). One of the hopes of wide-scale ML deployment
has been that those algorithms might be free of our human
biases and imperfections. This hope was, unfortunately,
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naive. Over the last decade, an interdisciplinary body of
research has shown that machine learning algorithms can be
deeply biased in both subtle and direct ways (Barocas et al.}
2019), and has focused on developing countless techniques
to produce fairer models (Caton & Haas|,|2023).

One of the primary causes of model bias is bias inherent in
the training data, rather than an explicitly biased training
procedure. While the majority of work on fairness seeks
to remove bias by learning a fairer representation of the
data (Zemel et al., 2013)) or by explicitly constraining the
downstream classifier to conform to a specific fairness no-
tion (Hardt et al., 2016a); /Agarwal et al., 2018b)), fairness
notions have been shown to be brittle and often times con-
tradictory (Dwork & Ilvento, 2018} [Kleinberg et al.,[2016)).
More importantly, these approaches elide what could be a
more important question for the practitioner: What is the
source of bias in the training data, and what subgroups in
the data are being effected?

We call the process of answering this question a data bias
investigation (DBI), and in this paper we develop a tech-
nique to aid in a DBI by allowing an analyst to (efficiently
and provably) identify structured subsets of the training data
to focus their bias investigation. Prior work has typically
focused on identifying such subsets by finding subsets of the
training data that maximally violate a specific fairness crite-
rion, which typically corresponds to the classifier having a
higher error rate on the group than on the population. We
take a very different approach; rather than optimizing for a
specific fairness notion, we find subgroups where a specific
feature in the data has out-sized impact in the subgroup,
relative to the population as a whole.

To build some intuition for why feature importance dispar-
ities, FID as we call them, might be a useful notion when
looking for dataset bias, consider the following example
from Cynthia Dwork, widely regarded as pioneer in the
field of algorithmic bias, in a 2015 in a New York Times
interview (Miller, 2015): Suppose we have a minority group
in which bright students are steered toward studying math,
and suppose that in the majority group bright students are
steered instead toward finance. An easy way to find good
students is to look for students studying finance, and if the
minority is small, this simple classification scheme could
find most of the bright students. But not only is it unfair
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to the bright students in the minority group, it is also low tive subgroup and nd the largest value by brute force. This
utility. raises an obvious question in light of the prior discussion,
. . although one that to the best of our knowledge has not been
Unpacking this example further, the feature . . .
o . . L . . thoroughly studiedWhen applied to classi ers and datasets
is-finance-major is predictive in nding bright D .

where bias is a concern, do these feature importance no-

students in the population at large but not in the minority,. L . :
. . . - tions uncover substantial differences in feature importance
group. Meanwhile, the featurs-math-major is highly

. ; o
predictive in the minority group but not at all in the majority across rich subgroups, and can they be ef ciently detected?

group. The classi er that only selects students who study . C

nance is unfair to the minority group, exactly because ofl'l' Case Study: Data Bias Investigation on COMPAS

the differing importance of these features in the two groupsBefore diving into the technical details of our method, we il-
Once the subgroups have been identi ed, the actions thgystrate how our technique can yield interesting potential in-
analyst then takes is then entirely context-dependent. Thigrventions when training a random forest classhewo pre-
could include “easy” xes like training a separate model dict two-year-recidivism on the COMPASlataset

on the subgroup found or excluding a speci c feature from(Angwin et al., 2016). Using the feature importance method
training, or more complex remedies like investigating howsHAP (Lundberg & Lee, 2017) and our Algorithm 1, we
the speci c feature or the outcome variable was collected innd that the featureoriors-count is substantially more
the group, and if there is bias in that collection process. important when predictingvo-year-recidivism on

While simple models like decision trees or linear regressiorf SUPgroup largely de ned by Native-American and African-

come equipped with intuitive notions of feature importanceAMerican males that makes upd% of the training set

in general there is no de nitive notion of feature importance (Figure 1). While we further discuss in Appendix A that

for complex models. Approaches that have garnered sufisparities in feature importance do not guarantee that a sub-
stantial attention include local model agnostic methods liked"0UP has a fairness disparity, we show in Subsection 5.5
LIME (Ribeiro et all, 2016), SHAP (Lundberg & Lee, 2017), that empirically this is often the case. In this example, we
model-speci ¢ saliency maps (Simonyan et al., 2013) andnd that conventional fairness metrics are slightly worse on
example-based counterfactual explanations (Molnar, 202241S subgroup rca()latlye to the population, witfL% lower
Concerns about the stability and robustness of the mogtccuracy and 1% higher false positive rate (FPR). One
widely used feature importance notions, including the oneSiMPI€ solution to increase accuracy on the subgroup and
we study, have been raised (Dai et al., 2022; Agarwal et alPotentially reduce the disparity is to train a separate model

2022a; Alvarez-Melis & Jaakkola, 2018; Bansal et al., 20201 for the subgroup, which we nd drops the FPR in the
Dimanov et al., 2020; Slack et al., 2020) and these notionSUPIroup byr:5%and increases accuracy By. Further-

are often at odds with each other, so none can be considerdgere. the disparity between the average SHAP value for the
de nitive (Krishna et al., 2022). Regardless of these limita-f€aturepriors-count  usinghg, and the average SHAP
tions, these notions are used widely in practice today, any2u€ over whole population usirigis more than halved.

are still useful as a diagnostic tool as we eventually proposé\nCther intuitive technical solution is to train a new model,
h ¢, without the featureriors-count . With this so-

Fixing any of these notions of feature importance, given gution, there is a moderate decrease in fairness disparity,
small set of protected subgroups, it would be simple to iterpyt it also comes with a noticeable drop in model perfor-
ate through the subgroups and features, computBlde  mance, likely due to removing the predictive power of the
for each feature with respect to each subgroup, and then sgaturepriors-count . On a qualitative level, identify-
lect the feature and subgroup that shows the largest disparifyg this subgroup could also motivate further research into
However, it is also known in the fairness literature that while how Native-American and African-American males in the
a classi er may look fair when comparing a given fairness cOMPAS@ataset are policed differently, possibly resulting
metric across a handful of sensitive subgroups, when thgy measurement biases in theors-count feature or
notion of a sensitive subgroup is generalized to encompasgetwo-year-recidivism outcome.

combinations and interactions between sensitive features

(known agrich subgroupgKearns et al., 2019)), large dis- 1 2 Results

parities can emerge. We verify that this phenomenon of rich

subgroups uncovering much larger disparities than marginaVhile the prior example clearly illustrates the utility of our
subgroups alone also holds for feature importance in Sutiethod at a high level, the devil is in the details, and in the
section 5.4. Even for simple de nitions of rich subgroup rest of the paper, we formalize the notions of feature impor-
such as conjunctions of binary features, the number of sufiance and protected rich subgroups along with our methods
groups is exponential in the number of sensitive attributedor ef ciently detecting potentially biased subgroups.

and so itis infeasible to compute the metric on each sensgr most important contribution is introducing the notion
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oretical and empirical results highlight our methods as an
important addition to the diagnostic toolkit f&BI in tabu-
lar datasets with sensitive features.

2. Related Work

There is substantial work investigating bias in the context

of machine learning models and their training data (Barocas
Figure 1: Exploring a higlrID subgroup/feature pair for et al., 2019; Caton & Haas, 2023). We are motivated at
COMPAS. The rst graph compares the average SHAPa high level by existing work on dataset bias (Kamiran &
feature importance fguriors-count in the subgroup vs. Calders, 2012; Tommasi et al., 2017; Li & Vasconcelos,
the dataset as a whole. The second graph showslérgest  2019), however, to the best of our knowledge, this is the rst
coef cients of the linear function of sensitive attributes that work investigating the disparity in feature importance values
de ne the subgroup. in the context of rich subgroups as a fairness diagnostic. For

more related work, see Appendix C.

Anomalous Subgroup Discovery In terms of approach,
of feature importance disparitin the context of recently two closely related works are (Dai et al., 2022) and (Bal-
developed feature importance notions, and with respect tagopalan et al., 2022) which link fairness concerns on sensi-
rich subgroups (De nition 3.1). We categorize a featuretive subgroups with model explanation quality, as measured
importance notion aseparableor not, based on whether py properties like stability and delity. Our work differs in
it can be expressed as a sum over points in the subgroupat we are focused on the magnitude of explanation dis-
(De nition 3.2) and de ne a variant oFID , theaverage fea-  parities themselves rather than their “quality,” and that we
ture importance disparityAVG-FID, De nition 3.3). Our  extend our results to the rich subgroup setting. Our algo-
main theoretical contribution is Theorem 4.1 in Section 4jthm for searching an exponentially large subgroup space
which says informally that although the problem of nding is a novel and necessary addition to work in this space. An-
the maximalFID subgroup is NP-hard in the worst case other area of research looks to prove that a chosen score
(Appendix G), given access to an oracle ¢ost-sensitive  function satis es the linear time subset scanning property
classi cationwith respect to the rich subgroup cla8s(Def-  (Neill, 2012) which can then be leveraged to search the sub-
inition F.1), Algorithm 1 ef ciently learns the subgroup with  group space for classi er bias (Zhang & Neill, 2016; Boxer
maximalFID for any separable feature importance notion.et al., 2023) in linear time. While it is hard to say with

In Section 5, we conduct a thorough empirical evaIuation?bSOIUte certainty that this approach would not be useful it

auditing for largeFID subgroups on the Student (Cortez & 'S N0t immediately apparent how we would force a subset
Silva, 2008), COMPAS (Angwin et al., 2016), Bank (Moro scanning method to optimize ovech subgroups

et al., 2014), and Folktables (Ding et al., 2021) datasetRich Subgroups and Multicalibration. At a technical
using LIME, SHAP, saliency maps, and linear regressiorevel, the most closely related papers are (Kearns et al.,
coef cient as feature importance notions. Our experiment018; Hebert-Johnson et al., 2018) which introduce the no-
establish the following: (i) Across all (dataset, importancetion of the rich subgroup clagdover sensitive features in
notion) pairs, we can nd subgroups de ned as functionsthe context of learning classi ers that are with respect to
of sensitive features that have larfgk> with respectto a equalized odds or calibration. Our Algorithm 1 ts into
given feature (Table 1, Figures 2, 3). (ii) Inspecting thethe paradigm of “oracle-ef cient" algorithms for solving
coef cients of these subgroups yields interesting discussiorzonstrained optimization problems introduced in (Agarwal
about potential dataset bias (Figure 1, Section 5.3). (iiikt al., 2018a) and developed in the context of rich subgroups
In about half the cases, rich subgroups yield higher out ofn (Kearns et al., 2018; 2019; Hebert-Johnson et al., 2018).
sampleFID compared to only searching subgroups de nedThere has been much recent interest in learning multical-
by a single sensitive attribute, justifying the use of rich subibrated predictors because of connections to uncertainty
groups (Section 5.4). (iv) These subgroups have disparitiegstimation and omnipredictors (Hu et al., 2023; Gopalan

in accepted fairness metrics such as demographic parity anst al., 2022; Jung et al., 2021). None of these works consider
calibration (Table 2). Conversely, rich subgroups that maxifeature importance disparities.

mally violate fairness metrics also express laFfge values i i
(Table 3) Feature Importance Notions For the eld of interpretable

_ _ or explainable machine learning, we refer to the survey by
These results generalize out of sample, both in terms qfviolnar, 2022). The most relevant works cover methods

theFID values found, and the sizes of the correspondingised to investigate the importance of a feature in a given
subgroups found (Appendix L). Taken together, these the-

3
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subset of the dataset. Local explanation methods assignpz'ix >y n X)FYF;; X;h). Given a local model explana-

feature importance for every poift;y) and de ne anotion  tion F° we can de ne a more speci ¢ form dfID, the

of importance in a subgroup by summing or averaging oveaverage feature importance disparig&VG-FID), which

the points in the subgroup as we do in De nitions 3.2, 3.3. compares the average feature importance within a subgroup
to the average importance on the dataset.

3. Preliminaries

Let X " represent our dataset, consistingnahdividuals D€ Nition 3.3. (Average Case Locally SeparaffiéD ). For
de ned by the tuple((x; x9);y) wherex 2 Xsense is the @92 G, letjgj = g(X). Given a local model expla-
vector of protected features? 2 X e is the vector of . 0 X2X" .

unprotected features, apd2 Y denotes the label. With NationF (), we de ne the corresponding:

X = (x;X9 2 X = Xeense X safe RY denoting a
joint feature, the data poin{¥;y) are drawn i.i.d. from
a distributionR. Leth : X 'Y denote a classier or
regressor that predicts from X . We de ne arich sub-
group classG = fg g » as a collection of functions
g: Xsens ! [0;1], whereg(x?% denotes the membership
of pointX = (x;x9 in groupg. Note that this is the same
subgroup de nition as in (Kearns et al., 2018), but without X2Xn

the constraint thag(x®) 2 f 0; 1g, which supports varying

degrees of group membership. E.g. a biracial person may

be:5 a member of two racial groups. L&t;j 2 [d] de-

note thej " feature inX ~ RY. Then for a classi eth

and subgroug 2 G, letF be a feature importance notion Note thatAVG-FID is not equivalent to a separatiiD ,
whereF (f;;g(X"); h) denote thémportanceh attributes ~ since we divide bygj, impacting every term in the sum-
to featurej in the subgroumy(X "), andF (f;;X"; h) be mation. In Section 4, we show that we can optimize for
the importancé attributes td; on the entire dataset. We AVG-FID by optimizing a version of th&ID problem
will provide more speci c instantiations dF shortly, butwe ~ With size constraints, which we can do ef ciently via Algo-
state our de nition ofFID in the greatest possible generality rithm 1.

below.

X
AVG-FID(f;:0;0) = Exn r njs  g(X)Ff;;X:h)
X2Xn

FYfi 5% h)j

X

S|k

This notion ofseparabilityis crucial to understanding the
De nition 3.1. (Feature Importance Disparity). Given a remainder of the paper. In Section 4, we show that for any
classier h, a subgroup oX" dened byg 2 G, and separableFID, Algorithm 1 is an (oracle) ef cient way to
a featuref; 2 [d], then given a feature importance notion compute the largestlD subgroup of a speci ed size in
F (), the feature importance disparity relativegtts de ned  polynomial time. By “oracle ef cient,” we follow (Agarwal
as: et al., 2018a; Kearns et al., 2018) where we mean access
o . i . v n. to an optimization oracle that can solve (possibly NP-hard)
FID(fiig:h) = Bxm JE(T39(XT)i0) - F (X T5h)) problems. While this sounds like a strong assumption, in
practice we can take advantage of modern optimization
. . . ) algorithms that can solve hard non-convex optimization
sary to ﬁ'a”fy the C!aSSI er we are using. Now, given problems (e.g. training neural networks). This framework
h e.mdx , our goal is o . m.j the fee_l.ture sul_)g.roup PAIN has led to the development of many practical algorithms
(:9)2[d G tha_t maximizes-ID (j;9), or(j ;9) = with a strong theoretical grounding (Agarwal et al., 2018a;
argmaxg 2 FID (13 9)- Kearns et al., 2018; 2019; Hebert-Johnson et al., 2018),
We now get more concrete about our feature importancand as shown in Section 5 works well in practice here as
notionF (). First, we de ne the class afeparablefeature ~ well. The type of oracle we need is called a Cost Sensitive
importance notions: Classi cation (CSC) oracle, which we de ne in Appendix F.

We will suppressh and write FID (j;g) unless neces-

De nition 3.2. (Locally Separable). A feature importance

notionF () is locally separable if it can be decomposed as4. Optimizing for AVG-FID
a point wise sum of local model explanation vales

X In this section, we show how to (oracle) ef ciently compute
F(fj; X" h) = FYfj;X;h) the rich subgroup that maximizes tA&/G-FID. Rather
X2Xn than optimizeAVG-FID directly, our Algorithm 1 solves
an optimization problem that maximizes tRiD subject to
It follows that for separable notion,(f;;g(X");h) = a group size constraint:
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descent (Kivinen & Warmuth, 1997) for thmax player,
who optimizes , and best-response via a CSC solve for the

H . ny. Loy n. ;
rgz%xlF(f’ F9(XT)ih) (X )] min player, who aims to maximize subgroup disparity to

1 X optimize the rich subgroup distribution.
st. (@9 o - g(xX) O . ,
N oxn (1) We note that rather than computing the grauat maxi-
1 X mizesFID (j; g) subject to the size constraint, our algorithm
u(9) o gXx) v O outputs a distribution over groug that satis es this pro-
Xzxn cesson averageover the groups. In theory, this seems like a

drawback for interpretability. However, in practice we sim-
where | and y are "size violation" functions given a ply take the groups; found at each round and output the
subgroup functiorg. We denote the optimal solution to ones that are in the appropriate size range, and have largest
Equation 1 byy, . ;. We focus on optimizing the con- FID values. The results in Section 5 validate that this heuris-
strainedFID since the following primitive also allows us to tic choice is able to nd groups that are both feasible and
ef ciently optimize AVG-FID: have largeFID values. This method also generalizes out of
_ _ sample showing that tHelD is not arti cially in ated by
1. Discretize[0; 1] into intervals(%; =], . Givenfea- multiple testing (Appendix L). Moreover, our method pro-
turef;, computeg(i L fori =1::n. vides a menu of potential groupg:){-, that can be quickly
" evaluated for larg&ID , which can be a useful feature to
2. Outputtinggx ; wherek = argmax %jF(fJ ;O h)j nd interesting biases not present in the maximal subgroup.
approximately maximizes th&VG-FID given an ap-
propriately large number of intervats 5. Experiments

Our proof for this is available in Appendix E. We now Here we report the results of our empirical investigation
state our main theorem, which shows that we can solve thacrossl6 different datase®ID -notion pairings. These re-
constrainedrID problem in Equation 1 with polynomially sults con rm that our method can nd larggVG-FID val-
many calls to CSg. ues corresponding to rich subgroups de ned as simple func-
tions of protected attributes (Table 1, Figures 2, 3), and are
larger than those found by optimizing over marginal sub-
groups alone (Section 5.4). Moreover, in Section 5.5 we nd
that highAVG-FID subgroups tend to have signi cant dis-
parities in traditional fairness metrics (Table 2), and that rich
subgroups that maximize a fairness notion like FPR dispar-
ity also express highVG-FID features, albeit smaller than
those found by Algorithm 1 (Table 3). Perhaps most signif-
icantly, for a tool designed to assist the procesBBf, is

that the highAVG-FID subgroups found correspond to sub-

Theorem 4.1. LetF be a separabl&ID notion, x a clas-

si er h, subgroup clas§, and oracleCSGs. Then choosing
accuracy constant and bound constarB and xing a
feature of interest; , we will run Algorithm 1 twice; once
with FID given byF, and once withFID given by F.
Letp. be the distribution returned aftef = O(4°B”)
iterations by Algorithm 1 that achieves the larger value of
E[FID (j;9)]. Then:

FID(;9;) Eg pr[FID(:9)] groups and features that are suggestive of potential dataset
. . . +2 (2)  bias, one example of which we covered in the initial case
I c(@)is) u(9) B study and provide further examples of in Section 5.3. In

Appendix J, we construct two synthetic datasets, one where
We defer the proof of Theorem 4.1 to Appendix D. In sum-the feature importance is the same across all subgroups, and
mary, rather than optimizing over2 G, we optimize over  one where there is a deliberately introduced disparity in a
distributions ( G). This allows us to cast the optimization speci ¢ rich subgroup, in order to verify that our methods i)
problem in Equation 1 as a linear program so we can formayoid false discovery and ii) can effectively pick out a high-
the Lagrangian., which is the sum of the feature impor- FID subgroup. We also include results showing that the
tance values and the size constraint functions weighted bych subgroups found generalize out of sample both in terms
the dual variables, and apply strong duality. We can then of AVG-FID and group sizggj (Appendix L), are relatively
cast the constrained optimization as computing the Naskobust to the choice of hypothesis clasiqAppendix M),
equilibrium of a two-player zero-sum game, and apply theand that our algorithms converge quickly in practice (Ap-
classical result of (Freund & Schapire, 1996) which sayspendix O). The code used for our experiments is available
that if both players implememto-regretstrategies, then we  at github.com/safr-ai-lab/xai-disparity.
converge to the Nash equilibrium at a rate given by the aver-
age regret of both players converging to zero. Algorithm 1
implements the no-regret algorithm exponentiated gradient
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5.1. Experimental Details notion, our methods were able to nd subgroups with high

. FID, often differing by orders of magnitude. For example,
Datasets We used four popular datasets for the experiments; ering by gnitu xamp

on Folktables with LIME as the importance notion, there
Student, COMPAS.’ Bank, and Fqlkt'ables. For each.te.s.t, "% a subgroup on whichge is on averag@25times more
used COMPAS. t\{Vlce, once pred|ct|ng two-year rec'd'v's’mimportant than it is for the whole population. Table 1 also
and once predicting deC|I_e risk score (labeled COMPAS %rovides the de ning features, listed as the sensitive features
fand"COMP_AS"D respectlve_ly). For each dataset, we spe ihich have the largest coef cients i
i ed "sensitive" features which are features generally cov-
ered by equal protection or privacy laws (e.g. race, gendef natural follow up question that arises from this experiment
age, health data). Appendix | contains more details. is what does the distribution &D s look like for a given
dataset? Figure 3 shows a distribution of itifeatures on
the Bank dataset with the highddD values. As we can
see, there are a few features where |d&fge subgroups

C ) can be found, but it tails off signi cantly. This pattern is
2016), Shapley Additive Explanations (SHAP) (Lundberg replicated across all datasets and feature importance notions.

& Lee, 2017), and saliency maps (GRAD) (SmonyanThiS is a positive result for practical uses, as an analyst

et al., 2013). For every method and dataset, we opti, 4o ain expert can focus on a handful of features that
mize the constrainedrID over ranges( .; u) =

£[:01: :05} [:05: 1]; [-1: :15} [:15: :2]: [:2: -25[0. These perform drastically differently when performingBl .

small ranges allowed us to reasonably compareFilile  Earlier in Section 1.1, we examined a speci ¢ case where
values, reported in Table 1. Additionally, these ranges spatheFID found as a result of our method revealed a biased
subgroup sizes that may be of particular interest in fairnessubgroup where the fairness disparities could then be miti-
research and dataset auditing work. All value&WwiG-FID gated with targeted approaches. In the next section, across
reported in the results amut of samplei.e. theAVG-FID every dataset and feature importance notion, we nd similar
values are computed on a test set that was not used to oggxamples exposing some form of potential bias. We note
timize the subgroups. Datasets were split iB® 20  that not every single (subgroup, feature) pair discovered nec-
train-test split except for Student which was split 50  essarily implies a fairness concern. For exampG-FID

due to its small size. Across all datasets, wherRli2 was  could be driven in part by correlations betwdgrand the
LIME or SHAP, we seh to be a random forest, when it was sensitive attributes that de ng Since it remains true in all
GRAD we used logistic regression as it requires a classi effairness work that two contexts that are statistically equiv-
whose outputs are differentiable in the inputs. The exacalent may have very different fairness implications in the
choice of classi er does not have any notable impact on theeal world, our method should be viewed as a tool to aid
outcomes as we discuss in Appendix M. Due to computapractitioners irDBI rather than as de nitive proof of bias.
tion constraints, GRAD was only tested on the COMPAS

R dataset. We defer the details in how we implemented thé&.3. Discussion of HighFID Subgroups

importance notions and Algorithm 1 to Appendix .

Computing the AVG-FID: We study 3 separable no-
tions of FID based on local model explanations Local-
Interpretable, Model-Agnostic (LIME) (Ribeiro et al.,

In Figure 4, we highlight selections of an interesting
Linear Feature Importance Disparity: In addition to the  (feature, subgroup, method) pair for each dataset. Fig-
3 separable notions d¥ID, we also studied an approach ure 4a shows that on the Student dataset the feature
for a non-separable notion of importance. Linear regressiombsences which is of near zero importance on the
(labeled LR in results) is a popular model that is inherentlydataset as a whole, is very negatively correlated with
interpretable; the coef cients of a weighted least squarestudent performance on a subgroup whose2dgatures
(WLS) solution represent the importance of each featurgndicate whether a student's parents are together, and
We can thus de ne another variantID , the linear feature  if they live in an rural neighborhood. Figure 4b shows
importance disparityl(N-FID ), as the difference in the that on the COMPAS dataset with method GRAD,
WLS coef cient of featuref; on subgroumy and on the the feature arrested-but-with-no-charges

dataseX ". AsLIN-FID is differentiable with respectt,  is typically highly important when predicting

we are able to nd a locally optimaj with high LIN-FID two-year-recidivism . However, it carries sig-
using a non-convex optimizer; we used ADAM. For details ni cantly less importance on a subgroup that is largely
and proofs, see Appendix H. de ned as Native American males. When predicting the
decile risk score on COMPAS, LIME indicates that age
5.2. Experimental Results is not important on the dataset as a whole; however, for

Table 1 vesth its of th . ts. which non-Native American, female minorities, older age can be
v? e”ZStér?r:nsinzers Ze:lesul S(; tieexplerlfmreg SttWr '? afsed to explain a loweDecile Score . On the Bank

suaiize gure < on a log-ratio scale for DEUET CrosSy 5 et usindgIN-FID , we see that a linear regression
notion comparison. Across each dataset and importance
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Figure 2: Summary of the higheBiD s found for each (dataset, method). This is displayedogso(R) whereR is

the ratio of average importance per data poirg irio the average importance &nfor separable notions, or the ratio of

coef cients forLIN-FID . This scale allows comparison across different importance notions. The feature associated with
eachg is written above the bar.

Table 1: Summary of the subgroup with high&a&tG-FID for each experiment along with the corresponding feature,
subgroup size, and de ning features. Experiments were run across myltjple y) ranges with the highestVG-FID
found being displayed. (F) is the average feature importance value on the speci ed group.

Dataset Notion  Featuffg (F(f;: X)) (F(fj;9)) jgi De ning Features
Student LIME  Failures :006 :011 :01 Alcohol Use, Urban Home
SHAP  Absences :15 21 :02 Parent Status, Urban Home
LR Father WFH 217 4:0 :03 Alcohol Use, Health
COMPASR LIME Age :0009 114 :05 Native-American
SHAP  Age :012 41 :04 Asian-American
LR Native American 5 117 :04 Asian/Hispanic-American
GRAD Arrest, No Charge :09 :02 :05 Native-American
COMPASD LIME Age :0003 :06 :02 Native/Black-American
SHAP  Age :06 235 :07 Black/Asian-American
LR Caucasian 6:7 107 :04 Native-American
Bank LIME  # of Employees :003 :03 :03  Marital Status
SHAP  Euribor Rate :004 :016 :03 Marital Status
LR llliterate .07 :0045 :01 Age, Marital Status
Folktables LIME Age :0007 11 :21 Marital Status
SHAP  Education :023 115 :03 Asian-American
LR Self-Employed :26 :06 :02  White-American
them.

5.4. Comparison ofFID Values on Rich vs. Marginal
Subgroups

To better quantify the advantage of rich subgroups, we
Figure 3: Distribution oAVG-FID on the top features from performed the same analysis but only searching over the
the BANK dataset using LIME. We see a sharp drop off inmarginal subgroup space. For each dataset and importance
AVG-FID. This pattern is seen in all datasets and notions.notion pair, we established the nite list of subgroups de-

ned by a single sensitive characteristic and computed the

FID for each of these subgroups. In Figure 5, we compare
trained on points from a subgroup de ned by older, singlesome of the maximaAVG-FID rich subgroups shown in
individuals, puts more importance §gsb=housemaid Figure 2 to the maximahVG-FID marginal subgroup for
when predicting likelihood in signing up for an account.the same feature. In about half of the cases AM&-FID
Finally on Folktables, we see thiatN-FID assigns much  of the marginal subgroup was similar to the rich subgroup.
lower weight to thejob=military feature among a In the other cases, expanding our subgroup classes to in-
subgroup that is mainly white and divorced people tharclude rich subgroups de ned by linear functions of the sen-
in the overall dataset when predicting income. Thesesitive attributes enabled us to nd a subgroup that had a
interesting examples, in conjunction with the resultshigherAVG-FID. For example, in Figure 5b, we can see
reported in Table 1, highlight the usefulness of our methodhat on the COMPAS R dataset using GRAD as the im-
in nding subgroups where a concerned analyst or domairportance notionArrested, No Charges  had a rich
expert could dig deeper to determine how biases might b&ubgroup withAVG-FID that was4 times less than on the
manifesting themselves in the data and how to correct fofull dataset. However, we were unable to nd any sub-

7
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(a) Student: Predicting grade outcomes

(b) COMPAS: Predicting 2-year recidivism

(c) COMPAS: Predicting decile risk score

(d) Bank: Predicting whether bank deposit is made

(e) Folktables: Predicting income >$50k

Figure 4: Exploration of key subgroup/feature pairs foun

group in the marginal space where the importance of the
feature was nearly as different (comparisons for all datasets
are available in Appendix K). In some cases, the marginal
subgroup performs slightly better than the rich subgroup
(Figure 6). This happens when using rich subgroups does
not offer any substantial advantage over marginal subgroups,
and the empirical error tolerance in Algorithm 1 stops the
convergence early.

Perhaps an even more important practical advantage of Al-
gorithm 1's ability to optimize over rich subgroups, is that

it allows protected subgroups to be de ned as functions of
continuous variables. For exampége is easily included

in our formulation, while capturingge with marginal sub-
groups requires rst bucketing into age groups and then
one-hot encoding these groups, which comes with statisti-
cal, explanatory, and computational drawbacks. As men-
tioned in Section 3, our framework also allows individuals
to be part of multiple groups, for a example a multiracial
individual who might be better represented as a fractional
member of different racial groups, rather than a member of
a single discrete one. This kind of data would be impossible
to capture with marginal subgroups.

5.5. Fairness Metrics

While largeAVG-FID values with respect to a given fea-
ture and importance notion do not guarantee disparities in
common fairness metrics, which are not typically de ned
in terms of a speci ¢ reference feature, it is natural to ask
if these notions are correlated: do subgroups with large
AVG-FID have large disparities in fairness metrics, and do
subgroups that have large disparities in fairness metrics have
particularly largeAVG-FID values for some feature?

We examine the rst question in Table 2. We nd that these
high AVG-FID subgroups tend to have signi cant dispar-
ities in traditional fairness metrics. Although the metrics
are not alwaysvorseon g, this reinforces the intuition that
subgroups with higiAVG-FID require greater scrutiny. In
Table 3, we study the converse question, where we use the
GerryFair code of (Kearns et al., 2018) to nd rich sub-
groups that maximally violate FPR disparity, and then com-
pute theAVG-FID on those subgroups. We nd that they
also have features with highVG-FID, albeit not as large
as those found by Algorithm 1, which explicitly optimizes
for AVG-FID . These two results highlight the usefulness of
our method in identifying potentially high risk subgroups.

6. Discussion

g'n this paper we establish feature importance disparities as

for each dataset. The rst graph shows the change in featur@" important tool to aid DB s. One bene t to our work,

importance from whole dataset to subgroup. The secon
graph shows the main coef cients that de ne the subgroup.

ithat as progress is made in feature importance methods,
they can be leveraged in our Algorithm 1 (if they are sep-
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(a) Student (b) COMPAS R

Figure 5: Comparisons of some maxinkdD rich subgroups to the maximglD marginal subgroup on the same feature
using the same log-scale as in Figure 2. The feature associated with the subgroups is written above each bar.

Table 2: Fairness metrics of higkVG-FID subgroups. COMPAS D and Student were excluded since they use non-binary
y, making classi cation metrics less comparable. We measure@ fagness types outlined by (Barocas et al., 2019):
P(¥ = 1), true/false positive rates, and expected calibration eqretric> is the metric org minus the metric oiX .

Dataset Notion F De ning Features ofj N4 TPR FPR ECE
COMPASR LIME Age Native-American :16 2 :07 24
SHAP  Age Asian-American :37 26 4 112
GRAD Arrest, No Charge Native-American 24 :35 112 :37
Bank LIME  # of Employees Marital Status 11 :08 :07 :15
SHAP  Euribor Rate Marital Status 11 :08 :07 17
Folktables LIME Age Marital Status :15 :09 :07 19
SHAP  Education Asian-American 17 2 :05 :09

Table 3: Comparing top features and respechivi&s-FID of g found via our methodAVG-FID g p ) and found by (Kearns
etal., 2018) AVG-FID gerry ). As in Table 2, COMPAS D and Student were excluded.

Dataset Notion Fgip AVG-FIDEp Fgerry AVG-FID gerry
COMPASR LIME Age 114 Age :04
SHAP  Age 4 Age :06
GRAD Arrest, No Charge :09 Male :03
Bank LIME # of Employees :03 # of Employees :008
SHAP  Euribor Rate :016 Emp Var Rate :004
Folktables LIME Age 11 Age :05
SHAP  Education :13 Age :05

arable). As we discuss, given observed feature/subgroupcknowledgements

disparities, there are many possible next steps an analys% h id lik hank hi K for th
could take to root out dataset bias, from interventions inT & althors would like to thank Cynthia Dwork for the

the training or feature selection process, to more invoIvedlnitial conversations that motivated the problem direction.
investigations into how the data was collected. This per-

spective is complementary to recent work in the fairnesdmpact Statement

literature that focuses on understanding and documenting, . , ,
data sources (Gebru et al., 2018; Fabris et al., 2022). On thEiS Paper presents work whose goal is to empower practi-
algorithms side, there has been little work to systematically!ONers to investigate potential sources of bias in common
identify the sources of bias in the data, as opposed to devefatasets used for machine learning. As such, this work has
oping methods that remove bias during model training OIthe potential to contribute to fairer and more democratized
representation learning. This paper represents one attem Ilgprlthmlc dec;]sm.n makmg across man]é/ e}ppllcstlonl do-
at developing this kind of “data-centric” fairness methodMains. We emphasize, as is a common refrain in the related
through the lens of feature importance. There is much mor&0dY Of literature, that no method is a silver bullet towards
work that can be done to determine what the right subsefitigating bias in ML systems.

of features to collect are, how to detect and mitigate biases

in the data collection process, and which subsets of data or

features should be retained prior to model training.
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A. Limitations

Importantly, we eschew any broader claims that ldfje necessarilymplies a mathematical conclusion about tagness

of the underlying classi cation model in all cases. It is known that even the most popular and natural fairness metrics
are impossible to satisfy simultaneously, and so we would run up against the problem of determining what it means for
a model to beair (Chouldechova, 2017; Kleinberg et al., 2017). By detecting anomalous subgroups with respect to
feature importance, our approach can signal to a domain expert that perhaps there are issues such as feature collection or
measurement bias. This will facilitate the next steps of testing the resulting hypotheses, and ultimately intervening to address
disparities and improve fairness outcomes. Concerns about the stability and robustness of the most widely used feature
importance notions, including the ones we study, have been raised (Dai et al., 2022; Agarwal et al., 2022a; Alvarez-Melis
& Jaakkola, 2018; Bansal et al., 2020; Dimanov et al., 2020; Slack et al., 2020) and these notions are often at odds with
each other, so none can be considered de nitive (Krishna et al., 2022). Regardless of these limitations, these notions are
used widely in practice today, and are still useful as a diagnostic tool as we propose here in order to uncover potentially
interesting biases. Lastly, our methods, like nearly all prior works on fairness, require tabular datasets that have de ned the
sensitive features apriori, a process more dif cult in text or image datasets where bias is still a concern (Buolamwini &
Gebru, 2018; Bolukbasi et al., 2016). Overall, the methods developed here represent a part of the algorithmic toolkit that
domain experts may use in rooting out bias.

B. Reproducibility

Speci ¢ details for the experiments such as the hyperparameters used are available in Appendix I. The source code used for
these experiments is provided in the supplementary material. Speci oatlyseparable.py andrun_linear.py

are the scripts where the importance notion (Appendix 1.2), dataset (Appendix 1.3), and other parameters are speci ed before
running. Theexperiments/  directory contains scripts used for the comparison of rich and marginal subgroups as seen

in Appendix K and for the fairness comparison experiments in Subsection 5.5.

C. Additional Related Work

Fairness in Machine Learning Much of the work in fairness in machine learning typically concerns the implementation of

a new fairness notion in a given learning setting; either an individual fairness notion (Dwork et al., 2012; Joseph et al., 2018),
one based on equalizing a statistical rate across protected subgroups (Hardt et al., 2016b; Pleiss et al., 2017), or one based
on an underlying causal model (Kusner et al., 2017). With a given notion of fairness in hand, approaches to learning fair
classi ers can be typically classi ed as “in-processing", or trying to simultaneously learn a classi er and satisfy a fairness
constraint, “post-processing” which takes a learned classi er and post-processes it to satisfy a fairness de nition (Hardt

et al., 2016b), or most closely related to the motivation behind this paper, pre-processing the data to remove bias. Existing
work on dataset bias serve as high level motivation for our work.

Feature Importance Notions The local explanation methods mentioned in Section 2 include model-agnostic methods
like LIME or SHAP (Ribeiro et al., 2016; Lundberg & Lee, 2017), methods like saliency maps (Simonyan et al., 2013;
Sundararajan et al., 2017; Baehrens et al., 2010) that relgtirde differentiable irx, or model-speci ¢ methods that

depend on the classi er. In addition to these explanation methods, there are also global methods that attempt to explain the
entire model behavior and so can be run on the entire subgroup.I®#ID method as described in Appendix H is a

global method that relies on training an inherently interpretable model (linear regression) on the subgroup and inspecting its
coef cients. Other inherently interpretable models that could be used to de ne a notion of subgroup importance include
decision trees (Quinlan, 1986) and generalized additive models (Liu et al., 2022).

Fairness and Interpretability. Although no existing work examines the role of feature importance notions in detecting
disparities in rich subgroups, there is a small amount of existing work examining explainability in the context of fairness.
The recent (Grabowicz et al., 2022) formalizes induced discrimination as a function of the SHAP values assigned to sensitive
features, and proposes a method to learn classi ers where the protected attributes have low in uence. (Begley et al., 2020)
applies a similar approach, attributing a models overall unfairness to its individual features using the Shapley value, and
proposing an intervention to improve fairness. (Ingram et al., 2022) examines machine learning models to predict recidivism,
and empirically shows tradeoffs between model accuracy, fairness, and interpretability.

Additionally, (Lundberg, 2020) decomposes feature attribution explanations and fairness metrics into additive components
and observes the relationship between the fairness metrics and input features. Our work does not try to decompose fairness
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metrics into additive components and also focuses on non-additive feature explanations. Furthermore, our consideration of
rich subgroups is a novel addition to the space.

D. Computing the Optimal Subgroup

Algorithm 1 Iterative Constrained Optimization

1: Input: DatasetX ";jX"j = n, hypothesis, feature of interest;, separable feature importance functensize
constraints | and y, size violation indicators | and , size penalty bounB, CSC oracle foG, CSCg(c’; cl),
accuracy .

. Initialize:

: Feature importance vectar = (F (f;; Xi; h))L;

: Gradient weight parameteg = (0; 0)

. Learning rate = 5og

fort=1;2;::do
# Exponentiated gradient weights

— Rr_ep( o) = B 20lx1)
v Breetiy w17 Bty

# Costs vector
o =(C; to+ t1){sg

=
= o

12:

13:  # Get g with max disparity computed via CSC oracle
14: g = CSCqs(0;c})

15:

16: # Comqyte Lagrangian

170 ps=1 oy g

18 P=(B L(P5)B u(p)

19: L=1L(pG ?

20: P

21 pt = % Eozl( t00; t0:1)

22:  g)= CSCg(0;(Ci ', +D )y)

23 L=L(g%p")

24:

25: vy =max jL(p%;pt) LiiL  L(ps;ph)]
26:

27:  # Check termination condition
28: ifvwy vthen

29: Returnpy; p*
30: endif
31:

32: # Exponentiated gradient update
33: Set 1 = ¢+ (o ]Gl )
34: end for

We start by showing that for the unconstrained problem, computing the subgrdiniat maximized=ID (f; ; g; h) overG
can be computed in two calls to C§@henF is separable.

Lemma D.1. If F is separable an€€SG is a CSC oracle foG, then for any featuré; , g can be computed with two
oracle calls.

Proof. By de nition g; = argmay,g FID (j;g) = argmax,gjF (fj;X";h) F(fj;g;h)j = argmayy 4- .4 4FID(3;9),
whereg* = argmax,g F (fj;9;h);9 = argmin,g F(fj;g;h). By the de nition of separability, we can write

X X
F(fj 9(X");h) = FAfXih) = g(X)FAf;; Xish)
X2g(X") i=1
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Then lettinge? = 0 andct = FYfj; Xx;h) fork =1;:::n, we see thag® = CSG((c;cl));g = CSG((; ).
This establishes the claim. O

Theorem 4.1: LeF be a separable notion, X a classi ¢r, subgroup clas€, and oracleCSGs. Then xing a feature of
interestf; , we will run Algorithm 1 twice; once witlFID given byF, and once witiFID given by F. Letpf be the

distribution returned aftef = O(@) iterations by Algorithm 1 that achieves the larger valu&pfID (j; g)]. Then:

FID(j;9;) Eg pr[FID(:9)]

: L . 1+2 3)

@i @i —5—
Proof. We start by transforming our constrained optimization into optimizimgim max objective. Thamin player,
referred to as theubgroup playewill be solving a CSC problem over the claSst each iteration, while thmax player,
called thedual player will be adjusting the dual weightson the two constraints using the exponentiated gradient algorithm
(Kivinen & Warmuth, 1997). By Lemma D.2 (Freund & Schapire, 1996), we know that if each player implenentsgret
strategy, then the error of subgroup found alterounds is sub-optimal by at most the average cumulative regret of both
players. The regret bound for the exponentiated gradient descent ensures this ogoly@)mounds.

As in (Kearns et al., 2018; Agarwal et al., 2018a), we rst relax Equation 1 to optimize owdistibutionsover subgroups,
and we enforce that our constraints hold in expectation over this distribution. Our new optimization problem becomes:

x
N L L) @)
st Eg p[ L(@] O

Eg p[ u(@ O

We note that whiléGj may be in nite, the number of distinct labelings ¥f by elements oG is nite; we denote the
number of these by(X )j. Then since Equation 4 is a nite linear program@(X )j variables, it satis es strong duality,
and we can write:

(Pyi )= argmin, ; ( argmax; Eq p,[L(g )] = argmin, ; ( argmax; L(pg; )

with L(g; )= gX)F(fi;xh)+ L L+ u us L(pg )= Eg p,[L(g; )]
X2 X

Asin (Kearns etal.,, 2018)= f 2 R2jk k; Bgis chosen to make the domain compact, and does not change the
optimal parameters as long Bsis suf ciently large, i.e.k ki B. In practice, this is a hyperparameter of Algorithm 1,
similar to (Agarwal et al., 2018a; Kearns et al., 2018). Then we follow the development in (Agarwal et al., 2018a; Kearns
et al., 2018) to show that we can comp(pg; ) ef ciently by implementingno-regretstrategies for the subgroup player

(pg) and the dual player (.

Formally, sinceEg p,[L(9; )] is bi-linearinpg; , and ; ( G) are convex and compact, by Sion's minimax theorem
(Kindler, 2005):

min maxL(py; )=max min L(py; )= OPT 5
P2 ( G) 2 (Pgi ) =me py2 ( G) (Pi ) ®)

Then by Theorem 4.5 in (Kearns et al., 2018), we know thgtjf ) isa -approximate min-max solution to Equation 5
in the sense that

it L(pg; ) pzrr}inG)L(p; )+ iL(pg ) maxL(p: )
+2 ©6)

B

then: F(fj;pgih) OPT+2; | L(9)] u(9)]
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So in order to compute an approximately optimal subgroup distribyjoit suf ces to compute an approximate min-max

solution of Equation 5. In order to do that we rely on the classic result of (Freund & Schapire, 1996) that states that if the
subgroup player best responds, and if the dual player achieves low regret, then as the average regret converges to zero, so
does the sub-optimality of the average strategies found so far.

Lemma D.2((Freund & Schapire, 1996)) etp, ;: :: p; be a sequence of distributions overplayed by theﬁjual player, and
letg®;:::g" be the subgroup players best responses against these distributions respectiv’é{y.:i_ét thl P By =

15, o Thenif

X

X
E o L% ) min [L(g; )] T
t=1 t=1

Then("; By) is a -approximate minimax equilibrium of the game.

To establish Theorem 4.1, we need to show (i) that we can ef ciently implement the subgroup players best response using
CSGs and (ii) we need to translate the regret bound for the dual players best response into a statement about optimality,
using Lemma D.2. Establishin(@) is immediate, since at each roundf o = Ep‘ [ L] c1= Ept [ ul, then the best
response problem is:

X
argmin, , « 6)Eqg p, [ 9OOF(fjix;h)+ o L+ 1 Ul
x2X

Which can further be simpli ed to:

X
argmin, g 9X)(F(fj;x;h) L+ y) (7
x2X

This can be computed with a single call@EGs, as desired. To establish (ii), the no-regret algorithm for the dual player's
distributions, we note that at each round the dual player is playing online linear optimizatio’ diweensions. Algorithm 1
implements the exponentiated gradient algorithm (Kivinen & Warmuth, 1997), which has the following guarantee proven in
Theoreml of (Agarwal et al., 2018a), which follows easily from the regret bound of exponentiated gradient (Kivinen &
Warmuth, 1997), and Lemma D.2:

Lemma D.3((Agarwal et al., 2018a))Setting
at mostO(#"°B) iterations.

= 5-zg» Algorithm 1 returng’ that is a -approximate min-max point in

Combining this result with Equation 5 completes the proof.

E. Proof of AVG-FID Primitive

In Section 4, we presented our approach that optimizing-fBr constrained across a range of subgroup sizes will allow us
to ef ciently optimize for AVG-FID . We provide a more complete proof of that claim here:

Letg be the subgroup that maximiz&¥G-FID . Without loss of generalityy = argmay,q ﬁ P g(x)FYf;; X;h)
(we drop the absolute value beca@e we can ald6%et F). Then it is necessarily true, thgt also solves the constrained
optimization problenargmax % g(x)F%f;;X;h) such thajgj = jg j, where we have dropped the normalizing term
ﬁ in the objective function, and so we are maximizing the constraiBd

Now consider anintervdl =[jg ] ; jg #',+ ], and suppose We solgp = argmax,g % P g(x)F%f;;X;h) such that
g2 1. Thensincg 2 I, we know thal% g FYf;;X;h) 1 yg (X)FYf;;X; h). This implies that:

n
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AVG-FID (g,) ilx g (X)FYfi;X;h)
"7 gin b
AVG-FID(g ) +( 1

g+ i9/]

JFID(9)

D(9)

AVG-FID -
@) jgiGgi+ )

Given the above derivation, as! 0, we haveAVG-FID(g,) ! AVG-FID(g ).

Hence we can compute a subgrauthat approximately optimizes th&/G-FID if we nd an appropriately small interval
| aroudnjg j. Since the discretization in Section 4 covers the unit interval, we are guaranteed for suf ciently karged
such an interval.

F. Cost Sensitive Classi er, CSG

De nition F.1. (Cost Sensitive Classi cation) A Cost Sensitive Classi cation (CSC) problem for a hypothesigZiass
given by a set oh tuplesf (X;;c®; ¢h)g, , wherec® andc! are the costs of assigning labéland1 to X; respectively. A
CSC oracle nds the classi e 2 G that minimizes the total cost across all points:

X
0= argzngin g(Xg +(1  g(Xi)c ®)

Algorithm 2 CSGs

Input: DatasetX  RY9ses  RYste  costg(c?;ct) 2 R"
Let X sens coNsist of the sensitive attributgsof each(x; x% 2 X .

# learn to predict the cost’
Train linear regressar : R%s | R on datasefX sens ; ¢°)

# learn to predict the costt
Train linear regressar, : R%s | R on datasetX sens ; ¢*)

# predictO if the estimatea, < c;
De ne g((x;x9) := 1f(ro ry)(x) > Og
Returng

G. NP-Completeness

We will show below that the fully general version of this problem (allowing any poly-fifiés NP complete. First, we will
de ne a decision variant of the problem:

X:FihiA =§§9g;>f<J(JF(f;;g;h) F(fj; X;h)j) A

Note that a solution to the original problem trivially solves the decision variant. First, we will show the decision variant is in
NP, then we will show it is NP hard via reduction to the max-cut problem.

Lemma G.1. The decision version of this problem is in NP.
Proof. Our witness will be the subsgtand featurdf; such that
(F(fiigh)  F(fXh)) A
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Given these?, evaluation of the absolute value is polytime given thas polytime, so the solution can be veri ed in
polytime. O

Lemma G.2. The decision version of this problem is NP hard.

Proof. We will de ne our variables to reduce our problemnaxcu{Q; k). Given a graph de ned witl; E as the vertex
and edge sets @ (with edges de ned as pairs of vertices), we will de ne dur X , G, A, andh as follows:

X =V

h = constant classi er, maps every value to 1

G = P(V) i.e. all possible subsets of vertices
F(fi;oh) = jx2 E:x[0]2 g;x[1] 2 ¢

—i.e.F (j;g; h) returns the number of
edges cut by a particular subset, ignoring
its rst and third argument.

(this is trivially computable in polynomial
time by iterating over the set of edges).

A k

Note thatF (fj; X;h) = 0 by de nition, and that 0. ThereforejF (fj;g;h) F(f;;X;h)j = F(fj;9;h), and we
see tha(jF (fj;g9;h) F(f;;X;h)j) Alifand only ifgis a subset oQ that cuts at leash = k edges. Therefore an
algorithm solving the decision variant of the feature importance problem also solves maxcut. O

H. Linear Feature Importance Disparity

Thenon-separabléID notion considered in this paper corresponds to training a model that is inherently interpretable on
only the data in the subgrowg and comparing the in uence of featurdo the in uence when trained on the dataset as a
whole. Since all of the points in the subgroup can interact to produce the interpretable model, this notions typically are not
separable. Below we formalize this in the case of linear regression, which is the non-separable notion we investigate in the
experiments.

De nition H.1. (Linear Feature Importance Disparity). Given a subgrguiet ¢ =inf ,gs E(x.yyr [9(X)( X y)?],
and r =inf ;e Eqxy)r [( % y)?]. Thenifg is thej h pasis vector irRY, we de ne thelinear feature importance
disparity (LIN-FID ) by

LIN-FID (59)= (g r) &]

LIN-FID (j;g) is de ned as the difference between the coef cient for feajumhen training the model on the subgrogip
versus training the model on points frd Expanding De nition H.1 using the standard weighted least squares estimator
(WLS), the feature importance for a given feattiyeand subgroug(X) is:

Fin (:9) = (Xg(X)XT) *(XTg(X)Y) &; ©)

Whereg(X) is a diagonal matrix of the output of the subgroup function. The coef cients of the linear regression model on
the dataseX can be computed using the results from ordinary least squares (QL8)") *(XTY) g.

We computeargmay, s LIN-FID = argmax, jFin (J; X ") Fin (j; 9)j by nding the minimum and maximum values

of Fjin (j; g) and choosing the one with the larger difference. For the experiments in Section 5, we use logistic regression
as the hypothesis class fgibecause it is non-linear enough to capture complex relationships in the data, but maintains
interpretability in the form of its coef cients, and importantly because Equation 9 is then differentiable in the parameters
ofg(X)= (X ); (X)= . Since Equation 9 is differentiable in we can use non-convex optimizers like SGD or

1+e X
ADAM to maximize Equation 9 over.

While this is an appealing notion due to its simplicity, it is not relevant unless the n¥agiiX )X T is of full rank. We ensure
this rst by lower bounding the size af via a size penalty terRsi;e = max( . | 9(Xain )j; 0) + max(jg(Xrain )]
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u; 0), which allows us to provide constraints in the same manner as in the separable approach. We also add a small
regularization terml to X T g(X )X . This forces the matrix to be invertible, avoiding issues with extremely small subgroups.
Incorporating these regularization terms, Equation 9 becomes:

Fin (59)= s (X (X DXT+ 1) Y(XT (X [)Y) g + ¢ Psge (10)

We note that.IN-FID is a similar notion to that of LIME (Ribeiro et al., 2016), but LIME estimates a local effect around
each point which is then summed to get the effect in the subgroup, and sefiasable It is also the case th&, is
non-convex as shown below:

Lemma H.2. Fj, as de ned in Equation 9 is hon-convex.

Proof. We will prove this by contradiction. Assunig, is convex, which means the Hessian is positive semi-de nite
everywhere. First we will x(Xg(X)XT)) 1 to be the identity matrix, which we can do without loss of generality by
scalingg by a constant. This scaling will not affect the convexityqf .

Now, we have the simpler form &, = (X Tg(X)Y) e. We then can compute the values of the Hessian:

@F T 40
— = (X X)Y) e
Consider the case whexe" isa2 2 matrix with rows1;0andO; 1andY is a vector of ones. Iff weights the second
column (i.e. feature) greater than the rst, then the output Hessian will be positive semi-de nite. @uteiights the

rst column greater than the rst, then it will be negative semi-de nite. Since the Hessian is not positive semi-de nite
everywhereF, must be non-convex over the spaceyof O

This means the stationary point we converge to via gradient descent may only be locally optimal. In Section 5, we optimize
Equation 10 using the ADAM optimizer (Kingma & Ba, 2015). Additional details about implementation and parameter
selection are in Appendix |. Despite only locally optimal guarantees, we were still able to nd (feature, subgroup) pairs with
highLIN-FID for all datasets.

|. Experimental Details
I.1. Algorithmic Details

Separable Caseln order to implement Algorithm 1 over a range[of ; (] values, we need to specify our dual noBm
learning rate , number of iterations usem, rich subgroup clas§, and the associated oracli&SGs. We note that for each
featuref; , Algorithm 1 is run twice; one corresponding to maximiziaif (f; ; g; h) and the other minimizing it. Note that

in both cases our problem is a minimization, but when maximizing we simply negate all of the point wise feature importance
valuesF (f;; x;;h) ! F (fj; xi; h). In all experiments our subgroup classonsists of linear threshold functions over

the sensitive features = f 2 R%es : ((x;x9) = 1f % > 0g. We implementCSG; as in (Agarwal et al., 2018a;
Kearns et al., 2018) via linear regression, see Algorithm 2 in Appendix F. To ensure the dual player's response is strong
enough to enforce desired size constraints, we empirically found that setting the hyperpaBaméd@f (f;) worked

well on all datasets, where(f ;) is the average absolute importance value for fegtureer X . We set the learning rate for
exponentiated gradient descent te 10 5. Empirical testing showed that B should be on the order of(f; ) or smaller

to ensure proper convergence. We found that setting the error tolerance hyperparame®&r (f;) n | worked well

in ensuring good results with decent convergence time across all datasets and valuEerddll datasets and methods

we rap for at mosT = 5000 iterations, which we observe empirically was large enoughfbr values to stabilize and

for Ti th1 i%i2 [ L; uls with the method typically converging ifi = 3000 iterations or less. See Appendix N for a
sample of convergence plots.

Non-Separable CaseFor the non-separable approach, datasets were once again split into train and test sets. For Student, it
was split 50-50, while COMPAS, Bank, and Folktables were split 80-20 train/test. The 50-50 split for Student was chosen so
that a linear regression model would be properly ton a srg@l st ). The parameter vectorfor a logistic regression

classi er was randomly initialized with a PyTorch random see@ &ir reproducability. We used an ADAM (Kingma & Ba,

2015) optimizer with a learning rate @5 as our heuristic solver for the loss function.
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To enforce subgroup size constraintsPsi;e must be on a signi cantly larger order thagFi, (j; g). Empirical testing

found that values of s = 10% and . = 10 ! returned appropriate subgroup sizes and also ensured smooth convergence. The
optimizer ran until it converged upon a minimized linear regression coef cient, subject to the size constraints. Experimentally,
this took at mosiL000iterations, see Appendix O for a sample of convergence plots. After solving twice for the minimum
and maximunF, (j;g) values and our subgroup functigns chosen, we t the linear regression on both.s; and
0(Xtest ) to get the nalFID .

I.2. FID Notions

LIME : A random forest moddt was trained on datas®t”. Then each data point along with the corresponding probability
outputs from the classi er were input into the LIME Tabular Explainer Python module. This returned the corresponding
LIME explanation values.

SHAP: This was done with the same method as LIME, except using the SHAP Explainer Python module.

Vanilla Gradient : Labeled assRADiInN charts, the vanilla gradient importance notion was computed using the Gradient
method from the OpenXAl library (Agarwal et al., 2022b). This notion only works on differentiable classi ers so in this
caseh is a logistic regression classi er. We found there was no substantial difference between the choice of random forest
or logistic regression fan when tested on other importance notions (Appendix L). Due to constraints on computation time,
this method was only tested on the COMPAS dataset (UBivig Year Recidivism  as the target variable).

Linear Regression For the linear regression notion, the subgrgupas chosen to be in the logistic regression hypothesis
class. For a given subgroggX ), the weighted least squares (WLS) solution is found whose linear coef cigritgen
de ne the feature importance valegg 4.

For details on the consistency of these importance notions, see Appendix P.

1.3. Datasets

These four datasets were selected on the basis of three criterion: (i) they all use features which could be csessitived

to make predictions about individuals in a context where bias in a signi cant concern (ii) they are heavily used datasets in
research on interpretability and fairness, and as such issues of bias in the datasets should be of importance to the community,
and (iii) they trace out a range of number of datapoints and number of features and sensitive features, which we summarise
in Table 4. For each dataset, we speci ed features that were "sensitive." That is, when searching for subgroups with high
FID, we only considered rich subgroups de ned by features generally covered by equal protection or privacy laws (e.g.
race, gender, age, health data).

Student This dataset aims to predict student performance in a Portugese grade school using demographic and familial
data. For the purposes of this experiment, the target variable was math grades at the end of the academic year. Student was
by far the smallest of the four datasets with 395 data points. The sensitive features in Studentare, parental

status , address (urban or rural)daily alcohol consumption , weekly alcohol consumption ,and

health . Age typically would be considered sensitive but since in the context of school, age is primarily an indicator of
class year, this was not included as a sensitive feature. The categorical fealtiress , Mother's Job , Father's

Job, andLegal Guardian were one hot encoded.

COMPAS: This dataset uses a pre-trial defendant's personal background and past criminal record to predict risk of
committing new crimes. To improve generalizability, we removed any criminal charge features that appeared fewer than
10 times. Binary counting features (e2h-45 yrs old  or5+ misdemeanors ) were dropped in favor of using the
continuous feature equivalents. Additionally, the categorical varibte was one-hot encoded. This brought the total
number of features to 95. The sensitive features in COMPA&gee gender , andrace (Caucasian, African-American,

Asian, Hispanic, Native American, and Other). For COMPAS, we ran all methodologies twice, once using the binary
variable,Two Year Recidivism , as the target variable and once using the continuous vaiisi#e Score . Two

Year Recidivism is what the model is intended to predict and is labele@@3PAS Rn the results. Meanwhile,

Decile Score is what the COMPAS system uses in practice to make recommendations to judges and is labeled as
COMPAS Din the results.

Bank: This dataset looks at whether a potential client signed up for a bank account after being contacted by marketing
personnel. The sensitive features in Bankage andmarital status (married, single, or divorced). Trage feature
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in Bank is a binary variable representing whether the individual is above the age of 25.

Folktables: This dataset is derived from US Census Data. Folktables covers a variety of tasks, but we used the ACSIncome
task, which predicts whether an individual makes more than $50k per year. The ACSIncome task is meant to mirror the
popular Adult dataset, but with modi cations to address sampling issues. For this paper, we used data from the state of
Michigan in 2018. To reduce sparseness of the datase®|toe of Birth feature was dropped and tRecupation

features were consolidated into categories of work as speci ed in the of cial Census dictionary (Bureau, 2020), (e.g. people

who work for the US Army, Air Force, Navy, etc. were all consolidated @teupation=Military ). The sensitive
features in Folktables aage, sex , marital status (married, widowed, divorced, separated, never married/under

15 yrs old), andace (Caucasian, African-American, Asian, Native Hawaiian, Native American singular tribe, Native
American general, Other, and 2+ races).

Table 4: Summary of Datasets

Dataset Data Points # of Features # of Sensitive Features
Student 395 32 6
COMPAS 6172 95 8
Bank 30488 57 4
Folktables Income 50008 52 16

J. Synthetic Experiment

In addition to the empirical experiments on real-world datasets, we generated two synthetic datasets and used them to
validate our methods in a controlled environment. In our baseline experiment, we created a dataset where the outcome
y is independent of the sensitive features to con rm that our algorithm does not result in any false discovery. Next, we
modi ed the distribution of the outcome for a subset of individuals, injecting a I&i§ein the subgrouy for featuref; .

We then con rmed that our algorithm is able to nd that feature importance disparity. We discuss the dataset generation,
experimental setup, and results from those two experiments here.

J.1. Baseline Case

Experimental Setup: We generated a synthetic dataset of size 4000. Each person in the dataset had randomly generated
sensitive featuresage, sex , andrace . sex andrace were drawn based on US Census dataagel N (50; 7). Three

more variables were generated for each individual: a binary variabdéed normally distributed variables N (100; 5)

andxz N (100;5). These three additional variables were drawn independently of the sensitive features and each other.
We then generated outconge X; + Xp + Xz + ; N (0; 1); note thaty is generated from the same model for any
sensitive group, so there should be no subgroups with laxg@é-FID. We then trained a random forest model on this
dataset and computed feature importance values using SHAP.

Results: We summarize thef(, g) pairs with the largeshVG-FID in Table 5. As expected, we see that Algorithm 1
does not nd any signi canfAVG-FID for this baseline cas&AVG-FID is not exactly zero, which is expected because
AVG-FID is measured as an absolute value, meaning that any difference in feature importance due to random variation will
result in a non-zero value.

J.2. Injected Case

Experimental Setup: In our second experiment, we started with the same individuals generated in the baseline case but we
injected FID for a subgroug of older, hispanic individuals consisting of approximat&B#oof the population. For this

second dataset, if an individual wasgnthen we generateg x; +50 X, + X3+ ; N (0;1). Otherwisey was

generated as in the baseline case. Also as in the baseline scenario, we used a random forest model with SHAP as the feature
importance notion.

Results: As seen in Table 5, the three features with the highest FID subgroups foundHigpemic , age, andxs.
Findingx, was expected, but it is not unusual fdispanic andage to also be found since in our synthetic examplés
dependent on these two features for pointg and completely independent f&=g. The fourth largesAVG-FID found
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Table 5: Summary of the toff; ; g) pairs found for the two synthetic dataset experimen{$:) is the average feature
importance value on the speci ed group. We can see that in the baseline experiment, there was vRWGHED . In the
injected case, Algorithm 1 found very largd&/G-FID subgroups on the three features which were effected by the injection.
The next largest pair in the injected case BAA5-FID comparable to the baseline case.

Experiment Featurg igj (F(fj:X)) (F(fj;9)) AVG-FID

Baseline X3 113 61 48 113
X2 11 1:16 1:23 :06
X1 12 :05 :01 :04

Injected Hispanic-American :15 :86 280 27:13
Age 17 357 7:.07 10:6
X2 15 1:56 22 1:78
Black-American 15 :01 :04 :03

was signi cantly smaller than the top three and is comparable in magnitude to that of the baseline case. The subgroup found
by Algorithm 1 for the top feature captur€d % of the older Hispanic subgroup where the disparity was injected. This is

not a perfect result, but was obtained without extensive tuning and illustrates our method can detect an injected disparity in a
controlled environment.

K. Comparison of FID Values on Rich vs. Marginal Subgroups

This appendix provides expanded information from Section 5.4. Here we are justifying the use of rich subgroups by
searching for maximaAVG-FID subgroups in the marginal subgroup space. Marginal subgroups are those de ned by a
single sensitive characteristic making them straightforward to search. In Figure 6, we compare the m¥akdD rich
subgroups shown in Figure 2 to the maximaIG-FID marginal subgroup for the same feature. In about half the cases,
expanding our subgroup classes to include rich subgroups de ned by linear functions of the sensitive attributes enabled us to
nd a subgroup that had a high&G-FID. In the other cases, t&V/G-FID of the marginal subgroup was similar to the

rich subgroup. Sometimes, the marginal subgroup outperformed the rich subgroup; this happens when using rich subgroups
does not offer any substantial advantage over marginal subgroups, and the empirical error tolerance in Algorithm 1 stopped
the convergence early.
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(a) Student (b) COMPAS R

(c) COMPAS D (d) Bank (e) Folktables

Figure 6: Comparison of the maxim@&lD rich subgroups from Figure 2 to the maxinf/dD marginal subgroup on the

same feature. This is displayedjbsgio(R)j whereR is the ratio of average importance per data point for separable notions
and the ratio of coef cients for the linear coef cient notion. The feature associated with the subgroups is written above each
bar.

L. Statistical Validity of Results: Generalization of FID andjgj

When con rming the validity of our ndings, there are two potential concerns: (1) Are the subgroup sizes found in-sample
approximately the same on the test set and (2) dd-tbes found on the training set generalize out of sample? Taken
together, (1) and (2) are suf cient to guarantee our maxim&G-FID values generalize out of sample.

In Figure 7, we can see that when we take the maximal subgroup found for each feayreand compute it's sizgg; j on

the test set, for both the separable and non-separable methods it almost always fell within the $pgeci ed range; the
average difference i (X wain )j andjg; (Xtest )j Was less tharD050n all notions of feature importance and all datasets
except for Student, which was closer.@25due to its smaller size. A few rare subgroups were signi cantly outside the
desired range, which was typically due to the degenerate case of the feature importance values &lfteing feature

in question. Additional plots for all (dataset, notion) pairs are in Figures 9, 10.

In Figure 8, we compar@VG-FID (f; » G 3 Xtrain ) to AVG-FID (f; ;G s Xtest ), or LIN-FID in the case of the linear
regression notion, to see hdWlD generalizes. The separable notions all generalized very well, producing very similar
AVG-FID values for in and out of sample tests. The non-separable method still generalized, although not nearly as robustly,
with outlier values occurring. This was due to ill-conditioned design matrices for small subgroups leading to instability in
tting the least squares estimator. In Appendix P, we investigate the robustness of the feature importance notions, evaluated
on the entire dataset. We nd that the coef cients of linear regression are not as stable, indicating the lack of generalization
in Figure 8 could be due to the feature importance notion itself lacking robustness, rather than an over- t selegtion of
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(a) (b)

(© (d)

Figure 7: Generalizability gfgj on the Folktables dataset. (a) Size outputs from Algorithm 1 for all features and separable
notions and (b) from optimizing Equation 10 folN-FID show that our size constraints hold in-sample. (c) Plots the
corresponding values ¢f; (Xain )j VSjg (Xtest )j for separable notions and (d) fofN-FID , showing that the subgroup

size generalizes out of sample.

(a) LIME (b) SHAP

(c) GRAD (d) Linear Regression

Figure 8: Out of sample generalization of the methods. Each dot represents a feature, PIDHDTDX (o5t VS ONX train -

All are computed on the Folktables dataset except (c) is computed on COMPAS R. The diagonal line represents perfect
generalization and the Pearson correlation coef cient is displayed in gure. The non-separable approach suffers from the
instability of the WLS method.
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