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Abstract
We prove that the combination of a target network
and over-parameterized linear function approxi-
mation establishes a weaker convergence condi-
tion for bootstrapped value estimation in certain
cases, even with off-policy data. Our condition is
naturally satisfied for expected updates over the
entire state-action space or learning with a batch
of complete trajectories from episodic Markov
decision processes. Notably, using only a tar-
get network or an over-parameterized model does
not provide such a convergence guarantee. Ad-
ditionally, we extend our results to learning with
truncated trajectories, showing that convergence
is achievable for all tasks with minor modifica-
tions, akin to value truncation for the final states in
trajectories. Our primary result focuses on tempo-
ral difference estimation for prediction, providing
high-probability value estimation error bounds
and empirical analysis on Baird’s counterexample
and a Four-room task. Furthermore, we explore
the control setting, demonstrating that similar con-
vergence conditions apply to Q-learning.

1. Introduction
Off-policy value evaluation with offline data considers the
challenge of evaluating the expected discounted cumula-
tive reward of a given policy using a dataset that was not
necessarily collected according to the target policy. Such a
scenario is common in real-world applications, such as self-
driving vehicles and healthcare, where active data collection
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with an unqualified policy can pose life-threatening risks
(Levine et al. 2020). The ability to perform off-policy evalu-
ation can also enhance data efficiency, for example, through
techniques like experience replay (Lin 1992). Typically,
estimation from offline data does not enforce constraints on
the collection procedure, which allows for the inclusion of
diverse sources, such as driving data from multiple drivers
or online text from alternative platforms. A key challenge,
however, is that offline data might only cover part of the
state space, which leads to technical difficulties that are not
encountered when learning from continual online data.

Temporal difference (TD) estimation (Sutton & Barto 2018),
where value estimates are formed by bootstrapping from the
Bellman equation, has emerged as one of the most widely
deployed value estimation techniques. Despite its popular-
ity, however, the deadly triad can thwart TD algorithms in
offline learning. It is well known that the combination of
off-policy data, function approximation, and bootstrapping
can cause the divergence of such algorithms; in the under-
parameterized setting, a TD fixed point might not even exist
(Tsitsiklis & Van Roy 1996). To address this issue, L2-
regularization is often introduced to ensure the existence of
a fixed point, and several algorithms, such as LSTD (Yu &
Bertsekas 2009) and TD with a target parameter (Zhang et al.
2021), have been shown to converge to a regularized fixed
point. However, this regularized point can result in larger
estimation errors than simply using a zero initialization of
the parameters (Manek & Kolter 2022).

Over-parameterization is another approach for ensuring the
existence of a TD fixed point (Xiao et al. 2021, Thomas
2022). In the offline setting, an over-parameterized model is
defined to be one that has more parameters than the number
of distinct data points in the dataset. Unfortunately, even
over-parameterized TD still suffers from the deadly triad; in
Figure 1 below we observe that over-parameterized linear
TD still diverges on Baird’s counterexample (Baird 1995).

Our paper establishes the convergence condition for TD
with offline data when both a target network and an over-
parameterized linear model are incorporated, as shown in
Section 3. Our condition is naturally satisfied for expected
updates using the entire state-action space, ensuring guaran-
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teed convergence. Empirically, we demonstrate on Baird’s
counterexample that the over-parameterized target TD con-
verges faster than other existing solutions to the deadly triad,
such as residual minimization (RM) or gradient TD meth-
ods, while using less memory than convergent methods like
LSTD. Our result provides theoretical support for the em-
pirical success of target networks and represents the first
demonstration of a practical algorithm that is provably con-
vergent and capable of high-quality empirical performance.

Importantly, over-parameterization ensures that the fixed
point remains independent of the state collection distribu-
tion. Therefore, state distribution correction is not needed
to approximate the value function of a target policy, which
grants flexibility in collecting offline data from multiple
state distributions. This property also means that the high
variance and bias associated with state distribution correc-
tions (Liu et al. 2018) can be avoided, which has been a
longstanding concern in the field. We show that the re-
sulting fixed point, given full state coverage and accurate
dynamics, approximates the target value function with an
error that can be bounded by the distance between the best
linearly represented value estimate and the true Q-value,
2

1−γ infθ∥Φθ − qπ∥∞, similar to the under-parameterized
on-policy TD fixed point.

Additionally, our convergence condition holds for learning
with a batch of trajectory data collected from episodic MDPs.
This result can be extended to truncated trajectory data with
minor modifications, as explained in Section 4. To compute
the temporal difference error under the target policy, we
consider two viable approaches: the first involves sampling
the next action from the target policy, as detailed in Section
3, while the second, introduced in Section 4, adopts per-
step normalized importance sampling (NIS) correction of
action choices (not the state distribution) (Hesterberg 1995).
The latter method offers the advantage of converging with
trajectory data under behaviour policies without making as-
sumptions about the task or dataset. Consequently, we assert
that the deadly triad issue can be fully resolved through the
introduction of over-parameterized target TD with NIS cor-
rection over trajectory data. The value estimation errors of
these two approaches are compared empirically in a simple
Four Room task in Section 4.

Finally, we extend the results to the offline control case.
Q-learning (Watkins & Dayan 1992) is a control algorithm
based on temporal difference learning that also suffers from
the deadly triad. Here we show that over-parameterized tar-
get Q-learning with offline data is also provably convergent.

2. Background
Notation We let ∆(X ) denote the set of probability dis-
tributions over a finite set X . Let R denote the set of real

numbers, and 1 be the indicator function. For a matrix
A ∈ Rn×m, we let A† denote its Moore-Penrose pseudoin-
verse and ρ(A) denote its spectral radius. Finally, we let
diag(x) ∈ Rd×d be a diagonal matrix whose diagonal ele-
ments are given by x ∈ Rd.

Markov Decision Process We consider finite Markov
Decision Process (MDP) defined by M = {S,A, P, r, γ},
where S is a finite state space, A is the action space, r :
S × A → R is the reward function bounded by one, P :
S × A → ∆(S) is the transition matrix, and γ < 1 is
the discount factor. The Q-value represents the expected
cumulative rewards starting from a state-action pair (s, a)
following a policy π : S → ∆(A), defined as

qπ(s, a) = Eπ

[ ∞∑
t=0

γtr(St, At)
∣∣∣S0 = s,A0 = a

]
,

where we use Eπ to denote the expectation under the dis-
tribution induced by π and the environment. The Bellman
operator under the policy π on q(s, a) is defined as

Tπq(s, a) = r(s, a) + γ
∑

s′,a′∈S×A
Pπ(s

′, a′|s, a)q(s′, a′),

with the state-action transition distribution under π defined
as Pπ(s

′, a′|s, a) = P (s′|s, a)π(a′|s′). We represent func-
tions as vectors to enable vector-space operations: the value
function and reward function are denoted by qπ, r ∈ R|S||A|,
and the transition function by Pπ ∈ R|S||A|×|S||A|. Then,
we define the Bellman operator on any vector q as

Tπq = r + γPπq .

It is known that the value function satisfies the Bellman
equation qπ = Tπqπ .

Linear Function Approximation In this work, we focus
on linear function approximation, qπ(s, a) ≈ ϕ(s, a)⊤θ,
where θ ∈ Rd is a parameter vector, and ϕ : S × A → Rd

maps a given state-action pair to a d-dimensional feature
vector ϕ(s, a) ∈ Rd. We denote Φ ∈ R|S||A|×d as the
feature matrix, where each row corresponds to the feature
vector of a particular state-action pair (s, a). This matrix
form allows us to write the value function approximation as
qπ ≈ Φθ for some parameter θ. Finally, we assume that Φ
is full rank, meaning there are no redundant features.

Offline Value Prediction We consider offline value pre-
diction, that is, learning to predict the value of a target
policy given a prior collected dataset D that consists of tran-
sition data {(si, ai, ri, s′i)}ni=1. Let λ ∈ ∆(S × A) be an
arbitrary data collection distribution; the transition data is
collected by first sampling a state-action pair si, ai from
λ, then receiving the reward ri = r(si, ai) and next state
si ∼ P (·|si, ai) from the environment. The problem is
known as on-policy if the data collection distribution λ is
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the stationary distribution of π and off-policy, otherwise
(Sutton & Barto 2018). Our results can also be extended for
offline policy optimization, aiming to extract a good control
policy from the offline data.

For clarity, we introduce the following additional notation.
Given offline data D, let n(s, a) =

∑n
i=1 1[si = s, ai = a]

be the count of a state-action (s, a) observed in the data,
and λ̂(s, a) = n(s, a)/n be the empirical distribution of
(s, a). We let {(si, ai)}ki=1 ⊆ S × A denote the state-
actions with n(si, ai) > 0, where k =

∑
s,a 1[n(s, a) >

0] represents the count of state-action pairs with observed
outgoing transitions. Following these definitions, we can
define a mask matrix H ∈ Rk×|S||A|, and the empirical
distribution of observed data Dk ∈ Rk×k as:

H =

1
⊤
x1

...
1⊤
xk

 , Dk =

λ̂(x1)
. . .

λ̂(xk)

 , (1)

where 1(si,ai) ∈ {0, 1}|S||A| is an indicator vector such that
ϕ(si, ai) = 1⊤

(si,ai)
Φ.

To evaluate the value of a target policy π, we augment each
transition (si, ai, ri, s

′
i) to (si, ai, ri, s

′
i, a

′
i) by selecting an

action a′i ∼ π(·|s′i). The empirical transition matrix be-
tween state-action pairs P̂π ∈ R|S||A|×|S||A| can then be
defined for all s′, a′ as:

P̂π(s
′, a′|s, a) =

∑n
i=0 1[si = s, ai = a, s′i = s′, a′i = a′]

n(s, a)
,

(2)
if n(s, a) > 0; otherwise, P̂π(s

′, a′|s, a) = 0.

Given these notations, we can then define the empirical
mean squared Bellman error (EMSBE) as:

EMSBE(θ) =
1

2
∥R+ γNθ −Mθ∥2Dk

, (3)

where M = HΦ ∈ Rk×d denotes the predecessor features
observed in the offline data, N = HP̂πΦ ∈ Rk×d gives
the next state-action features under the empirical transition,
and R = Hr ∈ Rk gives the rewards of the observed state-
action pairs.

Over-parameterization This work considers the over-
parameterization setting, such that the function approxi-
mation applies linear features with dimension d > k, the
support of the empirical data. This allows all of the Bellman
consistency constraints to be satisfied on all transitions in
the offline data, driving EMSBE exactly to zero.

3. Over-parameterized Target TD
We first show that leveraging overparameterization and tar-
get network can significantly stabilize temporal difference

learning with function approximation. We will also use
the Baird counterexample to illustrate the effectiveness of
over-parameterized target TD (Baird 1995).

3.1. Over-parameterized TD Learning

First, we briefly review the over-parameterized TD (OTD)
algorithm for offline value prediction. OTD applies semi-
gradients of EMSBE (3) to update the parameter recursively,

θt+1 = θt − ηM⊤Dk [Mθt − (R+ γNθt)] . (4)

where η > 0 is the learning rate. Xiao et al. (2021) analyzed
the convergence properties of OTD. Unfortunately, they
neglected a necessary condition that we correct below.

Proposition 3.1. For the over-parameterized regime d > k,
if the following two conditions hold:

• ρ(I − ηM⊤Dk(M − γN)) < 1;

• NM† has any sub-multiplicative norm smaller than or
equal to one,

then there exists a learning rate η such that the parameter
of OTD updates converges to

θ∗TD = M†(I − γNM†)−1R,

when the initial parameter of OTD equals zero.

It can be verified that the OTD fixed point θ∗TD is the min-
imum norm solution of EMSBE that lies in the span of
M . Importantly, Proposition 3.1 characterizes an implicit
algorithmic bias of OTD: it implicitly regularizes the so-
lution toward a unique fixed point, even when EMSBE
admits infinitely many global minima. However, the conver-
gence of OTD requires certain constraints on the features to
guarantee convergence. In particular, it requires the matrix
I−ηM⊤Dk(M−γN) to have a spectral radius of less than
one, which cannot be easily met on problems, including the
Baird counterexample, and thus causes divergence, as we
will show later. The failure of this condition is identified
as a core factor behind the deadly triad issue, causing the
update to be non-contractive (Sutton et al. 2016, Fellows
et al. 2023). Furthermore, a sufficient condition would be to
have orthonormal feature vectors and states showing up uni-
formly to satisfy the spectral radius property, which leaves
no generalization space and creates an awkward tradeoff
between instability and generalization. We did not find other
sufficient conditions that can be easily checked.

3.2. Over-parameterized Target TD

Our first main contribution is to confirm theoretically that
leveraging a target network significantly increases TD’s sta-
bility with function approximation. Let θtarg,t ∈ Rd be
the target parameter at iteration t. We refer to the function

3
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Figure 1. On Baird counterexample, states are sampled from a uniform distribution, and there exists only one action at each state.
The discount factor is set to be γ = 0.95. We plot the maximal value prediction error among all states for OTD, OTTD, RM and
GTD-algorithms. Other than OTD, the value errors converge to zero for the rest algorithms. OTTD avoids the divergence of TD and slow
convergence rate of others.

approximation’s original parameter θt as the student param-
eter. Over-parameterized Target TD (OTTD) considers the
following update rule using the entire offline dataset:

θt+1 = θt − ηM⊤Dk

[
Mθt − (R+ γNθtarg,m⌊ t

m ⌋)
]
.

(5)
That is, a target parameter θtarg is introduced to provide
bootstrapping targets for TD updates. The target parameter
is initialized with the student parameter θtarg,0 = θ0, and
is kept fixed for a window size m. Then, for every m step,
we update the target parameter by directly copying from the
student parameter,

θtarg,(n+1)m = θnm.

Our next result characterizes the convergence of OTTD.
Theorem 3.2. For the over-parameterized regime d > k,
given that the following condition holds:

• NM† has any sub-multiplicative norm smaller than or
equal to one,

there exists a learning rate η and an integer m̄ such that for
all update window sizes of the target parameters m ≥ m̄,
the parameter of OTTD converges to

θ∗TD = M†(I − γNM†)−1R.

That is, we are considering the hard target network update
popularized by (Mnih et al. 2015) instead of Polyak averaging.

Remark 3.3. The dependence on the initial point is de-
tailed in Theorem A.4 in A.1. The analytical form of
m̄ depends on the specific norm constraint applied to
NM†. For instance, when bounding the infinity norm,

m̄ = 1 + ⌈
log(1− γ)− log((1 + γ)

√
k)

log(1− ηλmin(MMTDk))
⌉.

Theorem 3.2 illustrates the efficacy of incorporating a target
network in stabilizing bootstrapping with function approx-
imation. This is apparent in the convergence of OTTD to
the TD fixed point, eliminating the condition on the spectral
radius of I−ηM⊤Dk(M−γN) to be bounded by one. Cen-
tral to the convergence of OTTD is the role of NM†, which
represents the projection coefficient of each row of N onto
the row space of M . When applying bootstrapping, values
are extrapolated using NM†Mθ, based on these projected
coefficients. When the infinity norm of NM† is bounded
by one, we have ∥NM†Mθ∥∞ ≤ ∥Mθ∥∞. Thus, the con-
dition on the norm of NM† prevents overestimation for
bootstrapping values outside the current state-action set. Al-
though OTTD still requires this condition for convergence,
as we will show later in the paper, it can be resolved when
the offline dataset consists of trajectory data.

3.3. Special Case Analysis of Expected Updates

The benefit of incorporating a target network is fully pre-
sented when considering expected updates with an off-
policy data distribution that covers the entire state-action
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θ 2θ
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0

Figure 2. In this example, each state has exactly one action, and
rewards are labeled next to the transitions. The value functions are
parameterized by a scalar parameter θ, and the features are shown
in the graph. This counterexample demonstrates a task with fixed
transition probabilities and rewards where our convergence condi-
tion is satisfied. However, the conditions for under-parameterized
target TD fail for certain data distributions.

space. Off-policy learning means that we do not constrain
the data distribution λ to be the stationary distribution under
a target policy. In this context, OTTD naturally converges
with a proven guarantee. In contrast, using only one aug-
mentation—either a target network or an over-parameterized
model—can still result in divergence.

The expected update rules for TD and TD with a target
network (target TD) are the same for under-parameterized
or over-parameterized models and are outlined below:

• TD expected update:

θt+1 = θt − ηΦ⊤D [Φθt − (R+ γPπΦθt)] .

• Target TD expected update:

θt+1 = θt − ηΦ⊤D
[
Φθt − (R+ γPπΦθtarg,m⌊ t

m ⌋)
]
.

Several works (Asadi et al. 2023, Fellows et al. 2023)
have analyzed the convergence conditions for under-
parameterized target TD. However, their condition, which
requires (Φ⊤DΦ)−1Φ⊤DγPΦ to have a spectral radius or
norm of less than one as listed in A.8, cannot be met for
all off-policy data distributions. This limitation is demon-
strated by a Two-state counterexample in Figure 2, where
certain data distributions result in the fixed point of under-
parameterized TD not existing, causing the convergence
condition to fail.

In the counterexample, the feature matrix of these two

states equals to Φ =

(
1
2

)
. The learning is off-policy

if the state distribution differs from the stationary distri-
bution, which concentrates on the right state with self-
loop. For any discount factor γ > 0.5, the off-policy
state distribution ( 4γ−4

2γ−3 ,
1−2γ
2γ−3 ) causes the fixed point to

be (Φ⊤D(I − γP )Φ)−1Φ⊤DR = 0
0 , which does not ex-

ist. Consequently, the learning of TD, with or without a
target network, is stuck at any initialization. This breaks the
required condition for the convergence proof in Corollary
2 of Asadi et al. (2023) and the non-asymptotic behavior
analysis in Corollary 3.1 of Fellows et al. (2023).

Table 1. The table shows a metric for the convergence rate. A
higher value of this metric indicates a slower convergence rate, and
a larger-than-one value represents the divergence of the algorithm.

Algorithm Convergence? limt→∞∥C∥ 1
t

TD No 1.12
Target TD Yes 1− 3.8e−3

RM Yes 1− 1.9e−5
GTD2 Yes 1− 4.5e−6

Adding over-parameterization alone does not ensure conver-
gence either. As prove in Proposition 3.1, the convergence
of OTD still requires that ρ(I − ηΦTD(Φ− γPπΦ)) < 1,
which can be easily violated. Baird’s counterexample (Baird
1995) illustrates this expected update with all states ob-
served uniformly. Since each state has only one action,
actions must adhere to the target policy, as requested by
the data collection procedure in Section 2. Yet, states are
sampled from an off-stationary distribution, giving the chal-
lenges of off-policy learning. The features are intentionally
over-parameterized, having more dimensions than the total
number of states. Hyperparameters’ choices are in A.7. As
shown in Figure 1, OTD diverges, while OTTD successfully
prevents the divergence observed in standard TD.

In summary, over-parameterization fundamentally elimi-
nates the model’s dependency on the data generation distri-
bution and a target network removes a core factor behind the
deadly triad issue, causing the update to be non-contractive
(Sutton et al. 2016, Fellows et al. 2023). Therefore, the
combination of these two simple augmentations resolves the
deadly triad, as stated in Proposition 3.4.

Proposition 3.4. For the over-parameterized regime d > k,
there always exists a learning rate η and an integer m̄ such
that for all update window sizes of the target parameters
m ≥ m̄, the parameter of OTTD converges to

θ∗TD = Φ†(I − γPπ)
−1R+ (I − Φ†Φ)θ0,

where θ0 is the initial parameter of OTTD.

We also compare OTTD with other standard algorithms
empirically on the Baird’s counterexample, including Resid-
ual Minimization (RM), Baird RM (Baird 1995), Gradient
TD2 (GTD2) (Maei 2011), and TDC (Sutton et al. 2009).
Figure 1 indicates that OTTD also mitigates the slow con-
vergence rates of alternative algorithms. The update rules
of these algorithms can be expressed through the equation
θt − θ∗ = Ct(θ0 − θ∗). To gauge the convergence speed of
these algorithms, Schoknecht and Merke (2003) introduced
a metric defined as limt→∞∥Ctarget∥

1
t . A higher value of

this metric indicates a slower convergence rate. The conver-
gence metrics, presented in Table 3.3, reveal that the metric
exceeds one for TD, leading to divergence. On the other
hand, the metrics for RM and GTD2 hover too close to one,
resulting in slower convergence rates.
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3.4. Value Prediction Error Bound

We present a worst-case value prediction error bound of
OTTD across the entire state-action space.

Theorem 3.5. Given ∥NM†∥∞ < 1, with probability at
least 1 − δ, the fixed point of OTTD θ∗TD learnt with the
dataset D gives the following value prediction error bound

∥Φθ∗TD − qπ∥∞ ≤ ϵstat + ϵprojection + ϵapprox, (6)

where error terms are defined as follows:

• Statistical error ϵstat equals

ϵstat =
∥ΦM†∥∞
(1− γ)2

√
log( 2k|A|

δ )

min(s,a) n(s, a)
.

• Projection error ϵprojection is defined as

ϵprojection =
∥ΦM†∥∞
1− γ

∥Φ(I −M†M)θ∗∥∞.

• Approximation error ϵapprox is given by

ϵapprox =
2∥ΦM†∥∞

1− γ
∥Φθ∗ − qπ∥∞.

Here, θ∗ = argmaxθ∥Φθ − qπ∥∞ is the optimal param-
eter minimizing the difference between Φθ and qπ, ϵstat
counts in the estimation error of the MDP dynamics by the
dataset, and ϵprojection accounts for insufficient coverage
of the dataset. Notably, in overparameterization, informa-
tion perpendicular to the row space of M , the space of data
features, decides the size of errors instead of distribution
shift ratios. The proof is given in A.2.

Next, we narrow our focus on the expected update discussed
in Section 3.3. This scenario, characterized by M = Φ and
N = PπΦ, remains off-policy. The fixed point of OTTD
θ∗TD = Φ†(I − γPπ)

−1r, gives the following error bound.

Corollary 3.6. For the optimal fixed point θ∗TD = Φ†(I −
γPπ)

−1R, the approximation error is bounded as

∥Φθ∗TD − qπ∥∞ ≤ 2

1− γ
inf
θ
∥Φθ − qπ∥∞. (7)

The value prediction error bound of off-policy OTTD closely
aligns with the on-policy results obtained using under-
parameterized linear models. This significance becomes
evident when considering the stringent requirement in on-
policy learning, where data must be sampled from the sta-
tionary distribution dπ of the target policy π. This key
observation underscores the remarkable ability of over-
parameterized models to learn irrespective of the underly-
ing data distribution λ. To elaborate, Tsitsiklis and Van
Roy (1997) have shown that on-policy TD fixed point
θ∗under in the under-parameterized setting satisfies that
∥Φθ∗under − qπ∥Dπ ≤ 1

1−γ infθ∥Φθ∗under − qπ∥Dπ , where

Dπ = diag(dπ). It aligns with the error bound given here,
differing only in a constant and a norm.

4. Learning with Normalized IS Correction
Next, we show that using offline trajectory data can remove
the remaining convergence condition of OTTD. Establishing
the convergence without relying on specific assumptions
about the tasks or features signifies that the deadly triad
issue is resolved.

In this section we leverage trajectory data, where the state-
action pairs to be bootstrapped are also trained, except for
the last states. Thus, the condition of limiting overesti-
mation on out-of-dataset value estimates is no longer re-
quired. The dataset D = {τj}n

′

j=1 consists of n′ trajec-
tories. Each trajectory τj is a sequence of state-action-
reward tuples sampled under a behavior policy µ, defined
as τj = {(sjt , a

j
t , r

j
t , s

j
t+1)}

Tj−1
t=0 , with Tj indicating the

length of the trajectory. In this context, ajt ∼ µ(·|sjt ) and
sjt+1 ∼ P (·|sjt , a

j
t ) is generated by the MDP.

We handle the final states of each collected trajectory
{sjTj

}n′

j=1, by implementing a looping mechanism that sets
these states to transition back to themselves with zero re-
ward. Specifically, an additional transition (sjTj

, ajTj
, 0, sjTj

)

is appended to each trajectory τj , with ajTj
∼ µ(·|sjTj

). This
setup aligns with episodic tasks, where each episode ends
at a terminal state with zero-reward self-loop transitions
(Sutton & Barto 2018). However, it does introduce some
challenges in continuing tasks, leading to additional errors
in value predictions: the details of these prediction errors
are discussed in Section 4.2. Consequently, each trajectory
can be decomposed into transitions {(si, ai, ri, s′i, a′i)}ni=1.

Given this setup, we apply importance sampling (IS) cor-
rections to align off-policy data distributions with the tar-
get policy π. For each (s′i, a

′
i) the corresponding IS ra-

tio for fixing the next action’s distribution as ρ(a′i|s′i) =
π(a′i|s′i)/µ(a′i|s′i). This per-step action distribution correc-
tion suffices without any state distribution correction. The
state-action transitions P̂π(s

′, a′|s, a) can be estimated as∑n
i=0 ρ(a

′|s′)1[si = s, ai = a, s′i = s′, a′i = a′]

n(s, a)
, (8)

if n(s, a) > 0; otherwise, zero. However, the high variance
introduced by the IS ratio can cause bootstrapping on ex-
tremely high values and lead to instability in learning, as
illustrated in Figure 3. We thus leverage the Normalized
Importance Sampling (NIS) correction (Hesterberg 1995,
Kuzborskij et al. 2021) to reduce the variance of the update.

4.1. Normalized Importance Sampling

When using NIS to approximate the transition probability
under the target policy π from the state-action pair (s, a),
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Figure 3. On Four Room, data are sampled as trajectories under the random policy, while the target policy is given by a human player.
The left sub-figure shows the training error, EMSBE. The middle and the right sub-figures show the infinity norm of value errors, that is,
∥Φθ∗TD − qπ∥∞. Here, the right sub-figure uses a larger dataset and all results are averaged over 10 random seeds. With off-policy data,
per-step normalized IS can correct the action distribution and behave similarly to sampling actions from the target policy. Due to less
variance, normalized IS avoids divergence of IS correction.

the sum of IS ratios for transitions from (s, a) is used as
the normalization term instead of the count n(s, a). More
specifically, each element of the estimated transition matrix,
denoted as P̂π,NIS(s

′, a′|s, a) for n(s, a) > 0, is defined as∑n
i=0 ρ(a

′|s′)1[si = s, ai = a, s′i = s′, a′i = a′]∑n
i=1

∑
s̃,ã ρ(ã|s̃)1[si = s, ai = a, s′i = s̃, a′i = ã]

; (9)

otherwise, is set to zero. The numerator summarizes the
corrected occurrences of transitions into (s′, a′) from the
state-action (s, a), and the denominator represents the total
corrected occurrences of the state-action (s, a) in the current
data set. We do not need to calculate the normalization
term. Instead, the correction is achieved by assigning each
transition a weight proportional to its IS ratio ρ(a′i|s′i) for
the next action and minimizing the weighted Bellman error.

The following proposition illustrates that our transition esti-
mator is consistent in the absence of artificially added loop
transitions. The proof is given in A.3.

Proposition 4.1. When behaviour policies cover the sup-
port of the target policy, the transition probability estimator
P̂π(s

′, a′|s, a) is consistent for all state-action (s, a) with-
out additional loop transitions, that is the estimator tends to
Pπ(s

′, a′|s, a) almost surely as n(s, a) → ∞. Here, n(s, a)
is the counts of the current state-action pair (s, a).

Let NNIS = HP̂π,NISΦ be the next state-action feature ma-
trix under the NIS transition estimate P̂π,NIS. The EMSBE
can then be estimated as

EMSBENIS(θ) =
1

2
∥R+ γNNISθ −Mθ∥2Dk

. (10)

The update rule with NIS correction is given by

θt+1 = θt − ηMTDk

[
Mθt − (R+ γNNISθtarg,m⌊ t

m ⌋)
]
.

(11)
The target parameter is still copied fully from the student
parameter every m step.

With modifications to trajectory data and the NIS correc-
tion, the condition on the matrix Nπ,NISM

† is naturally met.
This matrix becomes equivalent to the non-zero square ma-
trix in P̂π and is stochastic, with its infinity norm equal to
one. Therefore, the algorithm OTTD with NIS correction
effectively addresses the deadly triad for off-policy tasks
with trajectory data, as elaborated in the following theorem.

Theorem 4.2. For the over-parameterized regime d > k,
given a batch of trajectories, there exists a learning rate
η and integer m̄ such that for all update window sizes for
target parameters m ≥ m̄, the OTTD update converges to

θ∗TD,NIS = M†(I − γNNISM
†)−1R+ (I −M†M)θ0,

where θ0 is the initial point.

4.2. Value Prediction Error Bound

Our analysis first addresses value prediction errors in
episodic tasks where trajectories end in terminal states. In
these scenarios, loop transitions do not impact the error
since terminal states inherently hold zero value. The pri-
mary findings of this analysis are detailed in the following
corollary. The only distinction from the bound presented in
Section 3 is the modification of the statistical error ϵstat. It
is adjusted due to the new transition probability estimator
with NIS corrections.

Corollary 4.3. Given a dataset D of episodic trajectory
data collected under a behaviour policy µ, when the follow-
ing condition holds

• µ covers the support of the target policy π,

with probability at least 1− δ, the fixed point of OTTD with
NIS correction θ∗TD gives the following value prediction
error bound

∥Φθ∗TD − qπ∥∞ ≤ ϵ′stat + ϵprojection + ϵapprox, (12)
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where the projection error ϵprojection and the approxima-
tion error ϵapprox are the same as in Theorem 3.5.

The statistical error ϵ′stat is defined as:

ϵ′stat =
∥ΦM†∥∞ρM max{ρM − 1, 1}
(1− γ)2

√
min(s,a) n(s, a)

log(
4k|A|
δ

),

with ρM :=
max(s′,a′)∈D ρ(a′|s′)
min(s′,a′)∈D ρ(a′|s′)

.

For truncated trajectories from continuing tasks, however,
the integration of loop transitions gives samples that do not
follow the MDP and thus introduces extra errors in estimat-
ing the reward and transition matrix. These discrepancies
prevent establishing a meaningful bound using the infinity
norm. Instead, we provide a bound based on mean squared
error, elaborated in A.5.

4.3. Empirical Result

In this section, we empirically analyze the value prediction
errors in an episodic Four Room task using offline data from
trajectories under a random behaviour policy. The target
policy is chosen by a human player. The dataset only covers
part of the entire state-action space, so generalization is
required. Further details are provided in A.7.

As shown in Figure 3, the IS correction, marked in red, can
bootstrap on large values due to its high variance, which
causes the condition to break, leading to divergence. By con-
trast, the other two OTTD methods successfully show zero
EMSBE, as depicted in the left sub-figure. The first method,
in green and detailed in Section 3, selects the next action
from the target policy, a′i ∼ π(·|s′i). The second method, in
orange and covered in Section 4, leverages per-step normal-
ized importance sampling (NIS) correction. The compar-
ison of the infinity norm of value errors, ∥Φθ∗TD − qπ∥∞,
between these two methods is illustrated in the middle and
right sub-figures of Figure 3, with the latter sub-figure uti-
lizing a larger dataset. These two methods exhibit equal
performance, except as the dataset size increases, the error
associated with NIS correction marginally decreases, a trend
not observed with the target action sampling approach.

5. Offline Control with Over-parameterized
Target Q-learning

The previous convergence result can be extended to
Q-learning, a widely adopted TD algorithm for learning
optimal policies. Q-learning often bootstraps on unobserved
actions with the highest value estimates. However, we aim
to avoid extrapolation beyond the dataset, thereby circum-
venting additional assumptions on unobserved data. To
address this, we adapt Q-learning by limiting the argmax
operation to be over actions seen in the dataset, which is

a common technique in offline learning (Kostrikov et al.
2021, Xiao et al. 2022). To develop the modified algorithm,
first define feature matrices Φi to present features for the
state si ∈ S with only seen actions. If this state does not
show up in the dataset, set the matrix as a vector of zeros.

Similar to OTTD, the target parameter at iteration nm, for
n = 0, 1, · · · , copies the student parameter, θtarg,nm =
θnm, and is kept fixed for m steps. At each iteration t,
over-parameterized target Q-learning (OTQ) first computes
values for bootstrapping using the target parameter

qt(s, a) = ϕ(s, a)⊤θtarg,m⌊ t
m ⌋,

yt(s, a) = R(s, a) + γ
∑
s′

P̂ (s′|s, a) max
seen a′

qt(s
′, a′),

where we denote P̂ the empirical transition estimated from
the data. Then, the student parameter is updated as

θt+1 = θt − η
∑
s,a

λ̂(s, a)ϕ(s, a)(ϕ(s, a)⊤θt − yt(s, a)).

(13)
Theorem 5.1. For the over-parameterized regime d > k,
given that the following condition holds

• ∥Φ⊤
i M

†∥∞ < 1
γ , for i = 1, · · · , |S|,

there exists an m̄ such that for all update window sizes of
the target parameters m ≥ m̄, the OTQ update converges
to θ∗ = M†q̂∗ + (I −M†M)θ0, where q̂∗ ∈ Rk satisfies

q̂∗ = R+ γHP̂


∥Φ1M

†q̂∗∥∞
∥Φ2M

†q̂∗∥∞
· · ·

∥Φ|S|M
†q̂∗∥∞

 ,

and θ0 is the initial point.

Proof for results in this section are presented in A.6. Here,
the argmax operator is expressed by the maximum norm.
The optimal Q-values for the dataset, q̂∗, are defined only for
state-action pairs in {(si, ai)}ki=1 with outgoing transitions.
This value may not be defined for other state-action pairs to
be bootstrapped on. Since the dataset may not describe any
exiting transition, their optimal Q-values cannot be evalu-
ated through bootstrapping but only projecting. The term
ΦiM

†, for i = 1, · · · , |S|, represents the projection coeffi-
cient of features onto the row space of M . The values for
these state-action pairs depend on extrapolating q̂∗ in propor-
tion to the coefficient. The condition on the norm of ΦiM

†

further prevents overestimating those extrapolated values.
This condition evidences that avoiding overestimating out-
of-distribution actions for learning stability is important.

In the scenario where the dataset consists of episodic tra-
jectory data, seen state-action pairs and their transitions P̂
form a truncated empirical MDP. Also, all data used for
bootstrapping is included in the training set. As long as
we constrain maximization over seen actions, there is no

8
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extrapolation for bootstrapping values, and the convergence
is established without further assumptions. Here, q̂∗ is the
optimal Q-value on this empirical MDP. We present this
particular scenario in the following result.

Corollary 5.2. For the over-parameterized regime d >
k, given a batch of episodic trajectories, there exists an
integer m̄ such that for all update window sizes of the target
parameters m ≥ m̄, the parameter of OTQ converges to
θ∗ = M†q̂∗ + (I −M†M)θ0, where

q̂∗(s, a) = R(s, a) + γ
∑
s′

P̂ (s′|s, a) max
seen a′

q̂∗(s′, a′).

6. Related Work
Most analyses on the convergence of TD are done in online
settings. At each step, the parameters are updated by one
transition coming in online, either as trajectories or sampled
i.i.d. TD with linear function approximation converges
when data is sampled as trajectories under the target policy
(Tsitsiklis & Van Roy 1996, Dayan 1992) and adding a
target network gives the same fixed point (Lee & He 2019).
But linear TD with off-stationary state distribution is not
guaranteed to converge. This issue is called the deadly triad.

When the fixed point of TD exists, gradient TD methods
(Sutton et al. 2009) converge, but much more slowly than
regular TD and are sensitive to hyperparameters (Maei 2011,
Sutton et al. 2008, Mahadevan et al. 2014). Several algo-
rithms based on gradient TD have been proposed to prevent
divergence and gain close-to-TD performance, but do not
fully overcome the disadvantages and under-perform empir-
ically (Ghiassian et al. 2020, Mahmood et al. 2017). Regu-
larized least square TD (LSTD) (Boyan 1999, Lagoudakis
& Parr 2003, Kolter & Ng 2009, Yu & Bertsekas 2009) with
L2 regularization converges to a regularized fixed point, but
it stores a feature matrix of dimension d × d, which is ex-
treme in the over-parameterized setting. The convergence
and generalization properties of over-parameterized TD has
been discussed in (Xiao et al. 2021, Thomas 2022).

Several papers suggest that a target network may help TD
overcome the deadly triad (Zhang et al. 2021, Chen et al.
2023, Asadi et al. 2023, Fellows et al. 2023). Some studies
employ various modifications to analyze the target network,
such as updates with value truncation or parameter pro-
jection. Moreover, additional assumptions are frequently
required to establish convergence results, which cannot be
met for all data distributions, even in expected updates over
the entire state-action space.

Residual minimization (RM) (Baird 1995) is known to con-
verge with linear function approximation under any state
distribution and the convergence of over-parameterized RM
is also confirmed (Xiao et al. 2021). However, RM typically
converges slower than TD, as observed empirically (Gordon

1995, Van Hasselt 2011) and proven in the tabular setting
(Schoknecht & Merke 2003). Baird’s residual algorithm
(Baird 1995) merges the parameter updates for TD and RM,
with enhanced stability but still a slower convergence rate
than traditional TD learning.

Other methods correct the data distribution by importance
sampling (Precup 2000, Precup et al. 2001, Mahmood et al.
2014, Hesterberg 1995). However, these approaches suffer
from high variance when correcting the distributions of tra-
jectories with products of IS ratios. Later papers work on
estimating state distribution ratios to avoid the ratio prod-
uct. However, these methods have not yet been adopted
for practical algorithms since they are still suffering from
more significant variances, biases, and computation require-
ments.(Sutton et al. 2016, Hallak & Mannor 2017, Gelada
& Bellemare 2019, Nachum et al. 2019a-b, Yang et al. 2020,
Zhang et al. 2020, Che et al. 2023, He et al. 2023).

In contrast, offline RL, also known as batch RL, considers
the setting where no online interactions in environments are
allowed and often suffers from insufficient state space cov-
erage and distribution shifts (Levine et al. 2020). Avoiding
overestimation for out-of-distribution action values stabi-
lizes the learning (Fujimoto et al. 2018, Kumar et al. 2019)
and common techniques include constraining action selec-
tions (Kostrikov et al. 2021, Hu et al. 2023, Xiao et al.
2022), adding pessimism (Jin et al. 2021) and limiting learnt
values directly (Kumar et al. 2020). Our modified over-
parameterized target Q-learning also confines maximum
action selection among seen actions in the dataset.

7. Conclusion
The susceptibility of temporal difference learning to diver-
gence has been a longstanding challenge. Numerous algo-
rithms and techniques have been explored to address this
issue, but achieving a balance between stability and perfor-
mance still needs to be achieved. Our paper first demon-
strated that the combination of a target network and an
over-parameterized model provided a principled solution to
the challenges faced by TD in off-policy learning. While our
study is currently confined to linear function approximation,
it offers compelling evidence for convergence guarantees
and the existence of a qualified fixed point. Extending these
results to neural networks would be a crucial next step to
understanding TD’s empirical success with target networks.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
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A. Appendix
A.1. Over-parameterized Target TD Convergence Proof

In this proposition, we study a sufficient conditon for the convergence of over-paramterized TD (OTD).

Proposition A.1. A sufficient condition for the matrix I − ηM⊤Dk(M − γN) to have a spectral radius of less than one
would be to have orthonormal feature vectors and states showing up uniformly.

Proof. Thanks to orthornormality, MM⊤ = I is the identity matrix and NM† = HP̂H⊤.

Thus, the spectral radius equals

ρ(I − η(M − γN)M⊤Dk) = ρ(I − ηDk(I − γHP̂H⊤))

= ∥I − ηDk + ηDkγHP̂H⊤∥∞
≤ ∥I − ηDk∥∞ + ∥ηDk∥∞∥γHP̂H⊤∥∞

≤ 1− ηmin
s,a

λ̂(s, a) + γηmax
s,a

λ̂(s, a) = 1− η
1

k
+ γη

1

k
< 1.

Next, we start the proof for the main result, the convergence of OTTD.

Lemma A.2. When M is of full rank, W = NM† has some sub-multiplicative norm smaller than or equal to one and the
learning rate satisfies ρ(ηMM⊤Dk) < 1, there exists an integer m̄ such that for all target parameter update step m ≥ m̄,
the spectral radius of γW + (I − γW )(I − ηMM⊤Dk)

m is strictly smaller than one.

Proof. Let UΛU−1 be the eigen-decomposition of MM⊤Dk where Λ = diag(λ1, · · · , λk) with 1
η > λ1 ≥ · · ·λk > 0. All

eigenvalues are positive due to the symmetry of D
1
2

k MM⊤D
1
2

k and the full rank of M . Denote the matrix (I−ηMM⊤Dk)
m

as A. Thus,

A = (I − ηMM⊤Dk)
m = (I − ηUΛU−1)m = (UU−1 − ηUΛU−1)m = U(I − ηΛ)mU−1. (14)

The diagonal matrix (I − ηΛ)m converges to zero as m tends to infinity. Consequently, any norm of the matrix goes to
zero as well. Such that there exists a constant m̄, for all step m ≥ m̄, the norm of (I − ηΛ)m is bounded by 1−γ

1+γ
1

∥U∥∥U−1∥ .
Therefore, the norm of A is bounded as

∥A∥ ≤ ∥U∥∥(I − ηΛ)m∥∥U−1∥

<
1− γ

1 + γ
.

With the upper bound of the matrix norm, we can proceed and show the desired matrix has spectral radius ρ(γW + (I −
γW )(I − ηMM⊤Dk)

m) less than one for all m ≥ m̄.

ρ(γW + (I − γW )(I − ηMM⊤Dk)
m) ≤ ∥γW + (I − γW )(I − ηMM⊤Dk)

m∥

≤ ∥γW∥+ ∥(I − γW )∥∥(I − ηMM⊤Dk)
m∥

≤ γ + (1 + γ)∥(I − ηMM⊤Dk)
m∥ < 1.

Proposition A.3. Each m steps of over-parameterized target TD updates can be combined to

θ(n+1)m = (I − ηM⊤BDk(M − γN))θnm + ηM⊤BDkR, (15)

where B =
∑m−1

i=0 (I − ηDkMM⊤)i.

13
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Proof. The original update rule can be written m times recursively and gives that

θ(n+1)m = (I − ηM⊤DkM)θ(n+1)m−1 + ηM⊤Dk(R+ γNθtarg,nm)

= (I − ηM⊤DkM)mθnm +

m−1∑
i=0

(I − ηM⊤DkM)iηM⊤Dk(R+ γNθtarg,nm)

= (I − ηM⊤DkM)mθnm +

m−1∑
i=0

(I − ηM⊤DkM)iηM⊤Dk(R+ γNθnm).

The update rule includes powers of I − ηM⊤DkM can be reduced to terms dependent on matrix B =
∑m−1

i=0 (I −
ηDkMM⊤)i.

The m-th power of the matrix can be reduced as

(I − ηM⊤DkM)m = (I − ηM⊤DkM)m−1(I − ηM⊤DkM)

= (I − ηM⊤DkM)m−1 − (I − ηM⊤DkM)m−1ηM⊤DkM

= (I − ηM⊤DkM)m−1 − ηM⊤(I − ηDkMM⊤)m−1DkM

= · · ·

= I − ηM⊤
m−1∑
i=0

(I − ηDkMM⊤)iDkM

= I − ηM⊤BDkM. (16)

Also, notice that sum of matrix power times M⊤ can be simplied as
m−1∑
i=0

(I − ηM⊤DkM)iηM⊤ =

m−1∑
i=0

(ηM⊤ − ηM⊤DkMηM⊤)i

= ηM⊤B.

Thus, we have

θ(n+1)m = (I − ηM⊤BDkM)θnm +

m−1∑
i=0

(I − ηM⊤DkM)iηM⊤Dk(R+ γNθnm)

= (I − ηM⊤BDkM)θnm + ηM⊤BDk(R+ γNθnm)

= (I − ηM⊤BDk(M − γN))θnm + ηM⊤BDkR.

14
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Theorem A.4. When M has full rank, W = NM† has some sub-multiplicative norm smaller than or equal to one and the
learning rate satisfies ρ(ηMM⊤Dk) < 1, there exists an integer m̄ such that for all update steps of the target parameter
m ≥ m̄, the parameter of over-parameterized target TD always converge to

θ∗target = M†(I − γW )−1R+ (I −M†M +M†(I − γW )−1γN(I −M†M))θ0,

where θ0 is the initial point.

Proof. A simple recursive argument shows that for any θ ∈ Rd, the update rule given in Proposition A.3.

θ(n+1)m = (I − ηM⊤BDk(M − γN))θnm + ηM⊤BDkR

= (I − ηM⊤BDk(M − γN))n+1θ0 +

n∑
i=0

(I − ηM⊤BDk(M − γN))iηM⊤BDkR

= (I − ηM⊤BDk(M − γN))n+1θ0︸ ︷︷ ︸
term 1

+ ηM⊤BDk

n∑
i=0

(I − (I − γW )ηMM⊤BDk)
iR︸ ︷︷ ︸

term 2

. (17)

where B =
∑m−1

i=0 (I − ηDkMM⊤)i. Also, the last line uses that (M − γN)M⊤ = (I − γNM†)MM⊤, where we
further denote NM† to W .

We work on the second term independent of the initial point first and simplify the summation of matrix powers. Reversing
the recursive step in Equation 16, ηMM⊤BDk can be expressed as I − (I − ηMM⊤Dk)

m. Thus, the matrix in the
summation can be rewritten as

I − (I − γW )ηMM⊤BDk = γW + (I − γW )(I − ηMM⊤Dk)
m

By Lemma A.2, there exists m̄ such that for all m ≥ m̄, I − (I − γW )ηMM⊤BDk has spectral radius less than one. Thus,
by properties of Neumann series, the summation of its matrix powers converges, that is

n∑
i=0

(I − (I − γW )ηMM⊤BDk)
i → [(I − γW )ηMM⊤BDk]

−1, as n → ∞. (18)

Notice that B is invertible, since (I − ηDkMM⊤)⊤ is strictly diagonal dominant and thus has positive eigenvalues. Then
its powers and sum of powers also have positive eigenvalues and thus are invertible. Also, MM⊤ is invertible, thanks to the
full rank of M . Therefore,

lim
n→∞

n∑
i=0

ηM⊤BDk(I − (I − γW )ηMM⊤BDk)
iR

= ηM⊤BDk(ηMM⊤BDk)
−1(I − γW )−1R

= M†(I − γW )−1R. (19)

Now we start dealing with the first term in Equation 17 and study how the fixed point depends on the initial value.

(I − ηM⊤BDk(M − γN))n+1

= I −
n∑

i=0

(I − ηM⊤BDk(M − γN))iηM⊤BDk(M − γN)

= I −
n∑

i=0

ηM⊤BDk(I − (I − γW )ηMM⊤BDk)
i(M − γN)

n→∞−−−−→ I −M⊤BDk(MM⊤BDk)
−1(I − γW )−1(M − γNM†M − γN(I −M†M))

= I −M†M −M†(I − γW )−1γN(I −M†M).

15
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The second line uses the same recursive trick in Equation 16.

In conclusion, the parameter θnm converges to M†(I − γW )−1R, as update step n goes to infinity, when the initial point
equals zero.

Next, we prove the proposition for the special case with expected updates. The data distribution used for expected updates
covers the entire state-action space.

Proposition A.5. For the over-parameterized regime d > k, there always exists a learning rate η and an integer m̄ such
that for all update window sizes of the target parameters m ≥ m̄, the parameter of OTTD converges to

θ∗TD = Φ†(I − γPπ)
−1R+ (I − Φ†Φ)θ0,

where θ0 is the initial parameter of OTTD.

Proof. These updates assume ideal offline data encompassing all state-action pairs such that k = |S||A|, M = Φ, N = PπΦ
and D = diag(λ). It can be easily verified that for the expected update, we have NM† = PπΦΦ

† = Pπ, which naturally
satisfies that it has a sub-multiplicative norm smaller than or equal to one with each row summing up to one. Hence, as
demonstrated in Theorem 3.2, OTTD converges with a proven guarantee.

A.2. Bound of Value Estimation Error

Theorem A.6. Given a dataset D and the optimal fixed point θ∗TD = M†(I − γNM†)−1R, when ∥NM†∥∞ < 1, with
probability at least 1− δ, for θ∗ = argminθ∥Φθ − q∥∞,

∥Φθ∗TD − q∥∞ (20)

≤ ∥ΦM†∥∞
(1− γ)2

√
mins,a n(s, a)

√
log(

2k|A|
δ

) +
∥ΦM†∥∞
1− γ

∥Φ(I −M†M)θ∗∥∞ +
2∥ΦM†∥∞

1− γ
∥Φθ∗ − q∥∞. (21)

Proof.

∥Φθ∗TD − q∥∞ = ∥ΦM†Mθ∗TD − q∥∞
≤ ∥ΦM†Mθ∗TD − ΦM†Hq∥∞︸ ︷︷ ︸

term 1

+ ∥ΦM†Hq − q∥∞︸ ︷︷ ︸
term 2

. (22)

Define θ∗ = argminθ∥Φθ − q∥∞. By adding intermediate term, we can bound the second term

∥ΦM†Hq − q∥∞ (23)

= ∥ΦM†Hq − ΦM†Mθ∗ +Φθ∗ − q − Φ(I −M†M)θ∗∥∞
≤ ∥ΦM†H(q − Φθ∗)∥∞ + ∥Φθ∗ − q∥∞ + ∥Φ(I −M†M)θ∗∥∞
≤ (∥ΦM†∥∞ + 1)∥Φθ∗ − q∥∞ + ∥Φ(I −M†M)θ∗∥∞.

1. A = ∥HP̂ (ΦM†Hq − q)∥∞ ≤ 2∥Φθ∗ − q∥∞ + ∥Φ(I −M†M)∗∥∞.

2. Define ϵest = ∥γH(P − P̂ )q∥∞ + ∥R−Hr∥∞.

3. B = ∥HP̂ΦM†(Mθ∗TD −Hq)∥∞ ≤ 1
1−γ ϵest +

γ
1−γA.

The first equation repeats the steps to bound the term in Equation 23 and uses ∥HP̂ΦM†∥∞ = ∥NM†∥∞ ≤ 1.

The third equation further uses the extension of Mθ∗ and Hq following the Bellman update:

Mθ∗TD = R+ γWMθ∗TD = R+ γHP̂ΦM†Mθ∗TD,

Hq = Hr + γHPq = Hr + γHP̂ΦM†Hq + γHP̂ (q − ΦM†Hq) + γH(P − P̂ )q.

16
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Next, we can bound the first term in Equation 22 by extending Mθ∗TD and Hq.

∥ΦM†Mθ∗TD − ΦM†Hq∥∞
≤ ∥ΦM†(R−Hr + γH(P − P̂ )q) + ΦM†γHP̂ΦM†(Mθ∗TD −Hq) + ΦM†γHP̂ (q − ΦM†Hq)∥∞
≤ ∥ΦM†∥∞ϵest + γ∥ΦM†∥∞A+ γ∥ΦM†∥∞B

≤ ∥ΦM†∥∞
1− γ

ϵest +
γ∥ΦM†∥∞

1− γ
A

≤ ∥ΦM†∥∞
1− γ

ϵest +
2γ∥ΦM†∥∞

1− γ
∥Φθ∗ − q∥∞ +

γ∥ΦM†∥∞
1− γ

∥Φ(I −M†M)∗∥∞. (24)

Thus, combining the bounds on the first and the second term in Equation 22, we gain

∥Φθ∗TD − q∥∞

≤ ∥ΦM†∥∞
1− γ

ϵest + (
γ∥ΦM†∥∞

1− γ
+ 1)∥Φ(I −M†M)∗∥∞ + (∥ΦM†∥∞ + 1 +

2γ∥ΦM†∥∞
1− γ

)∥Φθ∗ − q∥∞

≤ ∥ΦM†∥∞
1− γ

ϵest +
∥ΦM†∥∞
1− γ

∥Φ(I −M†M)θ∗∥∞ +
2∥ΦM†∥∞

1− γ
∥Φθ∗ − q∥∞, (25)

since ∥ΦM†∥∞ ≥ 1.

ϵest is bounded by Hoeffding’s inequality and a union bound. We have with probability at least 1− δ, for any state s and
action a with dk(s) > 0 in the dataset,

|(Ps,a − P̂s,a)
⊤q| ≤ 1

(1− γ)
√

2n(s, a)

√
log(

2k|A|
δ

).

|R(s, a)− r(s, a)| ≤ 1√
2n(s, a)

√
log(

2k|A|
δ

).

Combining all terms, we gain the bound.

As the dataset gradually covers the entire state space and gain the actual transition matrix and reward, that is, P̂µ → Pµ,
R → r and M → Φ, ϵest → 0 and ΦM† → I . Only 2

1−γ ∥Φθ
∗ − q∥∞ is left in the bound.

A.3. Nomalized Importance Sampling Results

Proposition A.7. The transition probability estimator P̂π(s
′, a′|s, a) is consistent and tends to Pπ(s

′, a′|s, a) almost surely
as n(s, a) → ∞, which is the counts of the current state-action pair (s, a).

Proof. Each time a current state-action pair (s, a) shows up, we can define two random variables:

X = ρ(a′|s′)1[S = s,A = a, S′ = s′, A′ = a′], (26)

Y =
∑
s̃,ã

ρ(ã|s̃)1[S = s,A = a, S′ = s̃, A′ = ã]. (27)

These two random variables are sampled n(s, a) times, labeled from j = 1 to n(s, a). Since each next action can be
sampled from a different behaviour policy, X1, · · · , Xn(s,a) are not sampled from the same distribution but are independent
conditioned on the current state-action pair, similar for Yj , j = 1, · · · , n(s, a).

Our estimator P̂π(s
′, a′|s, a) can be seen as a ratio of the average of these random variables, that is,

P̂π(s
′, a′|s, a) =

∑n(s,a)
j=1 Xj∑n(s,a)
j=1 Yj

. (28)

17



Target Networks and Over-parameterization Stabilize Off-policy Bootstrapping

Notice that for Xj , the mean equals

EXj = ρ(a′|s′)E [1[S = s,A = a, S′ = s′, A′ = a′]] (29)

=
π(a′|s′)
µi(a′|s′)

P(S = s,A = a, S′ = s′, A′ = a′) (30)

= Pπ(s
′, a′|s, a). (31)

Similarly, we gain that EYj = 1.

Denote Mρ := maxi ρ(A
′
i|S′

i). The variance of Xj and Yj are bounded by M2
ρ .

Then by strong large law of number for martingales, 1
n(s,a)

∑n(s,a)
j=1 Xj → Pπ(s

′, a′|s, a) and 1
n(s,a)

∑n(s,a)
j=1 Yj → 1 almost

surely. Since P(Yj > 0) = 1, their ratio P̂π(s
′, a′|s, a) → Pπ(s

′, a′|s, a) a.s..

Theorem A.8. Given a batch of trajectories under some behaviour policies, if M has full rank and the learning rate satisfies
that η < 1

ρ(MM⊤Dk)
, there exists an integer m̄ such that for all update steps of the target parameter m ≥ m̄, the parameter

of corrected over-parameterized target TD always converge to

θ∗TD,NIS = M†(I − γNNISM†)−1R+ (I −M†M)θ0,

where θ0 is the initial point.

Proof. The update rule equals θt+1 = θt − ηM⊤Dk

[
Mθt − (R+ γNNISθtarg,m⌊ t

m ⌋)
]
, which is of the same form as

Theorem 3.2.

As long as the assumptions for Theorem 3.2 are satisfied, the convergence is proved. The assumption requires the projected
coefficient matrix NNISM

† = HP̂π,NISΦM
† to satisfy the condition of having a norm less than one. Here, WNIS equals

the non-zero square matrix in P̂π and is also stochastic. Therefore, the its infinity norm is less than one and the condition is
satisfied.

A.4. Value Estimation Error Bound with NIS for Episodic Tasks

First, we state a lemma from Sharoff and colleagues (2020) for the concentration inequality of average ratios.

Lemma A.9. Let X , Y be possibly dependent random variables with joint distribution P . Consider a sample
(X1, Y1), . . . , (Xn, Yn) of independent copies of (X,Y ) ∼ P . Assume that X takes values in [0, 1] and Y takes val-
ues in [1, B]. Define µY := E[Y ] and let X̄ denote the sample mean of X1, . . . , Xn (likewise for Ȳ and Y1, . . . , Yn). For
any choice of δ ∈ [0, 1], we have with probability at least 1− δ over the sample,∣∣∣∣X̄Ȳ − E[X]

E[Y ]

∣∣∣∣ ≤
√

(B − 1) log 4
δ

2n
+

2(B − 1) log 4
δ

3µY n
+

√
log 4

δ

2n
≤

max{1, B − 1} log 4
δ

min{µY , 1}
√
2n

.

Corollary A.10. Given a dataset D of episodic trajectory data collected under a behaviour policy µ and the optimal fixed
point θ∗TD = M†(I − γHP̂πΦM

†)−1R, when ∥HP̂πΦM
†∥∞ < 1 and µ covers the support of the target policy π, with

probability at least 1− δ,

∥Φθ∗TD − qπ∥∞
≤ ϵ′stat + ϵprojection + ϵapprox. (32)

Denote ρM :=
max(s′,a′)∈D ρ(a′|s′)
min(s′,a′)∈D ρ(a′|s′)

.

ϵ′stat =
∥ΦM†∥∞ρM

(1−γ)2
√

min(s,a) n(s,a)
log( 4k|A|

δ )max{ρM − 1, 1}.

ϵprojection and ϵapprox are the same as in Theorem 3.5.
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Proof. As shown in Equation 25,

∥Φθ∗TD − q∥∞

≤ ∥ΦM†∥∞
1− γ

ϵest +
∥ΦM†∥∞
1− γ

∥Φ(I −M†M)θ∗∥∞ +
2∥ΦM†∥∞

1− γ
∥Φθ∗ − q∥∞. (33)

Compared to the fixed point of OTTD with sampled target actions, only the transition probability estimation P̂ is changed.
This only influences the statistical error, ϵest = ∥γH(P − P̂ )q∥∞ + ∥R−Hr∥∞, which is bounded by the above lemma
and a union bound.

P̂π,NIS(s, a, s
′, a′) =

∑n
i=0 ρ(a

′|s′)1[Si = s,Ai = a, S′
i = s′, A′

i = a′]∑n
i=1

∑
s̃,ã ρ(ã|s̃)1[Si = s,Ai = a, S′

i = s̃, A′
i = ã]

. (34)

As defined in A.3,

X = ρ(a′|s′)1[S = s,A = a, S′ = s′, A′ = a′], (35)

Y =
∑
s̃,ã

ρ(ã|s̃)1[S = s,A = a, S′ = s̃, A′ = ã]. (36)

X
maxs′,a′ ρ(a′|s′) ∈ [0, 1] and Y

mins′,a′ ρ(a′|s′) ∈ [1, ρM ].

We have with probability at least 1− δ, for any state s and action a with dk(s) > 0 in the dataset,

|(Ps,a − P̂s,a)
⊤q| ≤ ρM max{ρM − 1, 1}

(1− γ)
√
2n(s, a)

log(
4k|A|
δ

).

|R(s, a)− r(s, a)| ≤ 1√
2n(s, a)

√
log(

2k|A|
δ

).

A.5. Continuing Tasks’ Error Bound

Corollary A.11. Given a dataset with trajectory data under a behaviour policy µ and the optimal fixed point θ∗TD =

M†(I − γHP̂πΦM
†)−1R, when ∥P̂πΦM

†∥Dπ
< 1 and µ covers the support of the target policy π, with probability at

least 1− δ, under the stationary distribution dπ ,

∥Φθ∗TD − qπ∥Dπ
(37)

≤ ϵ′′stat + ϵ′′projection + ϵ′′approx. (38)

Denote ρM :=
max(s′,a′)∈D ρ(a′|s′)
min(s′,a′)∈D ρ(a′|s′)

, and C := ∥ΦM†H∥Dπ
.

ϵ′′stat =
CρM

(1−γ)2
√

min(s,a) n(s,a)
log( 4k|A|

δ )max{ρM − 1, 1}+ C
(1−γ)2 .

Let θ∗ be defined as θ∗ = argminθ∥Φθ − qπ∥Dπ
. Then, ϵ′′projection =

C(1+γ∥P̂π,NIS∥Dπ )
1−γ ∥Φ(I −M†M)θ∗∥Dπ

, and

ϵ′′approx =
C(2+γ∥P̂π,NIS∥Dπ )

1−γ ∥Φθ∗ − qπ∥Dπ
.

Proof. The proof is similar as the one in A.2 except for a norm change.

∥Φθ∗TD − q∥Dπ
= ∥ΦM†Mθ∗TD − q∥Dπ

≤ ∥ΦM†Mθ∗TD − ΦM†Hq∥Dπ︸ ︷︷ ︸
term 1

+ ∥ΦM†Hq − q∥Dπ︸ ︷︷ ︸
term 2

. (39)
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Define θ∗ = argminθ∥Φθ − q∥Dπ
. By adding intermediate term, we can bound the second term

∥ΦM†Hq − q∥Dπ

≤ ∥ΦM†H(q − Φθ∗)∥Dπ + ∥Φθ∗ − q∥Dπ + ∥Φ(I −M†M)θ∗∥Dπ

≤ (∥ΦM†H∥Dπ
+ 1)∥Φθ∗ − q∥Dπ

+ ∥Φ(I −M†M)θ∗∥Dπ
.

1. A = ∥P̂ (ΦM†Hq − q)∥Dπ
≤ (1 + ∥P̂π,NIS∥Dπ

)∥Φθ∗ − q∥Dπ
+ ∥P̂π,NIS∥Dπ

∥Φ(I −M†M)∗∥Dπ
.

2. Define ϵest = ∥γ(P − P̂π,NIS)q∥Dπ
+ ∥R− r∥Dπ

.

3. B = ∥P̂π,NISΦM
†(Mθ∗TD −Hq)∥Dπ

≤ 1
1−γ ϵest +

γ
1−γA.

These three statements are almost the same as in the proof in A.2 except the norm difference.

When bounding ϵest, we need to count the error from loop transitions. It adds in wrong transitions for the last state-action
pair (sT , aT ) and thus, we can only bound as

|(PsT ,aT
− P̂sT ,aT

)⊤q| ≤ 2

(1− γ)
. (40)

In the norm, this term is weighted by the stationary distribution dπ(sT , aT ). For state-action pair without additional loop
transitions, we use the lemma from Sharoff and colleagues (2020) stated in A.4 and a union bound.

Combining all terms, we gain the bound.

A.6. Proof of Q-learning Convergence

Theorem A.12. When ∥Φ′⊤M†∥∞ < 1
γ , there exists an integer m̄ such that for all update steps of the target parameter

m ≥ m̄, parameter of over-parameterized target Q-learning converges to a fixed point θ∗ = M†q̂∗ + (I −M†M)θ0, where
q̂∗ ∈ Rk satisfies

q̂∗ = R+ γP̂


∥Φ1M

†q̂∗∥∞
∥Φ2M

†q̂∗∥∞
· · ·

∥ΦSM
†q̂∗∥∞

 ,

and θ0 is the initial point.

Proof. We proceed in the same way to Theorem 1.1. The update rule for student parameter every m steps equal

θ(n+1)m = (I − ηM⊤BDkM)θnm + ηM⊤BDkR+ ηM⊤BDkγP̂


∥Φ1θnm∥∞
∥Φ2θnm∥∞

· · ·
∥ΦSθnm∥∞

 . (41)

When θ0 = M⊤y ∈ row sp(M) for some y ∈ Rk, θt stays in the row space of M for all t and the estimated Q-values
satisfy

Mθ(n+1)m = M(I − ηM⊤BDkM)θnm + ηMM⊤BDkR+ ηMM⊤BDkγP̂


∥Φ1θnm∥∞
∥Φ2θnm∥∞

· · ·
∥ΦSθnm∥∞



= (I − ηMM⊤BDk)Mθnm + ηMM⊤BDkR+ ηMM⊤BDkγP̂


∥Φ1M

†Mθnm∥∞
∥Φ2M

†Mθnm∥∞
· · ·

∥ΦSM
†Mθnm∥∞

 . (42)

The last line uses that θnm = M⊤y = M†MM⊤y = M†Mθnm.
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Compared to the TD analysis, the only change here is that instead of using next states’ value estimations, we use the
maximum Q-values at next states.

According to the above combined m step update rule on Mθ in Equation 42, we define an operator T : Rk → Rk for
x = Mθ ∈ Rk as

T x = (I − ηMM⊤BDk)x+ ηMM⊤BDkR+ ηMM⊤BDkγP̂


∥Φ1M

†x∥∞
∥Φ2M

†x∥∞
· · ·

∥ΦSM
†x∥∞


.

Notice that this operator is contractive. Given any two vectors x̄ and x′,

∥T x− T x′∥∞

= ∥(I − ηMM⊤BDk)(x̄− x′) + ηMM⊤BDkγP̂ [


∥Φ1M

†x̄∥∞
∥Φ2M

†x̄∥∞
· · ·

∥ΦSM
†x̄∥∞

−


∥Φ1M

†x′∥∞
∥Φ2M

†x′∥∞
· · ·

∥ΦSM
†x′∥∞

]∥∞

≤ ∥(I − ηMM⊤Dk)
m(x̄− x′)∥∞ + ∥I − (I − ηMM⊤Dk)

m∥∞∥γP̂


∥Φ1M

†(x̄− x′)∥∞
∥Φ2M

†(x̄− x′)∥∞
· · ·

∥ΦSM
†(x̄− x′)∥∞

∥∞

≤ [∥(I − ηMM⊤Dk)
m∥∞ + γ∥I − (I − ηMM⊤Dk)

m∥∞]∥Φ′M†∥∞∥x̄− x′∥∞. (43)

The third line uses ηMM⊤BDk = I − (I − ηMM⊤Dk)
m following the recursive argument in Equation 16.

Set m̄ = 1+⌈
log(c− γ)− log(1 + γ)

log(1− ηλk)
⌉ for some constant c ∈ (0, 1). As shown in Lemma A.2, ∥(I−ηMM⊤Dk)

m∥∞ <

c−γ
1+γ . In this case, the above norm can be bounded by c−γ

1+γ + γ[1 + c−γ
1+γ ]∥x̄− x′∥∞ and is smaller than c∥x̄− x′∥∞. Thus,

the operator on estimated Q-values is contractive.

The dataset defines a fixed point for estimated Q-values as

q̂∗ = R+ γP̂


∥Φ1M

†q̂∗∥∞
∥Φ2M

†q̂∗∥∞
· · ·

∥ΦSM
†q̂∗∥∞

 ,

and q̂∗ exists uniques since the right hand side update rule is contractive.

This q̂∗(s, a) is also the unique fixed point of the operator T in the metric space (Rk, ∥·∥∞) by the Banach fixed point
theorem, since

T q̂∗ = (I − ηMM⊤BDk)q̂
∗ + ηMM⊤BDkR+ ηMM⊤BDkγP̂


∥Φ1M

†q̂∗∥∞
∥Φ2M

†q̂∗∥∞
· · ·

∥ΦSM
†q̂∗∥∞



= (I − ηMM⊤Dk)
mq̂∗ + [I − (I − ηMM⊤Dk)

m][R+ γP̂


∥Φ1M

†q̂∗∥∞
∥Φ2M

†q̂∗∥∞
· · ·

∥ΦSM
†q̂∗∥∞

]

= (I − ηMM⊤Dk)
mq̂∗ + [I − (I − ηMM⊤Dk)

m]q̂∗

= q̂∗.

The second equation again uses ηMM⊤BDk = I − (I − ηMM⊤Dk)
m following the recursive argument in Equation 16.
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Algorithm Learning Rate Second Learning Rate Target Update Step
TD 0.5 None None

Target TD 0.997 None 3
RM 0.8 None None

Baird RM 0.95 None None
GTD2 0.6 0.6 None
TDC 0.6 0.4 None

Table 2. The table shows hyperparameters for all algorithms tuned on the Baird counterexample. All hyperparameters are found by grid
search.

The third line uses the definition of q̂∗.

An initial point can be expressed as θ0 = M†Mθ0 + (I −M†M)θ0.

For the part, M†Mθ0, lying in the row space of M , we have MM†Mθ0 converges uniquely to the fixed point q̂∗ = Mθ∗

where θ∗ = M⊤y lies in the row space of M for some y ∈ Rk. Thus, M†Mθt → θ∗ = M†q̂∗ converges uniquely as
t → ∞.

The other part (I −M†M)θ0 is always unmodified by the over-parameterized target Q-learning update rule and thus left
unchanged as (I −M†M)θt = (I −M†M)θ0 for all t.

Therefore, θt → M†q̂∗ + (I −M†M)θ0 as t → ∞.

A.7. Empirical Setting

Figure 4. The features are shown in the figure. The transition is labelled with arrows. This Baird Counterexample is a Markov Reward
process and only one action is available at each state.

The features for the four room concatenate one-hot encoding for x and y coordinate separately and the action. Then, we
append the matrix H⊤, each row of length k, representing if state-action pairs show up in the dataset and the showing-up
order, to the encoding. Thus, the dimension of features is larger than the number k of state-actions in the dataset and the
model is over-parameterized.

The behaviour policy is random, that is, four actions are sampled with the same probability. A human policy is given by a
human player, considered as optimal by the player. The target policy is the human policy combined with ϵ-exploration with
ϵ = 0.08.

All hyperparameters are tuned with the small dataset of size 300. Since over-parameterized TD converges on the Four Room
task, then the target parameter update step is set to one and OTTD is the same as TD. All empirical results are averaged over
10 random seeds.
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Algorithm Learning Rate
Off-Policy without Corrections 0.95

Target Actions 0.97
NIS 0.97
IS 0.02

Table 3. The table shows hyperparameters for all algorithms tuned on the Four Room Task. All hyperparameters are found by grid search.

Work Regularity Condition Comment
Ours Thm. 3.2 ∥NM†∥ < 1 It is satisfied for expected updates

or a batch of complete trajectories
naturally.

Lee and He Thm. 1 (2019) None No regularization is needed for the
on-policy learning.

Asadi et al. Prop. 1 (2023) ρ((Φ⊤DΦ)−1(γΦ⊤DPπΦ)) < 1 The condition fails on a Two-state
counterexample even with expected
updates.

Asadi et al. Prop. 5 (2023) λmax(γΦ
⊤DPπΦ))

λmin((Φ⊤DΦ)
< 1 The condition fails on a Two-state

counterexample even with expected
updates.

Fellows et al. Thm. 2 (2023) M⊤Dk(γN −M) has strictly nega-
tive eigenvalues

The condition is equivalent to the
spectral radius less-than-one condi-
tion. Breaking this condition is the
main factor behind the divergence
with the deadly triad. With this as-
sumption, the paper does not focus
on the deadly triad issue.

Fellows et al. Thm. 4 (2023) ∥(Φ⊤DΦ)−1(γΦ⊤DPπΦ)∥ < 1 The condition fails on a Two-state
counterexample even with expected
updates.

Shangtong et al. Thm. 2 (2021) Projection of the target parameter
into a ball and L2 regularization

Projection is hard to realize empiri-
cally, and L2 regularization can give
a parameter predicting worse than
zero values.

Table 4. This table compares how strong the regularity conditions are to ensure convergence in the deadly triad under linear function
approximation.
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Work MDP Data Generation Distribu-
tion

Features

Ours Thm. 3.2 None None Full rank
Lee and He Thm. 1 (2019) Ergodic under the target

policy π
s ∼ dπ i.i.d. with dπ(s) >
0 for all s

Full rank

Asadi et al. Prop. 1 (2023) None None Full rank
Asadi et al. Prop. 5 (2023) None None Full rank
Fellows et al. (2023) Thm.
2

None s ∼ d i.i.d. for some off-
policy distribution d

∥ϕ(s, a)ϕ(s, a)⊤∥ and
γ∥ϕ(s, a)ϕ(s′, a′)⊤∥ are
bounded, the space of the
parameter θ is convex, and
variance of the update is
bounded

Fellows et al. (2023) Thm.
4

None s ∼ d i.i.d. for some off-
policy distribution d

∥ϕ(s, a)ϕ(s, a)⊤∥ and
γ∥ϕ(s, a)ϕ(s′, a′)⊤∥ are
bounded, the space of the
parameter θ is convex, and
variance of the update is
bounded

Shangtong et al. Thm. 2
(2021)

Ergodic under the be-
haviour policy

Trajectory data of an infi-
nite length

Full rank and ∥Φ∥ <
C(η, ∥Pπ∥Du)

Table 5. Comparison of assumptions among analysis of target networks under linear function approximation.

Work Learning Rate Target Network Hyperparameter
Ours Thm. 3.2 η < 1

ρ(MMTDk)
m ≥ m̄

Lee and He Thm. 1 (2019) Decaying learning rate αt > 0 such
that

∑∞
t=0 αt = ∞ and

∑∞
t=0 α

2
t <

∞

Share the learning rate with the stu-
dent or original parameter

Asadi et al. Prop. 1 (2023) η = 1 m = ∞
Asadi et al. Prop. 1 (2023) η = 1

λmax(Φ⊤DΦ)
m ≥ 1

Fellows et al. (2023) Thm. 2 Decaying learning rate αt > 0 such
that

∑∞
t=0 αt = ∞ and

∑∞
t=0 α

2
t <

∞

None

Fellows et al. (2023) Thm. 4 1
η > λmin(Φ

⊤DΦ)+λmax(Φ
⊤DΦ)

2 m > m̃

Shangtong et al. Thm. 2 (2021) Decaying learning rate αt > 0 such
that

∑∞
t=0 αt = ∞ and

∑∞
t=0 α

2
t <

∞

Decaying learning rate βt > 0 for the
target network such that

∑∞
t=0 βt =

∞,
∑∞

t=0 β
2
t < ∞ and for some

d > 0,
∑∞

t=0(βt/αt)
d < ∞

Table 6. Comparison of assumptions among analysis of target networks under linear function approximation.
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Figure 5. Black blocks are walls which cannot be trespassed, green ones are hallways and the purple block is the terminal state with +1
reward. Each state has (x, y) coordinate and actions include up, down, left and right.

A.8. Comparison Between Convergence Conditions

The size depends on the feature norm, reward norm and the regularization weight.
V arS∼d,A∼µ,S′A′∼Pπ (ϕ(S,A)(r(s, a) + γϕ(S′, A′)⊤θ − ϕ(S,A)⊤θ)) is bounded.
for some dependent constant C on the regularization weight η and transition norm.

m̄ = 1 + ⌈
log(1− γ)− log((1 + γ)

√
k)

log(1− ηλmin(MMTDk))
⌉ when regularizing the infinity norm of NM†.

m̃ = 1+
log(1− ∥J̄∗FPE)∥)− log(∥J̄∗FPE)∥+ ∥J̄∗TD)∥)

log(1− ηλmin(Φ⊤DΦ))
where ∥J̄∗FPE)∥ = ∥(Φ⊤DΦ)−1(γΦ⊤DPπΦ∥ and ∥J̄∗TD)∥ =

∥I − ηΦ⊤D(I − γPπΦ)∥.
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