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Abstract
In an effort to reduce the computational load of
Transformers, research on linear attention has
gained significant momentum. However, the im-
provement strategies for attention mechanisms
typically necessitate extensive retraining, which
is impractical for large language models with
a vast array of parameters. In this paper, we
present DiJiang, a novel Frequency Domain Ker-
nelization approach that enables the transforma-
tion of a pre-trained vanilla Transformer into
a linear complexity model with little training
costs. By employing a weighted Quasi-Monte
Carlo method for sampling, the proposed ap-
proach theoretically offers superior approxima-
tion efficiency. To further reduce the training
computational complexity, our kernelization is
based on Discrete Cosine Transform (DCT) op-
erations. Extensive experiments demonstrate that
the proposed method achieves comparable per-
formance to the original Transformer, but with
significantly reduced training costs and much
faster inference speeds. Our DiJiang-7B achieves
comparable performance with LLaMA2-7B on
various benchmark while requires only about
1/50 training cost. Code is available at https:
//github.com/YuchuanTian/DiJiang.

1. Introduction
The Transformer architecture (Vaswani et al., 2017) has rev-
olutionized the field of Natural Language Processing (NLP),
achieving outstanding results in various tasks such as speech
recognition (Dong et al., 2018), machine translation (Wang
et al., 2019), and document generation/summarization (Kim
et al., 2022). This success has led to an era dominated

*Equal contribution 1Huawei Noah’s Ark Lab
2Peking University. Correspondence to: Yunhe Wang
<yunhe.wang@huawei.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

by large language models (LLMs), where the Transformer
structure is scaled up to handle increasingly complex tasks.
However, this scaling brings with it substantial computa-
tional demands, especially due to the attention mechanism
which requires cross-correlation calculations between each
token. These computational requirements, coupled with
the significant inference costs and energy consumption,
present considerable obstacles to deploying these models in
resource-constrained environments like mobile devices and
robotics.

In response to the pressing need for more efficient Trans-
former models, the research community has directed its
efforts towards optimizing the Transformer architecture. A
myriad of strategies has been put forward, encompassing
methods such as model pruning, quantization, and the de-
velopment of more efficient attention mechanisms. Among
these initiatives, simplifying the attention mechanism has
emerged as a particularly promising avenue. This approach
focuses on transforming the traditionally quadratic com-
plexity of attention mechanisms into a more manageable
linear scale. (Katharopoulos et al., 2020) introduces Linear
Transformers, which leverage kernel feature maps to trans-
form self-attention, reducing complexity from quadratic to
linear while maintaining comparable results to traditional
Transformers. (Kitaev et al., 2020) proposes replacies dot-
product attention with locality-sensitive hashing and using
reversible residual layers to minimize memory usage in train-
ing. Performer (Choromanski et al., 2020) utilize positive
orthogonal random features to approximate softmax-based
self-attention in Transformers, achieving a transformative
leap to linear complexity.

However, the majority of existing methods for optimizing
Transformers, particularly in relation to their attention mech-
anisms, necessitate comprehensive retraining. This retrain-
ing process presents a formidable challenge, especially for
models with an immense array of parameters. It requires a
significant investment in terms of computational resources
and time. For instance, the training of a large model like
LLaMA-7B (Touvron et al., 2023) demands approximately
82,432 GPU-hours and incurs a total power consumption of
around 36 MWh. Undertaking such extensive retraining for
models of this magnitude is not only economically taxing
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but also raises environmental concerns due to the substantial
energy expenditure involved. This underscores the need for
more efficient approaches to adapt and optimize these large-
scale models. Despite few research (Zheng et al., 2023;
Choromanski et al., 2020) efforts focusing on finding fast
approximations for attention mechanisms, these methods
have not been thoroughly validated in large-scale language
models.

To address the issue of fast attention approximations in
large language models, we conducted a thorough analysis
of existing linear attention schemes. We discovered that
the main source of approximation error in these methods is
due to sampling based on the Monte Carlo method. Con-
sequently, we propose the use of weighted Quasi-Monte
Carlo sampling for mapping, specifically introducing Fre-
quency Domain Kernelization. This approach efficiently
and accurately maps the queries and keys of a Transformer
to the frequency domain using Discrete Cosine Transform
(DCT). This mapping allows us to effectively eliminate the
softmax operation in the attention mechanism, rendering
the attention computation linear in complexity, which is
shown in Figure 1. We theoretically demonstrate that this
frequency domain mapping is an approximate equivalent to
the original attention mechanism. Our experiments show
that our method achieves performance comparable to the
original Transformer with a significantly smaller training
cost (< 1/10), while also benefiting from faster inference
speeds (up to about 10x).

2. Related Works
2.1. Linear Transformers

Reducing the computational load of attention in Transform-
ers remains a hot topic in research (Xu et al., 2023; Tang
et al., 2020). (Child et al., 2019) achieved this by sparsifying
attention, thereby reducing its computational cost. Simi-
larly, (Kitaev et al., 2020) used locality-sensitive hashing to
expedite the computation of attention. However, these meth-
ods are hard to apply in auto-regressive Transformer models.
As a result, there has been a series of works focusing on
removing or substituting the softmax in attention. Notably,
the Linear Transformer, first introduced by (Katharopou-
los et al., 2020), represents a significant stride in this di-
rection. (Qin et al., 2022) approximated attention calcula-
tions using a linear operator and a cosine-based distance
reweighting. (Zhai et al., 2021) achieved linear complex-
ity in Transformers by preprocessing keys and values. (Lu
et al., 2021) used Gaussian kernel functions in place of
dot-product similarity, allowing for the approximation of
the full self-attention matrix through low-rank matrix de-
composition. (Bello, 2021) bypassed the need for attention
calculations by capturing interactions through transforming
available contexts into linear functions and applying them

to each input, showcasing the variety of methods explored
to optimize attention mechanisms in Transformer models.

Additionally, recent proposals like RWKV (Peng et al.,
2023), RetNet (Sun et al., 2023), and Mamba (Gu & Dao,
2023) have introduced potential alternatives to the Trans-
former with linear complexity. However, these existing
improvements typically require significant modifications
to the model’s architecture and often necessitate training a
new model from scratch to achieve optimal performance.
Given the substantial training costs associated with large lan-
guage models, such retraining is not always feasible. While
methods like StreamingLLM (Xiao et al., 2023) or Long-
former (Beltagy et al., 2020) can be implemented through
fine-tuning, their reliance on window attention compromises
their ability to truly model long sequences, leading to a de-
crease in accuracy. This highlights the challenge of balanc-
ing model training efficiency with the ability to maintain
high performance in handling long sequences.

2.2. Frequency-based Transformers

A various of research has focused on applying the Trans-
former architecture in the frequency domain. For instance,
FNet (Lee-Thorp et al., 2021) replaces the self-attention
in BERT with Fourier Transform, significantly speeding
up Transformer computations. A similar concept (Buch-
holz & Jug, 2022) has been adapted for image processing
tasks. DCFormer (Li et al., 2023) proposes a Transformer-
based network that learns semantic representations directly
from frequency domain representations using Discrete Co-
sine Transform (DCT). In the realm of video prediction,
ideas like the local frequency domain transformer (Farazi
et al., 2021) have been introduced. However, applying these
concepts to existing decoder-only large language models
presents challenges. The auto-regressive inference style of
these models makes token-level frequency domain transfor-
mations cumbersome. Each new token requires frequency
domain transformation in conjunction with all previous to-
kens, which fails to reduce complexity and undermines the
potential efficiency gains of frequency domain approaches
in large-scale language models.

2.3. Preliminary

In our study, we begin by revisiting the general form of self-
attention (Vaswani et al., 2017). To simplify the notation
and focus on the core aspects, we consider the single head
form of self-attention and omit normalization factors. The
self-attention mechanism is fundamentally composed of
queries Q, keys K, and values V , expressed in the formula:

Attention(Q,K, V ) = softmax(QKᵀ)V,

where Q,K, V ∈ Rn×d,
(1)
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Figure 1. Illustration of the proposed method, where the computation of queries and keys in the attention mechanism of a Transformer
is efficiently mapped to the frequency domain using a fast Discrete Cosine Transform (DCT). This mapping effectively eliminates the
softmax operation, thereby substantially reducing the computational complexity of the Transformer.

where n denotes the number of tokens and d denotes the
hidden dimension of the attention. Specifically, when we
denote Q as (q1, q2, ..., qn), K as (k1, k2, ..., kn), V as
(v1, v2, ..., vn), and output O as (o1, o2, ..., on), Equation 1
can be reformulated as:

oi =

n∑
j=1

eqik
ᵀ
j∑n

j′=1 e
qik
ᵀ
j′
vj ,

where qi, ki, vi ∈ R1×d, i = {1, 2, ..., n}.

(2)

It can be observed that the computational and memory com-
plexity for calculating each output in a Transformer model
isO(nd), where n is the sequence length and d is the dimen-
sionality of the representation. Consequently, the time and
memory complexity for processing a sentence of length n
scales quadratically, becomingO(n2d). This quadratic scal-
ing poses a significant computational burden, particularly
for longer sequences where n is large, making processing
resource-intensive and challenging.

To mitigate this complexity, the concept of a kernel mech-
anism has been introduced as a means to reduce the com-
putational demands of attention mechanisms, which has
been introduced in (Tsai et al., 2019; Katharopoulos et al.,
2020; Choromanski et al., 2020). Specifically, this involves
the introduction of a kernel function K(·, ·), which acts as
a positive-definite kernel capable of measuring similarity.
By utilizing this kernel, the attention mechanism can be
reformulated as:

oi =

n∑
j=1

K(qi, kj)∑n
j′=1K(qi, kj′)

vj , (3)

By applying the kernel trick, it’s possible to linearly decom-

pose the attention mechanism:

oi =

n∑
j=1

φ(qi)φ(kj)
ᵀ∑n

j′=1 φ(qi)φ(kj′)ᵀ
vj , (4)

where φ(·) : Rd → Rm is a projection to map the inputs
into m dimension features. This decomposition benefits
from the fact that the computational dimensions of the keys
and values can be merged, effectively reducing the computa-
tional complexity from O(n2d) to O(nmd). Given that the
dimensionality d and m is typically much smaller than the
sequence length n, this linearization of the attention mech-
anism results in a substantial decrease in computational
intensity.

In the context of large language models, the cost of retrain-
ing is prohibitively high. In such scenarios, it becomes
imperative to find a kernel that can equivalently replace the
vanilla attention mechanism without necessitating extensive
retraining. Positive Random Features (PRF) (Choromanski
et al., 2020) emerge as a viable candidate in this regard:

φPRF(x) = eωx
ᵀ− ‖x‖

2

2 , (5)

where ω ∈ Rm×d. Theoretical demonstrations have es-
tablished that eqk

ᵀ
= Eω∼N (0.I)[e

ωqᵀ− ‖q‖
2

2 eωk
ᵀ− ‖k‖

2

2 ]. It
means that when m, the dimension of the feature space, is
sufficiently large, Positive Random Features (PRF) mapping
becomes an equivalent of the original attention mechanism.
This equivalence suggests that, in theory, it is feasible to
directly transform existing vanilla attention into linear atten-
tion using PRF mapping, thereby achieving an acceleration
without loss of functionality. However, a notable challenge
arises due to the need for m to be set to a significantly large
value to maintain the performance by reducing the approx-
imation error. This requirement leads to a non-negligible
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increase in computational demand. For instance, in the case
of the Performer (Choromanski et al., 2020), to achieve a
lossless linear attention, m often needs to be set to larger
than d, diminishing the benefits of reduced computational
load brought by linear attention.

2.4. Kernelized Attention in Frequency Domain

To address this issue, we first conduct a theoretical analysis
of the kernel-based approach for approximating attention
mechanisms. We begin with the application of Bochner’s
Theorem. This theorem allows us to equate the original
attention computation involving queries (Q) and keys (K) –
specifically the Gaussian kernel – to an integral computation
akin to Equation 4.
Theorem 2.1. (Bochner’s Theorem) (Feller, 1966). A con-
tinuous shift invariant scaled kernel function K(x, z) :
Rd → R is positive definite if and only if it is the Fourier
Transform of a unique finite probability measure p on Rd.

K(x, z) =

∫
Rd
ei(x−z)ᵀwp(w)dw = Ew∼p(·)[e

iwᵀx(eiw
ᵀz)∗],

(6)
where the symbol z∗ denotes the complex conjugate of z.

According to Bochner’s theorem, there is a one-to-one cor-
respondence between the kernel function K(x, z) and the
probability density p(w) defined on Rd. Monte Carlo is
equal weight approximation to kernel integrals. Taking
ϕp(x) := 1√

m
[e−iw

ᵀ
1x, ..., e−iw

ᵀ
mx]ᵀ, the feature maps can

be constructed as:

K(x, z) = Ew∼p(·)[e
iwᵀx(eiw

ᵀz)∗] ≈ ϕp(x)ᵀϕ∗p(z), (7)

where wi ∼ p(·) are samples constructed by Monte Carlo
methods. ϕp(·) is the explicit finite dimensional feature
map, which depends on the kernel K. Moving forward,
instead of employing the Monte Carlo method as suggested
in (Choromanski et al., 2020), we utilize the Quasi-Monte
Carlo method (Le et al., 2013). This shift enables the esti-
mation of the integral using a specific uniform distribution
as opposed to a randomly sampled distribution.

Utilizing Bochner’s theorem allows for a transformative
interpretation of the attention mechanism in Transformer
models. For the Gaussian Kernel:

KG(x, y) := e−
‖x−y‖2

2 = e−
‖x‖2+‖y‖2

2 ex
ᵀy, (8)

since the x and y in attention mechanism is usually normal-
ized, the Gaussian Kernel can be regarded as ex

ᵀy , which is
the same as the calculation between the queries and keys.
Theorem 2.2. The Positive Fixed Features (PFF) is formu-
lated as:

ϕPFF(x) :=
e−‖x‖

2

√
m

[eΦ−1(t1)xᵀv1 , ..., eΦ−1(tm)xᵀvm ]ᵀ,

(9)

where V = [v1, ..., vm] ∈ Sd×m is asymptotically uniformly
distributed and ti ∼ U(0, 1). Then, ϕPFF(x)ᵀϕPFF(z) is an
unbiased estimate of Gaussian kernel KG(x, y).

The proof of this theorem involves a transformation to spher-
ical coordinates, which can be found in the supplementary
material. Through this transformation, we demonstrate that
an approximation based on any asymptotically uniformly
distribution can closely approximate the original Gaussian
kernel. Furthermore, according to (Asmussen & Glynn,
2007), when utilizing uniform sequences, the Quasi-Monte
Carlo method can offer superior approximation efficiency
compared to the traditional Monte Carlo method. The ap-
proximation efficiency of Quasi-Monte Carlo is O(1/m),
which is more favorable than the O(1/m−0.5) efficiency
of Monte Carlo. Consequently, this implies that using the
PFF 9 kernel for approximating the Gaussian kernel is more
advantageous than the PRF kernel in Equation 5.

Theorem 2.3. The Weighted Positive Fixed Features
(WPFF) is formulated as:

ϕWPFF(x) :=
De−‖x‖

2

√
m

[eΦ−1(t1)xᵀv1 , ..., eΦ−1(tm)xᵀvm ]ᵀ,

(10)
whereD is a learnable parameter which can be optimized by
the input x. Then the upper bound of the integral estimation
error of the objective function by WPFF (Weighted Positive
Fixed Features) method is not greater than the upper bound
of the integral estimation error of the objective function by
PFF (Positive Fixed Features) method.

Building upon the Quasi-Monte Carlo foundation, we fur-
ther introduce the concept of weighted Quasi-Monte Carlo
to enhance the efficiency of approximation. This advance-
ment aims to leverage the strengths of the Quasi-Monte
Carlo method, augmenting it with strategically weighted
sampling to improve the precision and convergence rates of
our approximations. The detailed proof is provided in the
supplementary materials.

To further accelerate the training speed, we propose the use
of frequency domain transformations to reduce the required
computational resources. Fast Fourier Transform (FFT)
and Discrete Cosine Transform (DCT) are commonly used
methods for such transformations. Compared to ordinary
orthogonal transformations, frequency domain transforma-
tions have algorithms for rapid computation, significantly
reducing the computational cost of our proposed mapping.
Specifically, the complexity of O(m) can be reduced to
O(log(m)). Additionally, since DCT operates in the real
number domain, it demands even less computational re-
sources and is more hardware-friendly. Therefore, we opt
for the DCT to carry out our kernel mapping.

Specifically, a DCT coefficient C ∈ Rd×d in the frequency
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Algorithm 1 Frequency domain kernelization for efficient
language models.
input A small amount of data xi, a pre-trained Transformer

model M .
1. Initialization: the DCT coefficient C, the weight D,
the diagonal matrix T in Equation 12 for each layer in
M .
2. Transformation: transform the vanilla attention
calculation Attention(Q,K, V ) = softmax(QKᵀ)V to
FKA(Q,K, V ) = φWDCF(Q)φWDCF(K)ᵀV using the
Weighted Discrete Cosine Features for each layer in M .
3. Get the transformed model MFKA.
repeat

4. Randomly select a batch of data from xi.
5. Employ the transformed model MFKA on the mini-
batch.
6. Update weights in MFKA according to the loss and
gradient;

until convergence.
output An efficient language model MFKA.

domain is defined as:

Cj1j2 = sj1sj2

n−1∑
i1=0

d−1∑
i2=0

cos

(
π(2i1 + 1)j1

2d

)
cos

(
π(2i2 + 1)j2

2d

)
,

(11)

where sj =
√

1/d if j = 0 and sj =
√

2/d otherwise. The
weighted mapping using DCT (which is called Weighted
Discrete Cosine Features) can be reformulated as:

φWDCF(x) = DeTCx
ᵀ

, (12)

where C ∈ Rm×d is the DCT coefficient, D ∈ Rm is a
learnable weight, and T = diag(t1, . . . , tm) is a random
diagonal matrix following the inverse cumulative distribu-
tion. Note that since the x in attention mechanism is usually
normalized, we ignore the term of ‖x‖2 in Equation 9 for
efficiency. Therefore, using DCT as a kernel can closely ap-
proximate the original attention mechanism while have low
computation complexity. For scenarios where m > d, more
DCT transformations can be derived using different bound-
ary conditions. Details can be referred to (Ahmed et al.,
1974). It is noted that we set m = d to avoid increasing
computational complexity in the subsequent experiments.

Therefore, the kernelized attention in frequency domain
(FKA) is then reformulated as:

FKA(Q,K, V ) = φWDCF(Q)φWDCF(K)ᵀV,

where Q,K, V ∈ Rn×d,
(13)

This approach achieves a notable reduction in computational
complexity by employing the Discrete Cosine Transform
(DCT) to map the queries and keys within the Transformer’s
attention mechanism to a domain where operations are in-
herently more efficient.

In summary, our method leverages frequency domain ker-
nelization for Transformer attention mechanisms, signifi-
cantly cutting computational costs while either preserving
or enhancing model performance. The details are shown
in Algorithm 1. Through the strategic use of the weighted
Quasi-Monte Carlo method, which outperforms traditional
Monte Carlo sampling in efficiency and accuracy, combined
with DCT for efficient frequency domain transformations,
we attain linear complexity in attention computation. This
reformulation not only improves the scalability of Trans-
formers, enabling them to handle larger datasets and ex-
tended sequences with ease, but also markedly accelerates
the training and inference phases.

Discussion Existing frequency domain Transformer ap-
proaches implement FFT transformations along the n dimen-
sion to reduce the computational complexity of attention
from o(n2d) to o(nlog(n)d). However, the autoregressive
inference style of these models makes token-level frequency
domain transformations cumbersome. Specifically, during
training and inference, each token can only access informa-
tion from preceding tokens, not allowing for frequency do-
main transformations with subsequent tokens. This results
in a scenario where each new token requires a frequency
domain transformation in conjunction with all previous to-
kens, failing to reduce complexity and undermining the
potential efficiency gains of frequency domain approaches
in large-scale language models. Therefore, existing fre-
quency domain Transformer approaches are not feasible for
application in LLMs. In contrast, our approach conducts
frequency domain transformations along the d dimension
and leverages the properties of linear Transformers, reduc-
ing the computational complexity of attention from o(n2d)
to o(ndlog(d)), offering superior computational complexity
and accuracy comparable to the original Transformer.

3. Experiments
In this section, we conduct extensive experimental validation
of the proposed architecture, encompassing results across
language models of varying scales. Additionally, we provide
detailed analyses to substantiate the effectiveness of our
approach.

3.1. Evaluation on Different Scales

Given the challenge of replicating the training processes
of most language models, as only their checkpoints are
openly available, we opted to validate our method using
Pythia (Biderman et al., 2023), a model with a fully public
dataset and training procedure, enabling fair comparisons.

We adhered to the exact training settings employed by
Pythia, including learning rates, optimizers, and other hyper-
parameters, and utilized the Pile dataset. The Pile (Gao et al.,
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Table 1. The experimental results of the proposed method. Training time is measured using A800. Inference throughput is evaluated with
token length of 2048.

Model PIQA WinoGrande WSC ARC-E ARC-C LogiQA Avg Training Inference
(day) (tokens/s)

Pythia-70M 0.498 0.484 0.596 0.25 0.221 0.202 0.375 21.3 2037
DiJiang-70M 0.587 0.511 0.365 0.403 0.213 0.253 0.389 1.3 2605

Pythia-160M 0.532 0.484 0.634 0.265 0.227 0.202 0.391 42.9 622
DiJiang-160M 0.618 0.490 0.384 0.439 0.217 0.239 0.398 2.7 1315

Pythia-410M 0.668 0.537 0.567 0.521 0.213 0.22 0.454 105.8 203
DiJiang-410M 0.663 0.524 0.567 0.492 0.244 0.247 0.456 6.6 787

Pythia-1B 0.706 0.533 0.365 0.569 0.269 0.296 0.456 201.2 105
DiJiang-1B 0.677 0.521 0.365 0.537 0.253 0.284 0.440 12.6 611

Pythia-2.8B 0.737 0.596 0.384 0.640 0.295 0.215 0.478 593.3 34
DiJiang-2.8B 0.713 0.545 0.413 0.597 0.289 0.279 0.473 37.1 284

OPT-350M 0.645 0.524 0.365 0.441 0.208 0.210 0.399 - 201
DiJiang-350M 0.550 0.507 0.635 0.286 0.227 0.223 0.404 5.6 820

TinyLLaMA-1.1B 0.666 0.541 0.413 0.487 0.211 0.228 0.424 - 74
DiJiang-1.1B 0.535 0.508 0.635 0.286 0.243 0.212 0.403 13.9 613
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Figure 2. Training Curve of different methods. The proposed
method achieves the lowest PPL and the fastest converge speed.

2020) is an 825 GiB corpus of English text, specifically
designed for training large-scale language models. This
project is composed of 22 distinct, high-quality subsets,
both pre-existing and newly constructed, many of which
originate from academic or professional sources. This com-
prehensive and diverse dataset serves as a robust founda-
tion for developing and fine-tuning language models Our
DiJiang model was fine-tuned from the pre-trained Pythia
model. We evaluated our approach on six public datasets

used by Pythia: PIQA (Bisk et al., 2020), WinoGrande,
WSC (Sakaguchi et al., 2021), ARC-E, ARC-C (Clark et al.,
2018), and LogiQA (Liu et al., 2020). The Pythia model’s
checkpoint was obtained from HuggingFace1. We adapt the
learned gating mechanism (Peng et al., 2021) similar with
the RetNet (Sun et al., 2023) to augment our DiJiang.

The experimental results, as shown in Table 1, indicate that
our method achieved remarkable outcomes across different
model sizes, ranging from 70M to 2.8B parameters. On
average, the performance on the six datasets was nearly
identical to that of the original Pythia, but with only∼ 1/16
of the training cost. Furthermore, the inference speed of
our DiJiang model was significantly faster than that of the
original Pythia. These results substantiate the effectiveness
of our approach, demonstrating its potential to enhance the
efficiency of large language models without compromising
performance.

3.2. Evaluation on Different Models

To evaluate the effectiveness of our method across dif-
ferent models, as shown in Table 1, we further applied
our approach to the OPT-350M (Zhang et al., 2022)2 and
TinyLLaMA-1.1B3 models. It’s important to note that since
their training data are not fully accessible, we continued to
use the Pile dataset for fine-tuning them.

1https://huggingface.co/EleutherAI
2https://huggingface.co/facebook/opt-350m
3https://huggingface.co/TinyLlama/

TinyLlama-1.1B-python-v0.1
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Table 2. Comparison of different linear attention models on fine-tuning Pythoia-410M (Biderman et al., 2023).

Model PIQA WinoGrande WSC ARC-E ARC-C LogiQA Avg

Pythia-410M (Biderman et al., 2023) 0.668 0.537 0.567 0.521 0.213 0.22 0.454

Linformer (Wang et al., 2020) 0.5267 0.5114 0.6346 0.2656 0.244 0.2074 0.3982
Cosformer (Qin et al., 2022) 0.5218 0.5059 0.6058 0.2673 0.2637 0.2642 0.4047

Performer (Choromanski et al., 2020) 0.6431 0.4964 0.4327 0.4701 0.2312 0.2366 0.4183
RetNet (Sun et al., 2023) 0.4951 0.4957 0.6346 0.2508 0.227 0.2028 0.3843

PFF (Equation 9) 0.6453 0.4996 0.4712 0.4747 0.2295 0.2381 0.4264
DiJiang (Ours) 0.6638 0.5241 0.5673 0.4928 0.2449 0.2473 0.4567

Table 3. Comparison with LLaMA2-7B on various benchmarks.
Model PIQA SIQA BoolQ WSC HellaSwag ARC-E ARC-C MMLU NQ COPA Race-Middle Avg Tokens

LLaMA2-7B 0.782 0.485 0.749 0.663 0.740 0.561 0.403 0.468 0.192 0.670 0.402 0.565 2000B
DiJiang-7B 0.775 0.346 0.626 0.683 0.694 0.626 0.427 0.407 0.194 0.730 0.618 0.557 40B

Finally, we conducted further experiments on the well-
known publicly available large language model, LLaMA2-
7B, fine-tuning it into the DiJiang-7B model. Table 3 reveal
that the DiJiang-7B model achieves results that are virtu-
ally identical to the original LLaMA2-7B across various
benchmarks. Remarkably, our model required only 40B
training data, significantly less than the 2T tokens used by
LLaMA2-7B. This demonstrates the successful application
of our method to large-scale models at the 7B parameter
level, highlighting the efficiency and effectiveness of our
fine-tuning approach even when scaling to vast model sizes.

Interestingly, we found that despite using a limited dataset,
our method achieved results similar to the original models
with a significantly lower training cost and faster speed. This
outcome further demonstrates the strong generalizability
and flexibility of our approach, underscoring its potential
applicability across a broad spectrum of language models,
even in scenarios where the original training datasets are
not available.

3.3. Comparison with Linear Transformers

To compare the superiority of our approach against other
linear-complexity self-attention Transformer models, we
validated the fine-tuning results on Pythia-400M for differ-
ent models including Linformer, Performer, RetNet, and
Cosformer. For a fair comparison, we employed the same
training settings and data. Table 2 displays the comparative
results, revealing that while existing methods can achieve
good results through retraining, as evidenced by their origi-
nal publications, most of them suffer from significant accu-
racy losses in scenarios where fine-tuning is done without
retraining. This is largely because these methods struggle
to accurately approximate the original attention mechanism,
leading to an inability to restore the original accuracy with

minimal training.

Among these comparison methods, Performer achieved the
best results by approximating the original attention with Pos-
itive Random Features (PRF). However, as previously dis-
cussed, this Monte Carlo-based approximation method can-
not achieve satisfactory outcomes, resulting in accuracy loss.
By switching from Monte Carlo to the Quasi-Monte Carlo
scheme using Positive Fixed Features (PFF) as described
in Equation 9, we surpassed the accuracy of Performer but
still fell short of the original vanilla Transformer’s perfor-
mance. Furthermore, by incorporating the Discrete Cosine
Transform (DCT), our method achieves higher efficiency
than approaches using PFF kernels. The DCT transforma-
tion enables a more compact and efficient representation
of the frequency components of the attention mechanism.
This efficiency stems from the DCT’s ability to concentrate
energy, allowing for a sparse representation that captures the
most significant features of the data with fewer coefficients.
Consequently, our approach not only closely approximates
the original attention but also does so with improved com-
putational performance compared to PFF-based methods.
This advantage highlights the effectiveness of using DCT in
optimizing the approximation of attention mechanisms, fur-
ther underscoring the potential of our method in enhancing
the efficiency of Transformer models. Further incorporating
weighted Quasi-Monte Carlo, our DiJiang architecture ul-
timately achieved accuracy nearly identical to the original
Pythia-400M, validating the efficacy of our approximation
method. This demonstrates not only the potential of our
approach for fine-tuning large-scale language models but
also underscores the importance of choosing an efficient
approximation strategy to maintain model performance.

We further visualized the training curves to showcase the
approximation efficiency of different linear Transformer
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Figure 3. Visualization of attention map of different architectures. The results are averaged by multiple heads.
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Figure 4. Comparison of inference memory and throughput be-
tween the proposed DiJIang and vanilla Transformer architecture.

models, as depicted in Figure 2. RetNet, as an emerging
language model architecture, has shown its potential by
achieving significantly low loss values, underscoring its
capability for language tasks. Despite its low loss, RetNet

does not necessarily outperform on benchmark metrics and,
in some cases, even falls short of the results achieved by the
Performer. This discrepancy highlights the importance and
advantages of employing kernel methods to approximate the
original attention computation, particularly in fine-tuning
scenarios.

Our method demonstrates the fastest rate of loss reduction
and ultimately achieves the lowest loss value. This rapid
convergence indicates that our approach can quickly reach
a performance level similar to that of the original Trans-
former. The visualization clearly underscores the superior-
ity of our method in terms of both convergence speed and
final model accuracy, validating our approach’s effective-
ness in efficiently approximating the attention mechanism
while maintaining high performance standards. This visual
evidence further solidifies our claim that our method stands
out among linear Transformer alternatives, offering a com-
pelling solution for optimizing Transformer models without
compromising on quality.

3.4. Comparison of Inference Cost

Furthermore, we also evaluated the memory usage and
throughput of our method in comparison to the original
Transformer model under various conditions. We selected
the Pythia-410M model as our primary subject for analysis.
We follow the implementation of RetNet (Sun et al., 2023)
to efficient inference. The specific results, as depicted in
Figure 4, demonstrate that as the token length increases, the
memory footprint and inference speed of our model do not
escalate. This observation is attributed to the linear complex-
ity characteristic of our approach, indicating that our method
is more conducive to long-sequence inference. In contrast,
due to the quadratic complexity of attention computations,
the original Transformer model experiences a continuous
increase in both inference time and required memory as
the token length grows. This comparison highlights the

8
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efficiency and practicality of our solution, particularly in
scenarios involving extensive sequences where computa-
tional resources are a critical concern.

3.5. Visualization

To further demonstrate the effectiveness of our model’s
approximation of the attention mechanism, we present at-
tention maps generated by different methods in Figure 3.
It is evident that the original Transformer’s attention map
(Figure 3 (a)) is rich in information, laying the foundation
for its robust capabilities. In contrast, attention maps pro-
duced by other linear attention methods such as Performer
(Figure 3 (b)) fail to adequately capture the relationships be-
tween tokens, resulting in maps that are dissimilar to those
of the original Transformer and ultimately leading to de-
creased model accuracy, despite fine-tuning efforts. In con-
trast, our method (Figure 3 (c)), by employing the weighted
Quasi-Monte Carlo scheme, closely approximates the origi-
nal attention mechanism. This allows it to effectively model
the relationships between different tokens, achieving results
nearly identical to those of the original Transformer but
with significantly faster inference efficiency. This compar-
ison not only highlights the inadequacies of other linear
attention methods in capturing token interdependencies but
also showcases the superiority of our approach in accurately
approximating attention while enhancing computational ef-
ficiency.

4. Conclusion
This paper introduces DiJiang, a groundbreaking Frequency
Domain Kernelization method designed to address the com-
putational inefficiencies inherent in traditional Transformer
models. By leveraging linear attention mechanisms and
a novel application of the weighted Quasi-Monte Carlo
method for efficient sampling, our approach significantly
reduces the necessity for extensive retraining. This is par-
ticularly beneficial for large language models, where the
cost and time associated with training are substantial barri-
ers to progress. The kernelization process, underpinned by
Discrete Cosine Transform (DCT), not only diminishes the
computational complexity but also ensures that the adapta-
tion from a vanilla Transformer to a linear attention model
incurs minimal training costs. Our extensive experiments
validate that DiJiang achieves performance on par with con-
ventional Transformers while reducing training costs by
about 10x and enhancing inference speeds. This method
represents a significant advancement in the development of
efficient and scalable Transformer models, promising wider
applicability and facilitating advancements in various tasks
within the realm of natural language processing and beyond.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Theoretical Proof.
Theorem A.1. The Positive Fixed Features (PFF) is formulated as:

ϕPFF(x) :=
e−‖x‖

2

√
m

[eΦ−1(t1)xᵀv1 , ..., eΦ−1(tm)xᵀvm ]ᵀ, (14)

where V = [v1, ..., vm] ∈ Sd×m is asymptotically uniformly distributed and ti ∼ U(0, 1). Then, ϕPFF(x)ᵀϕPFF(z) is an
unbiased estimate of Gaussian kernel KG(x, y).

Proof. The proof is motivated by (Lyu, 2017). We also use spherical coordinate changes to get the following proof. The
Gaussian kernel is real-valued and therefore the imaginary part in Eq.(6) can be discarded.

KG(x, y) = e−
‖x−y‖2

2 =

∫
Rd
ei(x−y)ᵀwµ(w)dw =

∫
Rd

cos((x− y)ᵀw)µ(w)dw = e−‖x‖
2−‖y‖2

∫
Rd
e((x+y)ᵀw)µ(w)dw,

(15)
where µ(·) is the probability density function of d-dimensional standard normal distribution.

The Gaussian kernel is a shift and rotation invariant kernel. Given any rotation R ∈ SO(d), where SO(d) denotes rotation
groups, the corresponding probability density is also Gaussian according to Bochner’s theorem. For shift and rotation
invariant kernels, we can convert the integral to spherical coordinates. r = ||w||2 and p(r) be the density function of r, and
w = rv. Because of the rotation invariant property of KG(x, y), we achieve:

KG(x, y) =

∫
Rd
ei(x−y)ᵀwp(w)dw =

∫
R+

∫
Sd−1

ei(x−y)ᵀrvp(r)drdσ(v) =

∫
[0,1]

∫
Sd−1

ei(x−y)ᵀΦ−1(t)vdtdσ(v), (16)

where σ denotes the normalized surface area measure on Sd := {x ∈ Rd|‖x‖2 = 1} and Φ−1(t) denotes the inverse
cumulative distribution function w.r.t is a non-negative radial scale.

For real valued continuous shift and rotation invariant scaled kernel KG(x, y), the imaginary parts of the integral vanish.
We can achieve:

KG(x, y) =

∫
Rd
ei(x−z)

ᵀwp(w)dw =

∫
Rd

cos((x− z)ᵀw)p(w)dw =

∫
[0,1]

∫
Sd−1

cos((x− z)ᵀΦ−1(t)v)dtdσ(v). (17)

For Gaussian kernel, we can get another medium integral form:

KG(x, y) =

∫
Rd
ei(x−y)ᵀwµ(w)dw = e−‖x‖

2−‖y‖2
∫
Rd
e((x+y)ᵀw)µ(w)dw = e−‖x‖

2−‖y‖2
∫

[0,1]

∫
Sd−1

e(x+y)ᵀΦ−1(t)vdtdσ(v).

(18)
According to (Brauchart & Grabner, 2015), if the point set V = [v1, ..., vm] ∈ Sd×m is asymptotically uniformly distributed,
the following equation holds true:

lim
m→∞

1

m

m∑
i=1

f(vi) =

∫
Sd
f(v)dσ(v). (19)

Then, we have:

lim
m→∞

Eti∼U(0,1)[ϕPFF(x)ᵀϕPFF(y)] =Eti∼U(0,1)[ lim
m→∞

e−‖x‖
2−‖y‖2

m

m∑
i=1

eΦ−1(tj)(x+y)ᵀvi ]

=e−‖x‖
2−‖y‖2

∫
[0,1]

∫
Sd−1

e(x+y)ᵀΦ−1(t)vdtdσ(v)

=e−‖x‖
2−‖y‖2(2π)−

d
2

∫
Rd
e(x+y)ᵀwe−

‖w‖2
2 dw

=e−‖x‖
2−‖y‖2(2π)−

d
2

∫
Rd
e
‖x+y‖2

2 e−
‖w−(x+y)‖2

2 dw

=e−‖x‖
2−‖y‖2e

‖x+y‖2
2

=e−
‖x−y‖2

2

=KG(x, y).

(20)
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Therefore, ϕPFF(x)ᵀϕPFF(z) is an unbiased estimate of Gaussian kernel KG(x, y).

Theorem A.2. The Weighted Positive Fixed Features (WPFF) is formulated as:

ϕWPFF(x) :=
De−‖x‖

2

√
m

[eΦ−1(t1)xᵀv1 , ..., eΦ−1(tm)xᵀvm ]ᵀ, (21)

where D is a learnable parameter which can be optimized by the input x. Then the upper bound of the integral estimation
error of the objective function by WPFF (Weighted Positive Fixed Features) method is not greater than the upper bound of
the integral estimation error of the objective function by PFF (Positive Fixed Features) method.

Proof. The proof is motivated by (Yang et al., 2014). We use some of the same mathematical definitions and similar proofs
from this paper to show that the WPFF method has a smaller upper bound on the overall estimation error of the objective
function. Theorem A.2 Lemma A.3 and Lemma A.4 are all relevant to this paper.

Consider the task of computing an approximation of the following integral Id,p[f ] =
∫
Rd f(x)p(x)dx, because of Id,p[f ] =

Ex∼p(Rd)[f(x)], an empirical approximation called Monte Carlo (MC) to the integral can be computed by drawing a random
point set S = {w1, ..., ws} independently from p(Rd). When S is a set of fixed points, the empirical approximation is a
quasi-Monte Carlo (QMC) method. The purpose of the QMC method is to improve convergence speed by constructing S
using deterministic low-differential sequences instead of random sampling points. We have IS [f ] = 1

s

∑
w∈S f(w).

We define the integration error with respect to the point set S as εS [f ] = |Id,p(f)− IS(f)|. The integration error for PFF is
as follows:

εS,p[f ] = |
∫
Rd
f(x)p(x)dx− 1

s

s∑
j=1

f(wj)|, (22)

where S is a set of fixed points.

The classical Monte Carlo and quasi-Monte Carlo approximations of integrals have consistent weights. However, it
makes sense to weight the approximations, approximate Id,p[f ] =

∫
Rd f(x)p(x)dx using IS,Ξ[f ] =

∑s
j=1 ξjf(wj), where

Ξ = {ξ1, ξ2, ..., ξs}, ξi ≥ 0 for i ∈ {1, 2, ..., s}, we do not need to normalize the weights, that is it is possible that∑s
i=1 ξi 6= 1. ∫

Rd
ei(x−z)

Twp(w)dw ≈
s∑
j=1

ζj(x)ζj(z)f(wj)

=

s∑
j=1

ζj(x)ζj(z)e
ixTwje−iz

Twj

=ϕWPFF,S(x)TϕWPFF,S(z),

(23)

where ζj(x)ζj(z) = ξj , ζj(x), ζj(z) ≥ 0, eix
Twje−iz

Twj = f(wj) for j ∈ {1, 2, ..., s}, and ΨS(x) =

[ζ1(x)eix
Tw1 , ..., ζs(x)eix

Tws ]T .

The integration error for WPFF is as follows:

εS,p,Ξ[f ] = |
∫
Rd
f(x)p(x)dx−

s∑
j=1

ξjf(wj)|. (24)

For a vector b ∈ Rd, let us define �b = {u ∈ Rd||uj | ≤ |bj |}. Let

F�b = {fu(x) = eix
Tu|u ∈ �b}, (25)

and consider the space of functions that admit an integral representation over F�b of the form

f(x) =

∫
u∈�b

f̂(u)eix
Tudu, (26)

where f̂(u) ∈ `2(�b). This space is associated with the functions with compactly-supported inverse Fourier transforms
called bandlimited functions, which play an important role in Shannon-Nyquist sampling theory. Under a natural choice of
inner product, these spaces are called Paley-Wiener spaces and they constitute an RKHS.

13



DiJiang: Efficient Large Language Models through Compact Kernelization

Lemma A.3. (The Kernel of Paley-Wiener RKHS) According to (Peloso, 2011), PWb denotes the space of functions which
are represented in the form of Eq.26, with the inner product < f, g >PWb

= (2π)
2d
< f̂, ĝ >L2(�b). PWb is an RKHS with

kernel function,

sin cb(u, v) = π−d
d∏
i=1

sin(bj(uj − vj))
uj − vj

(27)

Lemma A.4. According to (Yang et al., 2014), for f ∈ PWb (Paley-Wiener spaces), we have

εS,p[f ] ≤ ‖f‖PWb
D�bp (S) (28)

where

D�bp (S)2 =π−d
∫
β∈�b

|Ψ(β)|2dβ − 2(2π)−d

s

s∑
j=1

ξj

∫
β∈�b

Ψ(β)eiβ
Twjdβ +

1

s2

s∑
l=1

s∑
j=1

sincb(wl, wj). (29)

Suppose that p(·) is a probability density function. Let Ψ(·) be the characteristic function associated with p(·).

Following (Yang et al., 2014), we can derive the following discrepancy measure that takes into account the weights:

D
�b
p (S,Ξ)

2
=π
−d
∫
β∈�b

|Ψ(β)|2dβ − 2(2π)
−d

s∑
j=1

ξj

∫
β∈�b

Ψ(β)e
iβT wj dβ +

s∑
l=1

s∑
j=1

ξlξj sin cb(wl, wj)

=π
−d
∫
β∈�b

|Ψ(β)|2dβ − 2(2π)
−d

s∑
j=1

ζj(x)ζj(z)

∫
β∈�b

Ψ(β)e
iβT wj dβ +

s∑
l=1

s∑
j=1

ζl(x)ζl(z)ζj(z)ζj(z) sin cb(wl, wj).

(30)

We note that if we fix the points, then optimizing just the weights is a optimization problem. The discrepancy measure can
be written as

D�bp (S, ξ)2 =π−d
∫
β∈�b

|Ψ(β)|2dβ − 2vT ξ + ξTHξ

=π−d
∫
β∈�b

|Ψ(β)|2dβ − 2vT (ζ(x)⊗ ζ(z)) + (ζ(x)⊗ ζ(z))TH(ζ(x)⊗ ζ(z)),

(31)

where ξ = (ξ1, ..., ξs)
T , ζ(x) = (ζ1(x), ..., ζs(x))T , and ξ = ζ(x) ⊗ ζ(z) = (ζ1(x)ζ1(z), ..., ζs(x)ζs(z))

T . ⊗ is the
Hadamard product. v ∈ Rs, vj = (2π)−d

∫
β∈�b Ψ(β)eiβ

Twjdβ and H ∈ Rs×s, Hlj = sincb(wl, wj).

Thus, the optimal weights can be found by solving the following convex optimization problem

arg min
ζ(x),ζ(z)∈Rs

−2vT (ζ(x)⊗ ζ(z)) + (ζ(x)⊗ ζ(z))TH(ζ(x)⊗ ζ(z))

s.t.ζ(x) ≤ 0, ζ(z) ≤ 0.
(32)

So obviously for a fixed sampling point, there is D�bp (S, ξ) ≤ D�bp (S). Then the upper bound of the integral estimation
error of the objective function by WPFF (Weighted Positive Fixed Features) method is not greater than the upper bound of
the integral estimation error of the objective function by PFF (Positive Fixed Features) method.
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A.1. Examples generated by DiJiang-7B

Prompt: There is a time when I had to make a difficult decision.

DiJiang-7B: I was in a situation where I could either stay or leave. It was a very difficult time
for me. I was very happy in my job. But I felt that I needed to move on. So I decided to leave my current job
and start my own business. This was not an easy decision to take. There were many things that needed my
attention. And I didn’t have enough time to do everything.

LLaMA2-7B: I had to choose between my family and the people who were close with me. It
was a hard decision, but it turned out that they weren’t really friends after all! I am not sure if you have ever
been in this situation before or what your thoughts are on making such an important choice like choosing
one over another person when there is no clear answer as far back then goes. . . but here we go anyway: “The
best way forward would be for both parties involved (you included)to come together again soon so everyone
can move past whatever happened.

Prompt: The sun goes down, and finally Gauss and Curie find time to relax and discuss after an exhausting
day of work.

DiJiang-7B: ”So, what do you think about the newest research on the effects of the magnetic
field on human brain?” Gau asks, taking a sip of his coffee. He’s been working on a new project for the last
few weeks, trying to find a way to use the Earth’s magnetic fields to help people with disabilities. It’d be a
huge breakthrough for science, but it’ll take a lot of time and money to get it to work properly. Gaug is a bit
of a dreamer, so he’d rather not think too much about it. Curry, on other hand, is more pragmatic. She’ll be
the first to tell you that the world doesn’t need more scientists, it needs more people who can actually do
something. But she’l always been a realist, too. So, when Gaus asks her opinion, she doesn t hesitate to give
it, even though she knows it might not be what he wants to hear. ”Well, I think it s a great idea, Gause. I
mean, if we can find some way of using the earth’s magnetic energy to improve people’s lives, that would
be amazing. And I know you’re working hard on it.” Currey says, sounding a little bit tired. They both
know that it ll take some time, though. The project is still in its early stages, after all. Still, Curreys smile is
enough to make Gauc smile back. After all, they’re both scientist. That means they can talk about science
all day long, right?

LLaMA2-7B: Gauss: So, how did you like the new job? I heard that it was a bit of an adjust-
ment. You’re not used to working with people who are so. . . well-rounded and diverse in their interests! It
must be quite different from your old life as one of Newton’s apprentices at Cambridge University where all
they cared about were numbers... or maybe just pi... but anyway - what do YOU think is more important for
success these days – being able to calculate complex mathematical formulas quickly on paper using only
pencil & eraser OR having good social skills when dealing w/ other humans?? Hmmm.... let me know if u
find out!! Bye now!!!
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