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Abstract
While the great capability of Transformers signif-
icantly boosts prediction accuracy, it could also
yield overconfident predictions and require cali-
brated uncertainty estimation, which can be com-
monly tackled by Gaussian processes (GPs). Ex-
isting works apply GPs with symmetric kernels
under variational inference to the attention kernel;
however, omitting the fact that attention kernels
are in essence asymmetric. Moreover, the com-
plexity of deriving the GP posteriors remains high
for large-scale data. In this work, we propose
Kernel-Eigen Pair Sparse Variational Gaussian
Processes (KEP-SVGP) for building uncertainty-
aware self-attention where the asymmetry of at-
tention kernels is tackled by Kernel SVD (KSVD)
and a reduced complexity is acquired. Through
KEP-SVGP, i) the SVGP pair induced by the two
sets of singular vectors from KSVD w.r.t. the at-
tention kernel fully characterizes the asymmetry;
ii) using only a small set of adjoint eigenfunctions
from KSVD, the derivation of SVGP posteriors
can be based on the inversion of a diagonal ma-
trix containing singular values, contributing to
a reduction in time complexity; iii) an evidence
lower bound is derived so that variational parame-
ters and network weights can be optimized with
it. Experiments verify our excellent performances
and efficiency on in-distribution, distribution-shift
and out-of-distribution benchmarks.

1. Introduction
In recent years, Transformers (Vaswani et al., 2017) stand
out among deep learning models, achieving state-of-the-art
performances and excelling in feature learning in diverse
applications (Brown et al., 2020; Dosovitskiy et al., 2021;
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Touvron et al., 2021; Wu et al., 2022). However, the large ar-
chitecture capacities of Transformers could also lead to over-
confident predictions (Guo et al., 2017; Mukhoti et al., 2020)
with risks of robustness-related issues in safety-critical appli-
cations (Moon et al., 2020; Zhu et al., 2023) where reliable
uncertainty quantification can help. Bayesian approaches
allowing rich probabilistic interpretations of model predic-
tions have been well studied on modern neural networks
(Blundell et al., 2015; Gal & Ghahramani, 2016; Kendall &
Gal, 2017; Salimbeni & Deisenroth, 2017; Geifman et al.,
2019; Zhang et al., 2020), where posterior inferences are
often conducted in weight spaces (Foong et al., 2020; Ritter
et al., 2021; Coker et al., 2022). In Transformers, uncer-
tainty estimation with Variational Inference (VI) (Graves,
2011) is relatively less studied. Existing works include the
studies using VI on layer weights (Tran et al., 2019; Xue
et al., 2021), attention matrix (Fan et al., 2020; Cinquin
et al., 2022) and attention outputs (Liu et al., 2020; Chen &
Li, 2023), vital in providing reliable predictions.

Gaussian processes (GPs) (Rasmussen & Williams, 2006)
serve as principal tools for uncertainty estimation within
Bayesian inference. Though GPs provide posterior distribu-
tions in closed forms, they are intractable for large datasets,
e.g., long-sequence data for Transformers, as time complex-
ity to the posterior GPs scale as O(N3) where N is the
number of training samples. Sparse Variational Gaussian
Process (SVGP) (Titsias, 2009) deploying VI is proposed as
an efficient alternative to classical GP. It conducts posterior
approximation based on a small set of s “inducing points
(variables)” yielding a reduction of time complexity from
O(N3) to O(Ns2). Recently, SVGPs are utilized (Chen
& Li, 2023) on attention outputs for uncertainty estimation.
However, we underscore that the self-attention kernel is in
essence asymmetric (Tsai et al., 2019; Wright & Gonzalez,
2021; Chen et al., 2023), whereas SVGPs can only be char-
acterized with symmetric kernels, resulting in a nontrivial
gap in capturing the intrinsic rationale.

Chen et al. (2023) casts the asymmetric self-attention kernel
in the framework of Kernel Singular Value Decomposition
(KSVD) (Suykens, 2016; Tao et al., 2023), which fully char-
acterizes the asymmetry of the attention kernel through two
sets of projection outputs w.r.t. both right and left singular
vectors and can be efficiently optimized through an auxiliary
loss. In this paper, we propose Kernel-Eigen Pair Sparse
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Figure 1. Illustration of canonical self-attention and our KEP-
SVGP in one layer. (a) The attention kernel Katt in canonical
self-attention is induced by two different feature maps ϕq, ϕk re-
lated to queries and keys; hence Katt is in essence asymmetric. (b)
KEP-SVGP consists of one SVGP pair induced by the two sets of
projection outputs based on ϕq, ϕk from KSVD w.r.t. Katt, which
fully characterizes the asymmetry of self-attention in the posterior.
The posteriors are now approximated based on the inversion of
a diagonal matrix Λ containing top s singular values, thereby of
time complexity O(s).

Variational Gaussian Processes (KEP-SVGP) for building
uncertainty-aware self-attention where the asymmetry of
attention kernel is tackled by KSVD and a reduced time
complexity in computing the SVGPs posterior is also ac-
quired. Specifically, through KEP-SVGP:

• Our SVGP pair induced by the left and right singu-
lar vectors of KSVD w.r.t. the attention kernel ma-
trix fully characterizes the asymmetry in the poste-
rior. This SVGP pair is obtained by setting the pair
of adjoint eigenfunctions (Schmidt, 1907; Stewart,
1993) w.r.t. the asymmetric attention kernel to formu-
late “inducing variables”, which is a technique named
kernel-eigen features for SVGPs (Lázaro-Gredilla &
Figueiras-Vidal, 2009; Leibfried et al., 2020). Note
that this technique has not yet been explored for large-
architecture models, such as Transformers.

• We reduce the time complexity of the matrix inversion
in SVGPs posterior approximation from O(s3) to O(s).
By using the singular vectors-induced SVGP pair, the
posterior is now approximated based on the inversion
of a truncated singular value matrix, e.g., correspond-
ing to top-s singular values, which is a diagonal matrix.

• An evidence lower bound (ELBO) tailored for KEP-
SVGP is derived, so that variational parameters and the
network weights can be jointly optimized with ELBO.

• KEP-SVGP’s efficacy and efficiency are experimentally
verified on in-distribution, distribution-shift and out-of-
distribution benchmarks without sacrificing accuracy.1

1Code is at https://github.com/yingyichen-cyy/KEP-SVGP.

2. Related Work
Uncertainty Estimation Uncertainty estimation aims at
providing confidence scores to the predictions, hence help-
ing with both interpretability and trustworthiness of the
models, and benefits downstream tasks, including failure
prediction (Hendrycks & Gimpel, 2017; Li et al., 2024),
model calibration (Guo et al., 2017), OOD detection (Zhu
et al., 2023), etc. MSP (Hendrycks & Gimpel, 2017) takes
the maximum softmax probabilities from the softmax label
distribution in deep neural network (DNN) classifiers as
confidence scores. Temperature Scaling (Guo et al., 2017)
is a post-hoc model calibration method which optimizes a
single temperature parameter within the softmax in the DNN
classifier on a validation set to calibrate predictions. Monte-
Carlo Dropout (MC Dropout) (Gal & Ghahramani, 2016)
casts dropout training in DNNs as approximate Bayesian
inference in deep Gaussian processes, hence modelling un-
certainty with dropout NNs. Kronecker-factored last layer
Laplace approximation (KFLLLA) (Kristiadi et al., 2020)
calibrates uncertainty on a ReLU network with asymptotic
confidence of a last-layer Gaussian-approximated binary
ReLU classifier with Laplace approximation. Deep Ensem-
bles (Lakshminarayanan et al., 2017) ensembles DNNs for
well-calibrated uncertainty estimates. Note that all the above
mentioned methods can be easily implemented in different
network architectures, such as Transformers.

Deep Gaussian Processes Damianou & Lawrence (2013)
introduces a deep hierarchy of GPs, where each layer is a
GP or GP latent variable model. Rather than combining
with DNNs, Damianou & Lawrence (2013) utilizes deep GP
hierarchies and are limited to small datasets. Aitchison et al.
(2021) also focuses on the deep hierarchy of GPs by en-
compassing Damianou & Lawrence (2013) into deep kernel
processes, where each GP layer with isotropic covariance
kernel is connected to Wishart distribution and thus is fully
characterized by the Gram matrix. Milsom et al. (2024)
proposes convolutional deep kernel machine (C-DKM). De-
spite the naming, it belongs to deep GPs operating on Gram
matrices (Aitchison et al., 2021) but focuses on convolu-
tional kernels. Another category is deep kernel learning
(DKL). Wilson et al. (2016) proposes stochastic variational
deep kernel learning (SV-DKL), which introduces an extra
GP layer to DNN backbones, where the DKL is in the sense
of applying kernel machines on top of a DNN, which is ag-
nostic in architectures. SV-DKL requires two-step training,
i.e., the backbone pretraining and the finetuning with the
extra GP layer. Ober et al. (2021) further empirically inves-
tigates Wilson et al. (2016). Discussions on KEP-SVGP’s
connections to deep GPs are provided in Section 4.1.

Bayesian Transformers Tran et al. (2019) and Xue et al.
(2021) perform variational inference (VI) on Transformers’
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layer weights, which can underfit the data, verified both
empirically (Chen & Li, 2023) and theoretically (Foong
et al., 2020; Coker et al., 2022). Fan et al. (2020) and
Cinquin et al. (2022) perform VI on attention matrix where
their experimental settings can be too restrictive for complex
problems (Chen & Li, 2023). VI can be also performed
on attention outputs (Liu et al., 2020; Chen & Li, 2023).
Liu et al. (2020) fits an extra GP layer over the last layer
output, which can be treated as a deep kernel learning in
Transformer. Chen & Li (2023) proposes Sparse Gaussian
Process Attention (SGPA) by formulating the self-attention
with one SVGP. Our KEP-SVGP is different from SGPA in
i) we use two SVGPs with two kernel-eigen features, hence
taking the asymmetry in self-attention into consideration,
while SGPA considers one vanilla SVGP; ii) we manage to
reduce time complexity for self-attention to linear with the
number of input data N , while SGPA remains N2. More
discussions on the comparisons of time complexity between
KEP-SVGP and SGPA are provided in Section 4.1.

3. Background
3.1. Sparse Variational Gaussian Processes

Gaussian Processes A GP (Rasmussen & Williams, 2006)
represents a distribution, denoted by GP , over real-valued
functions f(·) : X → R defined on an input domain
X ⊂ Rd. A GP prior is characterized through two real-
valued functions: a mean function µ(·) : X → R which is
often set to zero without loss of generality, and a symmet-
ric positive-definite covariance function parameterized by
a kernel function κ(·, ·) : X × X → R. When evaluating
a GP at any finite number of inputs X = [x1, . . . ,xN ]⊤,
xi ∈ X , we obtain a Gaussian marginal distribution of
function values f := [f(x1), . . . , f(xN )]⊤ ∈ RN , that is,

Prior: f(·) ∼ GP(0, κ(·, ·)) ⇒ f ∼ N (0,KXX),
(1)

with KXX := [κ(xi,xj)] ∈ RN×N . The training data is
(X,y) := {(xi, yi)}Ni=1 with y = [y1, . . . , yN ]⊤, yi ∈ R
being the given outputs to the inputs X . With the likelihood
y|f ∼ N (f , σ2IN ) being Gaussian, the posterior is also
a GP. Given the test inputs X∗, the posterior predictive
distribution of f∗ is

p(f∗|X∗, X,y) = N
(
KX∗X(KXX + σ2IN )−1y ,

KX∗X∗ −KX∗X(KXX + σ2IN )−1KXX∗
)
.

(2)

However, (2) is intractable for large-scale data as the inver-
sion of an N ×N matrix is of time complexity O(N3).

Sparse Variational Gaussian Processes SVGPs (Tit-
sias, 2009) variationally approximate GP posteriors with
a small set of s supports, i.e., (Z,u) := {(zm, um)}sm=1,
zm ∈ X , um = f(zm) ∈ R where the “inducing vari-
ables” u are evaluated at the “inducing points” Z. In

SVGPs, the mean µu is set to zero without loss of gen-
erality and the covariance matrix is KZZ := [κ(zi, zj)] ∈
Rs×s. Other than considering the marginal distribution
p(u) = N (0,KZZ), SVGPs give a variational distribution
q(u) = N (mu, Suu), mu ∈ Rs, Suu ∈ Rs×s (Leibfried
et al., 2020). Thus, a marginal distribution over f can be
obtained by q(f) =

∫
p(f |u)q(u) du, which corresponds

to the posterior whose distribution is also Gaussian:

q(f) = N
(
KXZK

−1
ZZmu,

KXX −KXZK
−1
ZZ(KZZ − Suu)K

−1
ZZKZX

)
,

(3)

where the kernel function values are KXZ := [κ(xi, zj)] ∈
RN×s, KZX := K⊤

XZ . In inference, the approximate
posterior distribution evaluated at test inputs can then
be obtained with (3). The optimization of SVGPs pro-
ceeds to maximize the evidence lower bound (ELBO)
Eq(f) [log p (y|f)] − KL (q(u)∥p(u)) for the variational
parameters mu and Suu in the variational distribution q(u).
Detailed derivations are given in Appendix A.1.

Kernel-Eigen Features for SVGPs Further in SVGPs,
the “inducing variables” u can be alternatively chosen as a
linear functional on f(·), which is called the “inter-domain
GPs” (Lázaro-Gredilla & Figueiras-Vidal, 2009; Leibfried
et al., 2020), such that

um =

∫
f(x)ϕm(x) dx, m = 1, . . . , s, (4)

where {ϕm(·)}sm=1 are the “inducing features” through the
real-valued function ϕm(·) : X → R. In particular, let
ϕm(·) := νm(·) be chosen as the m-th eigenfunction of the
symmetric kernel κ(·, ·) with eigenvalue λm, that is,

λmνm(·) =
∫
κ(·,x)νm(x) dx, m = 1, . . . , s. (5)

When evaluating the SVGP prior over a finite set X ⊂ X
and its inducing points Z, the chosen eigenfunction νm(·)
for the “inducing features” ϕm(·) in (4) leads to an eigen-
value problem, which corresponds to the finite case of the
integral equations w.r.t. the symmetric kernel function κ(·, ·)
in (5) (Williams & Seeger, 2000):

KXXH = HΛ, (6)

where H := [ν1, . . . ,νs] ∈ RN×s contains the eigenvec-
tors to the top-s nonzero eigenvalues of the kernel ma-
trix KXX , i.e., Λ = diag{λ1, . . . , λs}. With q(u) =
N (mu, Suu), the posterior distribution (3) in SVGPs with
kernel-eigen features is then yielded as:

Prior:
(
f
u

)
∼ GP

(
0,

[
KXX HΛ
ΛH⊤ Λ

])
⇓

q(f) = N
(
(HΛ)Λ−1mu,

KXX − (HΛ)Λ−1(Λ− Suu)Λ
−1(ΛH⊤)

)
.

(7)

3



Self-Attention through Kernel-Eigen Pair Sparse Variational Gaussian Processes

Remark 3.1. By the compact SVD KXX =
∑R

i=1 λiνiν
⊤
i

with R the rank of KXX , the covariance of the posterior
in (7) can be written as KXX − HΛH⊤ + HSuuH

⊤ =
UΛUU

⊤ +HSuuH
⊤, where ΛU = diag{λs+1, . . . , λR}

are the smallest non-zero (R− s) eigenvalues, and columns
of U are the corresponding eigenvectors. By the Eckart-
Young theorem (Eckart & Young, 1936), HΛH⊤ is the
best rank-s approximation to KXX . For low-rank matrices,
such as the self-attention (Wang et al., 2020), ∥UΛUU

⊤∥2F
is small, motivating to a faster-to-compute approximate
posterior by q̃(f) ∼ N

(
Hmu, HSuuH

⊤). Validity of
this approximation is numerically verified in Appendix D.6.

Recall that regular SVGPs (3) give the posterior involving
the inversion on KZZ ∈ Rs×s, and thereby have a time
complexity of O(s3). In contrast, with kernel-eigen fea-
tures in SVGPs, the empirical covariance matrix w.r.t. u
becomes diagonal, i.e., Λ, hence the time complexity of the
matrix inversion is O(s), leading to a greater improvement
in efficiency. Detailed derivations are in Appendix A.2.

3.2. Self-Attention as Asymmetric Kernel Machine

Self-Attention corresponds to Asymmetric Kernel Let
the input data sequence be {xi}Ni=1, xi ∈ X , self-attention
formulates the queries q(xi) = Wqxi, Wq ∈ Rdq×d, keys
k(xi) = Wkxi, Wk ∈ Rdk×d, and values v(xi) = Wvxi,
Wv ∈ Rdv×d, commonly with dq = dk. As pointed out in
Tsai et al. (2019), the attention matrix can be interpreted
as a kernel matrix with entries depicting the asymmetric
similarities between queries and keys:

κatt(xi,xj) := softmax(⟨Wqxi,Wkxj⟩ /
√
dk), (8)

where κatt(·, ·) : X×X → R is the kernel yielding attention
matrix Katt := [κatt(xi,xj)] ∈ RN×N . As Wq ̸= Wk

generally, we have ⟨Wqxi,Wkxj⟩ ̸= ⟨Wqxj ,Wkxi⟩, so
that the attention matrix is essentially asymmetric with
Kij ̸= Kji. The canonical self-attention output in each
head is denoted as O := [o1, . . . ,oN ]⊤ ∈ RN×dv with

oi =
∑N

j=1
v(xj)κatt(xi,xj), i = 1, . . . , N. (9)

Kernel-based approaches have become popular in study-
ing the attention (Choromanski et al., 2021; Nguyen et al.,
2022; Chi et al., 2022; Nguyen et al., 2023). However, they
resort to the techniques with symmetric kernels where the in-
puts are {q(xi)}Ni=1, {k(xj)}Ni=1. Differently, the following
Chen et al. (2023) works directly on the asymmetric kernel
function and is grounded on the original input {xi}Ni=1.

Self-Attention with Kernel SVD Chen et al. (2023) for-
mulates the self-attention mechanism with KSVD (Suykens,
2016; Tao et al., 2023) which allows asymmetric kernels,
and derives a primal-dual framework to represent the at-
tention outputs and the optimization. The asymmetric

kernel for self-attention is introduced as κatt(xi,xj) =
⟨ϕq(xi), ϕk(xj)⟩ with ϕq(·) : X → Rp and ϕk(·) : X →
Rp related to queries and keys, respectively. The primal-
dual representations of self-attention with KSVD give:

Primal:
{

e(x) =W⊤
e ϕq(x),

r(x) =W⊤
r ϕk(x),

Dual:

{
e(x) =

∑N
j=1 hrjκatt(x,xj),

r(x) =
∑N

i=1 heiκatt(xi,x),

(10)

where e(x), r(x) ∈ Rs are the projections related to queries
and keys, whose variances are maximized under KSVD as
shown in the objective (11). Primal variables We,Wr ∈
Rp×s serve as the projection weights, and dual variables
He := [he1 , . . . ,heN ]⊤, Hr := [hr1 , . . . ,hrN ]⊤ ∈ RN×s

are column-wisely the left and right singular vectors of the
attention matrix Katt. Note that the canonical self-attention
outputs in (9) corresponds to the dual representation of the
projection score e(x) in (10) once setting hrj := v(xj).

To fully exploit the asymmetry in self-attention kernel ma-
trix, Chen et al. (2023) proposes Primal-Attention, which
concatenates both projections e(x), r(x) w.r.t. right and
left singular vectors, such that Fi := [e(xi); r(xi)] =
[W⊤

e ϕq(xi);W
⊤
r ϕk(xi)]. With the KKT conditions, the

stationary solutions to KSVD yield a zero-value objective,
as proved in Lemma 4.2 in Chen et al. (2023). Thus, the
KSVD optimization in Primal-Attention can be flexibly im-
plemented by minimizing an auxiliary regularization loss:

min
We,Wr,Λ

LKSVD :=
[
− 1

2

∑N
i=1 e(xi)

⊤Λ−1e(xi)

− 1
2

∑N
j=1 r(xj)

⊤Λ−1r(xj) + Tr(W⊤
e Wr)

]2
,

(11)
seeking for the projections with maximal variances w.r.t.
the two sets of singular vectors, where Λ ∈ Rs×s is a
positive diagonal matrix of the top-s singular values. Primal-
Attention avoids computing the attention kernel matrix in
the dual by deploying the primal representations with greater
efficiency. Details of Chen et al. (2023) are in Appendix C.

4. KEP-SVGP for Self-Attention
In this section, the method of KEP-SVGP is illustrated in
Section 4.1, where two branches of SVGPs with the adjoint
kernel-eigen feature pair are considered based on KSVD to
capture asymmetry in self-attention. Section 4.2 provides
the optimization of KEP-SVGP.

4.1. Kernel-Eigen Pair SVGP

In (SV)GPs, the kernel function is required to be symmetric,
whereas the attention in Transformers is in essence asymmet-
ric. As shown in Chen et al. (2023), the asymmetric kernel
in self-attention can be fully characterized by two sets of
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projections under the KSVD framework. To variationally
model the outputs with the asymmetric attention kernel, we
use the pair of adjoint eigenfunctions in the integral equa-
tions w.r.t. the attention kernel for the kernel-eigen features,
so as to formulate the “inducing variables” in SVGPs.

Pair of Adjoint Eigenfunctions for Self-Attention With
asymmetric κatt(·, ·) (8), its adjoint eigenfunctions νem(·),
νrm(·) regarding the eigenvalue λm (Schmidt, 1907) satisfy

λmνem(·) =
∫
κatt(·, z)νrm(z) dz,

λmνrm(·) =
∫
κatt(x, ·)νem(x) dx.

(12)

The finite-sample cases to the integrals in (12) correspond to
the compact SVD on an asymmetric attention kernel matrix
Katt ∈ RN×N , i.e., KSVD (Tao et al., 2023), where the
approximation to νem(·), νrm(·) leads to the left and right
singular vectors. To differentiate from the symmetric cases,
eigenvalue λm in (12) with asymmetric kernels are named as
singular values (Stewart, 1993). In self-attention, this yields
the shifted eigenvalue problem (Lanczos, 1958; Suykens,
2016) w.r.t. the attention matrix Katt (Chen et al., 2023):

KattHr = HeΛ, K⊤
attHe = HrΛ, (13)

where Λ = diag{λ1, . . . , λs} contains the top-s nonzero
singular values of Katt, He, Hr ∈ RN×s are kernel-eigen
features defined in Section 3.2. However, the kernel matrix
in (13) is asymmetric, hence inconsistent with the symmetry
requirements of SVGPs in (6).

Two sets of integral equations w.r.t. a pair of symmetric
kernels can be introduced to equivalently characterize the
integral equations in (12) (Schmidt, 1907; Stewart, 1993):

λ2mνem(·) =
∫
κe(·, z)νem(z) dz,

λ2mνrm(·) =
∫
κr(x, ·)νrm(x) dx,

(14)

where κe(·, z) :=
∫
κatt(·,y)κatt(z,y) dy, κr(x, ·) :=∫

κatt(y,x)κatt(y, ·) dy correspond to two symmetric and
positive definite kernels and λ2m is the eigenvalue in the
induced two sets of integral equations. Thus, we can deploy
a SVGP pair with kernel-eigen features (5) to variationally
model the self-attention outputs.

Given the training data sequences in self-attention, the finite-
sample cases to integrals (14) give two eigendecompositions
w.r.t. symmetric kernels κe, κr:

(KattK
⊤
att)He = HeΛ

2, (K⊤
attKatt)Hr = HrΛ

2. (15)

The asymmetric attention matrix Katt can be fully char-
acterized by the symmetric KattK

⊤
att and K⊤

attKatt with
kernel-eigen feature pair He, Hr serving as the “inducing
features” in the resulting two SVGPs. Detailed derivations
of (15) are given in Appendix B.1.

SVGPs with Kernel-Eigen Features Pair In basic setups
of (SV)GPs, the processes are of single-output as in Sec-
tion 3.1 with f(·) : X → R. For the multi-dimensional
attention outputs, we consider independent multi-output
Gaussian processes (Leibfried et al., 2020) where a sepa-
rate SVGP is specified for each output dimension (Salim-
beni & Deisenroth, 2017; Chen & Li, 2023). Following
the KSVD framework with Primal-Attention setups (Chen
et al., 2023), we model the s-dimensional attention outputs
with the two sets of projections for capturing the asymme-
try, denoted as F e

[d] := F e[:, d], F r
[d] := F r[:, d] ∈ RN ,

d = 1, . . . , s, w.r.t. e(x), r(x) in (10), respectively. There-
fore, with (15), a SVGP pair w.r.t. the two symmetric ker-
nels KattK

⊤
att and K⊤

attKatt induced by the asymmetric
Katt is established. With the kernel-eigen feature pair He,
Hr on fe

[d],f
r
[d] ∈ RN , similar as (7) with Remark 3.1 our

SVGPs are attained as follows:

Prior:

(
fe
[d]

ue
[d]

)
∼ GP

(
0,

[
KattK

⊤
att HeΛ

2

Λ2H⊤
e Λ2

])
⇓

q̃(fe
[d]) = N

(
EXΛ−1mu,[d]︸ ︷︷ ︸

µe:=me
[d]

, EXΛ−2Suu,[d]E
⊤
X︸ ︷︷ ︸

Σe:=Le
[d]

Le
[d]

⊤

)

Prior:

(
fr
[d]

ur
[d]

)
∼ GP

(
0,

[
K⊤

attKatt HrΛ
2

Λ2H⊤
r Λ2

])
⇓

q̃(fr
[d]) = N

(
RXΛ−1mu,[d]︸ ︷︷ ︸

µr:=mr
[d]

, RXΛ−2Suu,[d]R
⊤
X︸ ︷︷ ︸

Σr:=Lr
[d]

Lr
[d]

⊤

)
(16)

with variational distributions on ue
[d],u

r
[d] ∈ Rs:

ue
[d],u

r
[d] ∼ N (mu,[d], Suu,[d]), (17)

where EX := [e(xi), . . . , e(xN )]⊤ ∈ RN×s and RX :=
[r(xi), . . . , r(xN )]⊤ ∈ RN×s are the projection matrices
w.r.t. right and left singular vectors of KSVD in (10), and
mu ∈ Rs×s, Suu ∈ Rs×s×s are the variational parameters
with mu,[d] := mu[:, d] ∈ Rs, Suu,[d] := Suu[:, :, d] ∈
Rs×s corresponding to the d-th output dimension. Note that
we set ue

[d],u
r
[d] from the same variational distribution since

the priors in SVGP pair in (16) share the same marginal
distribution of the “inducing variables”. Detailed derivations
of our SVGP pair (16) are given in Appendix B.2.

Based on the approximate posteriors in (16), the outputs of
the two SVGPs are obtained by the reparameterization trick
(Salimbeni & Deisenroth, 2017):

F e
[d] = me

[d] + Le
[d]ϵ, F r

[d] = mr
[d] + Lr

[d]ϵ, (18)

with ϵ ∼ N (0, IN ), where me
[d], m

r
[d] are the means in (16)

and Le
[d] := EXΛ−1Luu,[d], Lr

[d] := RXΛ−1Luu,[d] are
Cholesky factors of the approximate posterior covariances
Σe,Σr in (16), and Luu,[d] is the Cholesky factor of Suu,[d].
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Merging the SVGPs Utilizing the SVGP pair in (16) to
preserve the asymmetric Katt, we propose two schemes to
merge two SVGPs outputs in (18):

Addition: F[d] := F e
[d] + F r

[d] ∈ RN ,

Concatenation: F[d] := [F e
[d];F

r
[d]] ∈ R2N .

(19)

To align with the dv dimensions in standard Transformer ar-
chitectures (9), our s-dimensional outputs are applied with
linear projections, similar to Chen et al. (2023). Specifi-
cally, the final outputs O ∈ RN×dv of the attention layer
are: O := F addW add for the addition, O := W cat

1 F catW cat
2

for the concatenation, where F = [F[1], . . . , F[s]] is the out-
put matrix of our merged SVGPs with projection matrices
W add ∈ Rs×dv , W cat

1 ∈ RN×2N and W cat
2 ∈ Rs×dv . Both

schemes can be applied to data with fixed sequence lengths
common in computer vision tasks, while for those with vary-
ing sequence lengths common in language modelling, we
turn to the addition scheme. Note that for the concatena-
tion scheme, we can replace W cat

1 with AB⊤, A ∈ RN×s,
B ∈ R2N×s to maintain the linear complexity with N .
More details can be found in Appendix D.2.

Discussions on Time Efficiency The time complexity
of MSP (Hendrycks & Gimpel, 2017), i.e., the canonical
Transformer with softmax self-attention, is O(BN2), where
B is the batch size, N is the data sequence length. Re-
cently, Chen & Li (2023) employs SVGPs for self-attention
where Bayesian inference is performed in the attention out-
put space to calibrate uncertainty. Chen & Li (2023) pro-
poses: i) standard SGPA, which is based on regular SVGPs,
with a time complexity of O(BN3); ii) decoupled SGPA,
which sets s global “inducing points”, with time complex-
ity O(BN2s+ s3). However, decoupled SGPA still scales
quadratically w.r.t. the sequence length and needs the matrix
inversion with O(s3). In contrast, our posterior distribution
in (16) involves the matrix multiplication with O(BNs2)
and the inversion of the s× s diagonal matrix Λ with only
O(s), leading to O(BNs2 + Bs). To alignment with the
hidden dimensions in standard Transformers, after (19), our
concatenation merging scheme takes the matrix multiplica-
tion of O(N2s). In practice, we commonly have s < N
with s being distinctively smaller than N , so that, omit-
ting the effect of batch size, the main time complexities in
MSP, SGPA, and KEP-SVGP scale as O(N2), O(N2s), and
O(Ns2) for addition scheme, O(N2s) for concatenation
scheme, respectively. In practice, we pertain considerable
efficiency advantages for both our merging schemes, as we
by default apply KEP-SVGP to the last layer, yielding better
performances, instead of all layers as SGPA. Experiments
on training time efficiency are in Table 4 and Appendix D.4.

Discussions on Connections to Deep GPs KEP-SVGP
proposes a variational self-attention mechanism performing

Bayesian inference in the outputs of multi-head attention
blocks. Relevance: When multiple self-attention layers in a
Transformer are replaced by KEP-SVGP, the model can be
categorized as a specialized deep GPs; when only the last
self-attention layer is replaced by KEP-SVGP, the model
can be categorized as a stochastic variational model upon
deep kernel learning with Transformer backbones. Differ-
ences: i) As attention matrix is asymmetric and cannot be
simply treated as a GP covariance matrix, we propose two
GP branches to capture the asymmetry. Current literature in
deep GPs has not considered this asymmetric case observed
in transformers. ii) Rather than adding an extra GP layer
on top of a DNN (Wilson et al., 2016; Ober et al., 2021),
KEP-SVGP replaces the last self-attention layer without im-
posing extra layers for variational modelling. iii) Compared
to the two-step training in SV-DKL (Wilson et al., 2016),
KEP-SVGP trains from scratch. iv) C-DKM (Milsom et al.,
2024) is computationally demanding due to the large Gram
matrices in each layer, while KEP-SVGP is efficient. Hence,
some deep GPs methods are not comparable to KEP-SVGP
in transformers due to different setups. Experiments on SV-
DKL are in Section 5 with transformer for fair comparisons.

4.2. Optimization of KEP-SVGP

In optimization, we derive the ELBO objective for training
the variational parameters involved in our SVGP pair. For
Transformers with Nh heads in L attention layers applied
with KEP-SVGP, we denote {F l ∈ RN×(Nhdv)}Ll=1 as the
output of the l-th KEP-SVGP layer following the conven-
tion of linearly concatenating the heads. Since single-output
SVGPs (Leibfried et al., 2020) are employed as explained in
(18), we can perform the variational inference on each out-
put dimension of the attention heads before concatenating
them, rather than the inference directly on the multi-head
attention. With {ul,nh}L,Nh

l=1,nh=1 for the SVGPs in our KEP-
SVGP, the ELBO is formulated as:

max
Θ,{mu,Suu}

LELBO := Eq(FL|F 0)

[
log p(Y |FL)

]
−

L∑
l=1

Nh∑
nh=1

Eq(F l−1)

[
KL
(
q(ul,nh |F l−1)∥p(ul,nh |F l−1)

)]
(20)

where Θ denotes all network weights including We,Wr and
Λ, Y contains the labels of the input data F 0 := Xin. In
(20), the first item in LELBO corresponds to the objective of
the learning task, such as the cross-entropy loss, while the
second term of the Kullback–Leibler divergence balances
the distance between the prior and variational distribution of
the inducing variables ul,nh . Since ue, ur share the same
marginal prior and variational distributions conditioned on
each F l−1, we can consider one u for the KL divergence
term. The KL divergence involved in the ELBO of our
KEP-SVGP is depicted in Proposition 4.1, with detailed
derivations in Appendix B.3.
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Table 1. Mean and standard deviations on CIFAR-10, CIFAR-100, IMDB, CoLA benchmarks. Experimental results are reported over five
trials, with the best mean results shown in bold. ACC, AUROC, FPR95, ECE and Brier are percentages, AURC is ×103, NLL is ×10.

Dataset Method ACC/MCC ↑ AURC ↓ AUROC ↑ FPR95 ↓ ECE ↓ NLL ↓ Brier ↓

CIFAR-10
(Krizhevsky et al., 2009)

MSP (Hendrycks & Gimpel, 2017) 83.50±0.43 42.60±1.84 86.15±0.35 66.51±2.19 12.87±0.29 11.13±0.40 28.62±0.74
Temperature Scaling (Guo et al., 2017) 83.50±0.43 40.47±1.63 86.55±0.36 65.10±2.23 9.50±0.25 6.70±0.20 26.05±0.68

MC Dropout (Gal & Ghahramani, 2016) 83.69±0.51 41.36±1.45 86.18±0.28 66.49±1.96 12.48±0.43 10.35±0.41 28.09±0.73
KFLLLA (Kristiadi et al., 2020) 83.54±0.45 40.12±1.65 86.70±0.50 63.13±1.75 1.51±0.18 5.08±0.10 23.75 0.57
SV-DKL (Wilson et al., 2016) 83.82±0.58 39.78±1.91 86.57±0.38 65.02±1.33 11.32±0.55 7.88±0.57 27.03±0.96

KEP-SVGP (ours) 84.70±0.61 35.15±2.65 87.20±0.65 64.93±1.41 10.60±0.45 8.00±0.56 25.45±1.05

Deep Ensembles (Lakshminarayanan et al., 2017) 86.43 27.76 88.64 60.72 9.98 7.40 22.89
KEP-SVGP Ensembles (ours) 87.62 22.56 89.64 56.70 8.19 5.61 20.08

CIFAR-100
(Krizhevsky et al., 2009)

MSP (Hendrycks & Gimpel, 2017) 52.82±0.53 229.25±4.41 82.01±1.93 75.45±0.83 30.97±0.61 33.21±1.13 74.89±1.03
Temperature Scaling (Guo et al., 2017) 52.82±0.53 223.83±4.18 82.47±0.34 71.79±0.97 17.36±0.68 21.82±0.54 64.92±0.84

MC Dropout (Gal & Ghahramani, 2016) 53.37±0.62 224.01±4.82 81.44±0.17 75.12±1.12 30.09±0.80 31.78±1.22 73.51±1.24
KFLLLA (Kristiadi et al., 2020) 51.35±0.64 263.59±4.65 79.62±0.19 71.86±1.30 37.98±4.61 27.21±1.66 82.84±3.82
SV-DKL (Wilson et al., 2016) 53.00±0.71 228.10±8.35 81.41±0.63 72.22±1.63 1.59±0.22 17.28±0.31 60.07±0.87

KEP-SVGP (ours) 55.02±0.83 209.75±6.20 81.71±0.30 74.03±0.90 27.80±0.57 28.38±0.45 69.91±1.12

Deep Ensembles (Lakshminarayanan et al., 2017) 59.65 165.27 83.84 71.40 24.41 22.93 62.01
KEP-SVGP Ensembles (ours) 62.45 144.63 84.56 70.68 21.01 19.64 56.63

IMDB
(Maas et al., 2011)

MSP (Hendrycks & Gimpel, 2017) 88.17±0.52 35.27±3.04 82.29±0.87 71.41±1.57 4.01±1.36 3.10±0.26 17.88±0.95
Temperature Scaling (Guo et al., 2017) 88.17±0.52 35.27±3.04 82.29±0.87 71.08±1.55 1.05±0.70 2.89±0.12 17.40±0.80

MC Dropout (Gal & Ghahramani, 2016) 88.34±0.65 34.62±3.17 82.24±0.83 71.65±2.03 2.66±1.84 2.97±0.27 17.47±1.19
KFLLLA (Kristiadi et al., 2020) 88.17±0.52 35.20±3.01 82.31±0.86 71.07±1.51 19.13±0.73 4.38±0.07 25.88±0.63
SV-DKL (Wilson et al., 2016) 88.86±1.04 59.84±18.90 73.20±5.56 69.91±3.68 7.31±8.27 3.38±0.82 19.62±5.18

SGPA (Chen & Li, 2023) 88.36±0.75 33.14±3.46 82.78±0.44 70.85±2.46 5.52±0.46 3.40±0.10 18.05±0.81
KEP-SVGP (ours) 89.01±0.14 30.69±0.69 83.22±0.31 68.15±0.95 3.72±0.81 3.00±0.13 16.56±0.25

Deep Ensembles (Lakshminarayanan et al., 2017) 89.57 28.69 83.45 67.69 2.42 2.68 15.60
KEP-SVGP Ensembles (ours) 89.68 27.79 83.56 67.54 3.43 2.84 15.68

CoLA
(Warstadt et al., 2019)

MSP (Hendrycks & Gimpel, 2017) 26.93±1.38 205.47±7.62 64.55±0.86 89.86±1.29 23.84±2.23 14.45±2.83 52.15±2.43
Temperature Scaling (Guo et al., 2017) 26.93±1.38 205.46±7.61 64.55±0.91 90.09±0.77 18.98±3.33 8.72±1.18 47.59±2.85

MC Dropout (Gal & Ghahramani, 2016) 26.41±1.87 203.93±8.34 65.15±0.76 88.58±0.53 23.33±2.16 13.74±2.64 51.35±2.43
KFLLLA (Kristiadi et al., 2020) 26.90±1.31 204.31±8.57 64.60±0.96 90.06±0.74 2.51±1.09 5.94±0.04 40.52±0.38
SV-DKL (Wilson et al., 2016) 26.65±1.38 235.76±10.03 62.14±1.36 89.94±1.79 18.13±8.92 8.07±1.86 48.45±6.41

SGPA (Chen & Li, 2023) 26.15±1.12 210.03±6.30 64.18±0.68 90.35±1.47 16.48±0.79 8.76±0.34 45.77±0.54
KEP-SVGP (ours) 30.54±1.61 186.66±8.50 65.16±0.86 88.39±0.83 15.89±3.48 8.54±1.66 43.55±2.99

Deep Ensembles (Lakshminarayanan et al., 2017) 27.35 184.96 67.02 87.93 22.82 12.45 49.45
KEP-SVGP Ensembles (ours) 31.02 164.06 67.88 85.18 14.96 7.40 40.68

Proposition 4.1. The Kullback–Leibler divergence in the
ELBO objective (20) is equal to

1
2

s∑
d=1

[
Tr(Λ−2Suu,[d]) +m⊤

u,[d]Λ
−2mu,[d]

+ log |Λ2|
|Suu,[d]|

− s
] (21)

where Λ ∈ Rs×s is diagonal whose inversion is of O(s).

The training objective of KEP-SVGP is min −LELBO +
ηLKSVD, where η > 0 is the regularization constant. In
our objective, we also incorporate loss LKSVD in KSVD
given in (11), ensuring that He, Hr in (15) are kernel-eigen
features defined in Section 3.2 for SVGPs. Monte-Carlo
sampling is used to compute LELBO, where function values
are generated iteratively by passing through each layer with
the reparameterization trick (Kingma & Welling, 2013).

5. Experiments
Datasets and Baselines We conduct empirical evaluations
on benchmarks including i) computer vision: CIFAR-10,
CIFAR-100 (Krizhevsky et al., 2009); ii) language mod-
elling: IMDB sentiment analysis (Maas et al., 2011), CoLA
linguistic acceptability prediction (Warstadt et al., 2019).
We compare our KEP-SVGP with i) single-model methods:

maximum softmax probability score (MSP) (Hendrycks &
Gimpel, 2017), Temperature Scaling (Guo et al., 2017),
Monte-Carlo Dropout (MC Dropout) (Gal & Ghahramani,
2016), Kronecker-factored last layer Laplace approximation
(KFLLLA) (Kristiadi et al., 2020), and SGPA (Chen & Li,
2023); ii) ensemble method: we compare our KEP-SVGP
Ensembles with Deep Ensembles (Lakshminarayanan et al.,
2017). In the experiments, we set the concatenation merg-
ing scheme for computer vision datasets, and the addition
merging scheme for language modelling datasets. Unless
specified, we replace the last-layer self-attention with KEP-
SVGP, as this simple setup already achieves better perfor-
mances with improved efficiency.

Training Configurations and Evaluation Metrics For
both CIFAR-10, CIFAR-100, we train 7-layer Vision Trans-
former (ViT) (Dosovitskiy et al., 2021), optimized by Adam
with batch size 128 and a cosine learning rate initialized
with 10−3 for 300 epochs. Following Chen & Li (2023), for
IMDB, we adopt one-layer Transformer, trained with batch
size 32 with a cosine learning rate initialized with 10−3 for
20 epochs; for CoLA, we adopt a two-layer Transformer
trained with batch size 32, an initial cosine learning rate
of 5 × 10−4 for 50 epochs. For evaluations, in addition
to test accuracy (ACC), we consider a variety of metrics

7
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Table 2. Performance under distribution shift. The averaged results
for 15 kinds of corruption under five different levels of perturbation
severity are reported.

Method ACC ↑ AURC ↓ AUROC ↑ FPR95 ↓ ECE ↓ NLL ↓ Brier ↓
CIFAR-10-C

MSP 69.17 151.07 78.71 77.98 24.75 24.27 53.99
MC Dropout 69.26 150.11 78.70 78.01 24.26 22.79 53.39

KFLLLA 69.17 146.55 79.59 75.11 6.94 9.72 43.17
SV-DKL 68.95 150.90 79.10 76.70 22.43 16.45 51.94

KEP-SVGP (ours) 69.71 144.90 79.40 77.13 22.03 18.30 50.70

Deep Ensembles 73.93 114.14 81.47 73.98 20.14 17.40 44.82
KEP-SVGP Ensembles (ours) 73.67 115.65 81.54 73.85 18.34 14.17 43.42

CIFAR-100-C
MSP 39.19 394.14 76.64 79.52 40.53 48.98 96.31

MC Dropout 39.62 389.91 76.67 79.27 39.73 47.29 95.12
KFLLLA 38.00 419.64 76.41 77.18 27.43 31.33 88.19
SV-DKL 40.17 379.79 77.84 76.40 19.48 27.75 78.76

KEP-SVGP (ours) 39.69 391.65 76.57 78.93 37.82 43.83 93.13

Deep Ensembles 46.33 312.35 78.90 76.73 33.40 35.91 82.98
KEP-SVGP Ensembles (ours) 46.31 315.69 78.76 76.38 31.21 33.03 80.93
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Figure 2. Comparisons of our KEP-SVGP with MSP under dis-
tribution shift. Performance on 15 types of corruption under the
severity level of 5 is reported, where models are trained on CIFAR-
10/ViT and tested on CIFAR-10-C.

widely used for failure prediction and uncertainty calibra-
tion, presenting more comprehensive analyses: i) failure
prediction: the area under risk coverage curves (AURC)
(Geifman & El-Yaniv, 2017), the area under the receiver
operating characteristic curve (AUROC) (Davis & Goadrich,
2006), FPR95 that returns FPR at 95% TPR; ii) uncertainty
calibration: expected calibration error (ECE) (Naeini et al.,
2015), negative predictive log-likelihood (NLL), and Brier
score (Brier, 1950). More implementation details including
choices of s, η, kernel functions, Monte-Carlo sampling for
ELBO during inference are given in Appendix D.1.

5.1. Comparison Results

Uncertainty Awareness on In-distribution Data In Ta-
ble 1, we evaluate the in-distribution performances on
four benchmarks where results on CoLA are measured
with Matthew correlation coefficient (MCC) (Matthews,
1975; Warstadt et al., 2019). Among single-model meth-
ods, KFLLLA and Temperature Scaling are two post-hoc
approaches designed for calibration and show good perfor-
mances w.r.t. ECE, NLL and Brier. However, the perfor-
mance of KFLLLA is not stable across tasks, e.g., it has the
highest ECE on CIFAR-100, while not able to improve much
regarding the failure prediction metrics. Our KEP-SVGP
has consistently better performance across tasks. Compared

Table 3. OOD detection performance with AUROC (%) and AUPR
(%). The average results over five trials are reported.

ID CIFAR-10 CIFAR-100

OOD SVHN CIFAR-100 LSUN SVHN CIFAR-10 LSUN

AUROC ↑
MSP 86.56 81.50 87.48 75.83 67.14 74.97

MC Dropout 86.56 81.67 88.19 76.62 67.54 74.94
KFLLLA 75.95 75.67 80.00 72.81 65.37 71.25
SV-DKL 75.48 76.81 82.02 74.35 65.72 72.03

KEP-SVGP (ours) 84.75 82.32 91.50 79.98 67.51 78.22

Deep Ensembles 90.74 85.22 90.25 79.49 70.09 77.93
KEP-SVGP Ensembles (ours) 88.15 85.36 93.24 84.16 70.44 81.28

AUPR ↑
MSP 81.34 83.30 89.08 65.85 68.42 78.74

MC Dropout 81.89 83.50 89.69 67.03 68.93 78.81
KFLLLA 66.58 78.51 83.22 58.98 67.50 74.42
SV-DKL 64.68 78.79 84.71 59.63 68.83 74.91

KEP-SVGP (ours) 79.05 84.07 92.77 71.57 68.83 81.65

Deep Ensembles 87.79 86.75 91.62 71.38 71.30 82.05
KEP-SVGP Ensembles (ours) 84.35 86.78 94.29 77.69 71.68 84.70
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Figure 3. KEP-SVGP leads to better confidence separation be-
tween ID correct and OOD samples.

with MSP, our method not only improves upon ACC/MCC,
but significantly reduces the AURC, NLL, and other com-
paring metrics. Although SV-DKL using two-step training
shows better performance in some metrics on CIFAR-100,
KEP-SVGP has overall better performance regarding all
benchmarks. Notably, compared to the latest method for un-
certainty calibration on Transformers (SGPA), KEP-SVGP
distinctively surpasses its performances w.r.t. both failure
prediction and calibration metrics, together with signifi-
cantly improved efficiency as later shown in Table 4. Deep
Ensembles integrates five independently trained models and
achieves more advantageous results than single-model meth-
ods. Compared to Deep Ensembles, KEP-SVGP Ensembles
still outperforms it on all datasets and w.r.t. most metrics.
Moreover, KEP-SVGP can serve as a good complement for
further improvement in calibration, given in Appendix D.3.

Robustness on Distribution-shift Data We consider
CIFAR-10-C and CIFAR-100-C (Hendrycks & Dietterich,
2019) in Table 2, which are corrupted data of CIFAR-10/100
containing 15 types of input corruptions over 5 levels of cor-
ruption severity. Models are trained on clean CIFAR-10/100
and evaluated on corrupted CIFAR-10/100-C. As Tempera-
ture Scaling is designed for in-distribution uncertainty only,
we omit its comparison herein. Among almost all single-
model methods, KEP-SVGP is with best ACC. Although
KFLLLA has good calibration metrics on both datasets, its
ACC is equal to or lower than that of MSP, indicating that
its good calibration performance comes at the cost of ACC.
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Table 4. Comparisons of performance and efficiency on a single NVIDIA Tesla V100 SXM2 32 GB. Results are reported over five trials.

Method Time
Complexity

CIFAR-10 CIFAR-100 IMDB CoLA

ACC ↑ NLL ↓ s/Epoch ACC ↑ NLL ↓ s/Epoch ACC ↑ NLL ↓ s/Epoch MCC ↑ NLL ↓ s/Epoch

MSP O(N2) 78.11±0.10 13.40±0.07 29.58 52.16±0.50 43.90±0.42 29.76 88.17±0.52 3.10±0.26 16.65 26.93±1.38 14.45±2.83 23.09
SGPA O(N2s) 77.87±0.12 6.97±0.02 137.28 53.02±0.36 25.64±0.41 288.04 88.36±0.75 3.40±0.10 1662.36 26.15±1.12 8.76±0.34 28.05

KEP-SVGP (ours) O(Ns2) 78.27±0.30 6.29±0.06 30.97 56.26±0.70 20.10±1.10 32.21 89.01±0.14 3.00±0.13 32.30 30.54±1.61 8.54±1.66 23.95

Table 5. Ablation on the asymmetry of our SVGP pair on CoLA.
Results are reported over five trials.

Pairing MCC ↑ AURC ↓ AUROC ↑ FPR95 ↓ ECE ↓ NLL ↓ Brier ↓
MSP 26.93 205.47 64.55 89.86 23.84 14.45 52.15

F e
[d] + F e

[d] 28.71 199.48 64.05 89.36 21.85 13.15 49.99
F r
[d] + F r

[d] 28.10 196.65 64.66 90.01 18.99 10.76 47.68

F e
[d] + F r

[d] 29.31 189.08 64.88 88.51 16.08 9.02 44.16

SV-DKL is a strong method on CIFAR-100-C, however, its
ACC on CIFAR-10-C is even lower than the MSP baseline,
which is less desirable. KEP-SVGP has good ACC with
more stable uncertainty metrics. Figure 2 shows the com-
parisons to MSP built upon canonical softmax-based Trans-
former where KEP-SVGP improves the model robustness
under various corruptions. With ensembles, Deep Ensem-
bles is a classical method admitted with strong robustness
against distribution shift. Notably, KEP-SVGP Ensembles
provides better results than Deep Ensembles on more met-
rics, especially on CIFAR-10-C. As we are not aiming at
achieving SOTAs in all metrics/setups, current results can
verify KEP-SVGP’s robustness under distribution shift.

Out-of-distribution Detection An effective estimator
with reliable confidence is expected to well separate out-
of-distribution (OOD) data and misclassified in-distribution
(ID) data from correct predictions. Hence, we consider OOD
detection, where CIFAR-10/100 are taken as the ID data
with evaluations on each other, SVHN (Netzer et al., 2011)
and LSUN (Yu et al., 2015). In Table 3, KEP-SVGP can
overall boost the AUROC and AUPR over baselines. Note
that though KFLLLA has good performance on the tasks
of in-distribution calibration and distribution-shift datasets,
it cannot handle OOD detection well, while our method
maintains its effectiveness. Moreover, our KEP-SVGP En-
sembles achieves the best performance almost in all cases,
e.g., the boost on CIFAR-100→SVHN is 4.67% in AU-
ROC, 6.31% in AUPR over Deep Ensembles, which is quite
substantial. Figure 3 shows that KEP-SVGP leads to less
confidence overlap between OOD and correct ID compared
with MSP, MC Dropout, which is desirable.

5.2. Time Complexity

Table 4 gives the training time efficiency discussed in Sec-
tion 4.1. We adopt same architectures in Chen & Li (2023)
on all datasets for fair comparisons with SGPA. Compared
to the latest SVGPs-based counterpart SGPA, KEP-SVGP
significantly reduces the computational time over all bench-

marks, which is consistent with the analytical results on time
complexity. Compared to MSP, it is reasonable that KEP-
SVGP takes comparable or sometimes slightly longer train-
ing time as O(Ns2) can be sometimes larger than O(N2)
with the chosen rank s. KEP-SVGP distinctively outper-
forms MSP on all datasets and metrics, only with a slightly
extra training time. More results are in Appendix D.4.

5.3. Ablation Study

In Table 5, we investigate the effectiveness of leveraging our
SVGPs for characterizing the asymmetric self-attention. We
adopt a two-layer Transformer with all layers substituted by
KEP-SVGP, which can also investigate our model applied
to deep layers. We consider addition scheme for merging
the outputs of SVGPs, i.e., F e

[d] + F r
[d], and compare with

the symmetric cases, which only include a single SVGP
under the same architecture, i.e., either F e

[d] + F e
[d] or F r

[d] +
F r
[d]. Results show that we achieve performance gains by

leveraging our SVGP pair conceived from the asymmetry
on the self-attention kernel. Moreover, the 2-layer KEP-
SVGP performs slightly inferior than transformers with
only the last attention layer replaced by KEP-SVGP in Table
1. This can be due to the fact that shallow layer may not
necessarily enjoy a low-rank property (Chen et al., 2023).
Nevertheless, all variants of our 2-layer KEP-SVGP in Table
5 clearly outperform the MSP baseline, further verifying
the effectiveness of our SVGPs, especially the asymmetry
in our KEP-SVGP. More ablation results are provided in
Appendix D.5.

6. Conclusion
In this work, we propose a novel variational modelling for
realizing more reliable self-attention outputs through two
branches of SVGPs, which leverages the pair of adjoint
eigenfunctions w.r.t. the asymmetric attention kernel to for-
mulate a pair of kernel-eigen features for “inducing features”
in SVGPs. First, we fully characterize the intrinsic asym-
metry of the attention kernel by utilizing the adjoint pair
of SVGPs. Second, by deploying KSVD into SVGPs, we
manage to reduce the time complexity of posterior processes
approximation significantly. Third, we tailor the ELBO for
optimizing the variational parameters in our model. Experi-
ments verify our enhanced reliability and efficiency. To the
best of our knowledge, this is the first variational inference
modelling of Transformers with the asymmetry in attention
kernel addressed.

9



Self-Attention through Kernel-Eigen Pair Sparse Variational Gaussian Processes

Acknowledgements
This work is jointly supported by the European Research
Council under the European Union’s Horizon 2020 re-
search and innovation program/ERC Advanced Grant E-
DUALITY (787960), iBOF project Tensor Tools for Tam-
ing the Curse (3E221427), Research Council KU Leu-
ven: Optimization framework for deep kernel machines
C14/18/068, KU Leuven Grant CoE PFV/10/002, The Re-
search Foundation–Flanders (FWO) projects: GOA4917N
(Deep Restricted kernel Machines: Methods and Founda-
tions), Ph.D./Postdoctoral grant, the Flemish Government
(AI Research Program), EU H2020 ICT-48 Network TAI-
LOR (Foundations of Trustworthy AI-Integrating Reason-
ing, Learning and Optimization), Leuven.AI Institute.

Impact Statement
In this work, we provide a new variational inference mod-
elling for realizing uncertainty-aware self-attention mod-
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A. Analytical Derivations of SVGPs
A.1. Derivations of (3): Variational Marginal Distribution in SVGPs

As an efficient alternative to the classical GPs (2), SVGPs (Titsias, 2009) variationally approximate the Gaussian posterior
distribution with a small set of s supports, i.e., (Z,u) := {(zm, um)}sm=1, zm ∈ X , um = f(zm) ∈ R, commonly with
s≪ N , where Z are named “inducing points” and u are “inducing variables”. In SVGPs, the mean µu is often set to zero
and the covariance matrix is given by Kuu := [κ(zi, zj)] ∈ Rs×s. The joint GP and the conditional GP of f(·) conditioned
on u are as follows:

Prior:
(
f(·)
u

)
∼ GP

(
0,

[
κ(·, ·) κ·u
κu· Kuu

])
⇓

f(·)|u ∼ GP
(
κ·uK

−1
uuu, κ(·, ·)− κ·uK

−1
uuκu·

) (22)

with κ·u := [κ(·, z1), . . . , κ(·, zs)], κu· := [κ(z1, ·), . . . , κ(zs, ·)]⊤, and κu· = κ⊤
·u. Then, the corresponding conditional

distribution of the function values f on u is as follows:

p(f |u) = N (KXZK
−1
ZZu, KXX −KXZK

−1
ZZKZX),

where KXZ := [κ(xi, zj)] ∈ RN×s, KZX := [κ(zi,xj)] ∈ Rs×N and KZZ = Kuu ∈ Rs×s.

In addition to considering the marginal distribution p(u) = N (0,KZZ), SVGPs provide a variational distribution q(u) =
N (mu, Suu) where mu ∈ Rs, Suu ∈ Rs×s (Leibfried et al., 2020). The variational marginal distribution of f is given by
q(f) =

∫
p(f |u)q(u) du, which is still Gaussian and corresponds to the approximate posterior (3) in Section 3.1:

q(f) = N
(
KXZK

−1
ZZmu, KXX −KXZK

−1
ZZ(KZZ − Suu)K

−1
ZZKZX

)
. (23)

In inference, the posterior distribution of f∗ evaluated at test inputs X∗ is then given by

q(f∗|X∗, Z) = N
(
KX∗ZK

−1
ZZmu, KX∗X∗ −KX∗ZK

−1
ZZ(KZZ − Suu)K

−1
ZZKZX∗

)
.

In SVGPs, the evidence lower-bound (ELBO) objective involves the variational parameters mu, Suu in the variational
distribution q(u) = N (mu, Suu) and is used for the training

LELBO = Eq(f) [log p(y|f)]− KL (q(u)||p(u)) .

The derivation of this classical ELBO is provided in (30) in Appendix B.3. More details on SVGPs can refer to Titsias
(2009); Leibfried et al. (2020).

A.2. Derivations of (7): SVGPs with Kernel-Eigen Features

With (4), let ϕm(·) := νm(·) be chosen as the eigenfunction corresponding to the m-th largest eigenvalue λm w.r.t. the
kernel function κ(·, ·), i.e.,

∫
κ(·,x)νm(x) dx = λmνm(·) in (5). In this setup, the κ·u, κu·, Kuu of the prior GP in (22)

are updated as follows (Leibfried et al., 2020):

κ·u[m] = κu·[m] = λmνm(·),
Kuu = diag{λ1, . . . , λs},

(24)

where κ·u[m], κu·[m] are the m-th entry of κ·u and κu· respectively. The derivations of (24) are provided in the following.

The cross-covariance κ·u is a vector-valued function with s outputs. The scalar-valued function κ·u[m] corresponding to
the output index m is computed as:

κ·u[m] = E [(f(·)− 0) (um − 0)] = E
[
f(·)

(∫
f(x)νm(x) dx

)]
=

∫
E [f(·)f(x)] νm(x) dx =

∫
κ(·,x)νm(x) dx = λmνm(·).
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Similarly, the m-th output of the cross-covariance κu· is the attained as:

κu·[m] = E [(um − 0) (f(·)− 0)] = E
[(∫

f(x)νm(x) dx

)
f(·)

]
=

∫
E [f(x)f(·)] νm(x) dx =

∫
κ(x, ·)νm(x) dx

=

∫
κ(·,x)νm(x) dx = λmνm(·),

where the fifth equation holds with a symmetric κ(·, ·). The covariance Kuu is an s × s matrix with the [i, j]-th entry
computed by

Kuu[i, j] = E [(ui − 0) (uj − 0)] = E
[(∫

f(x)νi(x) dx

)(∫
f(x′)νj(x

′) dx′
)]

=

∫ ∫
E [f(x)f(x′)] νi(x)νj(x

′) dx′dx =

∫ ∫
κ(x,x′)νi(x)νj(x

′) dx′dx

=

∫
νi(x)

∫
κ(x,x′)νj(x

′) dx′dx =

∫
νi(x)λjνj(x)dx = λj

∫
νi(x)νj(x)dx

= λi if i = j else 0.

(25)

The last equation in (25) establishes since eigenfunctions are orthonormal systems:
∫
νi(x)νj(x) dx equals one if i equals

j, and is zero otherwise. When evaluating the SVGP prior over a finite set X ⊂ X and its inducing points Z, we have the
finite case of the integral equations w.r.t. the symmetric kernel function κ(·, ·) in (5) (Williams & Seeger, 2000) as

KXXH = HΛ,

where H := [ν1, . . . ,νs] ∈ RN×s contains the eigenvectors to the top-s nonzero eigenvalues of the kernel matrix KXX ,
i.e., Λ = diag{λ1, . . . , λs}. By substituting (24) together with its finite sample case (6) into the GP prior in (22), with
q(u) = N (mu, Suu), the posterior distribution corresponding to (23) is then formulated as

Prior:
(
f
u

)
∼ N

(
0,

[
KXX HΛ
ΛH⊤ Λ

])
⇓

q(f) = N
(
(HΛ)Λ−1mu, KXX − (HΛ)Λ−1(Λ− Suu)Λ

−1(ΛH⊤)
)
.

(26)

This completes the derivation of (7) in the paper.

B. Analytical Derivations of KEP-SVGP
B.1. Derivations of (15): Two Eigenvalue Problems Induced by KSVD on the Asymmetric Attention Kernel Matrix

From the KSVD on the asymmetric attention kernel matrix Katt, we have Katt = HeΛH
⊤
r , where the left and right

singular vectors suffice H⊤
e He = I , H⊤

r Hr = I with he,i := He[:, i] = [he1 [i], . . . ,heN [i]]⊤ ∈ RN and hr,i := Hr[:
, i] = [hr1 [i], . . . ,hrN [i]]⊤ ∈ RN , i = 1, . . . , N . With KSVD, we have the shifted eigenvalue problem in (13), which gives(

KattK
⊤
att

)
He = Katt

(
HeΛH

⊤
r

)⊤
He = KattHrΛH

⊤
e He = KattHrΛ

(
H⊤

e He

)
= KattHrΛ = HeΛ

2,(
K⊤

attKatt

)
Hr =

(
HeΛH

⊤
r

)⊤
KattHr = HrΛH

⊤
e (KattHr) = HrΛH

⊤
e (HeΛ) = HrΛ

(
H⊤

e He

)
Λ = HrΛ

2.
(27)

More explanations on the shifted eigenvalue problem from SVD can refer to the Lanczos decomposition in Lanczos (1958),
Theorem 3.2 in Chen et al. (2023), Proposition 3.1 in Tao et al. (2023). This completes the derivation of (15) in the paper.

B.2. Derivations of (16): SVGP Pair on the Asymmetric Attention Kernel

Within the framework of KSVD (Suykens, 2016; Tao et al., 2023) w.r.t. the self-attention (Chen et al., 2023), we have
the equivalence between the primal and dual model representation for the projection matrices w.r.t. right and left singular
vectors of KSVD in (10), such that

EX :=W⊤
e ϕq(X)

(10)
= KattHr

(13)
= HeΛ, RX :=W⊤

r ϕk(X)
(10)
= K⊤He

(13)
= HrΛ, (28)
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where EX := e(X) = [e(xi), . . . , e(xN )]⊤ ∈ RN×s, RX := RX = [r(xi), . . . , r(xN )]⊤ ∈ RN×s are the projection
matrices w.r.t. right and left singular vectors of KSVD in (10). Here, we only consider the output of the d-th dimension.
We consider the approximate posterior GP w.r.t. the symmetric kernel KattK

⊤
att and K⊤

attKatt given the distribution on
the inducing points ue

[d],u
r
[d] ∼ N (mu,[d], Suu,[d]), where mu,[d] := mu[:, d] ∈ Rs and Suu,[d] := Suu[:, :, d] ∈ Rs×s

correspond to the d-th output dimension for the variational parameters mu ∈ Rs×s, Suu ∈ Rs×s×s.

According to the formulations of SVGPs in (7) and (26), the mean of the posterior process in the first set of SVGP in (16) is
attained as

µe := (HeΛ
2)Λ−2mu,[d] = (HeΛ)Λ

−1mu,[d] = EXΛ−1mu,[d], (29)

with the covariance matrix

Σe := KattK
⊤
att − (HeΛ

2)Λ−2(Λ2 − Suu,[d])Λ
−2(Λ2H⊤

e )

= KattK
⊤
att − (HeΛ

2)Λ−2(Λ2H⊤
e ) + (HeΛ)Λ

−1Suu,[d]Λ
−1(HeΛ)

⊤

= KattK
⊤
att −HeΛ

2H⊤
e︸ ︷︷ ︸

≈0 (see Remark 3.1)

+EXΛ−1Suu,[d]Λ
−1E⊤

X

≈ EXΛ−1Suu,[d]Λ
−1E⊤

X

= EXΛ−2Suu,[d]E
⊤
X .

The attention matrix is commonly low-rank (Wang et al., 2020; Chen et al., 2023), so we motivate to utilize the fast-to-
compute approximate posterior as given by Remark 3.1. Numerical evidence is also provided in Appendix D.6, verifying
the validity of Remark 3.1 in our work. Therefore, we have the approximate distribution of the posterior process as

q̃(fe
[d]) = N

(
EXΛ−1mu,[d], EXΛ−2Suu,[d]E

⊤
X

)
.

Similarly, based on (16) and (7), the mean of the posterior process w.r.t. the symmetric kernel K⊤
attKatt is

µr := (HrΛ
2)Λ−2mu,[d] = (HrΛ)Λ

−1mu,[d] = RXΛ−1mu,[d],

as given in (16), and the corresponding covariance is

Σr := K⊤
attKatt − (HrΛ

2)Λ−2(Λ2 − Suu,[d])Λ
−2(Λ2H⊤

r )

= K⊤
attKatt − (HrΛ

2)Λ−2(Λ2H⊤
r ) + (HrΛ)Λ

−1Suu,[d]Λ
−1(HrΛ)

⊤

= K⊤
attKatt −HrΛ

2H⊤
r︸ ︷︷ ︸

≈0 (see Remark 3.1)

+RXΛ−1Suu,[d]Λ
−1R⊤

X

≈RXΛ−1Suu,[d]Λ
−1R⊤

X

= RXΛ−2Suu,[d]R
⊤
X ,

hence yielding the approximate distribution of the posterior process as

q̃(fr
[d]) = N

(
RXΛ−1mu,[d], RXΛ−2Suu,[d]R

⊤
X

)
.

This completes the derivation of (16) in the paper.

B.3. Derivations of (20): The ELBO Objective of KEP-SVGP

For the optimization of our approximate posterior distribution, we follow the spirit of deep Gaussian Processes in Salimbeni
& Deisenroth (2017); Damianou & Lawrence (2013). Hence the Transformers applied with KEP-SVGP can be viewed as a
sparse approximation to a deep GPs with kernels in each layer. To proceed our derivations, we firstly recall the formulations
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of the ELBO involving y,f ,u:

log p(y,f ,u) = log

∫
p(y|f ,u)︸ ︷︷ ︸

likelihood

p(f ,u)︸ ︷︷ ︸
GP Prior

dfdu = log

∫
q(f ,u)

p(y|f ,u)p(f ,u)
q(f ,u)

dfdu

Jensen’s inequality
≥

∫
q(f ,u) log

(
p(y|f ,u)p(f ,u)

q(f ,u)

)
dfdu

=

∫
q(f ,u) log

(
p(y,f ,u)

q(f ,u)

)
dfdu = Eq(f ,u)

[
log

p(y,f ,u)

q(f ,u)

]
. (30)

Similar to the doubly stochastic variational inference framework (Salimbeni & Deisenroth, 2017) for the ELBO derivation,
let {F l ∈ RN×(Nhdv)}Ll=1 be the output of the l-th KEP-SVGP layer, where L is the number of layers and Nh is the number
of heads. Our model follows the convention of concatenating these multiple heads in canonical self-attention. As is shown
in (16) and (17), ue, ur share the same marginal prior and variational distribution, hence we only need to optimize one set
of variational parameters {mu, Suu} for each KEP-SVGP layer. In this manner, we consider {ul,nh}L,Nh

l=1,nh=1 for the L
attention layers with Nh heads, and the resulting process can be characterized with the joint density:

p
(
Y, {F l}Ll=1, {ul,nh}L,Nh

l=1,nh=1|F
0
)
= p

(
Y |FL

)︸ ︷︷ ︸
likelihood

∏L

l=1
p
(
F l|{ul,nh}Nh

nh=1, F
l−1
)
p
(
{ul,nh}Nh

nh=1)|F l−1
)

︸ ︷︷ ︸
GP Prior

, (31)

where we define F 0 := Xin as the inputs to the Transformer. The variational posterior of ({F l}Ll=1, {ul,nh}L,Nh
l=1,nh=1) is

then:

q
(
{F l}Ll=1, {ul,nh}L,Nh

l=1,nh=1|F
0
)
=
∏L

l=1
p(F l|{ul,nh}Nh

nh=1, F
l−1)q

(
{ul,nh}Nh

nh=1)|F l−1
)
, (32)

where q
(
{ul,nh}Nh

nh=1)|F l−1
)

is the variational distribution, and q(F l|{ul,nh}Nh
nh=1, F

l−1) = p(F l|{ul,nh}Nh
nh=1, F

l−1) is
also assumed as in Chen & Li (2023). Moreover, we also follow the assumption in Chen & Li (2023) on the conditional
independency for each head across layers. When considering {ul,nh}Nh

nh=1 from each head, we then have the factorizations:

p
(
{ul,nh}Nh

nh=1)|F l−1
)
=
∏Nh

nh=1
p
(
ul,nh |F l−1

)
, q

(
{ul,nh}Nh

nh=1)|F l−1
)
=
∏Nh

nh=1
q
(
ul,nh |F l−1

)
. (33)

With the prerequisites derived above, we now proceed to formulate the ELBO in our KEP-SVGP:

LELBO
(30)
= E

q
(
{F l}L

l=1,{u
l,nh}L,Nh

l=1,nh=1|F 0
)
log p

(
Y, {F l}Ll=1, {ul,nh}L,Nh

l=1,nh=1|F 0
)

q
(
{F l}Ll=1, {ul,nh}L,Nh

l=1,nh=1|F 0
)


(31),(32)
= E

q
(
{F l}L

l=1,{u
l,nh}L,Nh

l=1,nh=1|F 0
)
log p

(
Y |FL

)∏L
l=1 p

(
F l|{ul,nh}Nh

nh=1, F
l−1
)
p
(
{ul,nh}Nh

nh=1)|F l−1
)

∏L
l=1 p(F

l|{ul,nh}Nh
nh=1, F

l−1)q
(
{ul,nh}Nh

nh=1)|F l−1
)


(33)
= E

q
(
{F l}L

l=1,{u
l,nh}L,Nh

l=1,nh=1|F 0
) [log p (Y |FL

)]
+E

q
(
{F l}L

l=1,{u
l,nh}L,Nh

l=1,nh=1|F 0
)
[
log

∏L,Nh
l=1,nh=1 p

(
ul,nh |F l−1

)∏L,Nh
l=1,nh=1 q (u

l,nh |F l−1)

]

= Eq(FL|F 0)

[
log p

(
Y |FL

)]
+
∑L

l=1

∑Nh

nh=1
Eq(F l−1)Eq(ul,nh |F l−1)

[
log

p
(
ul,nh |F l−1

)
q (ul,nh |F l−1)

]
= Eq(FL|F 0)

[
log p

(
Y |FL

)]
−
∑L

l=1

∑Nh

nh=1
Eq(F l−1)

[
KL
(
q
(
ul,nh |F l−1

)
∥ p
(
ul,nh |F l−1

))]
, (34)

where q(FL|F 0) =
∫ ∏L

l=1 p(F
l|{ul,nh}Nh

nh=1, F
l−1)q({ul,nh}Nh

nh=1|F l−1) {dul,nh}L,Nh
l=1,nh=1{dF l}L−1

l=1 . In this regard, the
first term in the above ELBO can be estimated using Monte-Carlo samples layer-wise with the reparameterization trick
(Kingma & Welling, 2013). As introduced in Section 4.1, we consider the independent multi-output Gaussian Processes
(Leibfried et al., 2020) by specifying separate s single-output SVGPs. Hence, an independent SVGP is formulated for each
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of the output dimension, i.e., q(ul,nh
[d] |F

l−1) = N (mu,[d], Suu,[d]), p(u
l,nh
[d] |F

l−1) = N (0,Λ2). Thus, the KL-divergence
term in (34) for each head index by nh in each layer indexed by l can be expressed in the following form:

KL
(
q
(
ul,nh |F l−1

)
∥ p
(
ul,nh |F l−1

))
=
∑s

d=1
KL
(
q
(
ul,nh
[d] |F

l−1
)
∥ p
(
ul,nh
[d] |F

l−1
))

(16),(17)
=

1

2

∑s

d=1

[
Tr(Λ−2Suu,[d]) +m⊤

u,[d]Λ
−2mu,[d] + log

|Λ2|
|Suu,[d]|

− s

]
,

where s is the number of output dimensions of ul,nh
[d] ∈ Rs, and also the number of “inducing points” for the SVGPs. This

completes the derivation of (20).

C. More Background Materials
In this section, we recall Suykens (2016); Chen et al. (2023) so as to provide a better understanding of KEP-SVGP.

SVD under LS-SVM framework (Suykens, 2016) Let X ∈ RN×M be the data matrix, we first define two sources
of data, corresponding to the rows and columns of the data matrix X respectively: {xi := X⊤ϵi}Ni=1, {zj := Xεj}Mj=1

where ϵi ∈ RN , εj ∈ RM denote standard basis vectors, that is, the column vectors of the identity matrices IN and IM ,
respectively. The operations from X to {xi ∈ RM}Ni=1 and {zj ∈ RN}Mj=1 can be denoted by two linear feature maps:

φ(xi) := C⊤xi = C⊤X⊤ϵi, ψ(zj) := zj = Xεj , (35)

where φ : RM → N, ψ : RN → RN and C ∈ RM×N is a compatibility matrix so that xi, zj can be compared with each
other after applying he feature maps. Now we consider the following constrained optimization problem, i.e., primal problem,
which aims at maximizing the projection variances w.r.t. rows and columns data of X:

max
w,v,ei,rj

J =
1

2γ

∑N
i=1 e

2
i +

1

2γ

∑M
j=1 r

2
j − w⊤v

s.t. ei = w⊤φ(xi), i = 1, . . . , N,
rj = v⊤ψ(zj), j = 1, . . . ,M,

(36)

where w, v ∈ RN are the projection weights, ei, rj ∈ R are the projection scores, and γ ∈ R is the regularization coefficient.
This projection variances maximization in (36) exactly follows the spirit of singular value decomposition (SVD).

KSVD problem for self-attention (Chen et al., 2023) Let {xi ∈ Rd}Ni=1 be the input data sequence. The asymmetric self-
attention kernel matrix Katt can be formulated by Katt := [κatt(xi,xj)] ∈ RN×N where κatt(xi,xj) := ⟨ϕq(xi), ϕk(xj)⟩
with two feature maps ϕq, ϕk related to queries and keys, corresponding to (35). Chen et al. (2023) gives the primal
problem of KSVD of the self-attention mechanism as follows:

max
We,Wr,Λ

J =
1

2

∑N
i=1 e(xi)

⊤Λ−1e(xi) +
1

2

∑N
j=1 r(xj)

⊤Λ−1r(xj)− Tr
(
W⊤

e Wr

)
s.t. e(xi) =W⊤

e ϕq(xi), i = 1, . . . , N,
r(xj) =W⊤

r ϕk(xj), j = 1, . . . , N,

(37)

which corresponds to the primal problem in (36). Here, We,Wr ∈ Rp×s are the projection weights, ϕq(·), ϕk(·) : Rd → Rp

are the feature maps, e(xi) =W⊤
e ϕq(xi) ∈ Rs, r(xj) =W⊤

r ϕk(xj) ∈ Rs are the projection scores, and Λ ∈ Rs×s is the
regularization coefficient which is a positive diagonal matrix. J in (37) maximizes the projection variances of W⊤

e ϕq(xi),
W⊤

r ϕk(xj) regarding queries and keys, and involves a regularization term coupling the projections.

With Lagrangian duality and KKT conditions, the dual problem of (37) is

KattHr = HeΛ, K⊤
attHe = HrΛ (38)

where Λ ∈ Rs×s is a positive diagonal matrix serves as singular values of Katt, and He = [he1 , . . . ,heN ]⊤ ∈ RN×s,
Hr = [hr1 , . . . ,hrN ]⊤ ∈ RN×s are the dual variables serving as the left and right singular vectors, respectively. Then the
projection scores can be either represented in the primal using explicit feature maps or in the dual using kernel functions:

Primal:
{
e(x) =W⊤

e ϕq(x)
r(x) =W⊤

r ϕk(x)
, Dual:

{
e(x) =

∑N
j=1 hrjκatt(x,xj)

r(x) =
∑N

i=1 heiκatt(xi,x).
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According to Lemma 4.2 in Chen et al. (2023), the solutions He, Hr,Λ to the dual problem (38) lead to the zero-value
objective J in (37). Therefore, we set LKSVD := J2 in (11) as our KSVD regularization loss. By minimizing LKSVD to zero
through SGD-based optimizers, we realize SVD on Katt in self-attention in an approximate way.

D. More Experiment Details
First of all, in addition to reporting good performance on in-distribution datasets, we would like to provide some rationales
behind KEP-SVGP’s good performance in distribution-shift robustness and out-of-distribution detection, which are two
common tasks for Bayesian models:

• With KSVD, we use the pair of adjoint eigenfunctions of the attention kernel as the “inducing features” in two SVGPs
with two benefits: i) eigenfunctions span an orthogonal system seeking informative feature spaces; ii) eigenfunctions in
our KSVD promote low-rank property to attention, where noisy patterns could be filtered out.

• Recall that the distribution-shift data corrupts the clean data with shifts, while out-of-distribution (OOD) data are from
another different distribution. i) As distribution shifts can serve as noisy patterns, the low-rank property can help
filtering out these noises. ii) As the feature space of OOD data can be largely different from that of the in-distribution
data, the informative features by the eigenfunctions can help distinguish such differences.

D.1. More Details on Experimental Setups

All experiments presented in this work are implemented with PyTorch, which can be conducted on a single NVIDIA GeForce
RTX 2070 SUPER GPU. Our implementation is available at https://github.com/yingyichen-cyy/KEP-SVGP.

Experiments on CIFAR-10 and CIFAR-100 For both CIFAR-10 and CIFAR-100, we randomly split the original training
set into 90% training and 10% validation set, leading to a training set of 45K samples and a validation set of 5K. The test
set is of 10K samples. For both datasets, we use 7-layer ViT (Dosovitskiy et al., 2021) where the 32×32 input images are
tokenized with patches of size 4× 4, the embedding dimension is 384, the hidden dimension is 384, the number of heads is
12, the dropout ratio is 0.1, and the classification token is turned off. For all KEP-SVGPs on these two datasets, we set the
regularization constant of KSVD loss in our objective min −LELBO + ηLKSVD as η = 10, set the rank for KSVD as s = 10.
In our experimental section, we choose the feature maps related to the cosine similarity kernel on queries and keys as in
Chen et al. (2023). All models are trained from scratch with ADAM optimizer (Kingma & Ba, 2015), except the post-hoc
methods including Temperature Scaling and KEFLLLA, for 300 epochs with 5 warm-up epochs. The batch size is 128,
and a cosine learning rate schedule is utilized with a learning rate of 10−3 and minimum learning rate of 10−5. Ensemble
methods are based on the models trained independently over 5 trials. More specifically, deep Ensembles is implemented by
the mean ensembling of 5 independently trained transformers, which is the referred “regular transformer-based model along
with ensembling techniques”. KEP-SVGP Ensembles does the same for 5 independently trained KEP-SVGP transformers.
The best models are selected with the best validation accuracy. During inference, for MC Dropout and our KEP-SVGP,
predictive uncertainty is estimated using 10 Monte Carlo samples. Note that SGPA (Chen & Li, 2023) is very time and
memory consuming with 7-layer architectures, therefore we do not include it in the comparisons on CIFAR datasets in Table
1. However, we do include SGPA in Table 4 with all models trained with the same architectures as done in its original paper
(Chen & Li, 2023) for fair comparisons: 5-layer ViT on CIFAR-10, 6-layer ViT on CIFAR-100.

Experiments on IMDB We randomly split the IMDB original training set into 35K as training and 5K as validation,
the test set is of 10K samples. IMDB is with the maximum sequence length of 512. Following Chen & Li (2023), we
use 1-layer Transformer (Vaswani et al., 2017) where the embedding dimension is 128, the hidden dimension is 128, the
number of heads is 8, and the dropout ratio is 0.1. For our KEP-SVGP with addition scheme (19) for merging of SVGPs
outputs, we set KSVD regularization constant as η = 10, the KSVD rank as s = 10, with feature maps related to the cosine
similarity kernel on queries and keys (Chen et al., 2023). We train all models with ADAM optimizer, except for the post-hoc
methods including Temperature Scaling and KFLLLA, for 20 epochs with 5 warm-up epochs, a batch size of 32, and a
initial learning rate 10−3 which decays to 10−4 following a cosine learning rate decay. Ensemble methods are based on the
models trained independently over 5 trials. The best models are selected with the best validation accuracy. During inference,
for MC Dropout, SGPA and our KEP-SVGP, predictive uncertainty is estimated with 10 Monte Carlo samples.
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Table 6. Comparisons on W cat
1 ∈ RN×2N and AB⊤, A ∈ RN×s, B ∈ R2N×s on CIFAR-10. Forward time (s) is on a single V100.

Concatenation Forward Time (s) ACC ↑ AURC ↓ AUROC ↑ FPR95 ↓ ECE ↓ NLL ↓ Brier ↓
W cat

1 ∈ RN×2N 0.08±0.03 84.70±0.61 35.15±2.65 87.20±0.65 64.93±1.41 10.60±0.45 8.00±0.56 25.45±1.05
AB⊤, A ∈ RN×s, B ∈ R2N×s 0.05±0.02 84.71±0.10 36.01±1.01 86.63±0.31 67.72±1.08 10.53±0.22 8.03±0.32 25.57±0.33

Table 7. KEP-SVGP serves as a good complement to other methods for improving calibration. Experimental results are reported over five
trials, with the best mean results shown in bold. ACC, AUROC, FPR95, ECE and Brier are percentages, AURC is ×103, NLL is ×10.

Dataset Method ACC/MCC ↑ AURC ↓ AUROC ↑ FPR95 ↓ ECE ↓ NLL ↓ Brier ↓

IMDB
(Maas et al., 2011)

MSP (Hendrycks & Gimpel, 2017) 88.17±0.52 35.27±3.04 82.29±0.87 71.41±1.57 4.01±1.36 3.10±0.26 17.88±0.95
Temperature Scaling (TS) (Guo et al., 2017) 88.17±0.52 35.27±3.04 82.29±0.87 71.08±1.55 1.05±0.70 2.89±0.12 17.40±0.80

KEP-SVGP (ours) 89.01±0.14 30.69±0.69 83.22±0.31 68.15±0.95 3.72±0.81 3.00±0.13 16.56±0.25
KEP-SVGP+TS (ours) 89.01±0.14 30.71±0.76 83.22±0.36 68.38±0.60 1.19±0.19 2.73±0.03 16.21±0.16

CoLA
(Warstadt et al., 2019)

MSP (Hendrycks & Gimpel, 2017) 26.93±1.38 205.47±7.62 64.55±0.86 89.86±1.29 23.84±2.23 14.45±2.83 52.15±2.43
KFLLLA (Kristiadi et al., 2020) 26.90±1.31 204.31±8.57 64.60±0.96 90.06±0.74 2.51±1.09 5.94±0.04 40.52±0.38

KEP-SVGP (ours) 30.54±1.61 186.66±8.50 65.16±0.86 88.39±0.83 15.89±3.48 8.54±1.66 43.55±2.99
KEP-SVGP+KFLLLA (ours) 31.22±1.63 185.58±6.57 65.49±1.31 87.97±2.12 5.81±2.19 5.78±0.04 38.98±0.44

Experiments on CoLA This dataset provides an in-distribution training with 8551 samples and a in-distribution test of
527. Following Chen & Li (2023), we use 2-layer Transformer (Vaswani et al., 2017) where the embedding dimension is
128, the hidden dimension is 256, the number of heads is 4. For the input embedding, we adopt ELMO-style representation
(Peters et al., 2018). For our KEP-SVGP with addition merging scheme in (19), we set KSVD regularization constant
as η = 1, the KSVD rank as s = 5, with feature maps ϕq, ϕk in (10) related to the cosine similarity kernel (Chen et al.,
2023). We train all models with ADAM optimizer, except for the post-hoc methods including Temperature Scaling and
KFLLLA, for 50 epochs with 5 warm-up epochs, a batch size of 32, and a initial learning rate 5× 10−4 which decays to
10−5 following a cosine learning rate decay. Ensemble methods are based on the models trained independently over 5 trials.
During inference, for MC Dropout, SGPA and our KEP-SVGP, predictive uncertainty is estimated using 10 Monte Carlo
samples.

D.2. More Details on Concatenation Weights

For the concatenation merging scheme in Section 4.1, we can replace W cat
1 ∈ RN×2N with AB⊤ where A ∈ RN×s,

B ∈ R2N×s to maintain the overall linear time complexity with N when computing KEP-SVGP. We provide empirical
evaluations on comparing these two concatenation weight schemes in Table 6. By utilizing AB⊤, comparable performances
are obtained at less computational cost. However, we still adopt W cat

1 for all experiments in this paper so as to maintain
good failure prediction and calibration performances.

D.3. More Details on Calibration Improvement

We discuss the further potentials of KEP-SVGP here. The benefits of our KEP-SVGP can beyond the existing evaluations,
as the key idea of fully utilizing the asymmetry in self-attention is compatible with other calibration method and thus serves
as a good complement for a further boost in performances, as demonstrated in Table 7. Specifically, we find that

• KEP-SVGP+TS on IMDB: Temperature Scaling (TS) is a post-hoc method tuning the temperature scale inside the
softmax probability in the classification head. As KEP-SVGP directly models the attention blocks, it can be combined
with TS, leading to an improved calibration.

• KEP-SVGP+KFLLLA on CoLA: KFLLLA is a post-hoc method working on the last linear layer in the classification
head. Hence, fine-tuning the classification head with KFLLLA on pre-trained KEP-SVGP transformer improves both
failure prediction and calibration metrics.

D.4. More Details on Time Efficiency

In addition to Table 4, we also report forward time in seconds during training in Table 8 so as not to include the time taken by
the optimizer. It can be seen that we reach the same conclusion as in Section 5.2 that KEP-SVGP distinctively outperforms
MSP on all datasets with only a slightly extra forward time during training.
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Table 8. Performance and forward time (s) on a single NVIDIA Tesla V100 SXM2 32 GB. Results are reported over five trials.

Method Time
Complexity

CIFAR-10 CIFAR-100 IMDB CoLA

ACC ↑ Forward Time (s) ACC ↑ Forward Time (s) ACC ↑ Forward Time (s) MCC ↑ Forward Time (s)

MSP (Hendrycks & Gimpel, 2017) O(N2) 78.11±0.10 0.02±0.01 52.16±0.50 0.02±0.02 88.17±0.52 0.001±0.0 26.93±1.38 0.40±0.33
SGPA (Chen & Li, 2023) O(N2s) 77.87±0.12 0.15±0.0 53.02±0.36 0.27±0.0 88.36±0.75 0.63±0.07 26.15±1.12 0.47±0.37

KEP-SVGP (ours) O(Ns2) 78.27±0.30 0.02±0.02 56.26±0.70 0.03±0.01 89.01±0.14 0.01±0.0 30.54±1.61 0.37±0.41

Table 9. Ablation on KSVD regularization constant η and the merging scheme of the SVGP pair on CIFAR-10.

η ACC ↑ AURC ↓ AUROC ↑ FPR95 ↓ ECE ↓ NLL ↓ Brier ↓
[F e

[d];F
r
[d]]

10 84.70 35.43 87.17 62.55 10.71 7.95 25.32
1 83.77 39.28 87.08 66.36 12.09 9.67 27.64

0.1 83.78 37.39 87.86 64.12 12.04 9.62 27.46
0.01 82.60 44.60 86.17 67.13 13.12 11.16 29.85

F e
[d] + F r

[d]

10 84.04 38.99 86.64 66.04 11.64 9.39 27.02
1 84.45 37.32 86.97 65.02 11.30 8.80 26.27

0.1 83.56 39.74 87.03 63.63 12.22 9.49 27.84
0.01 81.46 49.71 85.81 66.51 13.94 11.24 31.35

D.5. Additional Ablations

There are two main hyper-parameters in KEP-SVGP: the regularization constant of KSVD loss η, the rank of KSVD s. For
the rank s, we adopt the default settings in Chen et al. (2023) and set s ∈ {5, 10}. As η balances LELBO and LKSVD, it is of
importance for KEP-SVGP. Therefore, we provide the ablation of η with rank s = 10 fixed on CIFAR-10 (Krizhevsky et al.,
2009), and also the ablation on the addition and concatenation merging schemes given in (19) in Table 9, so as to give a
guideline of the choice of schemes.

It can be seen in Table 9 that the concatenation merging scheme has an overall better performance among all metrics than
the addition scheme. The possible reason can be that positive and negative output values from the two SVGPs branches
can cancel each other out when employing the addition scheme, while the concatenation scheme can preserve the outputs
information. However, when dealing with language modelling tasks, we employ the addition scheme since it is sequence
length independent while most of the language datasets are with varying sequence length. We also find that η = 10 returns
better performances than choosing a small one. A larger η can help the model to conduct effective KSVD in an early stage,
contributing to the construction of more accurate SVGPs branches and thereby leading to better overall performances.

D.6. Low-rank Property in Attention Kernel Matrix

To further validate the approximate posterior distributions described in Remark 3.1, we present empirical evidence delving
into the low-rank property resided in the Transformer models. We adopt the two-layer Transformer on CoLA following
the setups in Appendix D.1. Specifically, we consider 3 different models: i) MSP; ii) last-layer KEP-SVGP; iii) two-layer
KEP-SVGP. All our methods here are with addition merging scheme. The spectrum analysis of the self-attention kernel
matrix in each layer of each model is provided in the following Figure 4.

According to the results in Figure 4, we find that

• The attention matrix in the layers of Transformer has low-rank property, though the shallow layer may not desires the
low-rank property as much as the deeper layer. This is consistent with the findings in Chen et al. (2023). (Figure 4(c))

• Most of the information (> 95% explained variance) of the attention matrix in both layers in the MSP baseline can be
captured by the top-5 singular vectors. Thus, the hyperparameter s = 5 in KSVD of our method is reasonable and
approaches the ground-truth rank of the attention kernel. Our method captures distinctively higher explained variances
in the top singular vectors than the MSP baseline. (Figure 4(a), Figure 4(b))

• Applying KEP-SVGP only to the last layer also enhances the low-rank property of the attention in other layers, as
shown in the comparisons between our last-layer KEP-SVGP and two-layer KEP-SVGP. (Figure 4(a), Figure 4(b))
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Figure 4. Spectrum analysis of the self-attention kernel matrix on CoLA. Specifically, we consider the normalized cumulative singular
values of the attention matrix of the two-layer Transformer models. (a) plots the spectrum results of the first-layer kernel matrix; (b) plots
the spectrum results of the second-layer kernel matrix; (c) plots the normalized cumulative singular values w.r.t. singular value index of
each layer, showing the low-rank property of the attention matrix of each model.

D.7. Additional Visualization on Distribution-shift Data

We provide comparisons of our KEP-SVGP with all other baselines under distribution shift in Figure 5. We report the
mean AURC results of all 5 severity levels under 15 types of corruption on CIFAR-10-C (Hendrycks & Dietterich, 2019).
All models are trained on CIFAR-10/ViT following the setups in Appendix D.1, and then tested on CIFAR-10-C. Our
KEP-SVGP has overall better and stable AURC than all other comparing methods.
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Figure 5. Comparisons of our KEP-SVGP with baselines under distribution shift. Mean AURC results of all 5 severity levels under 15
types of corruption are reported, where models are trained on CIFAR-10/ViT and tested on CIFAR-10-C.
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