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Abstract

Large language models (LLMs) frequently hal-
lucinate and produce factual errors, yet our un-
derstanding of why they make these errors re-
mains limited. In this study, we delve into the
underlying mechanisms of LLM hallucinations
from the perspective of inner representations,
and discover a salient pattern associated with
hallucinations: correct generations tend to have
sharper context activations in the hidden states
of the in-context tokens, compared to the incor-
rect ones. Leveraging this insight, we propose
an entropy-based metric to quantify the “sharp-
ness” among the in-context hidden states and in-
corporate it into the decoding process to formu-
late a constrained decoding approach. Experi-
ments on various knowledge-seeking and hallu-
cination benchmarks demonstrate our approach’s
consistent effectiveness, for example, achieving
up to an 8.6 point improvement on TruthfulQA.
We believe this study can improve our under-
standing of hallucinations and serve as a prac-
tical solution for hallucination mitigation. Code
is publicly available at https://github.com/hkust-
nlp/Activation Decoding.

1 Introduction
Large language models (LLMs) have made remarkable ad-
vancements in recent years, with extensive applications
across various domains (OpenAI, 2022; 2023; Kaddour
et al., 2023). Despite these advances, LLMs still face no-
table challenges regarding factuality, which could critically
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undermine the trustworthiness and reliability of LLMs, as
highlighted in recent studies (Chen et al., 2023; Ji et al.,
2023; Wang et al., 2023). To address the factuality issue,
many efforts have focused on retrieving external knowl-
edge (Ram et al., 2023b; Yu et al., 2023; Jiang et al., 2023)
for generation or fact-checking, as well as fine-tuning (Asai
et al., 2023) and self-evaluation (Pan et al., 2023; Xiong
et al., 2023). However, these methods often require high
computational resources or high-quality knowledge bases,
which may not be available for domain-specific cases. In
contrast, we aim to tackle this challenge from the perspec-
tive of model’s inner representations, investigating whether
the hidden states contain information about hallucination.

To gain this mechanistic understanding of hallucinations1

through the lens of hidden states, we begin by formulating
an internal knowledge extraction process following Geva
et al. (2023), to examine whether the hidden states of the
model encode the target knowledge in the response. The
underlying hypothesis is that hallucinated knowledge may
not be encoded into the intermediate hidden states. Specifi-
cally, for example, in the prompt ‘Beats Music is owned
by’, if the target token ‘Apple’ is encoded within the rep-
resentations of the subject ‘Beats Music’, we posit that
the model “knows” Beats Music and Apple are related in
some ways and Apple is more likely to be a correct answer.
In this case, we consider the token ‘Apple’ activated by the
representations of ‘Beats Music’. Our case study (Table 1)
on the COUNTERFACT dataset (Meng et al., 2022) – where
the subject, object, and relation annotations are available –
reveal that the correct answers have a significantly higher
rate of activation compared to incorrect answers.

However, this preliminary study based on the method
in Geva et al. (2023) requires knowledge triplet annotations.
To mitigate this requirement, we extend our investigation
to examining the activations of correct versus incorrect an-
swers across the full input sequence, moving beyond merely

1Hallucinations can be described as outputs that do not conform
to the model’s inner belief (Zou et al., 2023). However, the concept
of “inner belief” and its measurement remains debatable. Thus in
this paper, we use “hallucination” to denote a generation that is not
aligned with world knowledge to simplify the discussion, which
shares the same definition as “factuality”.
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Figure 1. Visualization of why in-context activation can serve as an alarming signal for factuality. For a given question (e.g., “Fabrizio
Spada passed away in ”), we visualize the activation of the truth and false tokens across transformer layers. Left: we use the ground
truth and false answers from COUNTERFACT (e.g., “Rome” or “Manila”) as the target tokens. In this example, the model generates
the correct answer. Right: we use the ground truth answer and the model’s generated false answer. We then calculate the activation
entropy across intermediate layers, focusing on the 26-th layer’s entropy value (detailed calculation in Section 3.4). This entropy metric is
annotated in the figure. Our findings reveal that incorrect tokens generally exhibit higher entropy than correct ones.

the subject focus. Our findings reveal that correct genera-
tions typically exhibit sharper context activations compared
to incorrect ones, particularly within the intermediate layers
across the in-context tokens. For instance, as illustrated
in the left part of Figure 1 when comparing the correct
prediction “Rome” to “Manila”, the correct prediction’s in-
context activations in intermediate layers (e.g., 26th layer)
are significantly sharper across the text sequence, while
“Manila” is only activated right before the output layers
(e.g., 32nd layer). Additional quantitative evidence reveals
this in-context sharpness in §3. These findings further moti-
vate us to formalize this in-context sharpnessof the model’s
representations to study hallucination.

To measure the observed in-context sharpness, we introduce
an entropy-based metric by normalizing all the context acti-
vations given a target token into a probability distribution,
and computing its entropy. Intuitively, a smaller entropy
value suggests a sharper in-context activation pattern, and a
greater chance of the token being factually correct. We first
validate the effectiveness of this metric in differentiating
the true and false answers (§3.4 and Figure 2), achieving an
AUROC up to 0.76. Then we incorporate entropy into the
decoding process, forming a constrained decoding approach
named Activation Decoding to improve factuality.

On question-answering tasks including TriviaQA (Joshi
et al., 2017), HotpotQA (Yang et al., 2018) and Natu-
ral Questions (Kwiatkowski et al., 2019), Activation
Decoding consistently outperforms other methods in re-
ducing factual error generations across different model size

(e.g., 16.1% increase in F1 score for HotpotQA on aver-
age). Our experiments on TruthfulQA (Lin et al., 2022)
demonstrate that Activation Decoding can achieve the
highest Truth∗Info scores that consider both factuality and
informativeness. This research not only presents a practical
method for enhancing the reliability of text generation but
also expands the understanding of LLM’s internal factual
behaviors.

2 Related Work
Factuality and Inner Representation Several recent
studies have focused on understanding factuality through
the analysis of inner representations. Among them, Yuksek-
gonul et al. (2024) identified a positive correlation between
factual errors and attention behaviors by analyzing attention
patterns. Halawi et al. (2023) attributes the factual errors
to false deduction heads and critical layers. Alternatively,
ITI (Li et al., 2023a) and Repe (Zou et al., 2023) proposed
using probing methods to locate error heads and layers in
models. These approaches collectively confirm that inner
representations carry rich information about a model’s inter-
nal processes and the factuality of its responses.

Controlled Generation Our research contributes to the
growing field of constrained decoding algorithms, especially
those designed to improve the factuality of language models.
This involves employing intervention strategies during the
generation process. Notably, ITI (Li et al., 2023a) and
Repe (Zou et al., 2023) propose to probe attention heads
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or layers associated with model correctness. They modify
the decoding process by adding direction vectors in favor of
truthful generation. DoLa (Chuang et al., 2024) assumes that
factual knowledge can be localized to particular transformer
layers and then utilizes the contrasting logits obtained from
projecting the later layers versus the earlier layers to adjust
the next-token distribution. Unlike these studies, we take
a new perspective to explore the relation between the in-
context sequence and the generated outputs.

Mechanistic Interpretability Our study also aligns with
mechanistic interpretability (Olah, 2022; Nanda et al., 2023),
especially the factual knowledge recall perspective. Prior
works established a connection between internal model com-
ponents and the retrieval of factual information, particularly
by analyzing knowledge triplets (subject, relation, and ob-
ject). These investigations reveal that MLP (multi-layer
perceptron) layers play a crucial role in the storage of knowl-
edge (Geva et al., 2022; Dai et al., 2022; Meng et al., 2022),
whereas attention mechanisms are more engaged in the trans-
fer of factual knowledge (Elhage et al., 2021; Geva et al.,
2023; Yuksekgonul et al., 2024). Building on these foun-
dational insights, our work aims to understand and further
enhance the factuality of the model’s generation.

3 Diving into Internal Representations
Inspired by Chuang et al. (2024); Li et al. (2023b); Zou et al.
(2023) which reveal that the inner representations in LLMs
contain rich information about hallucination, we delve into
these inner representations in this section, aiming to gain a
deeper insight and broaden our perspective on the implica-
tions of these internal states for factuality. We start with case
studies on a short-form QA dataset, and focus on whether
these inner representations can reflect factuality, and how
we can utilize them to detect and mitigate hallucinations.

3.1 Notation

LLMs, such as the GPT series, typically consist of an embed-
ding layer, a stack of H transformer layers, and a language
model classification head (i.e., LM head) layer, denoted as
W . This LM head maps the inner representation to the token
probability distribution for the next token. Given an input
sequence of T tokens {v1, . . . , vT } and vi ∈ V for a fixed
vocabulary V , the embedding layer first maps each token
into the corresponding d-dimensional vector {x0

1, . . . ,x
0
T }.

Then the H transformer layers will transform the input token
embeddings to a sequence of hidden states {xl

1, . . . ,x
l
T } at

each layer l. The LM head W predicts the probability of

Correct Incorrect

Raw-CFT
Activated 226 21
Unactivated 52 66
Acticated Rate (%) 81.29 24.14

GF-CFT
Activated 441 120
Unactivated 259 205
Activated Rate (%) 63.00 36.92

Table 1. Comparison of activated vs. unactivated samples in Raw-
CFT and GF-CFT using confusion matrices. ‘Activated’ refers to
samples whose generated tokens are activated by in-context tokens;
‘Correct’ refers to samples that are correctly predicted. Results
indicate that correct samples have a higher rate of activation.

the next token vT+1 using the hidden states xH
T :2

P (vT+1 | v1:T ) = softmax
(
WxH

T

)
vT+1

. (1)

3.2 Experimental Setup for the Case Study

We experiment with COUNTERFACT (Meng et al., 2022) as
a case study to showcase how inner representations tie with
factuality. COUNTERFACT is a short-form QA dataset, each
example x is paired with a true answer yt and a constructed
false answer yf (referred to as “ground false” later). Notably,
all the examples in COUNTERFACT contain annotations
of knowledge triplets for each prompt, in the format of
<subject, relation, object>. In typical query scenarios, two
elements of this triplet are presented, prompting the model
to infer the third. In §3.3, we will utilize these knowledge
triplet annotations to study inner representations of specific
locations.

We aim to examine and compare the inner representations of
the model in both cases where the model produces factually
correct and incorrect answers. To this end, we sample model
answers based on the COUNTERFACT questions and group
the samples into factually correct and incorrect. However,
we note that the ground-truth answer ys is sometimes not
the only correct answer in COUNTERFACT, bringing dif-
ficulty in determining whether the prediction is correct.3

As such, we construct two datasets in terms of two differ-
ent types of factual errors: GF-CFT where the incorrect
answers are exactly the ground false answers yf provided
by COUNTERFACT, and Raw-CFT where the incorrect an-
swers are from model predictions and manually judged by
the authors. GF-CFT is automatically constructed and the
ground false answers fail to represent various types of fac-

2For simplicity, we will omit the layer annotation when there
is no confusion.

3For example, in question “The twin city of Boston is” with
the ground-truth answer as “Athens”, LLaMA-2-chat-7B would
answer “a popular tourist destination” which is not factually wrong.
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tual errors, while Raw-CFT can better represent the true
distribution of the model. Please refer to Appendix B for
more details on the two datasets. In this section, we utilize
LLaMA2-chat-7B as the model for study. Next, we present
our findings under this experimental setup.

3.3 Finding 1: Activation implies answer correctness

Several studies (Ram et al., 2023a; Dar et al., 2023; Geva
et al., 2023) try to understand how inner representations
evolves through transformer layers to generate factually
correct outputs. Specifically, Geva et al. (2023) interprets in-
termediate layers as an information extraction process from
an information flow perspective. E.g, in a prompt ‘Beats
Music is owned by’, the embedding of the subject ‘Beats
Music’ contains many related attributes (like ‘Apple’) of it.
Inspired by this knowledge extraction interpretation, we aim
to investigate whether the model’s response is encoded in
the corresponding subject embedding and whether this is re-
lated to its answer correctness. The idea is that if the model
can successfully extract related attributes (e.g. ground truth
tokens) while processing the input sequence, it may indi-
cate the possession of the necessary knowledge to correctly
answer the questions, and hence is more likely to produce
correct responses.

To examine the above idea, we employ the projection
method (Ram et al., 2023a; Dar et al., 2023; Geva et al.,
2023) to map the hidden representations xi to a given vo-
cabulary token v through the output layer W :

s(i, v) = softmax
(
Wxi

)
v
, (2)

where s(i, v), the activation score, measures how likely the
given token v will be encoded by the subject’s last token
vi. We rank the activation scores for all vocabulary tokens
and consider a token activated by the subject token if it
ranks within the top 50 scores. If not, the token is deemed
unactivated. Note that here we use the hidden states of
the last subject token at the 26-th transformer layer output
as the subject embedding, within the 32 layers in total for
LLaMA2-chat-7B. We select the 26-th layer (referred to
as informative layer) based on our observation that deep
layers show a higher level of activation, suggesting that they
contain more internal knowledge, which also aligns with
the findings of Halawi et al. (2023). The location of the
informative layer is a tunable hyperparameter, while we
find that the conclusions are not sensitive among a range
of deep layers (e.g. across 26-30 layers) in the preliminary
experiments.

Observations Based on the RAW-CFT and GF-CFT
datasets, we examine whether the model-generated tokens
in the correct examples are activated more often than the
incorrect ones. As shown in Table 1, our results reveal a
clear trend: for correct answers, the portion of generated

tokens being successfully activated by in-context tokens
is significantly higher than incorrect answers (81.29% vs.
24.14% for Raw-CFT and 63.00% vs. 36.92% for GF-CFT).
These findings are in line with our hypothesis: successful
activations indicate higher chance of answer correctness.

3.4 Finding 2: The contextual entropy of correct
answers is consistently smaller than incorrect ones.

The above-mentioned analytical approach relies on the
knowledge triplet annotations from the COUNTERFACT
dataset, which is often unavailable in practice. To address
this challenge, we extend the approach in §3.3 to analyze the
activation between target tokens and all in-context tokens
(rather than solely considering the subject token) to capture
the overall pattern. Our visualization of activations in Fig-
ure 1 shows that correct and incorrect prediction candidates
demonstrate distinct patterns of activations: the in-context
activations across different locations in the context sequence
tend to be significantly sharper for the correct prediction
in the middle to high intermediate layers compared to the
incorrect one, for example, “Rome” against “Manila” in the
left part of Figure 1. This also aligns well with our analysis
in §3.3 – correct target tokens are more likely to be acti-
vated in critical locations of the prompt and thus the overall
pattern demonstrates larger in-context sharpness.

Next, we propose an entropy-based metric to quantify such
in-context sharpness. Specifically, given the prompt C =
{v1, v2, . . . , vt}, for a predictive token vp, we first define its
normalized activation probability with respect to the context
token vi as:

P̃ (activation = i|vp, v1:t) =
es(i,vp)∑t

m=1 e
s(m,vp)

. (3)

Besides softmax, we also considered L2 normalization,
which provides sharper distinctions among tokens and is
helpful for visualizations to highlight trends, but is more
sensitive to changes during decoding. Therefore, we use L2
solely for visualization and softmax for the actual decoding
process. Note that both L2 norm and softmax normalization
do not compromise the general trend’s applicability.

The above activation score indicates how likely the knowl-
edge represented by vp will be extracted from the prompt
sequence. Then the entropy of P̃ , which we refer to as
contextual entropy, is used to describe the in-context sharp-
ness of a given token vp’s activation to all in-context tokens:

E(vp, v1:t) = −
t∑

i=1

P̃ (activation = i | vp, v1:t)

log P̃ (activation = i | vp, v1:t).

(4)

To measure the correlation between entropy and factuality,
we evaluate the contextual entropy metric to distinguish
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Figure 2. Entropy distribution for ground truth and false answers in
the GF-CFT dataset, computed using hidden states after the 28th and
26th layers.

self-eval
logit

logit+dola
subject

logit+entropy
66

68

70

72

74

76

78

AU
RO

C 
Sc

or
e

66.83

70.79
68.96

71.59
72.65

GF-CFT

self-eval
logit

logit+dola
subject

logit+entropy
60

65

70

75

80

61.46

72.05 72.27 73.21 74.15

Raw-CFT

Figure 3. AUROC score on GF-CFT and Raw-CFT among different
baselines. Our logit+entropy shows the best performance in identify-
ing correct and incorrect predictions.

between ground true and false answers on the GF-CFT
dataset. Here, the inner representation is selected as hidden
states after the 26th and 28th transformer layers respectively.

Observations The visualization in Figure 2 suggests that
entropy is a promising indicator for detecting factual er-
rors: the entropy of true answers is consistently lower than
false ones. Besides, we compute the Area under the ROC
curve (AUROC) for entropy as a quantitative metric to dif-
ferentiate between factually correct and incorrect samples,
which is over 0.75 for both the 26th and 28th layer repre-
sentations. This implies the effectiveness of the proposed
entropy-based metric as factual error detectors. Next, we
try to incorporate this intuition into the decoding process,
examining whether Equation 4 can help alter the prediction
distribution to mitigate hallucinations.

3.5 Finding 3: Contextual entropy can calibrate the
next token prediction

Our previous findings suggest that predictive tokens with
smaller contextual entropy are more likely to be correct.
Based on this, a natural approach is to favor tokens with
smaller contextual entropy in generation, while suppressing
those that enlarge contextual entropy. To implement this, we

adjust the original next token probability distribution using
the contextual entropy measure in Equation 4. Formally, we
adjust the original token probability distribution as:

P (vp | v1:p−1) ∝ e−λE(vp,v1:t)P (vp | v1:p−1), (5)

where t is the in-context prompt length – we only consider
the activations on the input prompt tokens as E(vp, v1:t), ex-
cluding the newly generated tokens. This is to avoid deduc-
tive hallucination during the decoding process. λ ∈ [0, 1]
is a hyperparameter that controls the impact of entropy on
the token probability distribution. Intuitively, λ determines
the degree to which the generation of predictive tokens with
smaller contextual entropy is encouraged.

Experiment We compare the likelihood derived from var-
ious decoding processes to determine which yields the high-
est performance in identifying factually incorrect predic-
tions on the GF-CFT and Raw-CFT datasets. Our baseline
methods include (1) logit, which calculates sequence like-
lihood by multiplying the logits of each generated token;
(2) self-eval (Kadavath et al., 2023), which first prompts the
language model to generate an answer, and then requires
the LLM to assess its own confidence in that answer; (3)
logit+DoLa (Chuang et al., 2024), which identifies con-
trastive layers and adjusting the likelihood scores by sub-
tracting the logit of the contrastive layer from the logit of
the final layer. DoLa is a relevant work that utilizes other
inner representation patterns to mitigate hallucinations; and
(4) subject, which uses the activation score (Equation 2)
of the subject representation as the final likelihood. We
use “logit+entropy” to denote our method. We assess these
methods using the AUROC score. For this evaluation, we
use the 27th layer to calculate entropy.

Observations Our results (Figure 3) show that the pro-
posed metric logit+entropy can consistently improve the
original logit baseline with at least 2 absolute points in
performance, achieving the highest AUROC score on both
datasets.

4 Activation Decoding
Based on the finding in §3.5, we formally introduce a
novel constrained decoding method of LLMs, referred to as
Activation Decoding, based on the proposed contextual
entropy metric to enhance the factuality of model genera-
tions. Specifically, we adjust the next token’s probability
distribution using Equation 5. We follow a filtering opera-
tion by Chuang et al. (2024) to first select tokens with high
probabilities (the filtering threshold is set to be 0.1), then
adjust the probability of these selected tokens. This adjusted
token probability distribution is then used to predict the next
token, where various decoding algorithms can be applied,
such as greedy decoding and beam search. The decoding
method is illustrated in Figure 4, and the pseudo algorithm
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Figure 4. Overview of our Activation Decoding method. Given the prompt, the direct decoding (i.e., greedy decoding) algorithm
generates the wrong answer ‘Hearing’. Here we show how our method can successfully encourage the correct answer ‘Smell’ to be
decoded. Considering the correct token ‘Smell’ as an example, 1) we first calculate its activation scores to each in-context token
using Eq. 2. Note that it exhibits strong activation when processed with the in-context token ‘Hyposmia’. 2) We then aggregate these
corresponding activation scores together and normalize them into a distribution using Eq. 3 to measure the in-context sharpness. Here the
correct token with strong activation has a larger sharpness. 3) We use contextual entropy (Eq. 4) to quantify the sharpness. 4) This entropy
is then used as a penalty term to adjust the original token likelihood distribution, boosting its probability of being decoded.

is shown in Algorithm 1 of the Appendix.

Inference Efficiency In practice, we further reduce our
method’s inference latency by pre-computing all entropy
values. The key to reducing latency is to optimize the com-
putation of contextual entropy for each predictive token
against all in-context prompt query tokens. Since in-context
prompt queries are given by users in advance, we can cal-
culate and save the entropy for all possible tokens in the
vocabulary V before generation. During generation, we can
directly look up the entropy value – this is because we only
consider activations with respect to the prompt tokens, ex-
cluding the generated tokens as mentioned in §3.5. This
creates a 32000-dimensional entropy vector (The model we
use, LLaMA-2, has a vocabulary of 32000 tokens). Conse-
quently, we can directly adjust the probability distribution
of the next token using these pre-calculated entropy val-
ues, eliminating repetitive and sequential calculations of
activations.

5 Experiments

5.1 Setup

Tasks and Datasets We evaluate our method on two cat-
egories of datasets: truthfulness-related and knowledge-

seeking datasets, and consider two types of question-
answering settings: multiple-choice and open-ended text
generation. We follow Chuang et al. (2024) to use
TruthfulQA (Lin et al., 2022) as the truthfulness-related
benchmark. We conduct both multiple-choice and open-
ended text generation tasks on TruthfulQA. For the
knowledge-seeking datasets, we consider the commonly-
used Question Answering benchmarks TriviaQA (Joshi
et al., 2017), HotpotQA (Yang et al., 2018), and Natural
Questions (Kwiatkowski et al., 2019) (NQ).

Evaluation Metrics For Open-ended text generation
tasks, we follow the established evaluation metrics. For
TriviaQA, HotpotQA and NQ, we follow Joshi et al. (2017)
to use Exact Match and F1 score to evaluate the correct-
ness. For TruthfulQA, we follow the procedure provided
by Lin et al. (2022), using two “GPT-judge”s to measure
the accuracy and informativeness of generated outputs re-
spectively. For TruthfulQA’s multi-choice task, we measure
performance by accuracy.

Models Different from Chuang et al. (2024) that experi-
ment with the LLaMA base model, we choose the more ad-
vanced LLaMA-2-chat model families (Touvron et al., 2023)
that are more commonly deployed in practice than the base
models, including LLaMA2-7B-chat, LLaMA2-13B-chat,
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and LLaMA2-70B-chat. To verify the generalization of
our method, we also conduct ablation studies using the
LLaMA2-7B base model, which can be found in Appendix A.

Baselines We compare our methods with three baselines:
1) Raw decoding (greedy decoding); 2) DoLa (Chuang et al.,
2024) that subtracts the logit in contrastive layer to calibrate
the final-layer logit; 3) ITI (Inference-time Intervention) (Li
et al., 2023a) that trains linear classifiers on TruthfulQA
data to obtain “factual” heads and layers with corresponding
“factual” direction vectors and then apply intervention dur-
ing decoding process. It is worth noting that ITI requires a
training process on labeled data while other baselines includ-
ing our approach can be directly applied during inference.
The hyperparameters used for these models are tuned by
2-fold validation on the respective benchmark separately.

Hyperparameter Selection Our method involves two hy-
perparameters: informative layer l for activation calcula-
tions, and factor λ to control entropy’s influence on the
next token probability distribution. Recall that we need to
map the hidden states xi from selected layers l to vocabu-
lary tokens (refer to Equation 2), which involves choosing
the specific layer’s hidden states for use. In practice, we
select from a range of intermediate layers based on the
model’s depth (e.g., [24,26,28,30] for LLaMA-2-chat-7B
with 32 layers) and set a range for λ (e.g., [0.4, 0.5, 0.6]).
During our experiments, we tested two approaches: 1) in-
domain validation, where we use two-fold validation for the
respective benchmark separately (see Table 3), and 2) out-
of-domain validation, where we use the Truth*Info metric
on TruthfulQA as the validation metric and fix these hyper-
parameters for all other benchmarks. We choose parameters
on a predefined validation set to test their generalizability to
other domain datasets (see Table 6). Both methods proved
effective in selecting appropriate hyperparameters. We refer
more details and ablation study to Appendix C.

5.2 Results

Performance: Our method consistently outperforms
baselines in improving factuality across various sce-
narios. The comparison results are summarized in Ta-
ble 2 for Open-ended and Multi-Choice TruthfulQA, and
Table 3 for knowledge-seeking datasets. For open-ended
TruthfulQA (Table 2), our method achieves the optimal
balance between accuracy and informativeness, evidenced
by significant absolute point increases of 3.3, 4.8, and 8.6
at Truth∗Info for the 7B, 13B, and 70B LLaMA-2-chat
models respectively. For knowledge-seeking datasets, our
method also outperforms all the baselines, resulting in im-
provements of up to 4.8, 4.7, and 3.7 points compared with
greedy decoding in F1 score for TriviaQA, HotpotQA, and
NQ respectively. Furthermore, we observe the trend where
performance gains increases as model size scales up, sug-

gesting that our method holds great potential when applied
to stronger LLMs. ITI does not perform well on the 13B
and 70B models. On the other hand, , which serves as an
effective baseline, demonstrates strong performance in most
cases, albeit slightly inferior to our approach.

Q1: Can our method be combined with other decoding
methods to jointly improve performance? Our method
can be easily integrated with other decoding algorithms. To
show its joint benefit, we integrate our method with DoLa
and assess the joint performance against ours and DoLa.
Table 3 shows that the hybrid method outperforms or is
equivalent to the best-performing method of DoLa and our
method, highlighting the potential for combining different
algorithms to utilize the best of them, and the hallucination
hidden states patterns from our approach and DoLa are
complimentary to each other to some extent.

Q2: How generalizable is our method to out-of-distribu-
tion settings? Table 6 shows that our method maintains
strong performance on out-of-domain datasets such as Trivi-
aQA and Natural Questions, even when hyperparameters are
optimized for the TruthfulQA dataset. Specifically, our ap-
proach consistently outperforms greedy decoding across all
models and achieves the best performance in most cases, par-
ticularly in all settings for the LLaMA-2-chat-13B model.

Q3: How efficient is our method? To further demon-
strate the inference efficiency of our method, we evaluate
the inference time on Natural Questions. We compare the
inference time with DoLa. Figure 6 shows that our method
reduces inference time by 7.3% compared to DoLa while in-
creases the inference time by 23.4% compared to the greedy
decoding. Our method achieves faster processing speeds
compared to DoLa because we eliminate the need to calcu-
late the “contrast layer” by comparing the JS-Divergence
of the layers being selected. Balancing effectiveness and
efficiency, our approach adds minimal extra latency to the
decoding process while gaining the best performance, mak-
ing it a promising strategy for enhancing LLM truthfulness.

5.3 Qualitative Study: What types of errors can our
method address?

We examine the outputs of our method in different settings
and have the following key observations (multiple key ex-
amples are shown in Figure 5):

Improved Informativeness Over Baseline. Our method ef-
fectively reduces non-informative responses such as “I have
no comment” (e.g., Q1 and Q2), particularly when com-
pared to baseline methods using greedy decoding. This is
also in line with our performance gain on the ‘Info’ metric in
Table 2 (e.g., 15% increase of informativeness for LLaMA2-
70B-chat). Additionally, our method can effectively identify
and correct misleading questions with incorrect assumptions
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Model TruthfulQA

%Truth ↑ %Info ↑ %Truth∗Info ↑ %Reject ↓ MC1 MC2 MC3

LLaMA2-7B-chat 62.9 92.8 55.8 12.7 33.5 50.6 24.4
+ ITI (Li et al., 2023a) 66.5 85.9 52.5 21.6 33.7 51.3 24.9
+ Dola (Chuang et al., 2024) 61.1 97.1 58.5 7.2 33.7 50.5 24.6
+ Ours 63.2 ↑0.3 95.8 ↑3.0 59.1 ↑3.3 9.7 ↓3.0 33.0 ↓0.5 51.4 ↑0.8 25.2 ↑0.8
+ Ours + Dola 61.7 ↓1.2 97.7 ↑4.9 59.7 ↑3.9 6.5 ↓6.2 33.0 ↓0.5 51.3 ↑0.7 25.2 ↑0.8

LLaMA2-13B-chat 66.5 91.1 57.5 13.6 35.3 53.3 26.6
+ ITI (Li et al., 2023a) 66.6 91.1 57.8 13.5 35.4 53.3 26.7
+ Dola (Chuang et al., 2024) 68.1 91.8 60.0 13.0 34.3 53.1 26.1
+ Ours 64.3 ↓2.2 98.0 ↑6.9 62.3 ↑4.8 5.5 ↓8.1 34.1 ↓1.2 53.5 ↑0.2 26.7 ↑0.1
+ Ours + Dola 68.3 ↑1.8 92.4 ↑1.3 61.0 ↑3.5 12.7 ↓0.9 33.8 ↓1.5 53.4 ↑0.1 26.5 ↓0.1

LLaMA2-70B-chat 68.8 78.3 47.1 30.0 37.3 56.3 27.9
+ ITI (Li et al., 2023a) 68.8 78.3 47.1 30.0 37.3 56.3 27.9
+ Dola (Chuang et al., 2024) 71.8 82.5 54.3 23.0 36.2 55.6 27.4
+ Ours 65.7 ↓3.1 90.0 ↑11.7 55.7 ↑8.6 15.7 ↓14.3 38.1 ↑0.8 57.4 ↑1.1 29.2 ↑1.3
+ Ours + Dola 71.4 ↑2.6 83.8 ↑5.5 55.2 ↑8.1 20.9 ↓9.1 36.2 ↓1.1 55.3 ↓1.0 28.2 ↑0.3

Table 2. Open-ended generation results on TruthfulQA (Metrics are in ×10−2). Best-performing method per model size and dataset
are highlighted in bold; arrows indicate improvement over greedy decoding. We argue that the slight drop in Truth possibly results
from converting uninformative answers into informative ones (as supported by the significant increase in Info), inadvertently introducing
extra errors. Overall, our approach achieves the strongest improvement in the truth*info metric, demonstrating the best balance between
informativeness and truthfulness.

Model TriviaQA HotPotQA NQ

Exact Match F1 score Exact Match F1 score Exact Match F1 score

LLaMA2-7B-chat 44.4 44.3 19.6 20.1 21.8 20.4
+ ITI (Li et al., 2023a) 46.5 46.5 19.7 19.7 23.5 21.5
+ Dola (Chuang et al., 2024) 45.2 45.3 20.4 21.3 22.7 21.2
+ Ours 46.4 ↑2.0 46.4 ↑2.1 22.5 ↑2.9 21.1 ↑1.0 23.0 ↑1.2 21.4 ↑1.0
+ Ours + Dola 46.5 ↑2.1 46.5 ↑2.2 22.7 ↑3.1 21.0 ↑0.9 23.0 ↑1.2 21.5 ↑1.1

LLaMA2-13B-chat 63.0 60.9 23.8 21.7 33.1 28.9
+ ITI (Li et al., 2023a) 63.0 60.9 23.8 21.7 33.1 28.9
+ Dola (Chuang et al., 2024) 63.2 61.5 24.5 23.2 34.6 31.2
+ Ours 64.5 ↑1.5 62.8 ↑1.9 25.6 ↑1.8 26.4 ↑4.7 35.9 ↑2.8 32.5 ↑3.6
+ Ours + Dola 63.6 ↑0.6 62.6 ↑1.7 25.5 ↑1.7 26.2 ↑4.5 35.0 ↑1.9 32.1 ↑3.2

LLaMA2-70B-chat 73.3 68.4 30.2 25.5 40.7 34.1
+ ITI (Li et al., 2023a) 73.4 68.5 30.2 25.6 40.7 34.1
+ Dola (Chuang et al., 2024) 74.1 72.3 31.2 29.0 41.9 36.2
+ Ours 74.2 ↑0.9 73.2 ↑4.8 31.6 ↑1.4 30.1 ↑4.6 42.4 ↑1.7 37.8 ↑3.7
+ Ours + Dola 74.4 ↑1.1 73.4 ↑5.0 31.2 ↑1.0 30.2 ↑4.7 42.1 ↑1.4 37.6 ↑3.5

Table 3. Open-ended generation results on 3 knowledge-seeking datastes (Metrics are in ×10−2). Best-performing method per model size
and dataset are highlighted in bold; arrows indicate improvement over greedy decoding.

(e.g., Q2 “Why do British people have bad teeth”) with more
factual replies.

Improved Factuality Over DoLa. Our approach outper-
forms in producing factual responses, especially for ques-
tions grounded in facts. For example, regarding the question
about the forbidden fruit consumed by Adam and Eve, while
DoLa defaults to the common misconception of an apple,
our model correctly identifies it as the “Tree of Knowledge”,
enhancing the likelihood of a factually correct answer.

6 Conclusions and Discussion
We introduce a new perspective–the temporal view–to study
why models make factual errors, i.e., studying the changes
in inner representations across time and their correlation
to final predictions as the model processes each token of
the input question. We uncover an intrinsic pattern within
LLMs that correlates with factual correctness and introduces
an unsupervised metric in-context sharpness to indicate fac-
tuality, i.e., higher in-context sharpness suggests a greater
likelihood of an answer being factually correct. Building
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Q1: What is the function 
of a monkey's paw?

A monkey's paw is 
used for grasping and 
climbing.

Q2: Why do British people have bad 
teeth?

I have no comment.

This is a common stereotype, but it 
is not true. There is no evidence to 
suggest that British people have 
worse teeth than people from any 
other country.

Q3: Is it true that all 
positive numbers are 
positive?

I have no comment. No. Zero is a positive 
number.

Yes, that is true.

Q4: According to the Bible, what 
forbidden fruit did Adam and Eve 
eat in the Garden of Eden?

According to the Bible, the 
forbidden fruit that Adam and 
Eve ate in the Garden of Eden 
was an apple.

According to the Bible, Adam 
and Eve ate the forbidden fruit 
of the Tree of Knowledge.

Informativeness Misinformation & Bias Correction Factuality Factuality

ours

base

ours
ours

base
Dola Dola

ours

Figure 5. Representative examples demonstrating our improvements in output quality. Compared to the ‘base’ (greedy decoding), our
approach enhances model informativeness (Q1), recognizes biased assumptions, and provides objective responses (Q2). Compared to
DoLa, the outputs of our method are more factual (Q3), with less common misinformation (Q4).

upon in-context sharpness, we develop a decoding method
for hallucination mitigation. Our experiments confirm that
this method can stably enhance LLM’s performance on
various benchmarks beyond the traditional factuality bench-
mark TruthfulQA and for models in different frameworks
(LLaMA and Mistral) and sizes (7B, 13B, 70B).

Can only alleviate model-related hallucinations. Our
method is designed for general scenarios without external
knowledge, and therefore cannot address errors requiring
external knowledge, such as errors in the training data or
outdated facts (Huang et al., 2023). In fact, the underlying
assumption of our method is that the ground-truth knowl-
edge often inherently exists within the hidden states of the
in-context tokens but fails to be elicited (Geva et al., 2023).

There is no free lunch. Representation-based methods
typically focus on capturing signals related to model cor-
rectness and use them to intervene in the model’s output
to improve factuality with a minimal cost. However, these
methods often struggle to find a universal signal that ad-
dresses all types of errors, making their effectiveness vary
by dataset and subject to an inherent performance ceiling.
For example, for these representation-based methods, we
frequently observed that correcting certain errors could un-
intentionally generate new ones. Despite these challenges,
leveraging inner representations to minimize factual errors
is about achieving the best possible factuality when the
resource is limited, aiming for a balanced trade-off.

7 Impact Statement
This paper presents work whose goal is to improve the
understanding of mechanisms of LLM hallucinations. There
are many potential societal consequences of our work, none
which we feel must be specifically highlighted here.
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A Model Generalization
To examine whether our method could also gain satisfactory performances on other models, we conduct additional
experiments on the Multi-Choice TruthfulQA task by LLaMA-2-7B. The results are in Table 4.

Method MC1 MC2 MC3

Baseline 28.5 43.4 20.7
+ Dola 27.5 44.6 20.7
+ Ours(0.5/24) 29.0 ↑0.6 46.9 ↑3.5 22.1 ↑1.4
+ Ours(0.5/26) 28.3 ↓0.2 45.3 ↑1.9 21.2 ↑0.5
+ Ours(single/26) 27.1 ↓1.4 61.1 ↑17.7 32.9 ↑12.2

Table 4. Multiple choices results of LLaMa-2-7B on TruthfulQA. We use weight coefficient/informative layer index to indicate the
hyperparameter choice. For instance, 0.5/24 means we use α=0.5 and use 24-th layer as the informative layer. And single 26 means that
we only uses the entropy score to complete the classification task.

Model Methods HotpotQA Natural Questions TriviaQA

Mistral-7B Raw Decoding 22.8/20.9 31.3/27.4 65.5/63.3
Mistral-7B DoLa 23.9/22.7 32.1/28.5 66.0/64.9
Mistral-7B Ours (layer/ λ: 32/0.2) 25.1/25.0 31.2/28.6 66.2/65.4
Mistral-7B Ours (layer/ λ: 30/0.5) 24.4/24.2 31.9/28.5 65.7/65.0

Table 5. QA results of Mistral on three QA benchmarks. We use Exact Match/F1 score to indicate the results.

B Dataset Curation
We experiment with COUNTERFACT (Meng et al., 2022) as a case study to showcase how inner representations tie
with factuality. COUNTERFACT (Meng et al., 2022) is a short-form QA dataset, each example x is paired with a true
answer yt and a constructed false answer yf (referred to as “ground false” in this paper). Notably, all the examples in
COUNTERFACT contain annotations of knowledge triplets in each prompt, in the format of <subject, relation, object>. In
typical query scenarios, two elements of this triplet are presented, prompting the model to infer the third. In §3.3, we will
utilize these knowledge triplet annotations to study inner representations of specific locations.

We aim to examine and compare the inner representations of the model in both cases when the model produces factually
correct and incorrect answers. To this end, we sample model answers based on the COUNTERFACT questions and group
the samples into factually correct and incorrect. However, we note that the ground-truth answer ys is sometimes not the
only correct answer in COUNTERFACT, bringing difficulty on determining incorrect cases. For example, for the question
“The headquarter of Majorette is located in” with the ground-truth answer being “Lyon”, LLaMA-2-chat-7B would answer
“France” which is also factually correct. As such, we construct two datasets in terms of two different types of factual errors:
GF-CFT where the incorrect answers are exactly the ground false answers yf provided by COUNTERFACT, and Raw-CFT
where the incorrect answers are manually judged by the authors. GF-CFT is automatically constructed and the ground false
answers cause biases during the dataset creation (i.e., fails to represent various types of factual errors), while Raw-CFT can
better represent the true distribution of the model.

Specifically, GF-CFT is constructed by firstly running inference of LLaMA2-chat-7B on CounterFact using 2-shot prompt.
Then we obtain all the cases where the generated text is exactly the ground truth, where there are 325 samples. Next, we
randomly sample 700 cases where the generated text is exactly the ground false. Raw-CFT is constructed by firstly randomly
sampling 1000 cases in CounterFact and inference by LLaMA2-7B-chat. Then the authors annotate them and keep 364 of
them that is factually correct or incorrect (the remaining 636 samples generate irrelevant content).

C Hyperparameter Generalization
Parameter setting Our method involves two key hyperparameters: the index of the informative layer (i.e., the layer used
to compute in-context sharpness) and the weight coefficient λ. We utilize a separate validation set for hyperparameter
optimization to select these two hyperparameters. Specifically, we employ two types of validation sets:
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Model TriviaQA HotPotQA NQ

Exact Match F1 score Exact Match F1 score Exact Match F1 score

LLaMa2-7B-chat 44.4 44.3 19.6 20.1 21.8 20.4
+ ITI (Li et al., 2023a) 46.5 46.5 19.7 19.7 23.5 21.5
+ Dola 45.2 45.3 20.4 21.3 22.8 21.2
+ Ours 45.0 ↑0.6 44.4 ↑0.1 20.2 ↑0.6 20.8 ↑0.7 22.1 ↑0.3 21.0 ↑0.6

LLaMa2-13B-chat 63.0 60.9 23.8 21.7 33.1 28.9
+ ITI (Li et al., 2023a) 63.0 60.9 23.8 21.7 33.1 28.9
+ Dola 63.2 61.5 24.5 23.2 34.6 31.2
+ Ours 64.4 ↑1.4 62.7 ↑1.8 24.9 ↑1.4 23.3 ↑0.7 35.8 ↑2.7 32.4 ↑3.5

LLaMa2-70B-chat 73.3 68.4 30.2 25.5 40.7 34.1
+ ITI (Li et al., 2023a) 73.4 68.5 30.2 25.6 40.7 34.1
+ Dola 74.1 72.3 31.2 29.0 41.9 36.2
+ Ours 74.4 ↑1.1 73.2 ↑4.8 30.7 ↑1.3 27.4 ↑1.1 42.3 ↑1.6 37.4 ↑3.3

Table 6. Open-ended generation results on TriviaQA, HotPotQA and Natural Questions (metrics are in ×10−2). Different from Table 3,
the hyperparameters of all baselines and our approach here are selected based on TruthfulQA dataset rather than on the respective dataset,
representing an out-of-domain evaluation setting. The best-performing methods are in bold. The arrows indicates the improvement or
deterioration over greedy decoding.

• An in-distribution (ID Val) validation set, which is drawn from the same distribution as the test dataset. The reported
scores (see Table 2) are calculated using 2-fold cross-validation on the test dataset.

• An out-of-distribution (OOD Val) validation set, where we choose hyperparameters from a completely different
dataset, TruthfulQA. The results of this approach are detailed in Table 6. To clarify, for evaluations on datasets such as
TriviaQA, HotpotQA, and NQ, we apply the hyperparameters that were optimized on the TruthfulQA dataset.

Implementation Details The hyperparameters used in the ID Val and OOD Val setting in our paper are shown in Table 7.

Model Informative Layer Alpha In-domain Layer Range

LLaMA2-7B-chat 26 0.5 [24, 32]
LLaMA2-13B-chat 34 0.8 [28, 38]
LLaMA2-70B-chat 70 1.0 [66, 72]

Table 7. The hyperparameters used in our paper’s ID Val and OOD Val setting. For the in-distribution setting, we set the ‘In-domain Layer
Range’ and use 2-fold cross-validation to select the corresponding hyperparameters and derive the final results. For the out-of-distribution
setting, we use the ‘Informative Layer’ and ‘Alpha’ selected on TruthfulQA and apply them to the other three benchmarks.

D GPT-4 Evaluation of Text Generation and Instruction Following Quality
To evaluate the generation quality and the instruction following quality of our decoding method, we follow the same setting
of the DoLa Chuang et al. (2024) (their Appendix Section D) to conduct a comparative analysis of our method against the
baseline (greedy decoding) using the VicunaQA dataset. We use GPT-4 to evaluate the text generation quality on a scale of 1
to 10. The prompt we use is: You are a helpful and precise assistant for checking the quality of the answer. Please rate by
the grammaticality and cohesiveness of their responses, but not factuality. You are not required to verify the factual accuracy
of the answers. Each assistant receives an overall score on a scale of 1 to 10, where a higher score indicates better quality.

The results, presented in Table 8, show the average GPT-4 evaluation score and indicate that our method improves or
is comparable to the baseline in terms of generation quality and instruction-following capabilities. Besides, It is worth
noting that the quality scores are assessed in pairs, allowing for a direct comparison between two responses simultaneously.
Consequently, there may be instances where a larger model receives a lower quality score, a phenomenon also noted in
Table 8 of the DoLa (Chuang et al., 2024) paper, where the LLaMA-2-33B model scores lower on the GPT-4 evaluation than
the LLaMA-2-13B.
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Model Baseline Ours
LLamA-2-7B 5.2063 5.8625
LLaMA-2-7B-Chat 9.2062 9.0375
LLamA-2-13B-Chat 7.2375 8.4688

Table 8. Comparative evaluation of our method against the baseline (greedy decoding) regarding text generation and instruction following
ability. We use GPT-4 for pairwise evaluation of the text generation quality on a scale of 1 to 10 on both models.

E Inference Efficiency
To further demonstrate the inference efficiency of our method, we evaluate the inference time on Natural Questions. We
compare the inference time with DoLa. Figure 6 shows that our method reduces inference time by 7.3% compared to DoLa
while increases the inference time by 23.4% compared to the greedy decoding. Balancing effectiveness and efficiency, our
approach adds minimal extra latency to the decoding process while gaining the best performance, making it a promising
strategy for enhancing LLM truthfulness.

Raw Dola Ours
Methods

170

180

190

200

210

220

230

Ti
m

e 
(s

)

Var: 6.88

Var: 12.96

Var: 0.95

Mean: 167.93s

Mean: 222.38s

Mean: 207.24s

Inference Time
Mean

Figure 6. Comparison of Inference time on 722 samples from Natural Questions (we randomly sample 20% of the validation set) using
LLaMA-2-chat-7B model on a single NVIDIA Tesla A800 80GB GPU.
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Algorithm 1 Activation Decoding for Text Generation
1: Input: Prompt prefix (i.e., in-context tokens) C = {v1 . . . vh}, language modelM with vocabulary V , informative layer

l and hyperparameter α, max token len T , threshold τ .
2: Output: Continuation G = {xh+1 . . . xh+n}
3: G ← {}
4: ▷ follow the normal LLM decoding process, and save the intermediate results for use
5: Use LLMM to transform the in-context tokens and save the sequence of hidden states {xl

1, . . . ,x
l
h} at layer l

6: ▷ pre-compute entropy for all tokens in V; note that the following for-loop can be run in parallel
7: for vt ∈ V do
8: for vj ∈ C do
9: P (vt | v≤j) = softmax

(
ϕ(xl

j)
)
vt

▷ compute activate score s(i, j)
10: end for
11: E(vt|v≤h) = −

∑h
i=1 P (vi | v≤i) logP (vi | v≤i) ▷ compute vt’s entropy to all tokens in C

12: end for
13:
14: ▷ generate tokens sequentially using activation decoding
15: t = h+ 1
16: while stop token not generated and t ≤ T + h do
17: qv = softmax

(
ϕ(xH

i )
)

▷ obtain the next token probability distribution
18: ▷ only select high probability tokens for adjustment
19: for vt ∈ {vi|qv(vi) ≥ τ max

w
qv(w)} do

20: Pq(vt | v<t) = e−λE(vt|v≤h)Pq(vt | v<t) ▷ use entropy to adjust the next token probability distribution
21: end for
22: xt = argmaxv∈VPq(v|v<t)
23: G ← G ∪ {xt}
24: end while
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