
Deep Demonstration Tracing: Learning Generalizable Imitator Policy
for Runtime Imitation from a Single Demonstration

Xiong-Hui Chen * 1 2 Junyin Ye * 1 2 Hang Zhao * 3 2 Yi-Chen Li 1 2 Xu-Hui Liu 1 2 Haoran Shi 2 Yu-Yan Xu 2

Zhihao Ye 1 2 Si-Hang Yang 1 2 Yang Yu 1 2 Anqi Huang 4 2 Kai Xu 3 Zongzhang Zhang 1

Abstract
One-shot imitation learning (OSIL) is to learn
an imitator agent that can execute multiple tasks
with only a single demonstration. In real-world
scenario, the environment is dynamic, e.g., un-
expected changes can occur after demonstration.
Thus, achieving generalization of the imitator
agent is crucial as agents would inevitably face
situations unseen in the provided demonstrations.
While traditional OSIL methods excel in rela-
tively stationary settings, their adaptability to such
unforeseen changes, which asking for a higher
level of generalization ability for the imitator
agents, is limited and rarely discussed. In this
work, we present a new algorithm called Deep
Demonstration Tracing (DDT). In DDT, we pro-
pose a demonstration transformer architecture
to encourage agents to adaptively trace suitable
states in demonstrations. Besides, it integrates
OSIL into a meta-reinforcement-learning training
paradigm, providing regularization for policies
in unexpected situations. We evaluate DDT on
a new navigation task suite and robotics tasks,
demonstrating its superior performance over ex-
isting OSIL methods across all evaluated tasks in
dynamic environments with unforeseen changes.
The project page is in https://osil-ddt.github.io.

1. Introduction
Humans exhibit the ability to acquire diverse skills through
a handful of demonstrations for each task. One-shot imita-
tion learning (OSIL) has emerged as a prominent framework

*Equal contribution 1National Key Laboratory for Novel Soft-
ware Technology, Nanjing University, China & School of Artifi-
cial Intelligence, Nanjing University, China 2Polixir Technologies
3School of Computer Science, National University of Defense
Technology 4Nanjing University of Science and Technology, Nan-
jing. Correspondence to: Yang Yu <yuy@nju.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

to emulate this learning paradigm, training an imitator agent
to execute multiple tasks with only a single demonstration
as context at runtime (Duan et al., 2017). Currently, the
framework has been extended to imitation with visual in-
puts (Dasari & Gupta, 2021), multi-modal skill (Shin et al.,
2023), and cross-modal task imitation (Li et al., 2021).

dropped！

dropped！

(a) Provided demonstration.

picked

picked failed

(b) Policy trained by a traditional OSIL method.

picked re-picked

succeed

succeed

(c) Policy trained by DDT.

Figure 1: Illustration of OSIL policies under unforeseen
changes in Meta-World tasks (Yu et al., 2019). The policy
in (b) is trained by traditional OSIL (Dasari & Gupta, 2021).
The grasped block may drop by chance due to disturbances
that do not exist during demonstration collection.

However, these studies often assume a strong resemblance
between the situations encountered during demonstration
collection and those encountered when deploying the imita-
tor policy (Duan et al., 2017). Consider a typical scenario:
during demonstration collection, an expert guides a car or
robot from a starting point to a target point, which may
be unseen during training. Upon policy deployment, the
task remains the same, i.e., reaching the same target point
in a setting characterized by similar surroundings, terrain,
deterministic dynamics, etc. In such settings, OSIL can be
simplified to find the corresponding states and replay the ac-
tion sequence. Real-world applications, however, demand a
more sophisticated approach, as tasks frequently involve un-

1

https://osil-ddt.github.io

Learning Generalizable Imitator Policy for Runtime Imitation from a Single Demonstration

expected changes after the demonstration is provided. The
agent must not only imitate the demonstration but also adapt
to unforeseen environmental changes. For autonomous vehi-
cles, one goal is for the vehicle to navigate diverse parking
lots directly (Ahn et al., 2022; Kümmerle et al., 2009) based
on a human navigation trajectory, necessitating the handling
of unexpected obstacles or human beings during parking
trajectory imitation. In robot manipulation, one objective is
for a robot arm to execute a variety of tasks solely (Dance
et al., 2021; Yu et al., 2019) by observing correct operation
demonstrations, requiring the agent to adeptly respond to
unexpected disturbances.

In this study, we advance the conventional OSIL framework
by introducing a pronounced differentiation between the
phases of demonstration collection and policy deployment.
This modification creates a challenging scenario, requiring
the agent to adeptly respond to unexpected changes that sur-
pass the capabilities of standard OSIL methods, rendering
them ineffective in such situations, as illustrated in Fig. 1.

To address the challenges posed by unforeseen changes in
the environment, we propose a new algorithm named Deep
Demonstration Tracing (DDT), designed to empower the
agent to take reasonable actions in states not visited dur-
ing demonstrations. In DDT, we introduce a demonstration
transformer architecture for constructing the imitator-policy
network. Instead of directly taking demonstration as a free
context vector to represent the task the agent will face, as
previous works do (Duan et al., 2017; Dasari & Gupta, 2021;
Shin et al., 2023), we incorporate an inductive bias (Domin-
gos, 2012) for policy learning by leveraging a specifically
designed attention structure. This structure encourages the
imitator policy to learn to accomplish tasks by adaptively
tracing the demonstration in any state. To cultivate decision-
making skills in unseen situations, in contrast to the behavior
cloning approach adopted by prior studies (Shin et al., 2023;
Mandi et al., 2022), we formulate OSIL as a context-based
meta-reinforcement-learning task (meta-RL) (Rakelly et al.,
2019). The policy interacts with the environment across all
tasks based on corresponding demonstrations. Thanks to the
trial-and-error learning mechanism of RL and the demon-
stration transformer architecture, the policy autonomously
explores and efficiently optimizes itself to align with expert
demonstrations, even in the face of unexpected situations.
Lastly, we provide a theoretical analysis of the feasibility of
successful imitation in scenarios with limited data coverage,
emphasizing the capacity to achieve this even with only a
single trajectory.

In our experiments, we establish a comprehensive Valet
Parking Assist in Maze (VPA) benchmark for OSIL. The
results demonstrate that our DDT algorithm outperforms ex-
isting baselines not only in training performance but also in
generalization to unseen demonstrations, parking maps, and

obstacles. Furthermore, DDT is applied to several robotic
tasks and exhibits a clear advantage over baseline methods
that struggle in these challenging environments. Notably,
our results also suggest that DDT holds the potential for fur-
ther performance enhancements by scaling up either dataset
size or the number of parameters. In summary, our contribu-
tions include:

• Advancing the OSIL setting to achieve a higher level
of generalization by introducing a substantial differen-
tiation between the period of demonstration collection
and policy deployment, supported by the development
of a novel demo-navigation benchmark task suite.

• Proposing a demonstration transformer architecture
to stimulate the imitator policy to adeptly learn task
completion by tracing the demonstration.

• Addressing OSIL as a context-based meta-RL task,
facilitating decision-making proficiency in unforeseen
situations. Theoretically analyzing the conditions that
the imitator is available even with one trajectory.

2. Related Work
We present the related works of OSIL in this section, defer-
ring the comprehensive discussion of related literature to
the appendix, including imitation learning (IL) (Sec. C.1),
meta-IL (Sec. C.2), the combination of IL and RL (Sec. C.3),
and context-based meta-RL (Sec. C.4). The OSIL paradigm
(Duan et al., 2017; Dasari & Gupta, 2021) has garnered
attention to achieve generalizable imitation through context-
based policy models, including extracting task informa-
tion from state-action sequences (Duan et al., 2017; Yu
et al., 2018a) or leveraging video demonstrations (Yu et al.,
2018b; Mandi et al., 2022). Duan et al. (2017) advocate for
OSIL policies to comprehend the task scenario information
based on a single successful demonstration. Subsequently,
OSIL processes the current state input and predicts expert
actions. Yu et al. (2018b) utilize human video demonstra-
tions to acquire skills in robotic manipulation tasks, placing
a specific focus on the capacity to generalize to previously
unseen tasks showcased in video demonstrations. Shin et al.
(2023) propose a skill-based IL framework enabling not
only one-shot IL from a demonstration but also the adapt-
ability of a learned policy to different dynamics. Mandi et al.
(2022) employ contrastive learning schemes to effectively
extract task information from demonstrations, enhancing
cross-domain one-shot imitation capabilities.

These studies presume near-identicality between the envi-
ronments during demonstration collection and agent deploy-
ment. In such scenarios, the primary challenge in OSIL lies
in task identification and action inference from observations,
where task accomplishment is achievable through the sam-
ple replaying of expert action sequences. However, our
emphasis in this paper shifts towards OSIL in the presence

2

Learning Generalizable Imitator Policy for Runtime Imitation from a Single Demonstration

of unforeseen changes, where actions are directly observed.
Herein, OSIL necessitates the agent to possess the capabil-
ity to dynamically adapt its behavior in novel and unantici-
pated situations, departing from the conventional approach
of merely repeating the action sequences demonstrated.

3. Problem Formulation
In this section, we give notations, descriptions, and the
formal definition of runtime OSIL with unforeseen changes.

Markov Decision Process (MDP): We consider OSIL in
an MDP M (Sutton & Barto, 2018) denoted by a tuple
(S,A, T,R, d0, γ). In this formulation, S and A denote
the state and action spaces, T : S × A → P (S) describes
a (stochastic) transition process, R : S × A → R is a
bounded reward function, d0 ∈ P (S) is the initial state
distribution, and γ ∈ (0, 1] denotes the discount factor. The
probability distribution set over X is denoted by P (X).
A policy Π : S → P (A) induces a Markov chain over
states within theM. We use τ := {s0, a0, · · · , st, at} to
represent a trajectory, signifying a sequence of state-action
pairs for a single episode of the Markov chain, where si ∈ S
and ai ∈ A represent the state and action at timestep i.

Task: We formulate the concept “task” by parameterizing
MDPs as Mω := (S,A, Tω, Rω, d0, γ), where ω is the
parameter of the MDP Mω in space Ω. We assume that
different MDPs only come from Tω and Rω and can be
defined by ω. Here we consider that we only have the
simplest reward function Rω which can only indicate the
ending of trajectories, e.g., c for accomplishing the task, 0
for failure, and −c for dead.

Unforeseen Changes Modeling: We model unexpected
changes between the demonstration collection and policy
deployment phases by incorporating them into the stochas-
ticity of Tω . Throughout these two periods, task parameters
ω remain consistent, while the agent is exposed to unfore-
seen states arising from inherent stochasticity. For instance,
in autonomous parking tasks, despite the consistent require-
ment for the agent to park in the same lots (defined by ω)
during both phases, the stochastic nature of Tω captures the
random appearance of pedestrians when the agent interacts
with the environment.

Expert Demonstration: We use τω to denote an expert
demonstration that can accomplish the task with the param-
eter ω. In OSIL, it is often a prerequisite that the policy
conducting the demonstrations should be an expert capable
of completing the tasks. Here, we maintain the same setting.

Runtime One-Shot Imitation Learning: The objective
of OSIL, the same as the studies in Duan et al. (2017); Dasari
& Gupta (2021), is to derive a imitator policy Π(a|s, τω)
which can accomplish the task inMω for any ω ∈ Ω. For

policy training, we have pre-collected expert demonstrations
{τω} fromMω in the task set Mtrain, along with the corre-
sponding simulator ofMω for interacting. For deployment,
given any ωtest ∈ Ω, we require the policy Π(a|s, τωtest

)
to use one demonstration τωtest

to accomplish the task in
Mωtest

at runtime, i.e., without further fine-tuning.

A fundamental problem of OSIL with unforeseen changes is
how can we reconstruct any expert policy as we only know
parts of optimal action in the state space and the unforeseen
changes will inevitably lead the agent to unseen situations.

4. Deep Demonstration Tracing

A

B

C

D E

F

G

P

S

expert's trajectory

correct imitation trajectory
temporarily parked truck
(inexistent when demonstration)

state; action; target

Figure 2: Illustration of how humans achieve OSIL under
unforeseen changes.

In this section, we first introduce a motivation example
of how humans make decisions in OSIL with unfore-
seen changes, utilizing a decomposed 3-stage decision-
making process (Sec. 4.1). Based on this, we build a novel
demonstration-based transformer architecture to stimulate
policy learning followed by the 3-stage process, which is in
Sec. 4.2. To enable the policy to make correct decisions in
unseen situations, we propose a meta-RL-based OSIL solu-
tion in Sec. 4.3. Finally, we give a theoretical analysis of
the condition for tracing a single demonstration in Sec. 4.4.

4.1. Motivation Example of Demonstration Tracing

Current OSIL studies often assume a strong similarity in the
situations the agent would face between the demonstration
collection and the imitator policy deployment. However,
real-world applications often introduce a variety of unan-
ticipated environmental variations after the demonstration
is provided (Nagabandi et al., 2018). Thus, an agent is ex-
pected to not only replicate demonstrated actions but also
adapt to unseen situations. This is easy for humans but a
non-trivial task for current OSIL techniques. We give Fig. 2
to illustrate human decision-making in such settings, which
also inspires our methodological framework.

In Fig. 2, the task is to imitate an expert’s trajectory from
the starting point S to the destination P. Initially, one might
replicate the expert’s actions to reach point B, but an un-
foreseen obstacle, a temporarily parked truck near point B,

3

Learning Generalizable Imitator Policy for Runtime Imitation from a Single Demonstration

disrupts this process. This resulted in the observation at B
being different from the demonstration, as the truck was not
present originally. In this case, humans would generate a
detour, e.g., the sequence B-F-G, to bypass the truck and
subsequently rejoin the original path at an appropriate junc-
ture, illustrated by G-D in the figure. From this example,
we decompose a three-stage human-like decision paradigm
for OSIL, called Demonstration Tracing (DT) in this paper:

• Stage 1: Identify relevant states within the trajectory
based on the current state. For example, for the state at
point B, the related states can be B, C, and D.

• Stage 2: Analyze the expert’s behavior patterns asso-
ciated with these states. For example, a human would
see that the expert drives forward from B, navigating a
turn, to reach D and E.

• Stage 3: Trace the expert’s demonstrations based on
the relationship between the current state and the ex-
pert’s behavior patterns in the demonstrations. For
example, from point S to A, since the agent’s state
is close to the expert’s, it tends to repeat the expert’s
actions; while in point B, since the observation is dif-
ferent from the demonstrations, the policy should use
its common sense to avoid obstacles and traceback to
the successor states (like the sequence B-F-G).

4.2. Demonstration-based Transformer Architecture

To enhance OSIL, a common strategy involves extracting
representations from demonstrations (Duan et al., 2017;
Mandi et al., 2022; Dasari & Gupta, 2021), capturing task
parameters or relevant information. Subsequently, the down-
stream imitator policy functions as a context-based policy,
generating adaptive action predictions based on these rep-
resentations. However, direct representation without con-
straints has been proven to lack robustness in generaliza-
tion (Luo et al., 2022; Wang et al., 2020). Consequently,
numerous OSIL studies have endeavored to mitigate these
issues by introducing regularization losses as the auxiliary
tasks to stabilize the representations (Mandi et al., 2022;
Dasari & Gupta, 2021; Duan et al., 2017).

Conversely, in the field of machine learning, there is am-
ple evidence suggesting that network architectures can be
designed to induce specific inductive biases (Domingos,
2012), thereby enhancing predictions on unseen data based
on these biases. For instance, Convolutional Neural Net-
works (CNN) (LeCun et al., 1998) inherently possess an
inductive bias through local connectivity and shared weights,
proving efficacious for pattern recognition in spatial data.
Inspired by this, instead of introducing additional regulariza-
tion terms, we propose a novel neural network architecture,
called demonstration transformer. This architecture con-
structs the decision-making process of the imitator network
aligned with the 3-stage DT process outlined in Sec. 4.1.

Given that this 3-stage DT process is valid across all unseen
demonstrations for OSIL, we posit that such a network ar-
chitecture can implicitly leverage inductive biases and thus
naturally enhance the generalizability of the policy network
across unseen scenarios and demonstrations.

visited state
encoder

expert-state
encoder

𝑘! 𝑘" 𝑘#
attention weighting

module

𝑤! 𝑤" 𝑤#

expert-state-action
encoder

𝑞$

𝑣! 𝑣" 𝑣#

MLP

demo-attention
(N×)

𝑎$

𝑣′! 𝑣′" 𝑣′#

point-wise
multiplication

𝑣%%
sum

[𝑎!& , … , 𝑎"& , … , 𝑎#& ,
[𝑠!& , … , 𝑠"& , … , 𝑠#&]]

[𝑠!& , … , 𝑠"& , … , 𝑠#&] 𝑠$

shared weights

Inputs

Vectors

Layers

Stage1-Identify:
which states to

follow

Stage2-Analyze:
how the expert
behaves in these

states

+

Stage3-Trace:
Recap the current
state and take the
optimal action

𝑐'

… …

… …

… …

……

Figure 3: The demonstration transformer architecture
for the actor. [se0, ..., s

e
i , ..., s

e
t] denote expert states and

[ae0, ..., a
e
i , ..., a

e
t] the expert action list. sj is the visited

state of the actor at timestep j. We adopt q, k, and v to
denote the query, key, and value vectors of an attention mod-
ule. N× denotes an N -layer demo-attention module, which
takes the output v′′ of the last layer as the input qj of the
next layer. Note that the expert-state encoder and the visited
state encoder shared the same weights.

We illustrate the demonstration transformer architecture in
Fig. 3. In particular, demonstration transformer utilizes
the attention mechanism (Vaswani et al., 2017) and uses
the following three major modules to mimic the DT pro-
cess: (1) Stage 1: Identify which state to follow. Attention
weighting is a standard module in the attention architec-
ture (Vaswani et al., 2017), which outputs the similarity
weights of the items in the key vector k compared with the
query vector q. Specifically, one popular implementation
is w = softmax(qk⊺/

√
dk), where dk is the feature dimen-

sion of k, and qk⊺ is to compute the dot products of the
query with the keys in all timesteps. The dot-product opera-
tion of k and q makes states with higher similarity output a
larger attention weight. We utilize this architecture and let
the representation of expert states be k and the visited state
representation be q, to regularize the policy and determine
the expert state to follow before decision-making; (2) Stage
2: Analyze how the expert behave in these states. The at-
tention weighting is followed by a point-wise multiplication

4

Learning Generalizable Imitator Policy for Runtime Imitation from a Single Demonstration

to compute v′′, i.e., v′′ =
∑
i viwi. Each value vector v

is a representation of the corresponding expert state-action
pair. The point-wise multiplication applies the attention
weight wi to the representation of state-action [sei , a

e
i] for

each timestep i to extract expert’s behavior patterns for
aj computation in the next stage; (3) Stage 3: Trace the
demonstration by recapping the current state and take the op-
timal action based on the expert behavior patterns. To trace
the demonstration effectively, the architecture integrates the
current state representation qj with the weighted expert state-
action pairs representations as the expert behavior patterns
v′′. This is accomplished via a fusion layer that combines
the agent’s observed state sj with the expert behavior pat-
terns v′′ to form a composite representation c0. Formally,
c0 = qj ⊕ v′′, where ⊕ denotes a fusion operation, such
as concatenation followed by a non-linear transformation
or point-wise adding operation. This composite is repeated
N times to encapsulate both the current and the expert be-
havior patterns, i.e., ∀k ∈ {1, 2, · · · , N}, ck = ck−1 ⊕ v′′,
enabling the agent to infer the optimal action aj based on
its related expert behavior patterns.

In summary, demonstration transformer employs a 3-stage
process that mirrors human’s 3-stage DT process. By in-
tegrating an attention mechanism with a specialized net-
work structure, the demonstration transformer framework
enhances the agent’s ability to generalize from demonstra-
tions to unseen situations.

4.3. Context-based Meta-RL for OSIL

The mere existence of demonstration transformer does
not inherently guarantee the adherence to the DT process
for decision-making. Conventional OSIL approaches are
predominantly based on training with behavior cloning
losses (Mandi et al., 2022; Shin et al., 2023), which also
fails to guarantee robust decision-making capabilities in
unseen states. Drawing inspiration from methodologies
that integrate IL with RL through a stationary imitation
reward (Ciosek, 2022), we incorporate OSIL into a context-
based meta-RL (CbMRL) framework. Within this frame-
work, we can utilize the trial-and-error learning mechanism
of RL to allow the imitation policy to systematically explore
the state space and effectively achieve decision-making pro-
ficiency in unseen states.

However, the stationery reward constructed in (Ciosek,
2022) has some ill-posedness in the OSIL scenario. In this
paper, we design an imitation reward in a similar way and
empirically fix the ill-posedness of the original imitation re-
ward. We leave the full discussion in App. B and summarize
the constructed OSIL reward function as follows:

ROSIL(s, a) :=WOSIL((s̄, ā), (s, a)) + αRω(s, a), (1)

where WOSIL is a stationary imitation function designed

Algorithm 1 Deep Demonstration Tracing

Input: A task set Mtrain, and a demonstration set
{τωi}

|Mtrain|
i=1 for each taskMωi ∈Mtrain

Process:
1: Initialize the imitator policy Π, and a replay buffer B
2: for 1, 2, 3, · · · do
3: Sample a taskMω from the distribution P (Mtrain)

and select the corresponding τω from {τωi}
|Mtrain|
i=1

4: for j = 1, 2, 3, · · · , H do
5: Sample an action aj ∼ Π(·|sj , τω)
6: Rollout one step: get the next state sj+1 ∼

Mω(·|sj , aj) and the reward rj = ROSIL(sj , aj)
7: Add (sj , aj , rj , sj+1, τω) to B
8: end for
9: Use SAC to update Π with batch samples from B

10: end for

for OSIL that indicates the quality of the imitator policy to
conduct a in s, (s̄, ā) is the nearest expert state-action pair:
(s̄, ā) = argmin(s′,a′)∈T d(s, s

′)2. The selected action ā
corresponds to the action associated with state s̄ in the tran-
sition pair, and α is a rescale coefficient. d(·, ·) measures
the distance between two inputs, which can be customized
differently for different tasks and is L2 distance in this work.
Rω is the simple task-specific reward mentioned in Sec. 3.

From the standard context-based meta-RL framework, the
imitator policy Π can be dissected into a context-based
policy π and a task-information extractor ϕ, denoted as Π :=
π(a|s, ϕ(τω)). The extractor ϕ is tasked with processing
τω to derive task representation denoted by latent variable
z ∈ Z . Meanwhile, π uses the state inputs along with
these latent variables to adaptively decide the action for
each specific task. The standard objective for optimizing
the extractor ϕ and policy π is defined as maximizing the
expected discounted sum of rewards over the training task
set Mtrain, formulated as:

max
Π

EMω∼P (Mtrain)

[
EMω,Π

[∞∑
i=0

γiROSIL(si, ai)

]]
,

where Mtrain represents the set of training tasks and EMω,Π

denotes the expectation over trajectories sampled from task
Mω using policy Π. The imitator policy Π is trained to take
optimal actions for all tasks sampled from a distribution
P (Mtrain). If the task set Mtrain is representative of the
task space Ω, we can assert that the optimally trained policy
Π∗ will perform correctly on the training set when deployed.

In this work, rather than explicitly modeling π and ϕ,
the demonstration transformer architecture is employed as
an integrated implementation of the context-based policy
and task-information extractor: Π, which is the major dif-

5

Learning Generalizable Imitator Policy for Runtime Imitation from a Single Demonstration

ference compared with the standard context-based meta-
RL framework. Finally, we apply the Soft Actor-Critic
(SAC) (Haarnoja et al., 2018) for policy optimization and
named the whole algorithm Deep Demonstration Training
(DDT) (see Alg. 1). In line 7, we can just store the index of
τω in {τωi}

|Mtrain|
i=1 for reduce storage cost. Please refer to

App. D for its detailed implementations.

4.4. Theoretical Analysis

In this study, our emphasis revolves around OSIL with a
primary focus on a single demonstration. This section aims
to illustrate that, under mild conditions, a solitary demon-
stration is adequate for achieving favorable results.

In the absence of complete coverage of the state-action
space, we can construct ill-posed problems such that the
unified policy Π(a|s, τω) cannot imitate successfully (Ross
& Bagnell, 2010). The inherent issue arises when the agent
deviates from the expert trajectory; it encounters immediate
failure and struggles to recover. However, it is important to
note that this scenario nearly apply to real-world applica-
tions. To capture the distinctive characteristics of real-world
tasks, we introduce the concept of recoverable MDP set.

Definition 4.1 (Ω-recoverable MDP set). For an MDP set
M := {Mω | ω ∈ Ω}, if there exists a unified goal-
conditioned policy β(a|s, g), ∀Mω ∈ M, ∀τω ∈ Tw, we
have ∀s ∈ S,∃gj ∈ τω , β(a|s, gj) can reach gj from s = si
within finite timesteps, where S is the state space, i and j
denote the timestep of states in τ and j > i, then M is called
an Ω-recoverable MDP set.

This kind of MDP set encapsulates situations where, despite
deviations from the expert trajectory, the agent has the ca-
pability to recover successfully. The assumption has been
applied in traditional imitation learning algorithms (Ross
et al., 2011) and is practical in many applications, for ex-
ample, in the task of navigation for parking, we might meet
unexpected obstacles and pedestrians in the processing of
imitation, which do not exist in the demonstrations. How-
ever, for any parking lot, the behaviors to handle the situa-
tions are consistent: executing avoidance until the state is
safe, then tracing back to the demonstration.

Proposition 4.2 (1-demo imitator availability). If M :=
{Mω | ω ∈ Ω} is an Ω-recoverable MDP set, there ex-
ists at least a unified imitator policy Π(a|s, Tω) that can
accomplish any task in M only given one corresponding
demonstration, i.e., |Tω| = 1.

The core is the unified goal-conditioned policy β defined in
Def. 4.1. The motivation behind β is that, whatever the task
we would like to imitate is, and whatever the unexpected
changes in the environment will lead the agent to, the behav-
iors of coming back to the states in the demonstrations are
general and consistent. In DDT, β is implicitly implemented

in the demonstration transformer architecture and learned
by meta-RL.

5. Experiments
In our experiments, we establish a demo-navigation bench-
mark for OSIL, focusing on navigating diverse, complex
mazes without global map information. We present this
benchmark in Sec. 5.1 and our experiment setup in Sec. 5.2.
In Sec. 5.3, we evaluate our method from various perspec-
tives, including training performance, and various abilities
to unseen demonstrations/unexpected situations. We verify
the effects of demonstration transformer in Sec. 5.4 and
provide ablation studies in Sec. 5.5. We highlight the po-
tential improvements of DDT through scaling up dataset
size or parameters in Sec. 5.6. We apply DDT in various
complex tasks to show the robustness of our method in other
challenges of OSIL in Sec. 5.7.

5.1. Benchmark for OSIL with Unforeseen Changes

start point
target point

demonstration points
imitation points

unexpected obstacles

impassable walls

2-step local view
(of the start point)

Figure 4: Illustration of the VPAM. The imitation points are
provided by our DDT method.

We created a challenging benchmark, named Valet Park-
ing Assist in Maze (VPAM), to assess OSIL’s performance
for unforeseen changes. This navigation benchmark is in-
spired by a popular and practical real-world application in
autonomous driving, called Valet Parking Assist (VPA) (He-
imberger et al., 2017), where the motivation and further de-
tails are given in App. E. An illustrative example of VPAM
is provided in Fig. 4. In VPAM, a point agent needs to travel
from a start point to a target position in a maze, guided by
expert demonstrations. The maze and target positions vary
between episodes. Obstacle and wall information is directly
accessible. Obstacles may be inexistent. The agent relies on
its l-step local views to make decisions, where l is a config-
uration for task setup and its current coordinate is optionally
provided. In our experiment, the local view is calculated
using 8 rays, each within 5 step length. Without leveraging
demonstrations, finding routes to target positions is impossi-
ble due to the lack of global map information. Besides, for
each episode, rectangular obstacles are randomly generated
on the path to the target, which may not exist during ex-
pert demonstrations. Consequently, the agent cannot blindly
follow the demonstration actions without considering the

6

Learning Generalizable Imitator Policy for Runtime Imitation from a Single Demonstration

Train Non-Obstacle Unforseen Obstacle0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s R
at

e

0.86 0.84

0.730.71
0.62

0.57
0.62

0.47

0.360.33
0.28

0.16

DDT DCRL CbMRL Trans4OSIL

Figure 5: Illustration of the imitation policies’ performance
deployed among different settings. The black bars denote
the standard error among tasks with three seeds.
current situation to reach the target.

5.2. Experiment Setup
Our primary focus is the OSIL capabilities beyond the col-
lected demonstrations. Within VPAM, we create eight tasks
by varying three factors: (1) single-map versus multi-map
navigation; (2) the presence or absence of obstacles; and
(3) whether agent coordinates are provided. For each task,
we gather demonstrations targeting different points. To vali-
date the generalization capabilities, we reserve a portion of
new demonstrations in each map for testing. In multi-map
settings, we separately create new maps to collect demon-
strations for evaluation. In Sec. 5.7, we apply DDT in sev-
eral robotics environments, including Meta-World (Yu et al.,
2019), Gymnasium (Towers et al., 2023), and a robot manip-
ulation task (Pang et al., 2023) based on MuJoCo (Todorov
et al., 2012). More details are available in App. E.

Baselines We compare DDT with three primary context-
based learning approaches that also take demonstrations
as inputs: (1) DCRL (Dance et al., 2021) embeds demon-
strations with standard Transformer and trains policies with
task-specific rewards for further improving the expert behav-
ior via RL; (2) Trans4OSIL (Dasari & Gupta, 2021) uses
Transformer to extract representations from demonstrations
and adopts BC for policy reconstruction. (3) CbMRL (Ope-
nAI et al., 2019) trains policies only with environment re-
wards. Demonstrations are embedded with a multi-layer
GRU (Cho et al., 2014), which is also the implementation
outlined in Alg. 1. All methods are trained for the same
duration with the same parameters to ensure fairness. We
implement the Transformer of DCRL and Trans4OSIL with
the same parameters and layers as our demonstration trans-
former architecture.

5.3. One-Shot Imitation Ability in Unseen Situations
We present the performance of all methods across various
settings with coordinates in Fig. 5 and Fig. 6, while summa-
rizing all experimental results in App. F.

Upon performance on the training set (see the left group
in Fig. 5), all algorithms achieve relatively commendable
performance in imitating seen demonstrations. Notably, our
algorithm, DDT, displayed a distinct performance even in

Single-Map-NonObs Single-Map-Obs Multi-Map-NonObs Multi-Map-Obs
Tasks

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

DDT DCRL CbMRL Trans4OSIL

Figure 6: Illustration of the imitation policies’ training per-
formance among different settings. The colored areas denote
the standard error among the three seeds.

the training task. We attribute this to the integration of the
demonstration transformer architecture. This architecture
conferred an additional training efficiency boost by implic-
itly introducing prior knowledge of how OSIL was achieved,
facilitating easier adaptation across various tasks and set-
tings of differing complexities. This assertion is further
corroborated in Fig. 6, where it is evident that for tasks
of minimal complexity, such as Single-Map-NonObs,
the performance of DCRL and CbMRL was comparable to
DDT, with no significant differences. However, as task com-
plexity increased, the performance of DCRL and CbMRL
deteriorated significantly, unlike DDT, which remained sta-
ble. On another note, Trans4OSIL, employing Behavioral
Cloning (BC) directly with action labels, demonstrated ro-
bustness across different tasks, albeit with notably inferior
performance compared to DDT and other RL-based base-
lines. For the latter, we postulate that, unlike applications
in traditional Trans2OSIL scenarios involving robotic arms,
this task presented dead states, i.e., hitting walls or obstacles,
where slight imitation errors could lead to failure, making
the effects of compounding errors of BC (Ross et al., 2011)
larger. Policies trained within the RL paradigm handle this
issue.

Given the varying performance levels across algorithms dur-
ing training, to evaluate the stability of DDT in the face of
unforeseen obstacles, we calculated the performance degra-
dation percentages for the four algorithms transitioning from
Train to Unforeseen Obstacle conditions based on
Fig. 5. The percentages are as follows: -15%, -20%, -33%,
and -52%. It is observable that DDT exhibited at least 5%
better performance retention compared to the baseline algo-
rithms, robustly demonstrating DDT’s effective imitation in
the presence of unforeseen changes. This robustness, unde-
niably the core advantage of our algorithm, is attributed to
the introduction of the meta-RL mechanism for handling un-
foreseen changes. This advantage can also be validated by
the counterexample that Trans4OSIL consistently struggles
with obstacle navigation.

In addition, there is a line of work (Johns, 2021; Valassakis

7

Learning Generalizable Imitator Policy for Runtime Imitation from a Single Demonstration

et al., 2022; Wen et al., 2022) in the robotics learning com-
munity that employ parameter-free methods from the per-
spective of decision-making: Johns (2021); Valassakis et al.
(2022) retrieve actions corresponding to matched states (the
nearest neighbor) in the single demonstration, while Wen
et al. (2022) replays manipulation demonstrations collected
from objects of the same category after identifying the pose
of the target object. We also make comparisons with these
methods as a deployment method. The results, which are
provided in App. H.4, show that due to the presence of noise
in the target environment, the methods struggle to complete
tasks effectively even in scenarios without obstacles, and
the results are worse in scenarios with obstacles.

5.4. Demonstration-Attention Mechanism in DDT

(a) Trajectory of DDT.

ag
en

t
tr
aj

ec
to

ry

expert trajectory

(b) Attention score.

Figure 7: (a) A trajectory generated by DDT; (b) The at-
tention score map corresponding to (a). The horizontal and
vertical axis represent the agent’s trajectory index. The
deeper color in a row represents the higher attention score.

To further verify that demonstration transformer stimulates
the agent making decisions based on the discrepancy be-
tween the current state and the states in demonstrations, we
visualize the agent trajectory in a randomly generated map
with unforeseen obstacles in Fig. 7(a) and depict attention
scores during the decision-making process in Fig. 7(b). The
attention scores are the product of the query of current state
and the keys associated with demonstration states. It is evi-
dent that higher attention values are predominantly concen-
trated on the diagonal, demonstrating our algorithm’s ability
to identify which state to follow. We provided more visu-
alizations in App. K. Additionally, a corresponding video
recording rollouts generated by our DDT method is provided
in our project page.

5.5. Ablation Studies

We conduct ablation studies on the demonstration trans-
former architecture and OSIL rewards in multi-map imita-
tion tasks without obstacles and test in unseen maps, which
is depicted in Fig. 8(a). Two DDT variants are constructed:
(1) DDT using Transformer, replacing the demonstration
transformer with a standard transformer; (2) DDT w/o OSIL
reward, where DDT learns with only the ending reward Rω .
Replacing demonstration transformer with a Transformer

0.0 0.5 1.0 1.5 2.0
time-step ×106

0.0

0.2

0.4

0.6

0.8
DDT
DDT using transformer
DDT w\o OSIL reward

su
cc

es
s r

at
e

(a) Results of DDT variants

1 10 100
scaling-up rate

0.3

0.4

0.5

0.6

0.7

0.8

0.9

model parameters
demonstrations quantity

su
cc

es
s r

at
e

(b) Scaling up results

Figure 8: (a) Learning curves of DDT variants; (b) Asymp-
totic performance of DDT under varying demonstration
quantities and model parameters, with each unit on the
x-axis representing 60 demonstrations or 0.6 million param-
eters. The x-axis is on a logarithmic scale. Square markers
depict the performance of the default DDT parameters. The
raw results are in App. I.

significantly reduces the asymptotic performance, empha-
sizing the crucial role of network architecture in enhancing
DDT’s imitation ability. The OSIL reward is also vital for
improving learning efficiency, as OSIL reward enhance the
policy learning signals. More ablation studies are in App. H.

5.6. Potential Improvement when Scaling Up

Inspired by recent advances in large decision-making mod-
els (Gu et al., 2023; Zhang, 2023), we investigate the po-
tential for further performance improvement when scaling
up. Specifically, we train DDT policies with varying demon-
stration quantities and model parameters in multi-map im-
itation tasks with obstacles. We only provide coordinates
for the former and test the trained policies on unseen maps.
Results are visualized in Fig. 8(b), revealing a log-linear
performance increase with rising data volume or model pa-
rameters. Notably, an increase in model parameters results
in approximately 2× performance improvement in Tab. 8.
The results strongly indicate the potential of enhancement
with scaling up, prompting further investigation of DDT as
a skeleton for generalist agents (Reed et al., 2022).

5.7. Apply DDT in Other Challenging Tasks

We evaluate the generalization ability of our method to
imitate unseen demonstrations across a range of challeng-
ing tasks. We deploy DDT in 4 tasks from a well-known
benchmark Meta-World (Yu et al., 2019) with self-built
disturbance. Then we apply DDT in robot tasks requir-
ing complex planning (Pang et al., 2023), involving object
grasping, stacking, and collecting in clutter environments;
complex controller with the Reacher and Pusher in (Tow-
ers et al., 2023), which feature diverse variables for control,
including location, velocity, angular velocity, etc. We also
test in our VPAM benchmark by omitting coordinates, pre-

8

https://osil-ddt.github.io

Learning Generalizable Imitator Policy for Runtime Imitation from a Single Demonstration

senting a partially observable decision-making problem
where local views within a single state do not suffice for im-
itation. Details about the tasks are available in App. E. We
summarize the average results in Tab. 1 and Tab. 2. Please
refer to Tab. 9 and Tab. 10 in App. F for complete results.

Table 1: Performance comparison on Meta-World.

Tasks W/o Disturbance W/ Disturbance

Demo seen unseen seen unseen

DDT 1.00±0.00 0.85±0.14 0.83±0.15 0.61±0.20
DCRL 0.73±0.42 0.37±0.27 0.23±0.30 0.12±0.14
Trans4OSIL 0.14±0.21 0.11±0.12 0.00±0.00 0.00±0.00
CbMRL 0.70±0.32 0.39±0.36 0.08±0.07 0.10±0.06

Performance under Disturbance in Meta-world: From
the result in Meta-World (Tab. 1), baseline methods mainly
succeeded in imitating previously seen trajectories, showing
a significant performance drop for unseen samples, even
without disturbances. This drop was exacerbated in sce-
narios with disturbances, where baselines nearly failed to
operate. Conversely, our method was effective in all scenar-
ios, underscoring its generalizability for OSIL.

Table 2: Performance comparison on various tasks.

Tasks Complex Planning Complex Controller Partially Observable

Demo seen unseen seen unseen seen unseen

DDT 0.91±0.10 0.76±0.11 0.97±0.01 0.95±0.01 0.67±0.16 0.67±0.04
DCRL 0.10±0.14 0.23±0.33 0.77±0.12 0.69±0.19 0.20±0.05 0.03±0.02
Trans4OSIL 0.15±0.12 0.09±0.08 0.42±0.22 0.33±0.25 0.06±0.00 0.01±0.01
CbMRL 0.24±0.33 0.16±0.23 0.91±0.01 0.86±0.01 0.15±0.00 0.03±0.01

Complex Decision-making Tasks: Other experiments are
summarized in Tab. 2. Conducted with uniform parameters
and network architecture without task-specific tuning, our
approach demonstrated excellent training performance and
generalization across different tasks. This underscores the
method’s versatility. We attribute it to the demonstration
transformer architecture and the Meta-RL framework’s in-
herent suitability for OSIL tasks. Notably, our method does
experience a reduction in training performance in partially
observable scenarios, aligning with our expectations due
to the inherent challenges of such settings. Future work
could incorporate visual OSIL techniques (Mandi et al.,
2022) for addressing partially observable problems in DDT,
potentially enhancing its problem-solving capabilities. Nev-
ertheless, DDT maintained commendable generalization
from training to testing within its learned expertise.

Training on Mixed-Up Environments We validate our
algorithm’s performance on mixed-up demonstrations from
different environments to enhance the significance of our
algorithm. We collect demonstrations from varying num-
bers of environments, with selected environment details
provided in App. H. We report the performance of these
demonstrations according to the number of environments

designed. The results are summarized in Tab. 3. The results
reveal the strong adaptability of our method for learning
tasks across diverse environments, consistently performing
well regardless of the number of environments involved. We
also test our algorithm on learning four environments indi-
vidually, achieving a 0.85 success rate, to better illustrate
the robustness of DDT.

Table 3: Performance on mixed-up demonstrations.

Environment number 2 4 8

Seen Demos. 1.00 1.00 1.00
Unseen Demos. 0.84 0.88 0.90

Deploying on Unseen Environments We finally discuss
that generalizing tasks to entirely different environments,
e.g., different tasks, embodiments, or camera views, rather
than unexpected situations, would be somewhat beyond the
scope. However, we provide this part of the experimental re-
sults to better showcase the potential of DDT. We select the
eight objects-manipulation tasks in Meta-World for training,
including Button Press Topdown, Button Press Topdown
Wall, Button Press Wall, Door Open, Faucet Close, Drawer
Close, Window Open, and Window Close. The details are
provided in App. H. Then we test and record the general-
ization performance on three unseen environments, Button
Press, Door Close, and Reach without fine-tuning. It can
be observed that even when the agent is trained without cor-
responding task environments, our algorithm still achieves
satisfactory success rates by consciously imitating demon-
strations.

Table 4: Performance on unseen environments.

Environment Button Press Door Close Reach

Performance 0.78 1.00 0.75

6. Discussion and Future Work
We propose a problem of one-shot imitation learning with
unforeseen changes after demonstration collections and a
practical Deep Demonstration Tracing (DDT) algorithm.
DDT leverages a specialized demonstration-based attention
architecture to encourage agents to adaptively trace suitable
states in demonstrations. We apply DDT to both demo-
navigation tasks and robotics tasks. The results demonstrate
that DDT outperforms previous OSIL methods with large
margins both on training and unseen-tasks testing.

We believe that OSIL with unforeseen changes is a valuable
topic for the community, which makes OSIL algorithms
generalizable to more potential real-world applications. Be-
sides, our scaling-up experiments also highlight the potential
of DDT in solving larger-scale problems, e.g., generalist
imitator agents, which will be in our future work.

9

Learning Generalizable Imitator Policy for Runtime Imitation from a Single Demonstration

Acknowledgements
This work is supported by the National Science Founda-
tion of China (61921006). The authors thank anonymous
reviewers for their helpful discussions and suggestions for
improving the article.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Ahn, J., Kim, M., and Park, J. Vision-based autonomous

driving for unstructured environments using imitation
learning. arXiv preprint arXiv:2202.10002, 2022.

Chen, J., Yuan, B., and Tomizuka, M. Deep imitation learn-
ing for autonomous driving in generic urban scenarios
with enhanced safety. In International Conference on
Intelligent Robots and Systems, pp. 2884–2890, 2019.

Chen, X., Yu, Y., Li, Q., Luo, F., Qin, Z. T., Shang, W., and
Ye, J. Offline model-based adaptable policy learning. In
Advances in Neural Information Processing Systems, pp.
8432–8443, 2021.

Chen, X., He, B., Yu, Y., Li, Q., Qin, Z. T., Shang, W.,
Ye, J., and Ma, C. Sim2rec: A simulator-based decision-
making approach to optimize real-world long-term user
engagement in sequential recommender systems. In IEEE
International Conference on Data Engineering, 2023a.

Chen, X., Luo, F., Yu, Y., Li, Q., Qin, Z., Shang, W., and
Ye, J. Offline model-based adaptable policy learning for
decision-making in out-of-support regions. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 45
(12):15260–15274, 2023b.

Cho, K., van Merrienboer, B., Bahdanau, D., and Bengio, Y.
On the properties of neural machine translation: Encoder-
decoder approaches. In Workshop on Syntax, Semantics
and Structure in Statistical Translation, pp. 103–111,
2014.

Ciosek, K. Imitation learning by reinforcement learning. In
International Conference on Learning Representations,
2022.

Dance, C. R., Perez, J., and Cachet, T. Demonstration-
conditioned reinforcement learning for few-shot imitation.
In International Conference on Machine Learning, pp.
2376–2387, 2021.

Dasari, S. and Gupta, A. Transformers for one-shot visual
imitation. In Conference on Robot Learning, pp. 2071–
2084, 2021.

Domingos, P. A few useful things to know about machine
learning. Communications of the ACM, pp. 78–87, 2012.

Duan, Y., Andrychowicz, M., Stadie, B., Jonathan Ho, O.,
Schneider, J., Sutskever, I., Abbeel, P., and Zaremba,
W. One-shot imitation learning. Advances in Neural
Information Processing Systems, pp. 1087–1098, 2017.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Interna-
tional Conference on Machine Learning, pp. 1126–1135,
2017a.

Finn, C., Yu, T., Zhang, T., Abbeel, P., and Levine, S. One-
shot visual imitation learning via meta-learning. Confer-
ence on Robot Learning, pp. 357–368, 2017b.

Florensa, C., Held, D., Geng, X., and Abbeel, P. Automatic
goal generation for reinforcement learning agents. In
International Conference on Machine Learning, pp. 1514–
1523, 2018.

Fujimoto, S. and Gu, S. S. A minimalist approach to offline
reinforcement learning. In Advances in Neural Informa-
tion Processing Systems, pp. 20132–20145, 2021.

Fujimoto, S., Hoof, H., and Meger, D. Addressing function
approximation error in actor-critic methods. In Interna-
tional Conference on Machine Learning, pp. 1587–1596,
2018.

Gu, J., Kirmani, S., Wohlhart, P., Lu, Y., Arenas, M. G.,
Rao, K., Yu, W., Fu, C., Gopalakrishnan, K., Xu, Z.,
Sundaresan, P., Xu, P., Su, H., Hausman, K., Finn, C.,
Vuong, Q., and Xiao, T. Rt-trajectory: Robotic task
generalization via hindsight trajectory sketches. arXiv
preprint arXiv:2311.01977, 2023.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In International
Conference on Machine Learning, pp. 1856–1865, 2018.

Heimberger, M., Horgan, J., Hughes, C., McDonald, J., and
Yogamani, S. K. Computer vision in automated parking
systems: Design, implementation and challenges. Image
and Vision Computing, 2017.

Hester, T., Vecerík, M., Pietquin, O., Lanctot, M., Schaul,
T., Piot, B., Horgan, D., Quan, J., Sendonaris, A., Os-
band, I., Dulac-Arnold, G., Agapiou, J. P., Leibo, J. Z.,
and Gruslys, A. Deep q-learning from demonstrations.
In AAAI Conference on Artificial Intelligence, pp. 3223–
3230, 2018.

10

Learning Generalizable Imitator Policy for Runtime Imitation from a Single Demonstration

Johns, E. Coarse-to-fine imitation learning: Robot ma-
nipulation from a single demonstration. In 2021 IEEE
international conference on robotics and automation, pp.
4613–4619. IEEE, 2021.

Kümmerle, R., Hähnel, D., Dolgov, D., Thrun, S., and
Burgard, W. Autonomous driving in a multi-level parking
structure. In International Conference on Robotics and
Automation, pp. 3395–3400, 2009.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, pp. 2278–2324, 1998.

Li, J., Lu, T., Cao, X., Cai, Y., and Wang, S. Meta-imitation
learning by watching video demonstrations. In Interna-
tional Conference on Learning Representations, 2021.

Luo, F., Jiang, S., Yu, Y., Zhang, Z., and Zhang, Y. Adapt to
environment sudden changes by learning a context sensi-
tive policy. In AAAI Conference on Artificial Intelligence,
pp. 7637–7646, 2022.

Mandi, Z., Liu, F., Lee, K., and Abbeel, P. Towards more
generalizable one-shot visual imitation learning. In In-
ternational Conference on Robotics and Automation, pp.
2434–2444, 2022.

Nagabandi, A., Clavera, I., Liu, S., Fearing, R. S., Abbeel,
P., Levine, S., and Finn, C. Learning to adapt in dynamic,
real-world environments through meta-reinforcement
learning. arXiv preprint arXiv:1803.11347, 2018.

Nagabandi, A., Clavera, I., Liu, S., Fearing, R. S., Abbeel,
P., Levine, S., and Finn, C. Learning to adapt in dynamic,
real-world environments through meta-reinforcement
learning. In International Conference on Learning Rep-
resentations, 2019.

Nair, S., Savarese, S., and Finn, C. Goal-aware predic-
tion: Learning to model what matters. In International
Conference on Machine Learning, pp. 7207–7219, 2020.

Ng, A. Y. and Russell, S. Algorithms for inverse reinforce-
ment learning. In International Conference on Machine
Learning, pp. 663–670, 2000.

OpenAI, Akkaya, I., Andrychowicz, M., Chociej, M.,
Litwin, M., McGrew, B., Petron, A., Paino, A., Plap-
pert, M., Powell, G., Ribas, R., Schneider, J., Tezak, N.,
Tworek, J., Welinder, P., Weng, L., Yuan, Q., Zaremba,
W., and Zhang, L. Solving Rubik’s cube with a robot
hand. arXiv preprint arXiv:1910.07113, 2019.

Pan, Y., Cheng, C., Saigol, K., Lee, K., Yan, X., Theodorou,
E. A., and Boots, B. Agile autonomous driving using
end-to-end deep imitation learning. In Robotics: Science
and Systems, 2018.

Pang, J.-C., Yang, S.-H., Chen, X.-H., Yang, X., Yu, Y., Ma,
M., Guo, Z., Yang, H., and Huang, B. Object-oriented
option framework for robotics manipulation in clutter.
In International Conference on Intelligent Robots and
Systems, pp. 1230–1237, 2023.

Peng, X. B., Andrychowicz, M., Zaremba, W., and Abbeel,
P. Sim-to-Real transfer of robotic control with dynamics
randomization. In International Conference on Robotics
and Automation, pp. 1–8, 2018.

Pomerleau, D. Efficient training of artificial neural networks
for autonomous navigation. Neural Computation, pp. 88–
97, 1991.

Rajeswaran, A., Kumar, V., Gupta, A., Vezzani, G., Schul-
man, J., Todorov, E., and Levine, S. Learning complex
dexterous manipulation with deep reinforcement learning
and demonstrations. In Robotics: Science and Systems,
2018.

Rakelly, K., Zhou, A., Finn, C., Levine, S., and Quillen, D.
Efficient off-policy meta-reinforcement learning via prob-
abilistic context variables. In International Conference
on Machine Learning, pp. 5331–5340, 2019.

Reed, S. E., Zolna, K., Parisotto, E., Colmenarejo, S. G.,
Novikov, A., Barth-Maron, G., Gimenez, M., Sulsky, Y.,
Kay, J., Springenberg, J. T., Eccles, T., Bruce, J., Razavi,
A., Edwards, A., Heess, N., Chen, Y., Hadsell, R., Vinyals,
O., Bordbar, M., and de Freitas, N. A generalist agent.
Transactions on Machine Learning Research, 2022.

Ross, S. and Bagnell, D. Efficient reductions for imita-
tion learning. In International Conference on Artificial
Intelligence and Statistics, pp. 661–668, 2010.

Ross, S., Gordon, G. J., and Bagnell, D. A reduction of
imitation learning and structured prediction to no-regret
online learning. In International Conference on Artificial
Intelligence and Statistics, pp. 627–635, 2011.

Shin, S., Lee, D., Yoo, M., Kim, W. K., and Woo, H. One-
shot imitation in a non-stationary environment via multi-
modal skill. In International Conference on Machine
Learning, pp. 31562–31578, 2023.

Sutton, R. S. and Barto, A. G. Reinforcement Learning: An
Introduction (Second Edition). 2018.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In International Confer-
ence on Intelligent Robots and Systems, pp. 5026–5033,
2012. doi: 10.1109/IROS.2012.6386109.

Towers, M., Terry, J. K., Kwiatkowski, A., Balis, J. U.,
Cola, G. d., Deleu, T., Goulão, M., Kallinteris, A., KG,
A., Krimmel, M., Perez-Vicente, R., Pierré, A., Schulhoff,

11

Learning Generalizable Imitator Policy for Runtime Imitation from a Single Demonstration

S., Tai, J. J., Shen, A. T. J., and Younis, O. G. Gymnasium,
2023.

Valassakis, E., Papagiannis, G., Di Palo, N., and Johns, E.
Demonstrate once, imitate immediately (dome): Learning
visual servoing for one-shot imitation learning. In 2022
IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 8614–8621. IEEE, 2022.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems, pp. 5998–6008, 2017.

Wang, K., Kang, B., Shao, J., and Feng, J. Improving gener-
alization in reinforcement learning with mixture regular-
ization. In Advances in Neural Information Processing
Systems, pp. 7968–7978, 2020.

Wen, B., Lian, W., Bekris, K. E., and Schaal, S. You only
demonstrate once: Category-level manipulation from sin-
gle visual demonstration. ArXiv, abs/2201.12716, 2022.

Xie, F., Chowdhury, A., Kaluza, M. C. D. P., Zhao, L.,
Wong, L. L. S., and Yu, R. Deep imitation learning for
bimanual robotic manipulation. In Advances in Neural
Information Processing Systems, pp. 2327–2337, 2020.

Xu, T., Li, Z., and Yu, Y. Error bounds of imitating policies
and environments. In Advances in Neural Information
Processing Systems, 2020.

Yeh, J., Chung, C., Su, H., Chen, Y., and Hsu, W. H. Stage
conscious attention network (SCAN): A demonstration-
conditioned policy for few-shot imitation. In AAAI Con-
ference on Artificial Intelligence, pp. 8866–8873, 2022.

Yu, T., Abbeel, P., Levine, S., and Finn, C. One-shot hierar-
chical imitation learning of compound visuomotor tasks.
arXiv preprint arXiv:1810.11043, 2018a.

Yu, T., Finn, C., Xie, A., Dasari, S., Zhang, T., Abbeel, P.,
and Levine, S. One-shot imitation from observing hu-
mans via domain-adaptive meta-learning. arXiv preprint
arXiv:1802.01557, 2018b.

Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn, C.,
and Levine, S. Meta-world: A benchmark and evaluation
for multi-task and meta reinforcement learning. arXiv
preprint arXiv:1910.10897, 2019.

Zhang, D., Wu, Z., Chen, J., Zhu, R., Munawar, A., Xiao,
B., Guan, Y., Su, H., Hong, W., Guo, Y., Fischer, G. S.,
Lo, B., and Yang, G. Human-robot shared control for
surgical robot based on context-aware sim-to-real adapta-
tion. In 2022 International Conference on Robotics and
Automation, ICRA’22, pp. 7694–7700. IEEE, 2022.

Zhang, W. Large decision models. In International Joint
Conference on Artificial Intelligence, pp. 7062–7067,
2023.

12

Learning Generalizable Imitator Policy for Runtime Imitation from a Single Demonstration

A. Demonstration Quantity Requirements for Imitator Learning
Without further assumptions on task space Ω, it is always easy to construct ill-posed problems that it is impossible for a
unified imitator policy Π(a|s, Tω) to reconstruct all of the expert policies unless the expert demonstration set T does cover
the whole state-action space. However, in many applications, it is unnecessary for Π to imitate policies for anyM. Here we
give one practical task set that enables imitator learning (OSIL) through only one demonstration.

Definition A.1 (Ω-recoverable MDP set). For an MDP set M := {Mω | ω ∈ Ω}, if there exists a unified goal-conditioned
policy β(a|s, g), ∀Mω ∈ M, ∀τω ∈ Tw, we have ∀s ∈ S,∃gj ∈ τω, β(a|s, gj) can reach gj from s = si within finite
timesteps, where S0 is the set of the initial states, i and j denote the timestep of states in τ and j > i, then M is an
Ω-recoverable MDP set.

Ω-recoverable MDP set depicts the similarity of the tasks in M through the demand of the policy β(a|s, g). It means
that although the transition process and the initial distribution are stochastic and different among M, there exists a goal-
conditioned policy β that for anyMω , we can guide the agent turn back to some states in the demonstrations. For example,
different navigation tasks will have similar decisions in similar traffic conditions even in different terrains. Thus even if
the vehicle has to veer off the demonstrations for handling some unexpected situations, it usually can turn back after some
timesteps.

Based on the definition, we give an M formulation that can find a unified imitator policy Π from one demonstration.

Proposition A.2 (1-demo imitator availability). If M := {Mω | ω ∈ Ω} is a Ω-recoverable MDP set, there exists at least
a unified imitator policy Π(a|s, Tω) that can accomplish any task in M only given one corresponding demonstration, i.e.,
|Tω| = 1.

Proof. Since Rω inMω is an ending reward function of trajectories, given any expert demonstration τω , we know:

Rω(s, a) =

c, s = st,

0, (s, a) ∈ τω and s ̸= st,

unkown, otherwise.

That is, any policy can accomplish the task in Mω if it can reach the last state st of τω, where c is the reward for
accomplishing the task.

Since M := {Mω | ω ∈ Ω} is a Ω-recoverable MDP set, there exists a unified goal-conditioned policy β(a|s, g),
∀Mω ∈ M, ∀τω ∈ Tw, we have ∀s ∈ S,∃gj ∈ τω, β(a|s, gj) can reach gj from s = si within finite timesteps. We can
construct a unified imitator policy by (1) searching a gj ∈ τω that can be reached by β(a|s, gj) from current state si within
finite timesteps, where j > i; (2) executing β(a|s, gj) until reaching gj ; (3) repeat (1) and (2) to the end. When deployed,
for anyMω , in the beginning, s0 ∼ d0, thus the agent will reach one of the state si ∈ τω after finite timesteps, where i > 0.
Since si ∈ τω , following β(a|s, gj), the agent will arrive another state sj ∈ τω . The process will be repeated until the agent
reaches the last state st. Once Rω(st, ·) = c, the task is accomplished.

Although we focus on 1-demo imitator availability, note that the 1-demo imitator availability can be extended to the “n-demo”
case by extending Ω-recoverable MDP set to “ TΩ-recoverable MDP set”.

Fig. 9 gives a vehicle navigation illustration for the proposition, where all tasks in M ask the vehicle to reach some locations
based on its coordinates and local views. We first consider a simple case in which the initial state is deterministic and is the
same as the first state in τω . In this case, even if a truck might be parked unexpectedly (states unvisited in the demonstrations),
relying on the local-view information, for any τω , we have a unified goal-conditioned policy β(a|s, g), i.e., closing to some
of the successor expert states without collision, that can drive the vehicle to be close to the locations in τω. With policy β,
there exists at least a unified imitator policy Π(a|s, Tω) that can accomplish any task in M only given one corresponding
demonstration: repeatedly traces a reachable successor state gj ∈ τω and uses β to guide the agent until reaching the ending
state. In the following, we consider a counter-example where the agent state can be put to unrecoverable states, e.g., the
square point in Fig. 9, for some unforeseen reasons. In this case, if the local view is limited and cannot reach the location
of entrances and the entrance might exist either in A or B, it is impossible to construct a unified goal-conditioned policy
β(a|s, g) since in the square point, the correct way to trace back to the demonstrations is agnostic (can be in left or right).

13

Learning Generalizable Imitator Policy for Runtime Imitation from a Single Demonstration

demo state ending state

imitator traj. demo traj.

a parked trunk inexistent in the demo.

far-away state

an impassable wall

local view

entrance A

entrance B

entrance

？

？

Figure 9: A vehicle navigation example. “traj.” is the abbreviation of “trajectory”.

Note that the trace-backable property relies on the information we have from the states, e.g., with global map information in
the state space, the unified goal-conditioned policy can be constructed by planning a trajectory in the map then the above
task set is trace-backable.

B. OSIL Reward from Demonstrations
A theoretical analysis in (Ciosek, 2022) shows that, for deterministic experts, IL can be done by RL with a constructed
stationary reward: Rint(s, a) = I[(s, a) ∈ T], where I[·] denotes the indicator function and T is the expert demonstration.
In practice, the constructed reward function:

RIL(s, a) = 1− min
(s′,a′)∈T

dℓ2((s, a), (s
′, a′))2, (2)

which is a practical imitation reward Rint that can also imitate the experts in several benchmark tasks. Here dℓ2(·, ·) denotes
the ℓ2 distance of two normalized vectors.

𝑠𝑡−1

𝑎𝑡−1

𝑠𝑡

𝐴

𝐵
𝐶

ො𝑎𝐴

ො𝑎𝐵

obstacle

demo traj. visited state ill-posed action

ො𝑎𝐶

Figure 10: Illustration of the ill-posedness of RIL. A, B, and C denote states, and red dashed arrows (âA, âB , and âC)
denote the corresponding ill-posed sub-optimal actions to earn more the cumulative RIL rewards. The agent fails on hitting
the obstacle. st is the last state, also the target state for task completion.

Inspired by this, we propose to construct a stationary imitator reward ROSIL to embed IL into the RL process, i.e., replacing
the reward function Rω in Alg. 1 (Line 7) with ROSIL. First, we observe that RIL and Rint can reconstruct the expert policy
only when we have a diverse enough dataset which covers the state-action space. When only with one demonstration, the
reward function will be ill-posed in three aspects. We depict that based on the illustration in Fig. 10: (1) A state: if the
minimum-distance tuple in Eq. 2 is far away from the visited state, e.g., (st−1, at−1) in Fig. 10, the action that reduces the
ℓ2-norm between the next state and st−1 might ignore the impassable terrains between states and finally hit the obstacle;
(2) B state: even if the action to reduce the ℓ2-norm between the next state of B and st−1 is correct to go back to the

14

Learning Generalizable Imitator Policy for Runtime Imitation from a Single Demonstration

demonstration, to reduce the ℓ2-norm between actions at−1 and the current action at the same time, the derived action
might be biased by at−1 and finally lead to an unsafe state; (3) C state: even if the state perfectly matches the one in the
demonstration, the agent still has the potential to stay where it is until it reaches the maximum episode length, as RIL might
be greater than 0. To handle the above problems, we construct a new imitator reward function ROSIL(s, a) via:

ROSIL(s, a) := 1−min
{
d(s̄, s)2 +

d(ā, a)2

exp(d(s̄, s)2)
, η
}

︸ ︷︷ ︸
WOSIL

+αRω(s, a), (3)

where (s̄, ā) = argmin(s′,a′)∈T d(s, s
′)2, η is a hyperparameter that clips the distance penalty calculated based on the

too-far state pairs into a fixed constant, α = 1/(c(1− γ)) is a rescale coefficient, and c is the reward for accomplishing the
task defined in Rω .

ROSIL(s, a) uses a clipping term η to make the imitation rewards based on the too-far state pairs invalidated to avoid the
potential misleading (to handle the “A-state” case). A reweighting item 1/ exp(d(s̄, s)2) is used for the action’s distance
computation to adaptively adjust the weight of rewards on action matching. This is a heuristic reweighting term to avoid the
agent overly penalizing for not strictly following the expert action when its current state is far from the demonstration states
and chooses to turn back (to handle the “B-state” case). The necessity of the reweighting term stems from its pivotal role
in preventing undesired behaviors in situations where the agent strictly adheres to the demonstrated actions due to state
bias. By incorporating the reweighting term, we ensure that the agent does not blindly follow the demonstrations, thereby
reducing the risk of unintended consequences. α rescales the ending rewards, which makes the discount on delay to get
the ending reward larger than the bonus of repeatedly collecting the immediate rewards, i.e., αc > 1− ϵ+ γαc, where ϵ
denotes a larger-than-zero penalty contributed by the second item in Eq. 3 (to handle the “C-state” case).

Note that although we give several tricks to makeROSIL give reasonable rewards in the state-action space, it is still inevitable
to output ill-posed rewards in some corner cases. Hence, the ending reward is essential, as it helps the agent focus more on
task completion rather than repeatedly collecting RIL rewards. The large coefficient α on the task-specific reward Rω makes
the policies always focus on completing the tasks rather than repeatedly collecting RIL rewards. In this situation, ROSIL

just serves as a crucial signal by providing a dense reward, enabling the agent to closely follow the demonstrations and
accomplish tasks effectively during the early stages. We leave a theoretical-grounded reward function design as future work.

C. Related Work
C.1. Imitation Learning

Imitation learning (IL) focuses on training a policy with action labels from expert demonstrations. There are two mainstream
approaches for IL, namely behavior cloning (BC) (Pomerleau, 1991; Ross & Bagnell, 2010; Xu et al., 2020) and inverse
reinforcement learning (IRL) (Ng & Russell, 2000). The former BC converts IL into a supervised paradigm by minimizing
the action probability discrepancy with Kullback Leibler (KL) divergence between the actions of the imitating policy and
the demonstration actions. The latter IRL fashion learns the hidden reward function behind the expert policy to avoid the
impact of compounding errors.

Since IL can learn directly from already collected data, it is widely adopted by complex domains like game playing (Ross &
Bagnell, 2010), autonomous driving (Chen et al., 2019; Pan et al., 2018), and robot manipulation (Xie et al., 2020). Although
achieving impressive performances, we observe that in many applications, what humans require is the ability to perform
many different tasks out of the box, through very limited demonstrations of corresponding tasks, instead of imitating from
scratch based on a mass of demonstrations. Adapting the trained policy to unseen tasks is beyond the capability of pure IL,
which is designed for single-task learning.

C.2. Meta-Imitation Learning

Meta-IL includes few-shot meta-IL and one-shot meta-IL. Few-shot meta-IL aims to get a generalizable policy that can
complete new tasks with only a few expert trajectories. The mainstream solutions utilize model-agnostic meta-learning
(MAML) (Finn et al., 2017a) to learn initial task parameters and fine-tune them via a few steps of gradient descent to satisfy
new task needs (Finn et al., 2017b; Li et al., 2021; Yu et al., 2018b). However, these approaches need extra computation
infrastructure for gradient update and determining a suitable amount of fine-tuning steps before deployment (Finn et al.,
2017a). One-shot meta-IL achieves generalizable imitation through context-based policy models (Dasari & Gupta, 2021;

15

Learning Generalizable Imitator Policy for Runtime Imitation from a Single Demonstration

Duan et al., 2017; Mandi et al., 2022), such as Transformer (Vaswani et al., 2017), that take demonstrations as input. The
core idea is to extract representations of demonstrations through these powerful fitting abilities of neural networks, then
use BC to reconstruct the imitation policy. However, the demonstrations for imitation are limited, the inevitable prediction
errors on unseen states and the compounding errors of BC (Ross et al., 2011) hurt the capacities of these methods, especially
in generalizing to new tasks (Mandi et al., 2022).

C.3. Combination of Imitation Learning and Reinforcement Learning

We are not the first study to combine IL and RL. Previous studies have combined these for different proposes: Hester
et al. (2018) leverage small sets of demonstrations for deep Q-learning which massively accelerates the learning process.
Rajeswaran et al. (2018) use demonstrations to reduce the sample complexity of learning the dexterous manipulation policy
and enable natural and robust robot movement. Fujimoto & Gu (2021) add BC to the online RL algorithm TD3 (Fujimoto
et al., 2018) for advanced offline RL performance. Our method extends the idea of combining IL and RL to handle OSIL with
unforeseen changes.

C.4. Context-based Meta Reinforcement Learning

Besides IL, context-based policy models are also widely used in meta-RL. Building a representative context enables a single
agent of learning meta-skills and identifying new tasks. Goal-conditioned RL (Florensa et al., 2018; Nair et al., 2020) is the
most direct way to build a context-based meta-policy, which scales a single agent to a diverse set of tasks by informing the
agent of the explicit goal contexts, e.g., the target to go or the object to pick. The demonstrations can be regarded as an
informative “goal” for IL tasks. The demonstration sequence not only tells the agent which task to accomplish but also the
way to accomplish it.

Some other works collect interaction trajectories from the environment for understanding the task identity. (Peng et al.,
2018; OpenAI et al., 2019; Chen et al., 2023a; Nagabandi et al., 2019; Chen et al., 2021; Luo et al., 2022; Chen et al., 2023b;
Zhang et al., 2022) use a end-to-end architecture for environment-parameter representation and adaptable policy learning. A
recurrent neural network is introduced for environment-parameter representation, then the context-aware policy takes actions
based on the outputs of RNN and the current states. (Rakelly et al., 2019) share the same end-to-end architecture and design
a new neural network to represent the probabilistic latent contexts of the environment parameters. Instead of collecting
trajectories from the environment for identifying the task, we mine the information from the static expert trajectories to
identify the expert policy which can accomplish the task.

Demonstration-conditioned RL (DCRL) (Dance et al., 2021) takes sub-optimal demonstrations as input and seeks to further
improve demonstration behavior via RL. Yeh et al. (2022) adopt a similar idea to solve unseen compound robot tasks
that contain multiple stages by retrieving from demonstrations. Instead of taking demonstration as the base for policy
improvement, OSIL aims to fully utilize the demonstrations to imitate the expert policy for each task.

D. Implementation Details
D.1. Achitecture Details

We give the related hyper-parameters of the architecture in Tab. 5.

In demonstration transformer architecture, we introduce three encoders for expert actions, expert states, and visited states
respectively, where the encoders of expert states and visited states share the same weights. The detailed architecture is
shown in Fig. 11.

16

Learning Generalizable Imitator Policy for Runtime Imitation from a Single Demonstration

Table 5: DDT Hyper-parameters.

Parameter Value

learning rate (λ) 5 · 10−5

discount (γ) 0.99
replay buffer size 105

number of hidden units per layer 256
number of samples per minibatch 256
optimizer RMSprop

Actor
encoder layer number (K) 3
cross-attention layer number (N) 6
embedding dimension 128

Critic
encoder layer number (K) 4
cross-attention layer number (N) 4
embedding dimension 128

OSIL Rewards for VPAM
rescale coefficient (α) 100
penalty threshold (η) 2

OSIL Rewards for Robotics tasks
rescale coefficient (α) 200
penalty threshold (η) 2

Feed
Forward

Add&Norm

Inputs

Vectors
Layers

[�0� , …, ���, …, ���]

Dropout

�1 �� ��

 (N×)

Figure 11: The encoder architecture employed in the demonstration transformer. As an example, we consider the input
sequence [se0, ..., s

e
i , ..., s

e
t]. However, it is worth noting that this architecture can also accommodate [ae0, ..., a

e
i , ..., a

e
t] as

inputs. The encoder leverages the Transformer backbone, which incorporates three layers: dropout, feedforward, and
add&norm. These layers are organized using the residual connection mechanism. The input sequence passes through N
stacked blocks, converting it into key vectors.

17

Learning Generalizable Imitator Policy for Runtime Imitation from a Single Demonstration

D.2. Training Details

Algorithm 2 Demo-Attention Actor-Critic for OSIL

Input: A task set Mtrain, and a demonstration set {Tωi} for each taskMωi ∈Mtrain

Process:
1: Initialize Actor Πψ , Critic Qθ and a replay buffer B
2: for 1, 2, 3, ... do
3: Sample a taskMω from the sampling strategy P (Mtrain)
4: Get the single expert trajectory τω since |Tω| = 1
5: for j = 1, 2, 3, ...,H do
6: Sample an action aj ∼ Πψ(a|sj ; τω)
7: Rollout one step sj+1 ∼Mω(s|sj , aj), get the reward rj = ROSIL(sj , aj)
8: Add (sj , aj , rj , sj+1, τω) to B
9: end for

10: for each update step do
11: Update Critic θ ←− θ − λ∇JQ(θ)
12: Update Actor ψ ←− ψ − λ∇JΠ(ψ)
13: end for
14: end for

We use the SAC (Haarnoja et al., 2018) algorithm to update the demonstration-transformer actor and demonstration-
transformer critic. The goal of SAC also maximizes the expected entropy return beyond the objective of a standard RL agent
which maximizes the expected sum of rewards:

J(Π) =

T∑
t=0

E(st,at)∼ρΠ [r(st, at) + αH(Π(· |st))], (4)

whereH(Π(· |st)) is the entropy value of the policy distribution. For learning the maximum entropy, a policy alternates
between policy evaluation and policy improvement. For policy evaluation of a fixed policy, we can obtain its soft state value
function by iteratively applying the Bellman update:

V (st) = Eat∼Π[Q(st, at; τω)− α log Π(at|st; τω)]. (5)

And we can execute critic updates through collected buffer data and the objective:

JQ(θ) = E(st,at,τω)∼D

[
1

2

(
Qθ (st, at; τω)− Q̂ (st, at)

)2
]
, (6)

with

Q̂(st, at) = rt + γEst+1 [V (st+1)], (7)

and we can execute policy improvement through collected buffer data and the objective:

JΠ(ψ) = Est∼BDKL

(
Πψ(· |st; τω)

∥∥∥∥ exp (Qθ(st, · ; τω))
Zθ(st)

)
, (8)

where the partition function Zθ(st) normalizes the distribution. We adopt one policy (actor) network, two Q-networks
(critic), and two target Q-networks for SAC training. Each network consists of one demonstration-based attention module
for task-information extraction and projects the task embedding into actions.

For learning robust policies, we randomly choose a state from the given demonstration as a start and add a disturbance of
0.1×N(0, 1) to this state coordinate. We maintain a separate buffer for each demonstration and gather a batch of training
data from 5 different buffers. To accelerate the training process, we also add demonstration data which takes 20% of the
batch size for joint training. For fair comparison, all the baselines we compared followed the above setting. The detailed
hyper-parameters used for our OSIL method training are summarized in Tab. 5.

18

Learning Generalizable Imitator Policy for Runtime Imitation from a Single Demonstration

E. Environment Description
E.1. Valet-Parking-Assist-in-Maze Environment

We create a challenging benchmark, named Valet Parking Assist in Maze (VPAM), to assess OSIL’s performance for
unforeseen changes. This navigation benchmark is inspired by a popular and practical real-world application in autonomous
driving, called Valet Parking Assist (VPA) (Heimberger et al., 2017). After providing a human demonstration, as soon as
the driver requests the vehicle in the smartphone app, VPA returns the car to the pick-up area –– no need for the driver to
spend time looking for the car and maneuvering it out of the parking garage. We summarize the key features of the VPA
environment as follows:

• The parking lot is weak in GPS signal, and the coordination is often unreliable.
• The VPA application should work in any parking lot.
• The road would happen to have unexpected roadblocks or passengers.

The development cost of the rule-based policy will increase as more and more configurations are applied. For example, with
obstacles and without coordination, it is non-trivial to develop a rule that can follow the demonstration to the target points in
any randomly generated maps without collision. We build our VPAM benchmark using the maze as an intuitive navigation
testbed. It is easy for us to test the algorithm in unseen tasks by generating many scenarios through the built maze generation
algorithm and many demonstrations via the built deep-first-searching policy through the oracle map information.

We include details of our VPAM benchmark, where the maze layout takes a size of 24×24. The maze is generated by
randomly traversing all the cells in a Depth-First manner with path width 2. The path in the maze is connected, thereby
our environment is Ω-recoverable and 1-demo imitator available, which satisfies our OSIL needs. A point agent needs to
travel from a start point to a target position in a maze, guided by expert demonstrations. The maze and target positions vary
between episodes, so the trained agent should work well in any simulated parking lot. Some obstacles may appear in the
demonstration path to model unexpected roadblocks or passengers. Obstacle and wall information is directly accessible. We
fixed the starting point as the center of the map. The agent relies on its l-step local views to make decisions, where l is a
configuration for task setup. The current coordinate of the agent is optionally provided for mimicking weak GPS signals in
the real parking lot. The expert trajectories can also be obtained by a Depth-First search. We can formulate this environment
as a Markov Decision Process, which can be presented as a tuple (S,A, T,R).

State space S: The maze state consists of the (x, y) coordinate and the local view of the agent along 8 different directions
with an equal interval π/4. For the simplest task where coordinates are provided and no obstacles exist, the local view length
l is set to 1.5; otherwise 5 for observing the surrounding environment changes.

Action space A: The agent is able to take action (∆x,∆y) which are continuous values in the range of [−1, 1].

Transition function T : When applied with the action (∆x,∆y) at the coordinate (x, y), the agent translates itself to the
(x+∆x, y +∆y) coordinate. Some obstacles, which have lengths in the range of [1.1, 1.3] and widths of 1.35, may appear
in the demonstration path. The obstacle will be generated with a fixed probability p = 0.1 for each demonstration step
and with a maximum number of 4. Once hits the wall or the obstacles, the agent will be dead and the trajectory will be
terminated.

Reward function Rω: We only have a simple reward function Rω which indicates the ending of trajectories, e.g., c for
reaching the target goal, 0 for failure in 50 timesteps, and −c for dead, where ω is the goals we set.

Due to the unavailability of the global map, the agent is expected to follow the demonstration and reconstruct the expert’s
behavior to reach the goal, as illustrated in Fig. 12(a). Beyond this, some unexpected obstacles may occur, which results in
that strictly following the demonstration no longer working, as shown in Fig. 12(b). The agent is expected to learn robust
policies that can bypass obstacles and finish the task, based on imitating the given demonstration.

For single-map scenarios, we randomly choose 90% of all demonstrations (290 demos for each map) for training while the
left is for evaluation. For multi-map imitation, we generate 240 different maps and only select a small number of 10 training
demonstrations from each map. We treat the remaining new demonstrations to verify generalization. Besides, we also create
10 new maps separately to verify whether the agent trained on the multi-map scenarios works.

19

Learning Generalizable Imitator Policy for Runtime Imitation from a Single Demonstration

(a) Without obstacle. (b) With obstacles.

Figure 12: Fig. 12(a) shows a demonstration sample on a map without obstacle, where we fix the start position as the center
of the map (colored in blue), while the agent is expected to reach the specified goal colored in green. The agent should
follow the expert trajectory to achieve the goal due to the unavailability of the global map. Fig. 12(b) shows a demonstration
sample on a map with obstacles. Here strictly imitating the expert trajectory cannot well handle unexpected situations, e.g.,
the agent is blocked by obstacles when it follows the given demonstration. Beyond pure imitation, the agent should also
explore the environment to learn robust policies.

E.2. Demo-Manipulation Environment

We introduce details of our robot manipulation environment to verify the imitation ability of our method across different
tasks. This environment consists of three types of robotics manipulations, namely object grasping, object stacking, and object
collecting. We provide illustrations in Fig. 13, where the workspace is a 50 cm × 70 cm area. To collect demonstrations,
we instruct the robot to execute predefined primitives in sequence. For instance, grasping a single object comprises three
primitives: 1) moving the gripper to the object; 2) closing the gripper; 3) moving the gripper to the target. We present the
Markov formalization of this environment in the following.

(a) Grasping (b) Stacking (c) Collecting

Figure 13: Various tasks of robot manipulation. (a): Grasp the blocked target object (cyan). (b): Stack the objects. (c):
Collect the objects scattered over the desk together to the specified area (yellow).

State space S: The robot manipulation state includes the absolute position of the robot gripper, the absolute positions of the
objects, and the relative positions of the gripper fingers.

Action space A: The agent is able to take action (∆x,∆y,∆z,∆c), each of which is continuous value in the range of
[−1, 1]. The first three dimensions indicate the desired increment in the gripper position at the next timestep, while the last

20

Learning Generalizable Imitator Policy for Runtime Imitation from a Single Demonstration

dimension controls the positions of the gripper fingers.

Transition function T : When applied with the action (∆x,∆y,∆z) at the coordinate (x, y, z), the robot gripper moves to
the new coordinate (x+∆x, y +∆y, z +∆z). If ∆c > 0, the gripper opens; otherwise, it closes. The task is considered
failed if any object falls off the desk.

Reward function R: Similar to the valet-parking-assist-in-maze environment, our reward function R is simple and only
indicates the end of trajectories. That is, we use c to indicate task accomplishment, −c for failure, and 0 for all other
situations. The criteria for accomplishing each task differs. In the object grasping task, the robot needs to grasp the target
object without colliding with other objects. In the object stacking task, the robot must stack three blocks together, which
are initially placed anywhere on the workspace. Lastly, in the object collecting task, the robot needs to collect all objects
scattered over the desk and place them in a specified area.

We randomly generate 300 demonstrations for each task, of which 60 are used for training and the remaining 240 are for
testing. To verify the imitation ability of our method across multiple manipulation tasks, we generate 100 demonstrations for
each of the three tasks. We randomly select 20 demonstrations from each task for training and leave 240 new demonstrations
for the test.

E.3. Pusher and Reacher Environment

We introduce the Pusher and Reacher environments in Gymnasium (Towers et al., 2023), where we each randomly collect
60 demonstrations for training and 240 for testing. For the Pusher task, the state comprises the positions and velocities of the
robot’s joints (a total of 7), as well as the position of the robot tip arm and the manipulated object. The agent accomplishes
the task by taking actions that modify the rotation of each joint and drive the robot to push the object to the specified position.
The specific contents of the state space and action space are provided in the following:

Table 6: Details of Pusher observation space.

Num Observation Min Max Name Joint Unit
0 Rotation of the panning the shoulder -Inf Inf r_shoulder_pan_joint hinge angle (rad)
1 Rotation of the shoulder lifting joint -Inf Inf r_shoulder_lift_joint hinge angle (rad)
2 Rotation of the shoulder rolling joint -Inf Inf r_upper_arm_roll_joint hinge angle (rad)
3 Rotation of hinge joint that flexed the elbow -Inf Inf r_elbow_flex_joint hinge angle (rad)
4 Rotation of hinge that rolls the forearm -Inf Inf r_forearm_roll_joint hinge angle (rad)
5 Rotation of flexing the wrist -Inf Inf r_wrist_flex_joint hinge angle (rad)
6 Rotation of rolling the wrist -Inf Inf r_wrist_roll_joint hinge angle (rad)
7 Rotational velocity of the panning the shoulder -Inf Inf r_shoulder_pan_joint hinge angular velocity (rad/s)
8 Rotational velocity of the shoulder lifting joint -Inf Inf r_shoulder_lift_joint hinge angular velocity (rad/s)
9 Rotational velocity of the shoulder rolling joint -Inf Inf r_upper_arm_roll_joint hinge angular velocity (rad/s)
10 Rotational velocity of hinge joint that flexed elbow -Inf Inf r_elbow_flex_joint hinge angular velocity (rad/s)
11 Rotational velocity of hinge that rolls the forearm -Inf Inf r_forearm_roll_joint hinge angular velocity (rad/s)
12 Rotational velocity of flexing the wrist -Inf Inf r_wrist_flex_joint hinge angular velocity (rad/s)
13 Rotational velocity of rolling the wrist -Inf Inf r_wrist_roll_joint hinge angular velocity (rad/s)
14 x-coordinate of the fingertip of the pusher -Inf Inf tips_arm slide position (m)
15 y-coordinate of the fingertip of the pusher -Inf Inf tips_arm slide position (m)
16 z-coordinate of the fingertip of the pusher -Inf Inf tips_arm slide position (m)
17 x-coordinate of the object to be moved -Inf Inf object (obj_slidex) slide position (m)
18 y-coordinate of the object to be moved -Inf Inf object (obj_slidey) slide position (m)
19 z-coordinate of the object to be moved -Inf Inf object cylinder position (m)

The Reacher environment features a two-jointed robotic arm tasked with moving its end effector, to a randomly positioned
target. It involves a continuous action space representing the torques applied at the hinge joints of the arm. The observation
space includes details such as the angles of the arm joints, their angular velocities, and the relative position of the fingertip to
the target. The action space is the torques applied to the two hinge joints of the robotic arm. More details is in the following:

E.4. Manipulation Tasks in Meta-World Environments

We provide details on manipulation tasks within the Meta-World benchmark (Yu et al., 2019). These environments have
been adapted by introducing unexpected disturbances. We chose four types of robotics manipulations for evaluation, namely
shelf-place-v2, peg-insert-side-v2, pick-place-hole-v2, and sweep-v2. we use the official script to collect demonstrations.
For each environment, we gather 60 demonstrations for training and 240 demonstrations for testing, with randomly generated
goals. We present the state space and action space of this environment in the following:

21

Learning Generalizable Imitator Policy for Runtime Imitation from a Single Demonstration

Table 7: Details of Reacher observation space.

Num Action Control Min Control Max Name Joint Unit
0 Rotation of the panning the shoulder -2 2 r_shoulder_pan_joint hinge torque (N m)
1 Rotation of the shoulder lifting joint -2 2 r_shoulder_lift_joint hinge torque (N m)
2 Rotation of the shoulder rolling joint -2 2 r_upper_arm_roll_joint hinge torque (N m)
3 Rotation of hinge joint that flexed elbow -2 2 r_elbow_flex_joint hinge torque (N m)
4 Rotation of hinge that rolls the forearm -2 2 r_forearm_roll_joint hinge torque (N m)
5 Rotation of flexing the wrist -2 2 r_wrist_flex_joint hinge torque (N m)
6 Rotation of rolling the wrist -2 2 r_wrist_roll_joint hinge torque (N m)

State space S: The observation space in Meta-World is represented by a six-part tuple, comprising the 3D Cartesian
coordinates of the end-effector, a normalized indicator reflecting the gripper’s degree of openness, the 3D position and
quaternion orientation of the two objects, and the 3D coordinates of the goal. For each environment, we mask the 3D
coordinates of the goal by setting them to 0.

Action space A: The agent can take actions with four dimensions, each ranging from [−1, 1]. The first three dimensions
represent the desired increment in the gripper position at the next timestep, while the last dimension controls the gripper’s
openness.

Disturbance To introduce unexpected disturbances, we implement a hardcoded script to disrupt the agent’s actions.
Specifically, for shelf-place-v2, peg-insert-side-v2, and pick-place-hole-v2, when the object is lifted, we attempt to open the
gripper to let the object drop. For sweep-v2, we randomly replace the first three dimensions of the action controlling the
gripper’s movement with random numbers with a probability of 0.5.

F. Main Results of Various Benchmarks
Tab. 8, 9, and 10 summarize the main outcomes of the VPAM benchmark, Meta-World benchmark (Yu et al., 2019), as
well as robot manipulation tasks (Pang et al., 2023) and Gymnasium tasks (Towers et al., 2023), respectively.

Table 8: Success rate comparison on valet-parking-assist-in-maze tasks. The agent needs to imitate demos seen during the
training, new demos from seen maps, and demos collected on new maps, namely denoted as “seen", “new_demo", and
“new_map" in this table. Our experiment uses 3 random seeds and we bold the best scores for each task.

Map Type Single-Map Multi-Map

Obstacle Type Non-Obstacle Unforeseen Obstacle Non-Obstacle Unforeseen Obstacle

Demontrations seen new_demo seen new_demo seen new_demo new_map seen new_demo new_map

C
oo

rd

DDT 1.00±0.00 0.94±0.03 0.81±0.02 0.76±0.02 0.90±0.01 0.82±0.02 0.77±0.02 0.74±0.00 0.73±0.00 0.69±0.01
DCRL 0.99±0.01 0.93±0.01 0.78±0.03 0.74±0.03 0.56±0.04 0.46±0.03 0.46±0.04 0.51±0.01 0.50±0.02 0.46±0.02
OSIL 0.43±0.09 0.16±0.10 0.14±0.10 0.04±0.02 0.44±0.01 0.37±0.01 0.32±0.02 0.32±0.05 0.22±0.03 0.21±0.04
CbMRL 0.98±0.00 0.76±0.02 0.66±0.01 0.44±0.02 0.46±0.03 0.31±0.02 0.34±0.01 0.37±0.03 0.32±0.03 0.33±0.02

N
o-

C
oo

rd DDT 0.51±0.19 0.71±0.06 0.46±0.06 0.58±0.04 0.83±0.03 0.63±0.01 0.54±0.05 0.50±0.02 0.44±0.02 0.40±0.03
DCRL 0.24±0.03 0.01±0.01 0.15±0.01 0.00±0.00 0.15±0.06 0.05±0.02 0.04±0.02 0.13±0.02 0.04±0.01 0.08±0.01
OSIL 0.06±0.02 0.00±0.00 0.02±0.02 0.00±0.00 0.06±0.04 0.01±0.01 0.02±0.01 0.02±0.03 0.03±0.02 0.01±0.01
CbMRL 0.15±0.06 0.02±0.01 0.09±0.02 0.01±0.00 0.14±0.01 0.03±0.01 0.02±0.01 0.10±0.02 0.05±0.02 0.06±0.01

G. Learning Curve
We list the learning curves in this section. Fig. 14, Fig. 15, and Fig. 16 show the learning curves in eight different
navigation tasks respectively. Fig. 17 shows the BC loss of TRANS-BC, which is the mean squared error (MSE) loss
between expert actions and agent actions. To ensure conciseness in our description, we employ the following abbreviations:
“SM” for Single-Map, “MM” for Multi-Map, “Ob” for scenes with obstacles, “Non-Ob” for scenes without obstacles, “Co”
for scenes with coordinates and “Non-Co” for scenes without coordinates.

22

Learning Generalizable Imitator Policy for Runtime Imitation from a Single Demonstration

Table 9: Performance comparison on the Meta-World benchmark, including scenarios without disturbance and with
disturbance. We bold the best scores for each task.

Task Shelf Place Peg Insert Side Pick Place Hole Sweep

Demonstration seen unseen seen unseen seen unseen seen unseen

No Disturbance

DDT 1.00 0.94 1.00 0.62 1.00 0.84 1.00 1.00
DCRL 0.97 0.76 1.00 0.28 0.00 0.00 0.95 0.44
Trans4OSIL 0.02 0.04 0.04 0.08 0.00 0.00 0.50 0.32
CbMRL 0.78 0.44 0.84 0.16 0.16 0.00 1.00 0.94

With Disturbance

DDT 0.79 0.44 0.92 0.70 1.00 0.90 0.61 0.40
DCRL 0.75 0.34 0.07 0.02 0.00 0.00 0.10 0.10
Trans4OSIL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CbMRL 0.18 0.14 0.02 0.14 0.00 0.00 0.12 0.10

Table 10: Performance comparison on various tasks. We bold the best scores for each task.

Domain Complex Manipulation Complex Control Space

Task Grasping Stacking Collecting Reacher Pusher

Demonstration seen unseen seen unseen seen unseen seen unseen seen unseen

DDT 0.98 0.84 0.77 0.84 0.99 0.61 0.98 0.95 0.96 0.94
DCRL 0.30 0.70 0.00 0.00 0.00 0.00 0.65 0.50 0.89 0.87
Trans4OSIL 0.28 0.20 0.00 0.02 0.17 0.06 0.63 0.59 0.20 0.08
CbMRL 0.71 0.49 0.00 0.00 0.00 0.00 0.90 0.87 0.91 0.85

0.0 0.2 0.4 0.6 0.8 1.0
time-step ×106

0.0

0.2

0.4

0.6

0.8

1.0

CbMRL
DCRL
DDT
OSIL

su
cc

es
s r

at
e

(a) SM_Non-Ob_Co.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time-step ×106

0.0

0.2

0.4

0.6

0.8
CbMRL
DCRL
DDT
OSIL

su
cc

es
s r

at
e

(b) SM_Ob_Co.

0.50 0.75 1.00 1.25 1.50 1.75 2.00
time-step ×106

0.0

0.2

0.4

0.6

0.8

CbMRL
DCRL
DDT
OSIL

su
cc

es
s r

at
e

(c) MM_Non-Ob_Co.

1 2 3 4 5
time-step ×106

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 CbMRL
DCRL
DDT
OSIL

su
cc

es
s r

at
e

(d) MM_Ob_Co.

0.0 0.2 0.4 0.6 0.8 1.0
time-step ×106

0.0

0.2

0.4

0.6

0.8

1.0 CbMRL
DCRL
DDT
OSIL

su
cc

es
s r

at
e

(e) SM_Non-Ob_Non-Co

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time-step ×106

0.0

0.1

0.2

0.3

0.4

0.5

CbMRL
DCRL
DDT
OSIL

su
cc

es
s r

at
e

(f) SM_Ob_Non-Co.

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time-step ×106

0.0

0.2

0.4

0.6

0.8

CbMRL
DCRL
DDT
OSIL

su
cc

es
s r

at
e

(g) MM_Non-Ob_Non-Co.

1 2 3 4 5
time-step ×106

0.0

0.1

0.2

0.3

0.4

0.5

CbMRL
DCRL
DDT
OSIL

su
cc

es
s r

at
e

(h) MM_Ob_Non-Co.

Figure 14: Learning curves on demonstrations seen during the training.

23

Learning Generalizable Imitator Policy for Runtime Imitation from a Single Demonstration

0.0 0.2 0.4 0.6 0.8 1.0
time-step ×106

0.0

0.2

0.4

0.6

0.8

1.0

CbMRL
DCRL
DDT
OSIL

su
cc

es
s r

at
e

(a) SM_Non-Ob_Co.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time-step ×106

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 CbMRL
DCRL
DDT
OSIL

su
cc

es
s r

at
e

(b) SM_Ob_Co.

0.0 0.5 1.0 1.5 2.0
time-step ×106

0.0

0.2

0.4

0.6

0.8
CbMRL
DCRL
DDT
OSIL

su
cc

es
s r

at
e

(c) MM_Non-Ob_Co.

0 1 2 3 4 5
time-step ×106

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
CbMRL
DCRL
DDT
OSIL

su
cc

es
s r

at
e

(d) MM_Ob_Co.

0.0 0.2 0.4 0.6 0.8 1.0
time-step ×106

0.0

0.2

0.4

0.6

0.8

CbMRL
DCRL
DDT
OSIL

su
cc

es
s r

at
e

(e) SM_Non-Ob_Non-Co.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time-step ×106

0.0

0.1

0.2

0.3

0.4

0.5

0.6
CbMRL
DCRL
DDT
OSIL

su
cc

es
s r

at
e

(f) SM_Ob_Non-Co.

0.0 0.5 1.0 1.5 2.0
time-step ×106

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
CbMRL
DCRL
DDT
OSIL

su
cc

es
s r

at
e

(g) MM_Non-Ob_Non-Co.

0 1 2 3 4 5
time-step ×106

0.0

0.1

0.2

0.3

0.4

0.5 CbMRL
DCRL
DDT
OSIL

su
cc

es
s r

at
e

(h) MM_Ob_Non-Co.

Figure 15: Learning curves on new demonstrations from seen maps.

0.0 0.5 1.0 1.5 2.0
time-step ×106

0.0

0.2

0.4

0.6

0.8 CbMRL
DCRL
DDT
OSIL

su
cc

es
s r

at
e

(a) MM_Non-Ob_Co.

0 1 2 3 4 5
time-step ×106

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 CbMRL
DCRL
DDT
OSIL

su
cc

es
s r

at
e

(b) MM_Ob_Co.

0.0 0.5 1.0 1.5 2.0
time-step ×106

0.0

0.1

0.2

0.3

0.4

0.5

0.6
CbMRL
DCRL
DDT
OSIL

su
cc

es
s r

at
e

(c) MM_Non-Ob_Non-Co.

0 1 2 3 4 5
time-step ×106

0.0

0.1

0.2

0.3

0.4

CbMRL
DCRL
DDT
OSIL

su
cc

es
s r

at
e

(d) MM_Ob_Non-Co.

Figure 16: Learning curves on demonstrations collected from new maps.

0.0 0.2 0.4 0.6 0.8 1.0
time-step ×106

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Single-Map Coord
Multi-Map Coord
Single-Map Non-Coord
Multi-Map None-CoordBC

 lo
ss

Figure 17: BC Loss of OSIL. Note that both scenes with obstacles and without obstacles use the same set of offline
demonstrations, thus there are a total of four curves representing eight tasks.

24

Learning Generalizable Imitator Policy for Runtime Imitation from a Single Demonstration

H. More Ablation Study Results
H.1. The Roles of Three Stages in DDT

Since the three stages of the DDT policy are implicitly embedded, it is non-trivial to adequately verify the roles. In the
main manuscript, we have verified the first stage of decision-making via visualizing attention scores in Sec. 5.4. In these
experiments, the higher attention values are predominantly concentrated on the relevant states, demonstrating our DDT’s
ability to identify which state to follow. The provided robot manipulation video also validates that DDT dynamically
focuses on demonstration states that should be followed during control tasks. To address the concern further, we included
experimental results for the roles of the latter two stages:

Stage2-Analyze: We demonstrate that the agent completes tasks by analyzing expert state-action pairs by randomly dropping
out inputs to the state-action encoder. We report the performance based on the keep rate in Tab. 11.

Table 11: Performance across different keep rates.

Keep Rate 1.0 0.8 0.4 0.2 0.1

Performance 0.94 0.92 0.73 0.44 0.28

It is evident that as fewer state-action pairs are retained as input, the success rate decreases. This highlights the importance
of utilizing state-action pairs as the value item for the attention net.

Stage3-Trace: We validate our algorithm’s decision ability to trace demonstrations, i.e., recap the current state and take the
optimal action. We achieve this by reducing the times of fusion operation ⊕.

Table 12: Performance across different times of fusion operation.

Times of fusion operation 6 5 4 3 2 1

Performance 0.94 0.91 0.66 0.30 0.06 0.02

In Tab. 12, it is noticeable that as the times of fusion operation decrease, the agent’s decision-making ability significantly
declines. This further indicates the necessity of our network architecture design.

H.2. Performance in Unseen Environments

In Tab. 13, We provide experimental results of DDT in unseen environments. We select the objects-manipulation tasks in
Meta-World for training and testing. The training tasks are combined with Button Press Topdown, Button Press Topdown
Wall, Button Press Wall, Door Open, Faucet Close, Drawer Close, Window Open, and Window Close. Then we test and
record the generalization performance on three new environments, Button Press, Door Close, and Reach without fine-tuning.

Table 13: Performance in unseen environments.

Environments Button Press Door Close Reach

Performance 0.78 1.00 0.75

The algorithm is trained following the previous hyper-parameters directly. It can be observed that even when the agent
is trained without corresponding task environments, our algorithm still achieves satisfactory success rates by consciously
imitating demonstrations.

H.3. Performance across Different Demonstration Lengths

Generally, attention mechanisms are known to be sensitive to sequence length to some degree. However, in our experiments,
we observed that this sensitivity was not significant. We provide results as proof by statistically analyzing the relationship
between demonstration length and success rate in Tab. 14.

25

Learning Generalizable Imitator Policy for Runtime Imitation from a Single Demonstration

Table 14: Success rate across different demonstration lengths.

Length 10∼14 15∼19 20∼24 25∼29 30∼34 35∼39 40∼44 45∼49 50∼54

Performance 0.93 0.96 0.97 0.99 0.98 0.98 0.99 0.93 0.95

H.4. Comparison with Replay-based and Match-based Methods

There is a line of work (Johns, 2021; Valassakis et al., 2022; Wen et al., 2022) in the robotics/robot learning community that
also studies one-shot imitation learning, but follows a much simpler replay-based strategy, requires only one demonstration
for a category of tasks, and is capable of performing complicated robotics manipulation. The three OSIL baselines all
employ parameter-free methods from the perspective of decision-making: (Johns, 2021; Valassakis et al., 2022) retrieve
actions corresponding to matched states (the nearest neighbor) in the single demonstration, while (Wen et al., 2022) replays
manipulation demonstrations collected from objects of the same category after identifying the target object pose. We make
comparisons with these methods, where each test case was evaluated on unseen maps in the valet-parking-assist-in-maze
scenario.

Table 15: Comparison with replay-based and match-based methods.

Method W/o obstacle & W/coordinate W/ obstacle & W/ coordinate W/o obstacle & W/o coordiante W/obstacle & W/o coordinate

Replay-based 0.54 0.32 0.53 0.32
Match-based 0.36 0.21 0.27 0.14

DDT 0.77 0.69 0.54 0.4

Here for the replay-based method, we use the ground-truth trajectory to replay the actions. We can observe that due to the
presence of noise in the environment, the methods struggle to complete tasks effectively even in scenarios without obstacles
and with coordinates provided, and the results are worse in scenarios with obstacles. This highlights that while parameter-free
OSIL methods may be feasible for tasks that are repeatable in the same scene, they severely lack generalization ability, let
alone generalize to unexpected situations.

H.5. Training on Mixed-Up Demonstrations from Different Environments

We also believe that validating our algorithm’s performance on mixed-up demonstrations from all different environments can
enhance the significance of our algorithm. We collected mixed-up demonstrations from varying numbers of environments.
We report the performance of these demonstrations according to the number of environments designed:

Table 16: Performance on mixed-up demonstrations from different environments.

Envionment number 2 4 8

Seen Demos. 1.00 1.00 1.00
Unseen Demos. 0.84 0.88 0.90

Note:

• 2 environments: Sweep, Peg Insert Side;
• 4 environments: With Pick Place Hole, and Shelf Place newly added;
• 8 environments: With Button Press, Dial Turn, Drawe Close, and Window Open newly added.

The results in Tab. 16 reveal the strong adaptability of our method for learning tasks across diverse environments, consistently
performing well regardless of the number of environments involved.

H.6. Reward Designs

We conduct ablation studies considering reward design in maze tasks. In particular, for clipping term η in ROSIL, we set η
as infinite value (DDT-w/o clip), the results can be found in Fig. 18. The results show that directly removing the clipping
function of η, which enhances the probabilities of ill-posedness led by the L2 distance, e.g., a wall obstructing the path

26

Learning Generalizable Imitator Policy for Runtime Imitation from a Single Demonstration

between two states will have a small L2 distance, reduces the sample efficiency of DDT, but the asymptotic performance is
still similar, which demonstrates the robustness of DDT to the ill-posedness of the adopted L2 distance.

0.8 1.0 1.2 1.4 1.6 1.8 2.0
time-step ×106

0

20

40

60

80

DDT
DDT-w/o OSIL reward
DDT-w/o clip

su
cc

es
s r

at
e

(a) Seen demonstrations.

0.0 0.5 1.0 1.5 2.0
time-step ×106

0

20

40

60

80
DDT
DDT-w/o OSIL reward
DDT-w/o clip

su
cc

es
s r

at
e

(b) New demonstrations.

0.0 0.5 1.0 1.5 2.0
time-step ×106

0

20

40

60

80
DDT
DDT-w/o OSIL reward
DDT-w/o clip

su
cc

es
s r

at
e

(c) New maps.

Figure 18: Learning curves of agents with different implementations of ROSIL reward in the valet-parking-assist-in-maze
benchmark. The task is the multi-map imitation without obstacles and with coordinates.

H.7. The Robustness on the Faraway States

In general OSIL scenarios, the task set we face might violate the assumptions defined in Def. A.1, for example, the transition
function might, with some probabilities, lead the agent to some states that are “significantly far away” from the expert
states. More specifically, in these faraway states, we cannot trace back to the demonstrations just by relying on the current
states’ information; e.g., in the Maze-navigation benchmark, if the current states’ coordinations are far away from the
demonstrations, the way back to the demonstrations depends on the walls’ location in the maps, which is unseeable to the
agent, thus the agent cannot find a unified behavior to back to the demonstration and reach the goal. In this section, we
conducted an offset-range test in the maze benchmark to verify the robustness of DDT in faraway states. In particular, we
use a DDT policy trained in the setting of multi-map navigation without obstacles and with coordinates provided. When
deploying the policy, we generate 100 unseen maps and add positional offsets sampled from a uniform distribution to the
initial states. We average the success rate under different ranges of offsets in Fig. 19.

In the maze environment, it is noteworthy that an offset range of initial states larger than could potentially make the agent
be separated from the expert trajectory by a wall, which violates the property of 1-demo imitator availability in Prop. 4.2.
Correspondingly, the results show that the policy sustains a respectable success rate within an offset of 2.4. After that,
expanding the range leads to a nearly linear decrease in success rate. The experiment demonstrated the agent’s success in
devising a well-performed policy for the scope of tasks with 1-demo imitator availability. Similar results can also be found
in other experiments in which there is no exact match between the current and target state in these scenarios.

• In maze settings with obstacles (Figs. 27, 28, 31, and 32), we have observed the agent’s remarkable ability to adaptively
adjust its behavior when encountering obstacles.

• In robot manipulation tasks (Figs. 33-38), we present a showcase of the robotic arm’s proficiency in following a
trajectory while optimizing its operational efficiency. Moreover, in the corresponding video, which records rollouts
generated by the DDT policy, we can observe the simultaneous activation of multiple expert states through attention
mechanisms when an exact match between the current state and the target state is lacking. The video can be found in
the supplementary material.

In conclusion, within our solution scope, i.e., the problem with 1-demo imitator availability defined in Prop. 4.2, the imitator
policy works well, even if the current states do not perfectly match the expert states. Besides, the policy still works to
some degree in faraway states. However, we argue that without further information, assumptions, or prior knowledge, it is
impossible to find a perfect imitator policy when the agent is inevitably to reach some faraway states. We leave the imitator
learning problem in this setting as future work.

27

Learning Generalizable Imitator Policy for Runtime Imitation from a Single Demonstration

1 2 3 4 5 6 7
offset range

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

su
cc

es
s r

at
e

Figure 19: Illustration of DDT in offset-range test. The X-axis is the offset range on the initial states, while the Y-axis shows
the corresponding success rate of DDT under various offsets.

I. The Details of the Scaling Up Experiments
Experiments on Different Demonstration Quantity To investigate the influence of demonstration quantity on model
performance, we conducted experiments with four varying quantity settings: 60, 240, 960, and 2160. The results are in
Fig. 20. We observed that fewer data leads to quicker initial learning speed and rapid performance improvement. However,
a bottleneck emerges when aiming for generalization performance. As demonstration quantity increases, the learning
task becomes more difficult, resulting in slower initial learning. Nonetheless, the final model exhibits notably superior
performance on new demos and new maps compared to experiments conducted with fewer data.

0.0 0.5 1.0 1.5 2.0
time-step ×106

0.0

0.2

0.4

0.6

0.8

1.0

60
240
960
2160

su
cc

es
s r

at
e

(a) Seen demos

0.0 0.5 1.0 1.5 2.0
time-step ×106

0.0

0.2

0.4

0.6

0.8

60
240
960
2160

su
cc

es
s r

at
e

(b) New demos

0.0 0.5 1.0 1.5 2.0
time-step ×106

0.0

0.2

0.4

0.6

0.8

60
240
960
2160

su
cc

es
s r

at
e

(c) New maps

Figure 20: Learning curves of agents with varying demonstration quantity. Note that the task is the multi-map imitation
without obstacles and with coordinates.

Experiments on Different Model Parameters In this experiment, We focused on tuning dmodel, nhead, Lencoder and
Ldecoder for both actor and critic to construct DDT variants with different model parameters, where dmodel represents the
desired number of features in the encoder/decoder inputs, nhead denotes the number of heads in the multi-head attention
mechanism, Lencoder represents the number of sub-encoder layers within the encoder, and Ldecoder refers to the number of
sub-decoder layers within the decoder. The details of parameters selection are in Tab. 17, and the learning curves are in
Fig. 21.

28

Learning Generalizable Imitator Policy for Runtime Imitation from a Single Demonstration

0 1 2 3 4 5
time-step ×106

0.1

0.2

0.3

0.4

0.5

0.6

0.6M
1.9M
2.3M
2.9M
5.7M
9.3M
19.4M

su
cc

es
s r

at
e

(a) Seen demos

0 1 2 3 4 5
time-step ×106

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.6M
1.9M
2.3M
2.9M
5.7M
9.3M
19.4M

su
cc

es
s r

at
e

(b) New demos

0 1 2 3 4 5
time-step ×106

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.6M
1.9M
2.3M
2.9M
5.7M
9.3M
19.4M

su
cc

es
s r

at
e

(c) New maps

Figure 21: Learning curves of agents with varying model sizes. Note that the task is the multi-map imitation with obstacles
and without coordinates.

Table 17: Architecture hyperparameters for DDT variants with different model parameters.

Total Parameters Actor Critic
dmodel nheads Lencoder Ldecoder parameters dmodel nheads Lencoder Ldecoder parameters

0.6M 64 16 3 3 0.4M 64 16 2 2 0.2M
1.9M 64 32 3 6 0.6M 128 16 4 4 1.3M
2.3M 96 32 3 6 1.0M 128 16 4 4 1.3M
2.9M 128 64 3 6 1.6M 128 16 4 4 1.3M
5.7M 192 16 3 6 3.1M 192 16 4 4 2.6M
9.3M 256 16 3 6 5.1M 256 16 4 4 4.2M

19.4M 384 16 3 6 10.7M 384 16 4 4 8.7M

J. Examples of Trajectories with Different Learning Paradigms
The demonstration input not only tells the agent which task to accomplish but the way to accomplish the task. To better
illustrate that our DDT method leverages information from demonstrations to understand the task and enables better
generalization ability learning by imitating demonstrations, we provide visualized agent behaviors of different learning
paradigms in Fig. 22. (a) Trans4OSIL attempts to mimic demonstrations but cannot generalize to states not seen in the
demonstrations, failing. (b) DCRL completes the task but does not explicitly imitate the demonstrations. (c) In contrast,
our DDT method efficiently completes the task while imitating demonstrations. The results underscore the superior
generalization ability compared to other paradigms.

(a) Trans4OSIL (b) DCRL (c) DDT

Figure 22: Visualized trajectories of different learning paradigms.

29

Learning Generalizable Imitator Policy for Runtime Imitation from a Single Demonstration

K. Visualization
In Fig. 23, we give more visualizations. In these tasks, the agent knows its coordinate and is required to imitate demonstrations
collected on new maps without obstacles.

(a) Demonstration A (b) Demonstration B (c) Demonstration C (d) Demonstration D

0 5 10 15 20

expert trajectory

0

5

10

15

20

ag
en

t t
ra

je
ct

or
y

0.02

0.04

0.06

0.08

0.10

(e) Attention pattern A

0 10 20 30 40

expert trajectory

0

5

10

15

20

25

30

35

40

ag
en

t t
ra

je
ct

or
y

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

(f) Attention pattern B

0 5 10 15 20 25 30 35

expert trajectory

0

5

10

15

20

25

30

35

ag
en

t t
ra

je
ct

or
y

0.02

0.04

0.06

0.08

0.10

(g) Attention pattern C

0 5 10 15 20 25 30 35 40

expert trajectory

0

5

10

15

20

25

30

35

ag
en

t t
ra

je
ct

or
y

0.02

0.04

0.06

0.08

0.10

(h) Attention pattern D

(i) Demonstration E (j) Demonstration F (k) Demonstration G (l) Demonstration H

0 10 20 30 40 50

expert trajectory

0

10

20

30

40

50

ag
en

t t
ra

je
ct

or
y

0.02

0.04

0.06

0.08

0.10

0.12

(m) Attention pattern E

0 5 10 15 20 25

expert trajectory

0

5

10

15

20

25

30

ag
en

t t
ra

je
ct

or
y

0.02

0.04

0.06

0.08

0.10

0.12

(n) Attention pattern F

0 5 10 15 20 25 30 35

expert trajectory

0

5

10

15

20

25

30

35

ag
en

t t
ra

je
ct

or
y

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

(o) Attention pattern G

0 5 10 15 20

expert trajectory

0

5

10

15

20

25

ag
en

t t
ra

je
ct

or
y

0.02

0.04

0.06

0.08

0.10

0.12

(p) Attention pattern H

Figure 23: Illustrations of attention patterns in DDT. In Fig.(e)-(h) and Fig.(m)-(p), the horizontal and vertical axis represent
the agent’s trajectory index. The intensity of color within a row indicates the level of attention allocated by the agent to
the corresponding expert state. The imitator agent actively aligns with expert states by leveraging the matched state for
decision-making, with higher attention values predominantly concentrated along the diagonal.

30

Learning Generalizable Imitator Policy for Runtime Imitation from a Single Demonstration

L. Comparisons of Trajectories of DDT Trained by Different Rewards
In Fig. 24, we provide visualized comparison of trajectories of DDT trained with our OSIL reward and without. In the tasks,
the agent knows its coordinate and is required to imitate demonstrations collected on new maps without obstacles. Through
random sampling of multiple tasks, we have observed that in specific scenarios, intelligent agents without OSIL reward tend
to encounter wall collisions or deviate from the correct path, resulting in losts. This behavior can potentially arise from their
inclination to take shortcuts as a means to expedite reaching the goal.

(a) Sample 1 (w/o OSIL reward) (b) Sample 2 (w/o OSIL reward) (c) Sample 3 (w/o OSIL reward) (d) Sample 4 (w/o OSIL reward)

(e) Sample 1 (OSIL reward) (f) Sample 2 (OSIL reward) (g) Sample 3 (OSIL reward) (h) Sample 4 (OSIL reward)

(i) Sample 5 (w/o OSIL reward) (j) Sample 6 (w/o OSIL reward) (k) Sample 7 (w/o OSIL reward) (l) Sample 8 (w/o OSIL reward)

(m) Sample 5 (OSIL reward) (n) Sample 6 (OSIL reward) (o) Sample 7 (OSIL reward) (p) Sample 8 (OSIL reward)

Figure 24: comparison of trajectories of DDT trained with or without the OSIL reward.

31

Learning Generalizable Imitator Policy for Runtime Imitation from a Single Demonstration

M. More Examples of DDT Trajectories
M.1. DDT Trajectories in Maze Environments
In Fig. 25-32, we show the trajectories generated by DDT agents in all of the tasks.

(a) Sample 1 (b) Sample 2 (c) Sample 3 (d) Sample 4
Figure 25: Illustration of trajectories generated by DDT agents where the agents are trained on the single-map setting
without obstacles and with coordinates provided.

(a) Sample 1 (b) Sample 2 (c) Sample 3 (d) Sample 4
Figure 26: Illustration of trajectories generated by DDT agents where the agents are trained on the multi-map setting without
obstacles and with coordinates provided.

(a) Sample 1 (b) Sample 2 (c) Sample 3 (d) Sample 4
Figure 27: Illustration of trajectories generated by DDT agents where the agents are trained on the single-map setting with
obstacles and with coordinates provided.

(a) Sample 1 (b) Sample 2 (c) Sample 3 (d) Sample 4
Figure 28: Illustration of trajectories generated by DDT agents where the agents are trained on the multi-map setting with
obstacles and with coordinates provided.

32

Learning Generalizable Imitator Policy for Runtime Imitation from a Single Demonstration

(a) Sample 1 (b) Sample 2 (c) Sample 3 (d) Sample 4

Figure 29: Illustration of trajectories generated by DDT agents where the agents are trained on the single-map setting
without obstacles and without coordinates provided.

(a) Sample 1 (b) Sample 2 (c) Sample 3 (d) Sample 4

Figure 30: Illustration of trajectories generated by DDT agents where the agents are trained on the multi-map setting without
obstacles and without coordinates provided.

(a) Sample 1 (b) Sample 2 (c) Sample 3 (d) Sample 4

Figure 31: Illustration of trajectories generated by DDT agents where the agents are trained on the single-map setting with
obstacles and without coordinates provided.

(a) Sample 1 (b) Sample 2 (c) Sample 3 (d) Sample 4

Figure 32: Illustration of trajectories generated by DDT agents where the agents are trained on the multi-map setting with
obstacles and without coordinates provided.

33

Learning Generalizable Imitator Policy for Runtime Imitation from a Single Demonstration

M.2. DDT Trajectories in Robot Manipulation Environments

In Fig. 33-38, we show the trajectories generated by DDT agents in all of the tasks. In all of the figures, the red line
represents the expert demonstrations collected by sequentially executing predefined heuristic primitives, the lighter the
latter. The blue dots are event points denoting the agent trajectory, the lighter the latter. The event points generated by our
method always distribute around the demonstration trajectories, which demonstrates that the agent actively matches expert
states for decision making. Besides, we recorded the corresponding videos in the supplementary material.

(a) Sample 1 (b) Sample 2 (c) Sample 3 (d) Sample 4

Figure 33: Illustration of trajectories generated by DDT agents and corresponding demonstrations in object-grasping tasks.
The agents are trained on object-grasping tasks and tested with unseen object-grasping demonstrations. The robot needs to
grasp the target object without colliding with other objects.

(a) Sample 1 (b) Sample 2 (c) Sample 3 (d) Sample 4

Figure 34: (a)-(d) Robot manipulation trajectories generated by DDT agents. The agents are trained on object-stacking tasks
and tested with unseen object-stacking demonstrations. The robot needs to stack three initially placed objects together.

(a) Sample 1 (b) Sample 2 (c) Sample 3 (d) Sample 4

Figure 35: Illustration of trajectories generated by DDT agents and corresponding demonstrations in object-collecting tasks.
The agents are trained on object-collecting tasks and tested with unseen object-collecting demonstrations. The robot needs
to collect all objects scattered over the desk and place them in the specified area (yellow).

34

Learning Generalizable Imitator Policy for Runtime Imitation from a Single Demonstration

(a) Sample 1 (b) Sample 2 (c) Sample 3 (d) Sample 4

Figure 36: Illustration of trajectories generated by DDT agents trained to imitate three types of manipulation tasks
simultaneously. The agents are tested with unseen object-grasping demonstrations.

(a) Sample 1 (b) Sample 2 (c) Sample 3 (d) Sample 4

Figure 37: Illustration of trajectories generated by DDT agents trained to imitate three types of manipulation tasks
simultaneously. The agents are tested with unseen object-stacking demonstrations.

(a) Sample 1 (b) Sample 2 (c) Sample 3 (d) Sample 4

Figure 38: Illustration of trajectories generated by DDT agents trained to imitate three types of manipulation tasks
simultaneously. The agents are tested with unseen object-collecting demonstrations.

35

