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Abstract
In the realm of reinforcement learning (RL), ac-
counting for risk is crucial for making decisions
under uncertainty, particularly in applications
where safety and reliability are paramount. In
this paper, we introduce a general framework
on Risk-Sensitive Distributional Reinforcement
Learning (RS-DisRL), with static Lipschitz Risk
Measures (LRM) and general function approxi-
mation. Our framework covers a broad class of
risk-sensitive RL, and facilitates analysis of the
impact of estimation functions on the effective-
ness of RSRL strategies and evaluation of their
sample complexity. We design two innovative
meta-algorithms: RS-DisRL-M, a model-based
strategy for model-based function approximation,
and RS-DisRL-V, a model-free approach for
general value function approximation. With our
novel estimation techniques via Least Squares
Regression (LSR) and Maximum Likelihood Es-
timation (MLE) in distributional RL with aug-
mented Markov Decision Process (MDP), we de-
rive the first Õ(

√
K) dependency of the regret

upper bound for RSRL with static LRM, mark-
ing a pioneering contribution towards statistically
efficient algorithms in this domain.

1. Introduction
Reinforcement learning (RL) (Sutton & Barto, 2018) has
emerged as a powerful framework for sequential decision-
making in dynamic and uncertain environments. While
traditional RL methods, predominantly focused on maximiz-
ing the expected return, have seen significant advancements
through approaches such as Q-learning (Mnih et al., 2015;
Jin et al., 2018) and policy gradients (Kakade, 2001; Cai
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et al., 2020), they often fall short in real-world scenarios
demanding strict risk control, such as financial investment
(Bielecki et al., 2000) , medical treatment (Ernst et al., 2006),
and automous driving (Candela et al., 2023).

The significance of comprehending risk management in RL
has led to the emergence of Risk-Sensitive RL (RSRL). Un-
like risk-neutral RL, which primarily focuses on maximizing
expected returns, RSRL seeks to optimize risk metrics, such
as entropy risk measures (ERM) (Fei et al., 2020; 2021) or
conditional value-at-risk (CVaR) (Wang et al., 2023a), of
the possible cumulative reward which emphasizes its distri-
butional characteristics. However, traditional RL framework
based on Q-learning which typically considers the mean of
reward-to-go and corresponding Bellman equation, cannot
efficiently capture the characteristics of the cumulative re-
ward’s distribution. Therefore, there has been an upsurge
of interest in Distributional RL (DisRL) due to its capacity
to understand the intrinsic distributional attributes of cu-
mulative rewards, which has already achieved significant
empirical success in risk-sensitive tasks (Bellemare et al.,
2017; Dabney et al., 2018; Keramati et al., 2020; Urpı́ et al.,
2020; Lim & Malik, 2022).

However, there remains a dearth of comprehensive theoret-
ical insights into the sample complexity of Risk-Sensitive
Distributional RL (RS-DisRL), particularly in scenarios en-
compassing general risk measures and function approxima-
tion. Previous theory works of RS-DisRL have primarily
been constrained to tabular MDPs (Bastani et al., 2022;
Liang & Luo, 2022) which fail in extending to infinite-state
settings, or have been confined to specific risk measures
such as CVaR or ERM (Stanko & Macek, 2019).

In this paper, we delve into the RS-DisRL with static Lips-
chitz risk measures (LRM), a general risk measure class that
includes various well-known risk measures such as coher-
ent risk, convex risk, CVaR, and ERM. In order to address
the challenges posed by extremely large or infinite state
spaces, we consider two distinct general function approxi-
mation scenarios: model-based function approximation and
value function approximation. The model-based function
approximation, as extensively used in prior works such as
Sun et al. (2019); Liu et al. (2022; 2023), typically assumes
that the agent has access to a model class that contains
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the true transition model. On the other hand, the general
value function approximation, as explored in Wang et al.
(2020); Jin et al. (2021); Agarwal et al. (2023); Wu et al.
(2023); Wang et al. (2023b), offers the agent a distribution-
ally Bellman-complete value function class with the true
value distribution.

Under these settings, we introduce general model-based and
model-free meta-algorithms, respectively, and employ esti-
mate techniques including Least Squares Regression (LSR)
and Maximum Likelihood Estimation (MLE), achieving a
sublinear regret upper bound with respect to the number of
episodes. Importantly, our work establishes the first statisti-
cally efficient framework for RS-DisRL with static Lipschitz
risk measures.

Challenges Significant gaps persist in our quest to achieve
statistically efficient RS-DisRL with static LRM. (i) The
utilization of static LRM in RSRL presents unique complex-
ities. Unlike standard RL, where the focus is on maximizing
the expected cumulative reward, RSRL with static LRM
involves optimizing the entire distribution of cumulative
rewards. This distinct characteristic makes the traditional
Q-learning methods, which typically consider the mean of
reward-to-go and the corresponding Bellman equation for
mean value functions, inadequate for characterizing policy
performance and the reward’s distribution. (ii) In RSRL
with static LRM, the optimal policy is non-Markovian, de-
pendent not only on the current state but also on the rewards
received thus far. Thus, it is hard to extend previous works
for learning a Markovian policy within polynomial sample
complexity.

Technical Contribution To surmount these obstacles, our
approach involves several novel technical components. (i)
We integrate rigorous distribution analysis techniques from
DisRL into the RSRL framework and design novel distribu-
tional learning in augmented MDPs, which help us better
understand the distributional characteristics of the problem
objective. (ii) We pioneer the application of LSR in the
exploration process of distributional RL with augmented
MDP, incorporating our innovative regression technique
tailored for cumulative distribution functions (CDFs) (see
Sections 6.1 and 7.1). (iii) Furthermore, we extend tradi-
tional MLE methods to DisRL within the augmented MDP
framework, supported by a novel connection technique: the
augmented simulation lemma (Lemma D.2). In these man-
ners, we present the first statistically efficient algorithms for
RSRL with static LRM in this paper.

We summarize Table 1 to present the technical results in this
paper, and discuss our detailed contribution as follows:

(i) We provide a general framework for RSRL with static
LRM and the general function approximation, which covers
a broad class of RSRL studies with various popular static

Table 1. Summary of results in this paper, where D represent the
structural complexity determined by specific methods.

Algorithm Regret

Model-based Framework RS-DisRL-M (Algorithm 1)

LSR Approach: M-Est-LSR Õ(L∞(ρ)H D1

√
K)

(Algorithm 4) (Theorem 6.5)
MLE Approach: M-Est-MLE Õ(L∞(ρ)poly(H)D2

√
K)

(Algorithm 5) (Theorem 6.6)

Model-free Framework RS-DisRL-V (Algorithm 2)

LSR Approach: V-Est-LSR Õ(L∞(ρ)H D3

√
K)

(Algorithm 8) (Theorem 7.5)
MLE Approach: V-Est-MLE Õ(L∞(ρ)poly(H)D4

√
K)

(Algorithm 9) (Theorem 7.6)

risk measures, such as ERM (Fei et al., 2020; 2021), CVaR
(Wang et al., 2023a; Zhao et al., 2023), and spectral risk
(Bastani et al., 2022). The framework facilitates analysis of
the impact of estimation functions on the effectiveness of
RSRL strategies and evaluation of their sample complexity.

(ii) For model-based function approximation, we propose a
novel meta-algorithm named RS-DisRL-M (Algorithm 1),
with a general regret upper bound O(L∞(ρ)ξ(M-Est)),
where L∞(ρ) represents the Lipschitz constant of the
LRM ρ, and ξ(M-Est) is the effectiveness determined
by the model-based estimation function. Based on the
meta-algorithm, we also obtain the first analysis on the
model-based LSR and MLE approaches in distributional
RL with augmented MDPs, with effectiveness ξ =
Õ(poly(H)D

√
K), where H is the horizon length, K is

the number of episodes, and D is the structural complexity
(specified in Theorems 6.5 and 6.6).

(iii) For general value function approximation, we present a
new model-free framework RS-DisRL-V (Algorithm 2),
with general regret upper bound O(L∞(ρ)ζ(V-Est))
where ζ(V-Est) describes the effectiveness of the model-
free estimation approach. We also provide novel analysis of
LSR and MLE in distributional RL with augmented MDPs
and theoretical guarantees of ζ = Õ(poly(H)D

√
K),

where the dimension term D is specified in Theorem 7.5 for
the LSR case and Theorem 7.6 for the MLE case.

2. Related Works
RSRL In RSRL studies, there are two types of risk mea-
sures. One is to consider the iterated risk measure, i.e.,
computing the risk value iteratively. For example, Du et al.
(2022); Chen et al. (2023) considers iterated CVaR risk mea-
sures, and Liang & Luo (2023) considers iterated LRM risk
measures. The other is to consider the static risk measure,
i.e., a risk measure of the cumulative reward. For example,
Fei et al. (2020; 2021) focus on RSRL with ERM, Wang et al.
(2023a); Zhao et al. (2023) investigate the static CVaR risk
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measures, and Bastani et al. (2022) studies the static spectral
risk measures. In this paper, we consider the static LRM, a
static risk measure that encompasses the ERM, static CVaR
and spectral risk, and give the theoretical learning analysis.

DisRL Many previous works (Rowland et al., 2018; 2023;
Bellemare et al., 2017) develop asymptotic covergence anal-
ysis for DisRL. With MLE approaches, Wu et al. (2023)
discusses the statistical complexity bounds for off-policy
DisRL and Wang et al. (2023b) considers the small-loss
bounds for DisRL. Bastani et al. (2022) is the first to give
the sample complexity bounds for RSRL, while it only stud-
ies the static spectral risk measure within the tabular MDPs.
Compared to these results, our work focuses on a more
general risk-sensitive target (LRM) and enables to use the
general function approximation.

3. Notations
For a positive integer N , we let [N ] = {1, 2, · · · , N}. De-
note

∫
s
f(s) :=

∫
S
f(s)ds if we integrate f over the uni-

versal set of s ∈ S. For a function f : X → R, we
define the ℓ1-norm ∥f∥1 =

∫
X |f(x)|dx and ℓ∞-norm

∥f∥∞ = supx∈X |f(x)|. Denote ∆(X ) as the distribution
over space X . We use the standard O(·) to hide universal
constant factors, and Õ(·) to further suppress the polyloga-
rithmic factors in O(·).

4. Problem Formulation
Episodic Markov Decision Process In this study, we ex-
amine an episodic Markov Decision Process (MDP) denoted
as M = (S,A,K,H, {Ph}Hh=1, {Rh}Hh=1) characterized
by state space S, action space A, finite episode number
K, finite time horizon length H , transition probabilities
Ph(·|s, a) ∈ ∆(S) and distributional reward Rh(·|s, a) ∈
∆([0, 1])1 for step h ∈ [H]. At the outset of each episode
k ∈ [K], we start with an initial state sk,1 chosen by the
MDP. At each step h ∈ [H], the agent receives a his-
torical record Hk,h = {sk,1, ak,1, rk,1, · · · , sk,h} and se-
lect an action ak,h ∼ πkh(·|Hk,h) by a history-dependent
policy πkh =

{
πkh
}H
h=1

Then, the MDP will return a re-
ward rk,h ∼ Rh(·|sk,h, ak,h) and transfer into next state
sk,h+1 ∼ Ph(·|sk,h, ak,h). This episode will end in step
H + 1. Throughout this paper, we assume that the agent
lacks knowledge of the transition probabilities. For a fixed
history-dependent policy π, the cumulative reward for an
episode played with policy π is a bounded real-valued ran-
dom variable Zπ =

∑H
h=1 rh, where rh ∼ Rh(·|sh, ah).

Lipschitz Risk Measures Lipschitz Risk Measures (LRM)
are quantified by a function ρ : Z → R mapping random

1Without loss of generality, we assume the reward r ∈ [0, 1] for
each step. Additionally, we assume that the agent has knowledge
of the reward distribution, a common assumption in prior research
(Liu et al., 2022; 2023; Wang et al., 2023b).

variables Z ∈ Z to real numbers, distinguished by two
critical properties. C1. Law invariance: If Z,W ∈
Z have the same distribution functions, FZ = FW , then
ρ(Z) = ρ(W ). C2. Lipschitz continuity: Consider
the supremum norm ∥ · ∥∞ over the set of all distribution
functions of the random variable class Z . There exists
a Lipschitz constant L∞(ρ) such that |ρ(Z)− ρ(W )| ≤
L∞(ρ)∥FZ − FW ∥∞ holds for any Z,W ∈ Z .

The law invariance condition, foundational in risk measure
studies (Kusuoka, 2001; Frittelli & Gianin, 2005; Liang &
Luo, 2023), indicates that identical distribution functions
result in equal risk measures. LRM encompass a broad
spectrum of general risk assessments, including coherent
risk (Artzner et al., 1999), monetary risk (Jia et al., 2020),
and convex risk measures (Föllmer & Knispel, 2012), high-
lighting the versatility of LRM. Popular metrics like En-
tropy Risk Measures (ERM) and Conditional Value-at-Risk
(CVaR) also align with these conditions, with Lipschitz con-
stants L∞(ERMβ) =

exp(|γ|H)−1
|γ| and L∞(CVaRα) =

H
a

(Liang & Luo, 2023).

RSRL with Static LRM In this paper, we delve into the
Risk-Sensitive Reinforcement Learning (RSRL) with static
Lipschitz Risk Measures (LRM), focusing on optimizing
risk-sensitive rewards via history-dependent policies. The
objective is to find an optimal policy π∗ that maximizes the
LRM-defined cumulative reward π∗ = argmaxπ ρ(Z

π),
then we define our regret as the difference between the
cumulative rewards of the optimal policy and the policy
deployed at each episode: Regret(K) =

∑K
k=1 ρ(Z

π∗
)−

ρ(Zπk

).

5. Augmented MDPs and Distributional
Bellman Equation

The key of our analysis revolves around the distributional
Bellman equation applied to augmented MDPs. Recogniz-
ing that learning an optimal history-dependent policy π∗ can
be prohibitively sample-intensive, previous works (Bäuerle
& Ott, 2011; Bastani et al., 2022) leverage the concept of
augmented MDP in risk-sensitive conditions, where any
history-dependent policy π̃ corresponds to a Markov pol-
icy π† in the augmented MDP. This equivalence allows for
facilitating effective risk-sensitive policy learning without
sacrificing computational tractability.

Augmented MDPs We embrace the notion of augmented
MDPs, originally introduced by Bäuerle & Ott (2011)
and widely used in RSRL with static risk measures (Bas-
tani et al., 2022; Wang et al., 2023a; Zhao et al., 2023).
In the context of augmented MDPs, the state space is
expanded to S† = {s†h = (sh, yh)}, where yh =∑H
h=1 rh represents the cumulative reward accumulated

up to time step h.We denote the augmented MDP as
M† = (S†,A,K,H, {Ph}Hh=1, {Rh}Hh=1). To capture the
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augmented dynamics, we introduce the augmented transi-
tion operator as follows:

Th(s†h+1|s
†
h, ah) := Ph(sh+1|sh, ah)Rh(yh+1−yh|sh, ah)

Let Π† denote the set of the Markov policies within the
augmented MDPM†. Theorem 3.1 in Bastani et al. (2022)
shows that for any history-dependent policy π̃ in original
MDP, there exists a Markov policy in the augmented MDP
π ∈ Π†, such that FZπ = FZπ̃ . This result underscores the
equivalence between the distribution of cumulative rewards
under a history-dependent policy in original MDP and a
corresponding Markov policy in the augmented MDP.

Distributional Bellman Equation Similar to prior works
such as Bellemare et al. (2017); Bastani et al. (2022); Wang
et al. (2023b); Wu et al. (2023), we integrate the distribu-
tional Bellman equation within an augmented MDP frame-
work. For any policy π ∈ Π† and h ∈ [H], we denote
the random variable Zπ

h (s
†
h, ah) as the cumulative return∑H

h′=h rh′ after taking action ah in state s†h via policy
π ∈ Π†.
Definition 5.1 (Distributional Bellman Equation (Wang
et al., 2023b; Bastani et al., 2022)). Let Fπ

h (·|s†h, ah) be the
cumulative distribution function (CDF) of random variable
Zπ
h (s

†
h, ah), and let fπh (·|s

†
h, ah) be its probability density

function (PDF). We define the augmented distributional
Bellman operator T †

h,π : ∆(R)→ ∆(R) as:

T †
h,πf

π
h+1(x|s

†
h, ah) :=

∫
s†h+1,ah+1

Th(s†h+1|s
†
h, ah)

· πh+1(ah+1|s†h+1)f
π
h+1(x− (yh+1 − yh)|s†h+1, ah+1) ,

T †
h,πF

π
h+1(x|s

†
h, ah) :=

∫
s†h+1,ah+1

Th(s†h+1|s
†
h, ah)

· πh+1(ah+1|s†h+1)F
π
h+1(x− (yh+1 − yh)|s†h+1, ah+1) .

By the definition of Zπ
h and Zπ

h+1, we have fπh = T †
h,πf

π
h+1

and Fπ
h = T †

h,πF
π
h+1. Generally, we can write the distri-

butional Bellman equation in random variable version as
Zπ
h = T †

h,πZ
π
h+1.

6.Model-Based Meta-AlgorithmRS-DisRL-M

This section introduces the meta-algorithm RS-DisRL-M
for model-based function approximation in RS-DisRL,
alongside its theoretical underpinnings. It further delves
into two pivotal estimation techniques: LSR and MLE, for-
mulating statistically efficient algorithms for RSRL with
LRM.

We describe the model-based function approximation frame-
work utilized for our analysis, drawing on the methodologies
previously explored by Fei et al. (2021); Liu et al. (2022;
2023); Chen et al. (2023). Specifically, we model each tran-
sition probability P : S × A → ∆(S) using a parametric

form Pθ, with the true transition model for each decision
epoch h represented by θ∗h. The set of true models across
all epochs is denoted by θ∗ = {θ∗h}Hh=1. We then estab-
lish a standard realizability assumption for the model-based
function approximation, ensuring that our model accurately
reflects the dynamics of the environment

Assumption 6.1 (Model-based realizability (Fei et al., 2021;
Liu et al., 2022; 2023; Chen et al., 2023)). The agent is
given a model class Θ = {Θh : h ∈ [H]} which specifies a
class of transition probabilities {Pθh : θh ∈ Θh, h ∈ [H]}
and satisfies θ∗ ∈ Θ.2

Algorithm 1 RS-DisRL-M
1: Input: Model class Θ, confidence radius β.
2: Initialize: Θ̂1 ← Θ.
3: for k = 1 to K do
4: (πk, θ̂k) = argmaxπ∈Π†,θ∈Θ̂k

ρ(Zπ
θ ). //Optimistic

planning
5: Execute policy πk, add the collected data τk =

{(sk,h, ak,h, rk,h)}Hh=1 and πk, θ̂k into history
Hk = Hk−1 ∪ {(τk,πk, θ̂k)}. //Data collection

6: Θ̂k+1 = M-Est (Θ,Hk, β). //Confidence set con-
struction

7: end for

We introduce the meta framework RS-DisRL-M (Algo-
rithm 1) for Risk-Sensitive Distributional RL with Model-
Based function approximation. RS-DisRL-M is a model-
based algorithm which takes a model class Θ as an input,
and operates in three main steps.

(i) Optimistic planning (Line 4): the algorithm computes
the optimistic model θ̂k and corresponding augmented pol-
icy πk in the model confidence set Θ̂k. Here the random
variable Zπ

θ denotes the cumulative reward collected with
policy π in augmented MDPs modeled by θ. (ii) Data col-
lection (Line 5): the algorithm executes the optimal policy
πk planned from step (i) and collects the trajectory τk. (iii)
Confidence set construction (Line 6): the algorithm es-
timates the models and constructs the new confidence set
for the next episode based on a Model-based Estimation
function (M-Est), model class Θ, and confidence radius β.
The estimation function M-Est can be designed by various
estimation methods, such as LSR or MLE, depending on
the specific structure of the MDP or the model class.

This framework encapsulates the essence of leveraging
model-based approaches for efficient learning and adap-
tation in RSRL, aligning with strategies explored in recent
literature (Bastani et al., 2022; Liu et al., 2023; Chen et al.,
2023).

2We assume this structure of Θ to simplify the notations in
analysis. In fact, our analysis works as long as θ∗ ∈ Θ.
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Theoretical Guarantees The theoretical guarantees for
the RS-DisRL-M algorithm are anchored on two critical
conditions related to the estimation function M-Est.

Condition 6.2 (Concentration). For δ ∈ (0, 1], with proba-
bility at least 1− δ, θ∗ ∈ Θ̂k holds for every k ∈ [K].

The concentration condition, common in theoretical RL
analysis (Agarwal et al., 2019; Jin et al., 2018; Ayoub et al.,
2020), ensures that the true transition model is consistently
included within the algorithm’s confidence set throughout
the learning process.

Condition 6.3 (General elliptical potential). For δ ∈
(0, 1], with probability at least 1 − δ, the supremum dis-
tance between the CDF of the chosen estimated model
θ̂k and real model θ∗ under policy πk can be bounded

by
∑K
k=1

∥∥∥∥FZπk

θ̂k

− F
Zπk

θ∗

∥∥∥∥
∞
≤ ξ(K,H,Θ, β, δ), where

ξ(K,H,Θ, β, δ) is the complexity bound determined by
the estimation function M-Est.

Intuitively, Condition 6.3 bounds the estimation error by con-
trolling the discrepancy between the CDF of the estimated
and real models under the chosen policy. This condition
resembles the pigeonhole principle for tabular MDPs (Jin
et al., 2018) and the elliptical potential lemma for linear and
linear mixture MDPs (Jin et al., 2020; Zhou et al., 2021).
However, Condition 6.3 demands to bound the supremum
difference of the CDF during the learning process, which is
natrually different from the previous.

Conditions 6.2 and 6.3 together establish the reliabil-
ity and effectiveness of the estimation function in the
RS-DisRL-M framework. Adherence to these conditions
signifies that the estimation function can facilitate efficient
learning in RS-DisRL-M.

Theorem 6.4. Under Assumption 6.1, if the estimation
function M-Est satisfies Conditions 6.2 and 6.3, then the
regret of RS-DisRL-M (Algorithm 1) can be bounded by
Regret(K) ≤ L∞(ρ)ξ(K,H,Θ, β, δ).

This theorem integrates and extends results from previous
research on RSRL with static risk measures, offering a com-
prehensive view that includes notable theorems from Bastani
et al. (2022); Wang et al. (2023a); Fei et al. (2021). The pri-
mary challenge lies in satisfying the concentration and ellip-
tical potential conditions for the estimation function M-Est
and managing the complexity bound ξ(K,H,Θ, β, δ).

Below, we introduce LSR (M-Est-LSR, Algorithm 4)
and MLE (M-Est-MLE, Algorithm 5) based estimation
functions. These functions meet the necessary conditions
and demonstrate an effective bound ξ(K,H,Θ, β, δ) =

Õ(poly(H)D
√
βK/δ) with dimension term D specified

in Theorem 6.5 for LSR and Theorem 6.6 for MLE, giving
the
√
K dependency for meta-algorithm RS-DisRL-M and

achieving minimax-optimal in terms of K in tabular MDPs
for ERM (Fei et al., 2020) and CVaR (Wang et al., 2023a).

6.1. Estimation by Model-Based LSR Approach

Least Squares Regression (LSR), a well-established estima-
tion technique, has been effectively utilized in linear and
linear mixture MDPs (Jin et al., 2020; Zhou et al., 2021). Its
common application involves regression on combinations of
the transition model with bounded functions. In risk-neutral
scenarios, it’s often paired with mean value functions (Jin
et al., 2020), while in risk-sensitive settings, utility func-
tions are preferred (Chen et al., 2023; Xu et al., 2023). This
section explores a novel approach in distributional RL by
combining the transition model with mixed distribution func-
tions based on the distributional Bellman equation for CDFs.
The newly proposed M-Est-LSR algorithm represents a
statistically efficient LSR method tailored for this context.

The intuition of LSR is to approximate the Bellman oper-
ator with the empirical sample. Different from previous
stuides (Jin et al., 2020; Fei et al., 2021; Chen et al., 2023),
we have to analyze the augmented distributional Bellman
equation for transition model θ. Denote Fπ,θ

h (x|s†h) :=∫
ah
πh(ah|s†h)F

π,θ
h (x|s†h, ah), we have the following Bell-

man equation

Fπ,θ
h (x|s†h) =

∫
(ah,s

†
h+1)

πh(ah|s†h)Tθh(s
†
h+1|s

†
h, ah)

· Fπ,θ
h+1

(
x− (yh+1 − yh)

∣∣∣s†h+1

)
.

Notice that the transition Tθh for augmented MDP com-
presses the real transition Pθh in original MDP and the
reward distribution Rh. However, the only empirical ob-
servation available to the agent is the transfer sample
(sk,h, ak,h) → sk,h+1 and the reward sample rk,h ∼
Rh(sk,h, ak,h). Therefore, we have to decompose the aug-
mented Bellman operator for estimating the transition mod-
els of original MDP. To do so, we design a mixed distribu-
tion function

F̂k,h+1(s) :=

∫ 1

yk,h

Rh(r|sk,h,ak,h)Fπk,θ̂k

h+1 (xk,h−r|s,yk,h+r)dr ,

where πk and θ̂k are given by the optimistic plan-
ning (Line 4 in Algorithm 1) based on the informa-
tion before episode k. Here xk,h is defined as Eq.(2),
which maximizes the diameter of Θ̂k,h with mixed
CDFs, intuitively contributing to the exploration direc-
tion by maximizing the uncertainty. For simplicity, we
denote the combination form [Pθh F̂k,h+1](sh, ah) :=∫
sh+1

Pθh(sh+1|sh, ah)F̂k,h+1(sh+1), and the combination
setWΘ := {[PθhF ] : S × A → [0, 1] : θ ∈ Θ, F : S →
[0, 1]}.

We are now ready to present the procedure of the estimation
function M-Est-LSR. Due to space limitations, we defer
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the formal pseudocode to the appendix (see Algorithm 4).
First, M-Est-LSR estimate a model θLSRk,h for step h at
episode k by LSR based on the information before episode
k − 1, which serves as the center of the confidence set:

θLSRk,h ←argmin
θh∈Θh

k−1∑
i=1

(
F̂i,h+1(si,h+1)−[Pθh F̂i,h+1](si,h, ai,h)

)2
.

Then, the confidence set for each step h ∈ [H] is constructed
by previous history

Θ̂k,h :=
{
θh ∈ Θh : DistLSRHk−1,h

(θh||θLSRk,h ) ≤ βLSR
}
.

where the Euclidean-type distance function is defined as

DistLSRHk,h
(θ1||θ2) :=

k∑
i=1

(
[Pθ1 F̂i,h+1](si,h, ai,h)−[Pθ2 F̂i,h+1](si,h, ai,h)

)2
Finally, the function returns the confidence set Θ̂k ={
θ ∈ Θ : θh ∈ Θ̂k,h, h ∈ [H]

}
.

Theorem 6.5. Let the confidence radius for LSR βLSR :=
8 log(2H2NC(Θ, 1/K, ∥·∥1)/δ) + 4

√
log(4HK2/δ).

The estimation function M-Est-LSR satisfies Con-
ditions 6.2 and 6.3 with ξLSR(K,H,Θ, βLSR, δ) =

Õ
(
H
√
K dimE(WΘ,

1√
K
) log

(
NC(Θ, 1

K , ∥ · ∥1)/δ
))

,

where dimE represents the eluder dimension, and NC
denotes the covering number.

The formal proof is detailed in Appendix C. By applying
Theorem 6.5, the meta-algorithm RS-DisRL-M equipped
with the M-Est-LSR estimation function achieves a sub-
linear regret upper bound of Õ(L∞(ρ)H D

√
K), where

D =
√
dimE(WΘ, 1/

√
K) log (NC(Θ, 1/K, ∥ · ∥1)/δ)

represents the structural dimension. Here dimE(WΘ,
√
K)

characterizes the eluder dimension of the combination set
WΘ, andNC(Θ, 1/K, ∥ · ∥1) denotes the covering number
of the model class, both of which are commonly employed
in the analysis of model-based LSR (Ayoub et al., 2020; Fei
et al., 2021; Chen et al., 2023).

Compared to previous works studying RSRL with ERM,
the result of Theorem 6.5 improves upon the findings of
Fei et al. (2020; 2021). Notably, our regret bound does
not include the additional e|γ|H

2

term in the Lipschitz con-
stant. This improvement is attributed to the distributional
analysis, which avoids the e|γ|H factor while back propa-
gating the Bellman error in Lemma 3 of Fei et al. (2020).
Furthermore, when transitioning to the risk-neutral setting,
the result established in Theorem 6.5 aligns with the regret
bound presented by Ayoub et al. (2020) up to H factors.

6.2. Estimation by Model-Based MLE Approach

We develop the MLE methods to give a refined estimation
for the transition models in augmented MDPs. Our method
is inspired by the generic model-based MLE method OMLE
in Liu et al. (2023).

Similarly to Algorithm 1 in Liu et al. (2023), we construct
the estimation algorithm M-Est-MLE, where we provide
the detailed pseudocode in Algorithm 5 for space limita-
tion. Employing a standard MLE analysis (Geer, 2000),
we effectively bound the total squared total variation (TV)
distance between our estimated model and the true model

by:
∑k−1
i=1

∑H
h=1 Eνπi

θ∗,h

[∥∥∥(Pθ̂k,h
− Pθ∗h

)
(sh, ah)

∥∥∥2
1

]
≤

O(βMLE), where νπ
i

θ∗ denotes the visitation measure for πi

under the real transition kernel.

However, the standard simulation lemma (e.g., Lemma
10 in Sun et al. (2019)) fails in analyzing the effi-
ciency of M-Est-MLE since the policy learned in our
meta-algorithm is non-Markovian for standard episodic
MDPs. Instead, we proposed a novel augmented sim-
ulation lemma (see Lemma D.2) connecting the To-
tal Variation (TV) distance between model difference
with the ℓ∞ distance between the CDFs of the cumu-

lative return random variable:
∥∥∥∥FZπk

θ̂k

− F
Zπk

θ∗

∥∥∥∥
∞
≤∑H

h=1 Eνπk

θ∗,h

[∥∥∥(Pθ̂k,h
− Pθ∗h

)
(sh, ah)

∥∥∥
1

]
. To limit the

ℓ∞ distance of CDFs via the estimated error above, we
adopt the witness rank dwit defined in Definition D.7, which
is a common structural complexity measure used for model-
based RL (Sun et al., 2019; Huang et al., 2022; Chen et al.,
2022; Zhong et al., 2022; Liu et al., 2023). By this way, we
have the following theoretical guarantees:

Theorem 6.6 (Estimation by Model-Based MLE Approach).
Let βMLE := H log

(
eKN[·](Θ, 1/K, ∥·∥1)/δ

)
, where

N[·](Θ, 1/K, ∥·∥1) is the bracketing number (see Defini-
tion A.2). The estimation function M-Est-MLE satisfies the
Conditions 6.2 and 6.3 with ξMLE(K,H,Θ, βMLE, δ) =

Õ
(
poly(H)

(√
K dwit βMLE

))
, where dwit is the wit-

ness rank of the MDP model. (Definition D.7).

We present the formal proof in Appendix D. In the risk
neutral setting where L∞(E) = 1, our Theorem 6.6, in con-
junction with Theorem 6.4, presents a regret upper bound
that aligns closely with Liu et al. (2023)’s result. We also
reference Zhao et al. (2023)’s exploration of RSRL in static
CVaR measures and low-rank MDPs, a special subcase of
the MDPs with low V-type witness rank (Sun et al., 2019;
Agarwal et al., 2020; Uehara et al., 2021). Our analysis
extends to V-type witness ranks, offering a more favorable
dependence on d, the rank of the transition matrix, com-
pared to Zhao et al. (2023)’s approach. This distinction is
elaborated in Appendix D.6, demonstrating our method’s
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broader applicability and efficiency.

7. Model-Free Meta-Algorithm RS-DisRL-V

In this section, we expand the scope of RSRL to include
general value function approximation. We begin by es-
tablishing the foundational assumptions for general value
function approximation. Then, we present a meta-algorithm
Risk-Sensitive Distributional RL with general Value func-
tion approximation (RS-DisRL-V, Algorithm 2). This
algorithm’s theoretical guarantees and performance are then
discussed.

At first, we introduce a generic function class Z = {Zh :

h ∈ [H]}, with each element Zh(s
†
h, ah) ∈ Zh represent-

ing a probability distribution, which serves as an estimator
candidate for the random variable of the optimal cumulative
reward Zπ∗

h . Then we make the foundation assumption of
the general value function approximation.
Assumption 7.1 (General value function approximation
(Wu et al., 2023; Wang et al., 2023b)). For each h ∈ [H],
we have Zπ∗

h ∈ Zh, and the given function set Zh satisfy
the distributional bellman completeness, such that for any
Zh+1 ∈ Zh+1, we have T †

h,πZh+1 ∈ Zh.

While we assume the agent has access to a class of ran-
dom variables containing the value distribution, in practice,
we often estimate the random variable through its Cumu-
lative Distribution Function (CDF) or Probability Density
Function (PDF). The practical estimation approach will be
elaborated upon in the specific settings outlined in Section
7.1 and Section 7.2.

Algorithm 2 RS-DisRL-V
1: Input: Function class Z = Z1×Z2 · · · ZH , confidence

radius γ.
2: Initialize: Ẑ1,π ← Z .
3: for k = 1 to K do
4: (πk, Ẑ

k) = argmaxπ∈Π†,Z∈Ẑk,π
ρ(Z1). //Opti-

mistic planning
5: Execute policy πk, add the collected data τk =

{(sk,h, ak,h, rk,h)}Hh=1 and πk, θ̂k into history
Hk = Hk−1 ∪ {(τk,πk, Ẑk)}. //Data collection

6: Ẑk+1,π = V-Est(Hk,Z,π, γ). //Confidence set
construction

7: end for

The meta-algorithm RS-DisRL-V (Algorithm 8) similar
in structure to RS-DisRL-M, adopts value-type optimistic
planning and confidence set construction. It uniquely con-
structs a version space for each augmented policy using
the V-Est estimation algorithm, incorporating the actual
optimal cumulative reward distribution. For case when aug-
mented policy set Π† is infinite, we employ the policy cover-
ing argument, discretizing the policy set using a normalized

lower bracketing set Π defined in Definition A.2. This ap-
proach, commonly used in prior studies (Kallus et al., 2022;
Wang et al., 2023b; Zhou et al., 2023; Huang et al., 2022),
ensures the practicality and scalability of the algorithm, es-
pecially in complex policy environments (see Appendix E.1
for detailed discussion).

Theoretical Guarantees Similar to the Section 6, we in-
troduce two sufficient conditions which describe the validity
of the estimation function V-Est to establish the theoretical
result for RS-DisRL-V.

Condition 7.2 (Concentration). With probability at least
1 − δ, δ ∈ (0, 1], for all policy π ∈ Π†, we have that the
actual random variable of the cumulative reward collected
by policy π is in the confidence set with high probability,
i.e., Zπ ∈ Ẑk,π .

Condition 7.3 (General elliptical potential). For δ ∈ (0, 1],
the ℓ∞ distance between the CDF of the optimistic reward
distribution Ẑk and the actual reward distributionZπk

under
policy πk can be bounded by

∑K
k=1

∥∥FẐk − FZπk

∥∥
∞ ≤

ζ(K,H,Z,Π†, γ, δ) with probability at least 1− δ.

These two conditions for RS-DisRL-V, paralleling those
in RS-DisRL-M, encapsulate the efficiency of the es-
timation function V-Est. The theoretical result for
RS-DisRL-V is presented below.

Theorem 7.4. Under Assumption 7.1, if the estimation func-
tion V-Est satisfies Conditions 7.2 and 7.3, then the re-
gret of RS-DisRL-V can be bounded by Regret(K) ≤
L∞(ρ)ζ(K,H,Z,Π†, γ, δ).

The regret bound for the RS-DisRL-V algorithm
is characterized by a form similar to that in the
model-based case (Theorem 6.4). The effectiveness
bound ζ(K,H,Z,Π†, γ, δ), sharing the same form as
Õ(poly(H)D

√
γK/δ) for both LSR (V-Est-LSR, Algo-

rithm 8) and MLE (V-Est-MLE, Algorithm 9) approaches,
exhibiting a dependency of

√
K, indicating a sublinear com-

plexity in terms of episodes. Here D is the structural com-
plexity specified in dependency Theorem 7.5 for LSR and
Theorem 7.6 for MLE.

7.1. Estimation by Value-Based LSR Approach

In this section, we design a novel LSR approach
V-Est-LSR for random-variable estimation through CDFs
in the augmented MDP. To the best of our knowledge, we are
the first to present the statistically efficient LSR estimation
for DisRL with general value function approximation.

Denote Fh(·|s†, a) as the CDF of Zh(·|s†, a) ∈ Zh.
The estimation function V-Est-LSR focuses on estimat-
ing the Bellman operator with real transition probabil-
ity. For a given target CDF F̃h+1(·|s†, a) and π, the
data collection process in episode k gives us an empir-
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ical sample of T †
h,πF̃h+1(x|s†k,h, ak,h) since we observe

the transfer from (s†k,h, ak,h) to (s†k,h+1) with policy πk.

Therefore, we can use π⊤
h+1F̃h+1(x − rk,h|s†k,h+1) :=∫

ah+1
πh+1(ah+1|s†k,h+1)F̃h+1(x − rk,h|s†k,h+1, ah+1) to

perform an unbiased estimate of T †
h,πF̃h+1(x|s†k,h, ak,h):

F̂LSR
k,h,π,F̃

= argmin
Fh∈Zh

k−1∑
i=1

(
Fh(x

π,F̃
k,h |s

†
k,h, ak,h)

−π⊤
h+1F̃h+1(x

π,F̃
k,h − rk,h|s

†
k,h+1)

)2
,

where xπ,F̃i,h , defined in Eq.(11), intuitively leads the explo-
ration direction with maximal uncertainty. With this novel
estimator, we can prove that with high probability.∑

i<k

(
Th,πF̃h+1(x

π,F̃
i,h |s

†
i,h, ai,h)

− F̂LSR
k,h,π,F̃

(xπ,F̃i,h |s
†
i,h, ai,h)

)2
≤ Õ(γLSR) .

By a union bound over the covering Π† and Z (detailed
in Appendix E.1), this property derives the concentration
condition (Condition 7.2). With the concentration bound, we
can easily establish the general elliptical potential condition
(Condition 7.3) utilizing the similar argument in model-
based LSR method (Section 6.1). We propose the complete
pseudocode of V-Est-LSR in Algorithm 8. Theoretical
guarantees are provided below.
Theorem 7.5. Let γLSR := 16 log(HK2/δ) +
log(NC(Π†, 1/K, ∥ · ∥1)) + log(NC(Z, 1/K, ∥ · ∥1)).
The estimation function V-Est-LSR satis-
fies the Conditions 7.2 and 7.3 with ζLSR =

Õ
(
poly(H)

√
KγLSR dimE(Z,

√
K)

)
, where dimE

represents the eluder dimension.

The formal proof of Theorem 7.5 is presented in Appendix F.
The RS-DisRL-V algorithm, when implemented with the
V-Est-LSR estimation function attains a significant regret

upper bound Õ(L∞(ρ)poly(H)
√
K Dcov dimE(Z,

√
K))

in RSRL with static LRM, where the covering dimension
Dcov = log(NC(Π†, 1/K, ∥ · ∥1)) + log(NC(Z, 1/K, ∥ ·
∥1)). This bound, characterized by a

√
K dependency sig-

nifies the first sample-efficient RSRL with general value
function approximation and static LRM. Furthermore, when
degenerating to the risk-neutral and tabular case, this result
aligns with optimal dependencies on K as demonstrated in
Wang et al. (2020).

7.2. Estimation by Value-Based MLE Approach

For DisRL with general value function approximation, a
standard estimation method adopted is estimating the can-
didate of true cumulative reward Zπ by its density func-
tion with MLE, which is powerful in theoretical studies

(Wang et al., 2023b; Wu et al., 2023) and practice (Hessel
et al., 2018; Bellemare et al., 2017). Inspired by previous
studies (Wang et al., 2023b; Wu et al., 2023), we combine
the standard MLE method with our general risk-sensitive
model-free framework and provide the estimation function
V-Est-MLE which performs efficient estimation in the
augmented MDP and risk-sensitive target.

Assume fh(x|s†h, ah) is the PDF of Zh(s
†
h, ah) ∈ Zh. In-

spired by the MLE method utilized in risk-neutral DisRL
(Wu et al., 2023; Wang et al., 2023b), we estimate by maxi-
mizing the log likelihood function: log fh(z

f,π
k,h |sk,h, ak,h)

where zf,πk,h is sampled from fh+1(·|s†k,h+1, π(sk,h+1)) +
rk,h. The details of V-Est-MLE are presented in Algo-
rithm 9 in appendix due to the space limitation.

The following theorem addresses the efficiency of the MLE
approach in risk-sensitive case. We denote dBE as the Bell-
man eluder dimension (Definition G.3) that aligns with the
approaches discussed in prior studies by Jin et al. (2021);
Wang et al. (2023b).

Theorem 7.6. With γMLE = log(N[·](Z, ϵ, ∥·∥1)) +

log(N[·](Π
†, ϵ, ∥·∥1)) + log(KH/δ), estimation function

V-Est-MLE satisfies Conditions 7.2 and 7.3 with ζMLE =

Õ
(
poly(H)

√
dBE γMLEK

)
. Here dBE represents the

Bellman eluder dimension, which is a common structural
complexity studied in Jin et al. (2021); Wang et al. (2023b).

This result enables us to establish a regret upper bound for
RS-DisRL-V of Õ(L∞(ρ)poly(H)

√
K dBE Dcov), with

the covering dimension Dcov = log(N[·](Π
†, 1/K, ∥·∥1))+

log(N[·](Z, 1/K, ∥·∥1)). Notably, this bound aligns closely
with results from existing research (Jin et al., 2021) in the
risk-neutral domain, demonstrating its relevance and appli-
cability in a wide range of reinforcement learning contexts.

8. Conclusion
We give a comprehensive discussion of RS-DisRL with
static LRM and general function approximation. We pro-
pose the model-based meta-algorithm RS-DisRL-M (Al-
gorithm 1) for model-based function approximation and the
model-free meta-algorithm RS-DisRL-V (Algorithm 2)
for the general approximation of value functions. Equipped
with our novel LSR or MLE estimation approaches, both
meta-algorithms achieve the Õ(

√
K) dependency of the

regret upper bound, giving the first statistically efficient
algorithms for RSRL with static LRM. Additionally, we
establish a computationally tractable and statistically effi-
cient algorithm in the specific setting with static CVaR risk
measure and linear function approximation. In this case, we
provide numerical experiments to validate the theoretical
results (see Appendix I.6).
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A. Notations
Define Ω as the measurable space containing all the augmented trajectories τ =

{
s†1, a1, · · · , s

†
H , aH

}
. We consider the

probability space (Ω,Σ,P), where Σ is the σ-algebra and P is the productive probability measure combine the transition
distribution and reward distribution.

Let Zπ
θ be the random variable of

∑H
h=1 rh defined on the σ-algebra Σ of Ω. Let FZ(x) be its cumulative distribution

function (CDF). For an augmented trajectory τ ∈ Ω we denote µπ
θ (τ ) as the probability measure on τ by following policy

π under transition model θ, i.e., for any augmented state action pair s†, a,

µπ
θ (s

†, a) =

∫
τ

µπ
θ (τ )1(τh = (s†h, ah))

Since our policy π is Markov on the augmented MDP, the visitation µ admits a factorized structure:

µπ
θ (τ ) =

H∏
h=1

πh(ah|s†h)Tθh(s
†
h+1|s

†
h, ah)

We further define µπ
θ (s

†, a) = µπ
θ (s

†)π(a|s†).

We also denote ν as a probability measure defined on the original state action pairs (s, a):

νπθ (s, a) =

∫
τ

µπ
θ (τ )1(s, a ∈ τ ) =

∫
y

µπ
θ ((s, y), a)

However, we remark that ν can not be factorized since our policy depends not only on the state s.

Then we introduce the standard concepts of the covering and bracketing numbers for a function class, which are widely
employed in the analysis of general function approximation (Ayoub et al., 2020; Liu et al., 2022; 2023; Wang et al., 2023b).
Definition A.1 (Covering Number). The ϵ-covering number of a set V with metric ρ, denoted as NC(V, ϵ, ρ), is the
minimum integer n such that there exists a subset Vo ⊂ V with cardinality n, for every x ∈ V, there exists a y ∈ Vo, with
ρ(x, y) ≤ ϵ
Definition A.2 (Bracketing Number). Let G be a set of functions mapping X → R. Given l, u ∈ G such that l(x) ≤ u(x)
for all x ∈ X . We say that the bracket [l, u] is the set of functions g ∈ G such that l(x) ≤ g(x) ≤ u(x). for all x ∈ X. We
call [l, u] and ϵ-bracket if ∥u− l∥ ≤ ϵ. Then the ϵ-bracketing number of G with respect to ∥ · ∥ denoted byN[·](G, ϵ, ∥ · ∥) is
the minimum number of ϵ-brackets needed to cover G. And we denote G↓ as the set of the lower bracket functions l of this
ϵ-brackets covering, i.e.,

∣∣G↓∣∣ = N[·](G, ϵ, ∥ · ∥)

Another important concept is the eluder dimension, which will be used to measure the structural complexity in the following
LSR analysis. To introduce the eluder dimension, we first define the concept of ε-independence.
Definition A.3 (ε-dependence (Russo & Van Roy, 2013)). For ε > 0 and function class Z whose elements are with domain
X , an element x ∈ X is ε-dependent on the set Xn := {x1, x2, · · · , xn} ⊂ X with respect to Z , if any pair of functions

z, z′ ∈ Z with
√∑n

i=1 (z(xi)− z′(xi))
2 ≤ ε satisfies z(x)− z′(x) ≤ ε. Otherwise, x is ε-independent on Xn if it does

not satisfy the condition.
Definition A.4 (Eluder dimension (Russo & Van Roy, 2013)). For any ε > 0, and a function class Z whose elements are in
domain X , the Eluder dimension dimE(Z, ε) is defined as the length of the longest possible sequence of elements in X
such that for some ε′ ≥ ε, every element is ε′-independent of its predecessors.

B. General Model-based framework: Algorithm RS-DisRL-M

In our model-based framework for Risk-Sensitive Distributional Reinforcement Learning (RS-DisRL), we focus on
estimating the transition model, denoted as θ̂k for each episode k. This involves leveraging historical data up to episode
k − 1, represented asHk−1,to construct a confidence set Θ̂k. The construction of this set is crucial for guiding the selection
of actions, as it is based on a specified confidence radius β, which helps in balancing exploration and exploitation by
considering the uncertainty in our model estimates

To ensure the regret bound, we require the following conditions: Condition 6.2 and Condition 6.3.
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Algorithm 3 RS-DisRL-M
1: Input: Model class Θ, confidence radius β.
2: Initialize: Θ̂1 ← Θ.
3: for k = 1 to K do
4: (πk, θ̂k) = argmaxπ∈Π†,θ∈Θ̂k

ρ(Zπ
θ ). //Optimistic planning

5: Execute policy πk, add the collected data τk = {(sk,h, ak,h, rk,h)}Hh=1 and πk, θ̂k into history Hk = Hk−1 ∪
{(τk,πk, θ̂k)}. //Data collection

6: Θ̂k+1 = M-Est (Θ,Hk, β). //Confidence set construction
7: end for

Condition B.1 (Concentration condition). For δ ∈ (0, 1], we have θ∗ ∈ Θ̂k holds for any k ∈ [K], with probability at least
1− δ.

Condition B.2 (Elliptical potential condition). If for any k ∈ [K], we have for any given {θ̂k}k ⊂ {Θ̂k}k and corresponding
greedy policy πk = argmaxπ∈Π† ρ(Zπ

θk
), the Lp-norm of the difference of reward-to-gos’ CDFs for chosen model θk and

true model θ∗ can be bound by

K∑
k=1

∥∥∥FZπk
θk

− FZπk
θ∗

∥∥∥ ≤ ξ (K,H, dΘ, β, δ)
with probability at least 1− δ, δ > 0.

This general framework emphasizes that the key to efficiently learning the MDP with a static Lipschitz risk measure is
centered on constructing a confidence set for the transition model. This construction leverages the elliptical potential
principle for cumulative distribution functions within the augmented MDP. Combined with above conditions, we can
establish the following theoretical result

Theorem B.3. Under Assumption 6.1, if the estimation function M-Est satisfies Conditions 6.2 and 6.3, then the regret of
RS-DisRL-M (Algorithm 1) can be bounded by Regret(K) ≤ L∞(ρ)ξ(K,H,Θ, β, δ) with probability at least 1− 2δ.

C. Model Based Estimation by LSR Approach
In this section, we design a Least Squares Regression (LSR) based estimation method to construct the confidence set of the
model at each episode, and theoretically demonstrate that our algorithm M-Est-LSR satisfies the Conditions 6.2 and 6.3.

First we introduce some notations for simplicity. We define Zπ,θ
h (sh, yh) =

∑H
i=h ri as the random variable of the reward-

to-go from step h, where sh is the starting state, and yh is the previous cumulative reward from step 1 to h− 1. Moreover,
we denote Fπ,θ

h (x|sh, yh) as the CDF of Zπ,θ
h . Our analysis for LSR approach in model-based function approximation is

inspired by Chen et al. (2023). However, Chen et al. (2023) focus on Iterated CVaR risk measure and analyse the model with
value function in its general function approximation algorithm. In this paper, we develop novel technique for distribution
function analysis for general model-based function approximation and augmented MDP.

C.1. Algorithm M-Est-LSR

where the distance function is defined by

DistLSRHk
(θ1||θ2) =

k∑
i=1

(∫
s′
Pθ1(s′|sk,h, ak,h)

∫
r

R(r|si,h, ai,h)F π̂i,θ̂i

h+1 (xi,h − r|s′, yi,h + r)

−
∫
s′
Pθ2(s′|sk,h, ak,h)

∫
r

R(r|si,h, ai,h)F π̂i,θ̂i

h+1 (xi,h − r|s′, yi,h + r)
)2
,

(1)
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Algorithm 4 M-Est-LSR(Θ,Hk−1, β
LSR)

Input: History informationHk−1, Model class Θ, and confidence radius βLSR.
Estimate the transition model for every h ∈ [H]

θLSRk,h = argmin
θh∈Θh

k−1∑
i=1

(∫
r

R(r|si,h, ai,h)F π̂i,θ̂i

h+1 (xi,h − r|si,h+1, yi,h + r)

−
∫
s†h+1

Tθh(s
†
h+1|s

†
i,h, ai,h)F

π̂i,θ̂i

h+1 (xi,h − (yh+1 − yi,h)|sh+1, yh+1)
)2
.

Construct Confidence set:

Θ̂k,h :=
{
θh ∈ Θh : DistLSRHk−1,h

(θh||θLSRk,h ) ≤ βLSR
}

Θ̂k =
{
θ ∈ Θ : θh ∈ Θ̂k,h, h ∈ [H]

}
Return Θ̂k

xk,h is defined by:

xi,h =argmax
x∈R

sup
θ1h∈Θ̂k,h

∫
s†h+1

Tθ1h(s
†
h+1|s

†
k,h, ak,h)F

πk,θ̂k

h+1 (x− (yh+1 − yk,h)|s†h+1)

− inf
θ2h∈Θ̂k,h

∫
s†h+1

Tθ2h(s
†
h+1|s

†
k,h, ak,h)F

πk,θ̂k

h+1 (x− (yh+1 − yk,h)|s†h+1) , (2)

which represents the direction of maximum uncertainty in confidence set Θ̂k,h, we can obtain the least-squares estimate as:

θLSRk,h =argmin
θh∈Θh

k−1∑
i=1

(∫
r

Rh(r|si,h, ai,h)F π̂i,θ̂i

h+1 (xi,h − r|si,h+1, yi,h + r)

−
∫
s†h+1

Tθh(s
†
h+1|s

†
i,h, ai,h)F

π̂i,θ̂i

i,h+1(xi,h − (yh+1 − yi,h)|sh+1, yh+1)

)2

=argmin
θh∈Θh

k−1∑
i=1

(∫
r

Rh(r|si,h, ai,h)F π̂i,θ̂i

h+1 (xi,h − r|si,h+1, yi,h + r)

−
∫
sh+1

Pθh(sh+1|si,h, ai,h)
∫
r

Rh(r|si,h, ai,h)F π̂i,θ̂i

h+1 (xi,h − r|sh+1, yi,h + r)

)2

.

In the following proof, we show that with βLSR = 8 log(2H2NC(Θ, 1/K, ∥·∥1)/δ) + 4
√
log(4HK2/δ), we have the

concentration condition holds with probability at least 1− δ. And the elliptical potential condition holds for

ξLSR(K,H,Θ, βLSR, δ) = O(H
√
K ·
√
1 + dimE(WΘ, 1/

√
K) + dimE(WΘ, 1/

√
K)βLSR logK+H

√
2K log(1/δ))

whereWΘ := {PθhF : S ×A → [0, 1] : θ ∈ Θ, F : S → [0, 1]} and dimE represents the eluder dimension.
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C.2. Least Squares Form for Estimation

Notice that we first calculate the estimator kernel

θLSRk,h =argmin
θh∈Θh

k−1∑
i=1

(∫
r

Rh(r|si,h, ai,h)F π̂i,θ̂i

h+1 (xi,h − r|si,h+1, yi,h + r)

−
∫
s†h+1

Tθh(s
†
h+1|s

†
i,h, ai,h)F

π̂i,θ̂i

i,h+1(xi,h − (yh+1 − yi,h)|sh+1, yh+1)

)2

=argmin
θh∈Θh

k−1∑
i=1

(∫
r

Rh(r|si,h, ai,h)F π̂i,θ̂i

h+1 (xi,h − r|si,h+1, yi,h + r)

−
∫
sh+1

Pθh(sh+1|si,h, ai,h)
∫
r

Rh(r|si,h, ai,h)F π̂i,θ̂i

h+1 (xi,h − r|sh+1, yi,h + r)

)2

.

which takes the least-square regression form. If we denote the mixed contribution function

F̂i,h(s) :=

∫
r

Rh(r|si,h, ai,h)F π̂i,θ̂i

h+1 (xi,h − r|s, yi,h + r) .

Thus we can simplify the least squares regression as

θLSRk,h =argmin
θh∈Θh

k−1∑
i=1

(
F̂i,h(si,h+1)−

∫
sh+1

Pθh(sh+1|si,h, ai,h)F̂i,h(sh+1)

)2

.

We can further define

[Pθh F̂i,h](sh, ah) :=
∫
sh+1

Pθh(sh+1|sh, ah)F̂i,h(sh+1)

andWΘ := {PθhF : S ×A → [0, 1] : θ ∈ Θ, F : S → [0, 1]}.

Then the distance function and our constructed confidence sets can be expressed by

DistLSRHk,h
(θ1||θ2) =

k∑
i=1

(
[Pθ1 F̂i,h](sh, ah)− [Pθ2 F̂i,h](sh, ah)

)2
,

Θ̂k,h :=
{
θh ∈ Θh : DistLSRHk−1,h

(θh||θ̂LSRk,h ) ≤ βLSR
}
,

Θ̂k =
{
θ ∈ Θ : θh ∈ Θ̂k,h, h ∈ [H]

}
.

C.3. Concentration Condition for LSR approach

Lemma C.1 (LSR concentration). The LSR-type construction algorithm M-Est-LSR satisfies Condition 6.2. That is, for
δ ∈ (0, 1], with probability at least 1− δ, we have θ∗h ∈ Θ̂k for all k ∈ [K],

Proof. Recall that we calculate the estimation kernel θLSRk,h by least squares regression as follows:

θLSRk,h = argmin
θh∈Θh

k−1∑
i=1

(
F̂i,h(si,h+1)− [Pθh F̂i,h](si,h, ai,h)

)2
.

Notice that the F̂i,h(si,h+1) is σi,h+1-measurable by definition and [Pθh F̂i,h](si,h, ai,h) is σi,h-measurable, with σi,h be
the filtration containing history up to the h step in episode i. We have

E
[
F̂i,h(si,h+1)

∣∣∣σi,h] = [Pθ∗h F̂i,h](si,h, ai,h) .
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Based on concentration lemma H.2, we have the following holds with probability at least 1− δ/H

k∑
i=1

(
[Pθ∗h F̂i,h](si,h, ai,h)− [PθLSR

k,h
F̂i,h](si,h, ai,h)

)2
≤ 8 log(2HN (WΘ, 1/K, ∥ · ∥∞)/δ) + 4

√
log(4K2/δ) .

Moreover, we have for any θ1,θ2 ∈ Θ, we can bound the supremum distance of Pθ1hF,Pθ2hF ∈ WΘ for any h ∈ [H] by

∥Pθ1hF − Pθ2hF∥∞ = sup
(s,a)∈S×A

∣∣∣∣∫
s′
(Pθ1h(s

′|s, a)F (s′)− Pθ2h(s
′|s, a)F (s′))

∣∣∣∣
= sup

(s,a)∈S×A

∣∣∣∣∫
s′
(Pθ1h(s

′|s, a)− Pθ2h(s
′|s, a))F (s′)

∣∣∣∣
≤ sup

(s,a)∈S×A
∥Pθ1h(s, a)− Pθ2h(s, a)∥1

≤∥θ1 − θ2∥1 .

Thus we have NC(WΘ, 1/K, ∥ · ∥∞) ≤ NC(Θ, 1/K, ∥·∥1). Recall the definition of DistLSRHk−1,h
. Taking union bound over

h ∈ [H], we have

DistLSRHk−1,h
(θ∗h||θLSRk,h ) ≤ 8 log(2H2NC(Θ, 1/K, ∥·∥1)/δ) + 4

√
log(4HK2/δ) = βLSR ,

which shows that θ∗h ∈ Θ̂k,h for every k, h ∈ [K]× [H] with probability at least 1− δ and implies that θ∗ ∈ Θ̂k for every
k ∈ [K] with probability at least 1− δ.

C.4. Elliptical Potential Condition for LSR Approach

We have the bellman equation for distributional function

Fπ,θ
h (x|sh, yh) = Fπ,θ

h (x|s†h) =
∫
s†h+1

∫
ah

πh(ah|s†h)Tθh(s
†
h+1|s

†
h, ah)F

π,θ
h+1(x− (yh+1 − yh)|sh+1, yh+1) .

Tθh,πF
π,θ
h+1(x|s

†
h) =

∫
s†h+1

∫
ah

πh(ah|s†h)Tθh(s
†
h+1|s

†
h, ah)F

π,θ
h+1(x− (yh+1 − yh)|sh+1, yh+1) .

Lemma C.2. With probability at least 1− δ, we have

K∑
k=1

H∑
h=1

(
sup

θ1h∈Θ̂k,h

[Pθ1h F̂k,h](sk,h, ak,h)− inf
θ2h∈Θ̂k,h

[Pθ2h F̂k,h](sk,h, ak,h)

)2

≤H +H dimE(WΘ, 1/
√
K) + 4HβLSR dimE(WΘ, 1/

√
K)(log(K) + 1) .

Proof. This proof is almost same with the elliptical potential lemma for general function approximation given in Lemma 9
of Chen et al. (2023).

Lemma C.3 (LSR elliptical potential). The algorithm M-Est-LSR satisfies Condition 6.3 with

ξLSR(K,H,Θ, βLSR, δ) = Õ
(
H

√
KβLSR dimE(WΘ, 1/

√
K)

)
.
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Proof. We have

K∑
k=1

sup
x∈[0,H]

∣∣∣∣FZπk

θ̂k

(x)− F
Zπk

θ∗
(x)

∣∣∣∣
=

K∑
k=1

sup
x∈[0,H]

∣∣∣Fπk,θ̂k

1 (x|sk,1, 0)− Fπk,θ∗

1 (x|sk,1, 0)
∣∣∣

=

K∑
k=1

sup
x∈[0,H]

∣∣∣Tθ̂k,1,πkF
πk,θ̂k

2 (x|sk,1, 0)− Tθ∗1 ,πkFπk,θ∗

2 (x|sk,1, 0)
∣∣∣

≤
K∑
k=1

sup
x∈[0,H]

∣∣∣Tθ̂k,1,πkF
πk,θ̂k

2 (x|s†k,1)− Tθ∗1 ,πkFπk,θ̂k

2 (x|s†k,1)
∣∣∣

+

K∑
k=1

sup
x∈[0,H]

∣∣∣Tθ∗1 ,πkFπk,θ̂k

2 (x|s†k,1)− Tθ∗1 ,πkFπk,θ∗

2 (x|s†k,1)
∣∣∣

≤
K∑
k=1

sup
x∈[0,H]

∣∣∣∣∣
∫
s†2

Tθ̂k,1
(s†2|s

†
k,1, ak,1)F

πk,θ̂k

2 (x− (y2 − yk,1)|s†2)

−
∫
s†2

Tθ∗1 (s
†
2|s

†
k,1, ak,1)F

πk,θ̂k

2 (x− (y2 − yk,1)|s†2)

∣∣∣∣∣
+

K∑
k=1

sup
x∈[0,H]

∣∣∣Fπk,θ̂k

2 (x|s†k,2)− F
πk,θ∗

2 (x|s†k,2)
∣∣∣

+

K∑
k=1

∆
(1)
k,1 +∆

(2)
k,1 +∆

(3)
k,1 +∆

(4)
k,1 ,

where the sequence ∆
(i)
k,h for i = 1, 2, 3, 4 is defined as follows.

∆
(1)
k,h = sup

x∈[0,H]

∣∣∣∣∣
∫
s†h+1

Tθ̂k,h
(s†h+1|s

†
k,h, ak,h)F

πk,θ̂k

h+1 (x− (yh+1 − yk,h)|s†h+1)− Tθ̂k,h,πkF
πk,θ̂k

h+1 (x|s†k,h)

∣∣∣∣∣
= sup
x∈[0,H]

∣∣∣∣∣
∫
s†h+1

Tθ̂k,h
(s†h+1|s

†
k,h, ak,h)F

πk,θ̂k

h+1 (x− (yh+1 − yk,h)|s†h+1)

−
∫
ah

πkh(ah|s
†
k,h)

∫
s†h+1

Tθ̂k,h
(s†h+1|s

†
k,h, ah)F

πk,θ̂k

h+1 (x− (yh+1 − yk,h)|s†h+1, yh+1)

∣∣∣∣∣ ,
∆

(2)
k,h = sup

x∈[0,H]

∣∣∣∣∣
∫
s†h+1

Tθ∗h(s
†
h+1|s

†
k,h, ak,h)F

πk,θ̂k

h+1 (x− (yh+1 − yk,h)|s†h+1)− Tθ∗h,πkFπk,θ̂k

h+1 (x|s†k,h)

∣∣∣∣∣
= sup
x∈[0,H]

∣∣∣∣∣
∫
s†h+1

Tθ∗h(s
†
h+1|s

†
k,h, ak,h)F

πk,θ̂k

h+1 (x− (yh+1 − yk,h)|s†h+1)

−
∫
ah

πkh(ah|s
†
k,h)

∫
s†h+1

Tθ∗h(s
†
h+1|s

†
k,h, ah)F

πk,θ̂k

h+1 (x− (yh+1 − yk,h)|s†h+1)

∣∣∣∣∣ ,
∆

(3)
k,h = sup

x∈[0,H]

∣∣∣Tθ∗h,πkFπk,θ̂k

h+1 (x|s†k,h)− F
πk,θ̂k

h+1 (x− rk,h|s†k,h+1)
∣∣∣ ,

∆
(4)
k,h = sup

x∈[0,H]

∣∣∣Tθ∗h,πkFπk,θ∗

h+1 (x|s†k,h)− F
πk,θ∗

h+1 (x− rk,h|s†k,h+1)
∣∣∣ .
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Thus we have E[∆(i)
k,h|σk,h] = 0 for any k ∈ [K], h ∈ [H] and i ∈ {1, 2, 3, 4}. Thus we have {∆(i)

k,h}ki=1 is a martingale
difference sequence. Repeat the above method for h steps,

K∑
k=1

∥∥∥∥FZπk

θ̂k

− F
Zπk

θ∗

∥∥∥∥
∞

≤
K∑
k=1

H∑
h=1

sup
x∈[0,H]

∣∣∣∣∣
∫
s†h+1

Tθ̂k,h
(s†h+1|s

†
k,h, ak,h)F

πk,θ̂k

h+1 (x− (yh+1 − yk,h)|s†h+1)

−
∫
s†h+1

Tθ∗h(s
†
h+1|s

†
k,h, ak,h)F

πk,θ̂k

h+1 (x− (yh+1 − yk,h)|s†h+1)

∣∣∣∣∣︸ ︷︷ ︸
I

+

K∑
k=1

H∑
h=1

∆
(1)
k,h +∆

(2)
k,h +∆

(3)
k,h +∆

(4)
k,h︸ ︷︷ ︸

J

.

Applying the standard Azuma-Hoeffding inequality to the martingale difference sequence, we have

J ≤ Õ(H
√
K)

The main challenge falls in bounding the term I . By Lemma C.1, we have with probability at least 1− δ, θ∗h ∈ Θ̂k,h holds
for all k ∈ [K] and h ∈ [H]. Therefore,

I ≤
K∑
k=1

H∑
h=1

sup
x∈[0,H]

sup
θ1h∈Θ̂k,h

∫
s†h+1

Tθ1h(s
†
h+1|s

†
k,h, ak,h)F

πk,θ̂k

h+1 (x− (yh+1 − yk,h)|s†h+1)

− inf
θ2h∈Θ̂k,h

∫
s†h+1

Tθ2h(s
†
h+1|s

†
k,h, ak,h)F

πk,θ̂k

h+1 (x− (yh+1 − yk,h)|s†h+1)

=

K∑
k=1

H∑
h=1

sup
θ1h∈Θ̂k,h

∫
s†h+1

Tθ1h(s
†
h+1|s

†
k,h, ak,h)F

πk,θ̂k

h+1 (xk,h − (yh+1 − yk,h)|s†h+1)

− inf
θ2h∈Θ̂k,h

∫
s†h+1

Tθ2h(s
†
h+1|s

†
k,h, ak,h)F

πk,θ̂k

h+1 (xk,h − (yh+1 − yk,h)|s†h+1)

=

K∑
k=1

H∑
h=1

sup
θ1h∈Θ̂k,h

[Pθ1h F̂k,h](sk,h, ak,h)− inf
θ2h∈Θ̂k,h

[Pθ2h F̂k,h](sk,h, ak,h) ,

where the first inequality holds by θ̂k ∈ Θ̂k and θ∗ ∈ Θ̂k with high probability, the first equality is due to the definition of
xk,h, and the last equality holds by the definition of F̂k,h(s). By Lemma C.2 and Cauchy-Schwartz inequality, we have

I ≤ Õ
(
H

√
KβLSR dimE(WΘ, 1/

√
K)

)
.

Overall, we can conclude the result

K∑
k=1

∥∥∥∥FZπk

θ̂k

− F
Zπk

θ∗

∥∥∥∥
∞
≤ Õ

(
H

√
KβLSR dimE(WΘ, 1/

√
K)

)
.

D. Model-Based Estimation by MLE Approach
In this section we propose our algorithm and analysis for model-based risk-sensitive RL via the MLE estimation approach.
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Algorithm 5 M-Est-MLE(Θ,Hk−1, β)

Input: History informationHk−1, Model class Θ, and confidence radius βMLE.
Estimate the transition model for every h ∈ [H]

θMLE
k,h = argmax

θh∈Θh

k−1∑
i=1

log [Pθh
(si,h+1|si,h, ai,h)] .

Construct Confidence set:

Θ̂k =

{
θ ∈ Θ :

k−1∑
i=1

H∑
h=1

logPθh(si,h+1|si,h, ai,h) ≥
k−1∑
i=1

H∑
h=1

logPθMLE
k,h

(si,h+1|si,h, ai,h)− βMLE

}
.

Return Θ̂MLE
k .

D.1. Algorithm M-Est-MLE

Here we present our construction of confidence set via MLE in Algorithm 5, which is inspired by the OMLE algorithm of
Liu et al. (2023). In this algorithm, we first calculate the maximal likelihood estimator θMLE

k,h for each step h based on the
historyHk−1 before episode k by the following equation.

θMLE
k,h = argmax

θh∈Θh

k−1∑
i=1

logPθh(si,h+1|si,h, ai,h) .

Then we can construct the confidence set centered at the maximal likelihood estimator with radius β:

Θ̂k =

{
θ ∈ Θ :

k−1∑
i=1

H∑
h=1

logPθh(si,h+1|si,h, ai,h) ≥
k−1∑
i=1

H∑
h=1

logPθMLE
k,h

(si,h+1|si,h, ai,h)− βMLE

}
.

Where βMLE = H log
(
eHKN[·](ϵ,Θ, ∥·∥1)/δ

)
.

D.2. Simulation Lemma in Augmented MDP

Next, we build the relationship between the supremum norm of the cumulative distribution function and the ℓ1-norm of the
trajectory probability kernel µπ

θ . Throughout this section, we define R(τ ) as the cumulative reward of the trajectory τ .

Lemma D.1 (Distribution difference). For any fixed model θ ∈ Θ, Zπ
θ is the random variable of the cumulative reward

collected by policy π in the MDP modeled by θ.Thus we have the following holds∥∥∥FZπ
θ
− FZπ

θ∗

∥∥∥
∞
≤ ∥µπ

θ − µπ
θ∗∥1 .

Proof. By the definition of the CDF, we have FZπ
θ
(x) =

∫
τ
µπ
θ (τ )I(R(τ ) ≤ x). Thus we have∥∥∥FZπ

θ
− FZπ

θ∗

∥∥∥
∞

= sup
x∈[0,H]

∣∣∣FZπ
θ
(x)− FZπ

θ∗ (x)
∣∣∣

= sup
x∈[0,H]

∣∣∣∣∫
τ

(µπ
θ (τ )− µπ

θ∗(τ )) I(R(τ ) ≤ x)
∣∣∣∣

≤
∫
τ

|µπ
θ (τ )− µπ

θ∗(τ )|

= ∥µπ
θ − µπ

θ∗∥1 ,

where the first inequality holds by the triangle inequality, and the last equality is due to the definition of the ℓ1-norm.
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We then establish the simulation lemma for augmented MDP, which connect the ℓ1-norm difference of the probability
measure µπ

θ on the augmented MDP with the ℓ1-norm difference of transition probabilities. This is one of the key lemmas
that bridge the gap between the analysis in augmented MDP and origin MDP.

Lemma D.2 (Augmented simulation lemma).

∥µπ
θ − µπ

θ∗∥1 ≤
H∑
h=1

E(sh,ah)∼νπ
θ∗,h

∥∥Pθh(sh, ah)− Pθ∗h(sh, ah)
∥∥
1
≤ 2H ∥µπ

θ − µπ
θ∗∥1 .

Proof. First, we decompose ∥µπ
θ − µπ

θ∗∥1. Following standard simulation lemma analysis techniques, we have for any
trajectory τ ,

|µπ
θ (τ )− µπ

θ∗(τ )|

=

∣∣∣∣∣
H∏
h=1

Tθ∗h(s
†
h+1|s

†
h, ah)πh(ah|s

†
h)−

H∏
i=1

Tθh(s
†
h+1|s

†
h, ah)πh(ah|s

†
h)

∣∣∣∣∣
=

∣∣∣∣∣
H∑
h=1

h−1∏
i=1

Tθ∗i (s
†
i+1|s

†
i , ai)πi(ai|s

†
i )
(
Tθ∗h(s

†
h+1|s

†
h, ah)− Tθh(s

†
h+1|s

†
h, ah)

)
πh(ah|s†h)

H∏
i=h+1

Tθi(s
†
i+1|s

†
i , ai)πi(ai|s

†
i )

∣∣∣∣∣
≤

H∑
h=1

h−1∏
i=1

Tθ∗i (s
†
i+1|s

†
i , ai)πi(ai|s

†
i )
∣∣∣Tθ∗h(s†h+1|s

†
h, ah)− Tθh(s

†
h+1|s

†
h, ah)

∣∣∣πh(ah|s†h) .
Integral the above inequality over the entire space Ω, we have

∫
Ω

|µπ
θ (τ )− µπ

θ∗(τ )| dτ =

∫
τ

|µπ
θ (τ )− µπ

θ∗(τ )| = ∥µπ
θ − µπ

θ∗∥1

≤
H∑
h=1

∫
Ω

h−1∏
i=1

Tθ∗i (s
†
i+1|s

†
i , ai)πi(ai|s

†
i )πh(ah|s

†
h)
∣∣∣Tθ∗h(s†h+1|s

†
h, ah)− Tθh(s

†
h+1|s

†
h, ah)

∣∣∣ dτ
=

H∑
h=1

∫
(s†h,ah,s

†
h+1)∈S†×A×S†

∣∣∣Tθ∗h(s†h+1|s
†
h, ah)− Tθh(s

†
h+1|s

†
h, ah)

∣∣∣ ds†h+1dµ
π
θ∗,h(s

†
h, ah)

=

H∑
h=1

E(s†h,ah)∼µ
π
θ∗,h

∥∥∥Tθh(s†h, ah)− Tθ∗h(s
†
h, ah)

∥∥∥
1
,

where µπ
θ,h(s

†
h, ah) represent the probability of arriving the augmented state-action pair (s†h, ah) at step h with policy π

in the MDP modeled by θ. Moreover, we define µπ
θ,h(s

†
h, ah, s

†
h+1) as the probability of visit (s†h, ah, s

†
h+1) at step h

and h + 1, i.e., µπ
θ,h(s

†
h, ah, s

†
h+1) = µπ

θ,h(s
†
h, ah)Th(s

†
h+1|s

†
h, ah). With this fact, we can rewrite the summation of the

ℓ1-norm difference of the transition probabilities of the augmented MDP.

E(s†h,ah)∼µ
π
θ∗,h

∥∥∥Tθh(s†h, ah)− Tθ∗h(s
†
h, ah)

∥∥∥
1

=

∫
S†×A

dµπ
θ∗,h(s

†
h, ah)

∫
S†

∣∣∣Tθh(s†h+1|s
†
h, ah)− Tθ∗h(s

†
h+1|s

†
h, ah)

∣∣∣ ds†h+1

≤
∫
S†×A×S†

∣∣∣µπ
θ∗,h(s

†
h, ah, s

†
h+1)− µ

π
θ,h(s

†
h, ah, s

†
h+1)

∣∣∣+ ∣∣∣µπ
θ,h(s

†
h, ah)− µ

π
θ∗
h
(s†h, ah)

∣∣∣Tθh(s†h+1|s
†
h, ah)ds

†
hdahds

†
h+1 .
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By the fact that for any state action pair (s†h, ah), we have∫
S†×A

∣∣∣µπ
θ,h(s

†
h, ah)− µ

π
θ∗
h
(s†h, ah)

∣∣∣ ds†hdah
=

∫
s†h,ah

∫
{τ :τh=(s†h,ah)}

|µπ
θ (τ )− µπ

θ∗(τ )| dτ

≤
∫
τ

|µπ
θ (τ )− µπ

θ∗(τ )|

= ∥µπθ∗ − µπθ∥1 .

We can apply a similar method to give∫
S†×A×S†

∣∣∣µπ
θ∗,h(s

†
h, ah, s

†
h+1)− µ

π
θ,h(s

†
h, ah, s

†
h+1)

∣∣∣ ds†hdahds†h+1 ≤ ∥µ
π
θ∗ − µπθ∥1 .

Thus we can get
H∑
h=1

E(s†h,ah)∼µ
π
θ∗,h

∥∥∥Tθh(s†h, ah)− Tθ∗h(s
†
h, ah)

∥∥∥
1
≤ 2H ∥µπθ∗ − µπθ∥1 .

At last, we need to prove the equivalence between augmented transition difference and original transition difference.

E(s†h,ah)∼µ
π
θ∗,h

[∥∥∥Tθ∗h(s†h, ah)− Tθh(s
†
h, ah)

∥∥∥
1

]
=

∫
S†×A

dµπθ∗,h(s
†
h, ah)

∫
S

∫
[yh,1]

∣∣Pθ∗h(sh+1|sh, ah)− Pθh(sh+1|sh, ah)
∣∣Rh(yh+1 − yh|sh, ah)dyh+1dsh+1

=

∫
S×A

∫ 1

0

∥∥Pθ∗h(sh, ah)− Pθh(sh, ah)
∥∥
1
dµπ

θ∗,h((sh, yh), ah)

∫ 1

yh

Rh(yh+1 − yh|sh, ah)dyh+1

=

∫
S×A

∥∥Pθ∗h(sh, ah)− Pθh(sh, ah)
∥∥
1
dνπθ∗,h(sh, ah)

=

∫
S×A

∥∥∥Pθ∗h(sh, ah)− Pθ′h(sh, ah)
∥∥∥
1
dνπθ∗,h(sh, ah)

=E(sh,ah)∼νπ
θ∗,h

[∥∥∥Pθ∗h(sh, ah)− Pθ′h(sh, ah)
∥∥∥
1

]
.

where the first equality holds by definition, the second equality is due to the Fubini Theorem, and the third equality holds by
the decomposition of the probability measures of augmented MDP.

D.3. Concentration Condition of MLE Approach

In this section, we prove the concentration condition of the MLE approach. The key idea is utilizing the property of MLE
which is also studied by Agarwal et al. (2020); Liu et al. (2022; 2023).

We define the ℓ1-norm difference on the model set Θ. For any θ1,θ2 ∈ Θ, we define ∥θ1 − θ2∥1 as:

∥θ1 − θ2∥1 := sup
h∈[H],(sh,ah)∈S×A

∥Pθ1h(sh, ah)− Pθ2h(sh, ah)∥1

= sup
h∈[H],(sh,ah)∈S×A

∫
S

∣∣∣Pθ1h(sh+1|sh, ah)− Pθ2h(sh+1|sh, ah)
∣∣∣ dsh+1 .

Then we denote Θ↓ as the lower bracket function set of Θ such that for any θ ∈ Θ, we have θ↓ ∈ Θ↓ satisfying
∥θ − θ↓∥1 ≤ ϵ. We have

∣∣Θ↓
∣∣ ≤ N[·](Θ, ϵ, ∥ · ∥1).

Lemma D.3 (Likelihood difference). Consider the probability constant δ ∈ (0, 1]. For all θ ∈ Θ h ∈ [H], and k ∈ [K],
we have:

k∑
i=1

log

[
Pθh(si,h+1|si,h, ai,h)
Pθ∗h(si,h+1|si,h, ai,h)

]
≤ log

(
eKN[·](Θ, ϵ, ∥·∥1)/δ

)
holds for fixed h with probability at least 1− δ.
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Proof. This proof is standard (Geer, 2000; Liu et al., 2022; 2023). Consider the lower bracket set Θ↓. For any θ ∈ Θ, we
can find a θ↓ ∈ Θ↓ satisfying ∥θ − θ↓∥1 ≤ ϵ. Moreover, for every h ∈ [H], we denote si,h, aih as the corresponding state
action in trajectory τi,h, and we have:

Esi,h+1,i∈[k]

[
exp

(
k∑
i=1

log

[
Pθ↓h(si,h+1|si,h, ai,h)
Pθ∗h(si,h+1|si,h, ai,h)

])]

=Esi,h+1,i∈[k]

[
exp

(
k−1∑
i=1

log

[
Pθ↓h(si,h+1|si,h, ai,h)
Pθ∗h(si,h+1|si,h, ai,h)

])
· Esk,h+1

[
Pθ↓h(sk,h+1|sk,h, ak,h)
Pθ∗h(sk,h+1|sk,h, ak,h)

]]
By the definition of the expectation operator, we have

Esi,h+1,i∈[k]

[
exp

(
k−1∑
i=1

log

[
Pθ↓h(si,h+1|si,h, ai,h)
Pθ∗h(si,h+1|si,h, ai,h)

])
· Esk,h+1

[
Pθ↓h(sk,h+1|sk,h, ak,h)
Pθ∗h(sk,h+1|sk,h, ak,h)

]]

=Esi,h+1,i∈[k]

[
exp

(
k−1∑
i=1

log

[
Pθ↓h(si,h+1|si,h, ai,h)
Pθ∗h(si,h+1|si,h, ai,h)

])
·
∫
S

[
Pθ↓h(sk,h+1|sk,h, ak,h)
Pθ∗h(sk,h+1|sk,h, ak,h)

]
dPθ∗h(sk,h+1|sk,h, ak,h)

]

=Esi,h+1,i∈[k]

[
exp

(
k−1∑
i=1

log

[
Pθ↓h(si,h+1|si,h, ai,h)
Pθ∗h(si,h+1|si,h, ai,h)

])
·
∫
S
Pθ↓h(sk,h+1|sk,h, ak,h)dsk,h+1

]

≤Esi,h+1,i∈[k]

[
exp

(
k−1∑
i=1

log

[
Pθ↓h(si,h+1|si,h, ai,h)
Pθ∗h(si,h+1|si,h, ai,h)

])
· (∥Pθh(sk,h, ak,h)∥1 + ∥Pθh(sk,h, ak,h)− Pθ↓h(sk,h, ak,h)∥1)

]

≤Esi,h+1,i∈[k]

[
exp

(
k−1∑
i=1

log

[
Pθ↓h(si,h+1|si,h, ai,h)
Pθ∗h(si,h+1|si,h, ai,h)

])
· (1 + ϵ)

]
≤ · · ·
≤(1 + ϵ)k .

where the first inequality holds by the triangle inequality, and the second inequality holds by the definition of θ↓h. Moreover,
since ϵ < 1/K, we have (1 + ϵ)k < e. Therefore, by Markov’s inequality, we have that

P

[
k∑
i=1

log

[
Pθ↓h(si,h+1|si,h, ai,h)
Pθ∗h(si,h+1|si,h, ai,h)

]
≥ log(1/δ′)

]
≤ eδ′ .

holds for δ′ ∈ (0, 1]. Thus taking a union bound for all θ↓ ∈ Θ↓, h ∈ [H] and k ∈ [K], we have with probability at least
1− δ,

k∑
i=1

log

[
Pθ↓h(si,h+1|si,h, ai,h)
Pθ∗h(si,h+1|si,h, ai,h)

]
≤ log(eHK|Θ↓|/δ) .

Since |Θ↓| = N[·](Θ, ϵ, ∥ · ∥1) and Pθ↓ ≤ Pθ, we have

k∑
i=1

log

[
Pθh(si,h+1|si,h, ai,h)
Pθ∗h(si,h+1|si,h, ai,h)

]
≤ log(eHKN[·](Θ, ϵ, ∥ · ∥1)/δ)

holds for any θ ∈ Θ, h ∈ [H] and k ∈ [K].

Lemma D.4 (MLE concentration). The estimation function M-Est-MLE satisfying the Condition 6.2, i.e., for δ ∈ (0, 1],
we have with probability at least 1− δ, θ∗ ∈ Θ̂k for every k ∈ [K].

Proof. Apply Lemma D.3, we have for every k ∈ [K], h ∈ [H] and θ ∈ Θ,

k∑
i=1

Pθh(si,h+1|si,h, ai,h) ≤
k∑
i=1

Pθ∗h(si,h+1|si,h, ai,h) + log(eHKN[·](Θ, ϵ, ∥ · ∥1)/δ)
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with probability at least 1 − δ. Recall that βMLE = H log(eHKN[·](Θ, ϵ, ∥ · ∥1)/δ). Summing the both sides of the
inequality over h ∈ [H] directly gives the result.

D.4. Total Variance Distance of Transition Models

As a direct result of Lemma H.1, we have the following bound for model-based MLE estimation, which is also presented in
Proposition 14 in Liu et al. (2022) and Proposition B.2 in Liu et al. (2023).
Lemma D.5 (TV distance and likelihood distance).

k−1∑
i=1

E
(sh,ah)∼µπi

θ∗,h

[
TV

(
Pθh(sh, ah)||Pθ∗h(sh, ah)

)2] ≤ O(k−1∑
i=1

log

[Pθ∗h(si,h+1|si,h, ai,h)
Pθh(si,h+1|si,h, ai,h)

]
+ β

)
.

Finally, we can bound the Total Variation (TV) distance of the transition models.
Lemma D.6 (TV distance). For δ ∈ (0, 1] and any θk ∈ Θ̂k, we have the following concentration on their TV-distance
with :

k−1∑
i=1

H∑
h=1

E
(sh,ah)∼µπi

θ∗,h

[
TV

(
Pθk,h

(sh, ah)||Pθ∗h(sh, ah)
)2] ≤ O(βMLE) .

Proof. For any θk ∈ Θ̂MLE
k , we have that:

k−1∑
i=1

H∑
h=1

log
[
Pθk,h

(si,h+1|si,h, ai,h)
]
≥
k−1∑
i=1

H∑
h=1

log
[
PθMLE

k,h
(si,h+1|si,h, ai,h)

]
− βMLE .

From the definition of θMLE
k,h , we have:

k−1∑
i=1

H∑
h=1

log
[
Pθ∗h(si,h+1|si,h, ai,h)

]
≤
k−1∑
i=1

H∑
h=1

log
[
PθMLE

k,h
(si,h+1|si,h, ai,h)

]
.

Thus, we have:
k−1∑
i=1

H∑
h=1

log
[
Pθ∗h(si,h+1|si,h, ai,h)

]
≤
k−1∑
i=1

H∑
h=1

log
[
Pθk,h

(si,h+1|si,h, ai,h)
]
+ βMLE .

Using Lemma D.5, we have:

k−1∑
i=1

H∑
h=1

E
(sh,ah)∼µπi

θ∗,h

[
TV

(
Pθk,h

(sh, ah)||Pθ∗h(sh, ah)
)2]

≤O

(
k−1∑
i=1

H∑
h=1

log

[ Pθ∗h(si,h+1|si,h, ai,h)
Pθk,h

(si,h+1|si,h, ai,h)

]
+ βMLE

)
≤ O(βMLE) .

D.5. Elliptical Potential Condition of MLE Approach

First, we define the low witness rank, which is the structural complexity measure for this setting. We remark this is the
Q-type witness rank and we provide a separate proof for V-type witness rank in Section D.6.
Definition D.7 (Q-type low witness rank (Definition 6.6 of Liu et al. (2023))). We say the model class satisfies (d, α,B)
witness rank condition, if there exists mappings: {fh} and {gh} from Θ to Rd, such that for any h ∈ [H]:

E(sh,ah)∼ν
πθ
θ∗,h

[
TV

(
Pθ′

h
(sh, ah)||Pθ∗

h
(sh, ah)

)]
≤ ⟨fh(θ), gh(θ′)⟩

E(sh,ah)∼ν
πθ
θ∗,h

[
TV

(
Pθ′

h
(sh, ah)||Pθ∗

h
(sh, ah)

)]
≥ α−1⟨fh(θ), gh(θ′)⟩

∥fh(θ)∥1 ∥gh(θ
′)∥∞ ≤ B .
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As a special case, we can show that the factored MDPs (Sun et al., 2019) have low witness rank.

Definition D.8 (Factored MDP). In factored MDPs the states admit a factored structure. Each state contains m factors
(s[1], s[2], · · · , s[m]) ∈ Xm. Each factor i ∈ [m] has a parent set pai ⊂ [m], with respect to which the transitions admit a
factored form:

Ph(sh+1|sh, ah) =
m∏
i=1

Pih(sh+1[i]|sh[pai], ah) .

The following proposition establishes the low witness rank property for factored MDPs, which comes directly from
Proposition 6.8 of Liu et al. (2023).

Proposition D.9. Let Θ denote all the factored MDPs with the same factorization structure, then Θ satisfies low witness
rank with d = |A|

∑m
i=1 |X |

|pai|, α = m, B =
∑m
i=1 |X |

|pai| .

Proof of Condition B.2. From Lemma D.6 and using Cauchy inequality, we have:

H∑
h=1

k−1∑
i=1

|⟨fh(θi), gh(θk)⟩|2 ≤α2
H∑
h=1

k−1∑
i=1

(
E
(sh,ah)∼µπi

θ∗,h

[
TV

(
Pθk,h

(sh, ah)||Pθ∗h(sh, ah)
)])2

≤α2
H∑
h=1

k−1∑
i=1

E
(sh,ah)∼µπi

θ∗,h

[
TV

(
Pθk,h

(sh, ah)||Pθ∗h(sh, ah)
)2]

≤O
(
α2βMLE

)
.

Thus, we have by standard elliptical potential arguments (eg:Theorem 6.4 in Liu et al. (2023)):

H∑
h=1

k∑
i=1

E
(sh,ah)∼µπi

θ∗,h

[
TV

(
Pθk,h

(sh, ah)||Pθ∗h(sh, ah)
)]
≤

H∑
h=1

k∑
i=1

⟨fh(θi), gh(θi)⟩

≤O
(
dB + α

√
dβMLEk

)
.

Thus, from Lemma D.1 and Lemma D.2, we have:

K∑
k=1

∥∥∥∥FZπk

θk

− FZπk
θ∗

∥∥∥∥
∞
≤2

K∑
k=1

H∑
h=1

E
(sh,ah)∼µπk

θ∗,h

[
TV

(
Pθk,h

(sh, ah)||Pθ∗h(sh, ah)
)]

≤O
(
dB + α

√
dβMLEK

)
.

Thus, using the L∞ Lipschitz of ρ, we have:

K∑
k=1

ρ(Zπk

θk
)− ρ(Zπk

θ∗ ) ≤ O
(
L∞

(
dB + α

√
dβMLEK

))
.

D.6. Proof for Low Rank MDP

Extend our analysis above, we further provide an algorithm and regret analysis for low-rank MDPs, a special case of V-type
witness rank, which also follows the MLE procedure above. The main difference is that we need to construct the mappings
fh(θ) and gh(θ) in a novel manner to capture the low V-type witness rank of low rank MDPs in the augmented MDP.

First we define low rank MDPs as below (Agarwal et al., 2020; Uehara et al., 2021):

Definition D.10 (Low Rank MDP). The transition kernel Pθ∗h(sh+1|sh, ah) admits a low rank structure, i,e, there exists two
sets of mappings ϕ∗ : S ×A → Rd and ψ∗ : S → Rd, such that:

Pθ∗h(sh+1|sh, ah) = ⟨ϕ∗h(sh, ah), ψ∗
h(sh+1)⟩ .
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We have ∥ϕ∗h(sh, ah)∥ ≤ 1 and
∥∥∥∫sh ψ∗

h(sh)g(sh)
∥∥∥ ≤ √d ∥g∥∞ for all h ∈ [H]. Also, assume that we have access to two

embedding classes Φ and Ψ such that ϕ∗ ∈ Φ and ψ∗ ∈ Ψ.

The model class Θ consists of all the transition kernels with the low rank structure defined by the inner-product of
the embedding in Φ and Ψ, with |Θ| = |Ψ||Φ|. Define the exploratory policy class for a policy πθ as Πexp(πθ) =

{π̃θ,h : πθ[1 : h− 1] ◦ U [h : H]}Hh=1, where U is the uniform policy. π̃θ,h is defined as following πθ for the first h− 1 steps
then taking uniform actions. We have |Πexp| = H . Define the two sets of mappings used to construct low witness rank for
low rank MDPs as:

fh(θ) =

∫
sh−1,ah−1

νπθ

θ∗,h−1(sh−1, ah−1)ϕ
∗
h−1(sh−1, ah−1)

gh(θ) =

∫
sh,ah

ψ∗
h(sh)U(ah)

∥∥Pθ∗h(sh, ah)− Pθh(sh, ah)
∥∥
1
,

where πθ is the optimal risk-sensitive policy given model θ. We have that for any π̃θ,h ∈ Πexp(πθ):

2H
∥∥∥µπ̃θ,h

θ∗ − µπ̃θ,h

θ′

∥∥∥
1

≥
∫
s†h,ah

µ
π̃θ,h

θ∗,h(s
†
h, ah)

∥∥∥Tθ′h(s†h, ah)− Tθ∗h(s
†
h, ah)

∥∥∥
1

=

∫
s†h,ah

µ
π̃θ,h

θ∗,h(s
†
h, ah)

∥∥∥Pθ∗h(sh, ah)− Pθ′h(sh, ah)
∥∥∥
1

=

∫
s†h−1,ah−1,sh,ah,yh

µπθ

θ∗,h−1(s
†
h−1, ah−1)R(yh − yh−1|sh−1, ah−1)Pθ∗h−1

(sh|sh−1, ah−1)U(ah) (3)

·
∥∥∥Pθ∗h(sh, ah)− Pθ′h(sh, ah)

∥∥∥
1

=

∫
s†h−1,ah−1

µπθ

θ∗,h−1(s
†
h−1, ah−1)ϕ

∗
h−1(sh−1, ah−1)

∫
yh

R(yh − yh−1|sh−1, ah−1) (4)

·
∫
sh,ah

ψ∗
h−1(sh)U(ah)

∥∥∥Pθ∗h(sh, ah)− Pθ′h(sh, ah)
∥∥∥
1

=⟨fh(θ), gh(θ′)⟩ , (5)

where the first inequality is from the right hand side of simulation lemma (Lemma D.2).

On the other hand, we have:

∥µπθ

θ∗ − µπθ

θ ∥1

≤
H∑
h=1

∫
s†h,ah

µπθ

θ∗,h(s
†
h, ah)

∥∥Pθ∗h(sh, ah)− Pθh(sh, ah)
∥∥
1

=

H∑
h=1

∫
s†h,ah

µπθ

θ∗,h(s
†
h)πθ,h(ah|s

†
h)
∥∥Pθ∗h(sh, ah)− Pθh(sh, ah)

∥∥
1

(6)
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Moreover,

∥µπθ

θ∗ − µπθ

θ ∥1 ≤A
H∑
h=1

∫
s†h,ah

µπθ

θ∗,h(s
†
h)U(ah)

∥∥Pθ∗h(sh, ah)− Pθh(sh, ah)
∥∥
1

≤A
H∑
h=1

∫
s†h−1,ah−1

µπθ

θ∗,h−1(s
†
h−1, ah)

∫
yh

R(yh − yh−1|sh−1, ah−1) (7)

·
∫
sh,ah

Pθ∗h−1
(sh|sh−1, ah−1)U(ah)

∥∥Pθ∗h(sh, ah)− Pθh(sh, ah)
∥∥
1

=A

H∑
h=1

∫
s†h−1,ah−1

µπθ

θ∗,h−1(s
†
h−1, ah)ϕ

∗
h−1(sh−1, ah−1) (8)

·
∫
sh,ah

ψ∗
h−1(sh)U(ah)

∥∥Pθ∗h(sh, ah)− Pθh(sh, ah)
∥∥
1

=A

H∑
h=1

⟨fh(θ), gh(θ)⟩ . (9)

We present a modified version of the algorithm as Algorithm 6, where we modify the data collection process such that in

Algorithm 6 RS-DisRL-Low-Rank-MDP(Θ, β)

Input: Model class Θ, confidence radius βMLE = log(|Θ|/δ).
Init: Θ1 ← Θ
for k = 1 to K do

Optimistic Planning: (πθ̂k , θ̂k) = argmaxπ∈Π†,θ∈Θ̂k
ρ(Zπ

θ ).
Execute and collect information: For every policy π̃ ∈ Πexp(πθ̂k) Execute policy π̃, add the collected data τ ={
(s†h, ah, s

†
h+1)

}H
h=1

into historyHk = Hk−1 ∪ {τ}.
Estimate the MLE solution:

θMLE
k+1,h = (ϕMLE

k+1,h, ψ
MLE
k+1,h) = argmax

ϕ∈Φ,ψ∈Ψ

∑
τ∈Hk

log⟨ϕ(sτh , aτh), ψ(sτh+1)⟩ , ∀h ∈ [H] ,

where sτh , a
τ
h denotes the h step state action pair in trajectory τ .

Construct confidence set:

Θ̂k+1 =

{
ϕ ∈ Ψ, ψ ∈ Ψ :

∑
τ∈Hk

H∑
h=1

log

(
⟨ϕMLE
k+1,h(s

τ
h , a

τ
h), ψ

MLE
k+1,h(s

τ
h+1)⟩

⟨ϕh(sτh , aτh), ψh(sτh+1)⟩

)
≤ β

}
.

end for

each episode, instead of executing policy πθ̂k
, we execute all the policies π̃θ̂k,h ∈ Πexp(πθ̂k

). Notice that in each step we
collect H trajectories by taking the combination of the optimistic policy and the uniform exploratory policy. Similar to the
proof in the Q-type witness rank MLE concentration, we have θ∗ ∈ Θ̂k for all k ∈ [K] by choosing βMLE = log(|Θ|/δ).
Also, we can bound the sum of the square distance similar as Lemma D.6:

k∑
i=1

∑
π̃∈Πexp(πθ̂i

)

H∑
h=1

Eµπ̃
θ∗,h

[∥∥∥Pθ̂k,h
(sh, ah)− Pθ∗h(sh, ah)

∥∥∥2
1

]
≤ O(βMLE) .
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Thus, using Lemma D.2 we have that for any θ̂k ∈ Θ̂MLE
k :

k∑
i=1

∑
π̃∈Πexp(πθ̂i

)

∥∥∥µπ̃
θ∗ − µπ̃

θ̂k

∥∥∥2
1

≤
k∑
i=1

∑
π̃∈Πexp(πθ̂i

)

(
H∑
h=1

Eµπ̃
θ∗,h

[∥∥∥Pθ̂k,h
(sh, ah)− Pθ∗h(sh, ah)

∥∥∥
1

])2

≤O(poly(H)βMLE) .

Thus we have from Equation 3:

k∑
i=1

H∑
h=1

(
⟨fh(θ̂i), gh(θ̂k)⟩

)2
≤ O

(
poly(H)βMLE

)
.

Since we have that ∥fh(θ)∥1 ≤
√
d and ∥gh(θ)∥∞ ≤

√
d, we have by standard elliptical arguments and Equation 6:

k∑
i=1

∥∥∥µπ
θ̂i

θ∗ − µ
π

θ̂i

θ̂i

∥∥∥
1
≤A

k∑
i=1

H∑
h=1

⟨fh(θ̂i), gh(θ̂i)⟩

≤O(poly(H)A
√
dβMLEk) ,

where we ignore the constant and low order terms in k. Thus we have:

K∑
k=1

ρ(Zπ∗

θ∗ )− ρ(Zπk

θ∗ ) ≤
K∑
k=1

ρ(Z
π

θ̂k

θ̂k
)− ρ(Z

π
θ̂k

θ̂k
)

≤L∞

K∑
k=1

∥∥∥∥∥FZπ
θ̂k

θ̂k

− F
Z

π
θ̂k

θ̂k

∥∥∥∥∥
∞

≤L∞

K∑
k=1

∥∥∥µπ
θ̂k

θ∗ − µ
π

θ̂k

θ̂k

∥∥∥
1

≤O(L∞poly(H)A
√
dβK) .

E. General Model-free Framework: Algorithm RS-DisRL-V

In this section we review the general model-free framework algorithm.

Algorithm 7 RS-DisRL-V
1: Input: Function class Z = Z1 ×Z2 · · · ZH , confidence radius γ.
2: Initialize: Ẑ1,π ← Z .
3: for k = 1 to K do
4: (πk, Ẑ

k) = argmaxπ∈Π†,Z∈Ẑk,π
ρ(Z1). //Optimistic planning

5: Execute policy πk, add the collected data τk = {(sk,h, ak,h, rk,h)}Hh=1 and πk, θ̂k into history Hk = Hk−1 ∪
{(τk,πk, Ẑk)}. //Data collection

6: Ẑk+1,π = V-Est(Hk,Z,π, γ). //Confidence set construction
7: end for

We restate Condition 7.2 and Condition 7.3 as below:
Condition E.1. For all policy π ∈ Π†, we have that the random variable representing the true return is in the version space:

Zπ ∈ Ẑk+1,π .

established with probability at least 1− δ, δ ∈ (0, 1].
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Condition E.2. For 0 < δ ≤ 1, we have

K∑
k=1

∥∥FẐk − FZπk

∥∥
∞ ≤ ζ(K,H, d,Z,Π

†, δ, γ) ,

holds with probability at least 1− δ. Here d is some structural complexity measure of the problem.

Given these two conditions, our regret bound can be stated as follows:

Theorem E.3 (Full version of Theorem 7.4). Under the general value function approximation (Assumption 7.1) If the given
estimation function V-Est satisfies Condition E.1 and Condition E.2, we have:

K∑
k=1

ρ(Zπ∗
)− ρ(Zπk

) ≤ L∞(ρ)ζ(K,H, d,Z,Π†, δ, γ) .

holds with probability at least 1− δ, δ ∈ (0, 1].

Proof. Since the concentration condition E.1 holds, we have for any π ∈ Π† and k ∈ K,

ρ(Zπ) ≤ max
Z∈Ẑk,π

ρ(Z) ≤ ρ(Ẑk) .

Thus, we have:

K∑
k=1

ρ(Zπ∗
)− ρ(Zπk

) ≤
K∑
k=1

ρ(Ẑk)− ρ(Zπk

) ≤ L∞

K∑
k=1

∥∥FẐk − FZπk

∥∥
∞ ≤ L∞ζ(K,H, d,Z,Π†, δ, γ) .

which gives this result.

E.1. Policy Cover

Notice that our regret is defined via the optimal policy in the policy set, which is adopted in many model free valued-based
scenarios, such as Xie et al. (2021); Wang et al. (2023b). The main reason why our algorithm can only operate in a given
policy set is that the optimal risk-sensitive policy can not be computed via dynamical programming. In contrast, in the risk
neutral setting we can always select the greedy policy and ensure that it is the optimistic policy given our estimation. We
remark, however, that when specified to specific risk measures such as OCE (Xu et al., 2023), CVaR (Wang et al., 2023a) and
ERM (Fei et al., 2020), where the optimal policy have a similar greedy property, we can ensure global optimality without
the policy set.

In this section, we discuss the policy covering given a policy class Π†. For any policy π ∈ Π† : S† → ∆(A), we define
its lower ϵ-bracket π↓ as π↓ ≤ π and

∥∥π↓(·|s†)− π(·|s†)
∥∥
1
≤ ϵ for all s†. Since π↓ may not be a valid distribution,

we define its normalized version as: π(a|s†) = π↓(a|s†)/
∫
A π

↓(a′|s†). Since 1 − ϵ ≤
∫
A π

↓(a′|s†) ≤ 1, we have that
π(a|s†) ≤ (1 + 2ϵ)π↓(a|s†). Its bracketing number is denoted as N[·](Π

†, ϵ, ∥·∥1).

Instances Consider a softmax policy set Π(U, τ) with temperature τ and utility function u ∈ U : S† × A → R:

π(a|s†) = eτu(s†,a)∫
A eτu(s†,a′) . We consider a ϵ′ = ϵ

8τ covering of U , such that for any u, there exists u in the covering U with

∥u− u∥∞ ≤ ϵ′. and we can construct the lower bracket as:π↓ = eτ(u(s†,a)−ϵ′)∫
A eτ(u(s†,a′)+ϵ′) . Its normalized version is π = eτu(s†,a)∫

A eτu(s†,a′) .

We can verify that: π↓ ≤ π(a|s†) and
∥∥π↓(·|s†)− π(·|s†)

∥∥
1
= 1 −

∫
A π

↓(a|s†) = 1 − e−2τϵ′ ≤ ϵ. So the bracketing
number is the same as the ϵ

8τ covering number of the utility function. N[·](Π(U, τ), ϵ, ∥·∥1) = NC(U,
ϵ
8τ , ∥·∥∞).

Moreover, we have for any s†, π(a|s†) = e2τϵ
′ eτ(u(s†,a)−ϵ′)∫

A eτ(u(s†,a′)+ϵ′) ≤ (1 + ϵ)π(a|s†) and π(a|s†) = e−2τϵ′ eτ(u(s†,a)+ϵ′)∫
A eτ(u(s†,a′)−ϵ′) ≥

(1 + ϵ)π(a|s†). Thus,
∥∥π(·|s†)− π(·|s†)∥∥ ≤ ∫

a

∣∣π(a|s†)− π(a|s†)∣∣ ≤ ∫
a
ϵπ(a|s†) = ϵ, we have that Π is also a ϵ-cover

of Π under ℓ1 norm.
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F. Model-Free Estimation by LSR Approach
In a model-free environment, we assume that the random variable of the cumulative reward Zπ is determined by the
cumulative distribution function F . Since the algorithm is given a random variable function class Z , we assume for every
Z ∈ Z , its CDF F ∈ F . Investigate Z is equal to explore the CDF class F . Throughout this section, we use CDF to
characterize the random variable.

F.1. Estimation and Algorithms

In this section, we use the least squares regression to estimate the confidence set of CDF.

Here we need the covering for Π† and F , defined in Definition A.1. For the policy set Π† and function set F , we use
the metric: ρ(π1, π2) = maxs†

∥∥π1 (·|s†)− π2 (·|s†)∥∥1 and ρ(F1, F2) = maxs†,a
∥∥F1(·|s†, a)− F2(·|s†, a)

∥∥
∞. For any

policy π ∈ Π† and F ∈ F , we denote its ϵ-approximation in the cover Π† and F as π and F respectively. Since π and F are
ϵ-approximations of π and F , we have ∥π − π∥ ≤ ϵ and ∥F − F∥ ≤ ϵ. We denote the covering number asNC

(
Π†, ϵ, ∥·∥1

)
and NC(F , ϵ, ∥·∥∞) respectively.

Algorithm 8 V-Est-LSR(Hk−1,F ,π, γLSR)
Input: History informationHk, CDF Model class F , and policy π.
Return: F̂k,π ←

{
F ∈ F : Fh ∈ F̂LSR

k,h,π,F ,∀h ∈ [H]
}

, where F̂LSR
k,h,π,F̃

is defined by

F̂k,h,π,F̃ = argmin
Fh∈Fh

k−1∑
i=1

(
Fh(x

π,F̃
i,h | s

†
i,h, ai,h)−

∫
ah+1

πh(ah+1 | s†i,h+1)F̃h+1(x
π,F̃
i,h − ri,h | s

†
i,h+1, ah+1)

)2

,

F̂LSR
k,h,π,F̃

=

{
Fh ∈ Fh :

k−1∑
i=1

(
Fh(x

π,F̃
i,h | s

†
i,h, ai,h)− F̂k,h,π,F̃ (x

π,F̃
i,h | s

†
i,h, ai,h)

)2
≤ γLSR

}
.

We define the LSR-type distance function used here:

DistLSR
k,h,π,F̃

(F1||F2) =

k−1∑
i=1

(
F1(x

π,F̃
i,h | s

†
i,h, ai,h)− F2(x

π,F̃
i,h | s

†
i,h, ai,h)

)2
, (10)

and we define xπ,F̃i,h as below, which represents the direction with largest uncertainty.

xπ,F̃i,h = argmax
x∈[0,H]

∣∣∣∣∣∣ sup
F1∈F̂i,h,π,F̃

F1(x | s†i,h, ai,h)− inf
F2∈F̂i,h,π,F̃

F2(x | s†i,h, ai,h)

∣∣∣∣∣∣ . (11)

We now describe our estimation procedure above. For a target random variable with CDF F̃h+1 and policy π ∈ Π†, we
estimate T †

h,πF̃h+1 via least squares: F̂k,h,π,F̃ . Define the distance function

DistLSR
k,h,π,F̃

(
Fh||F̂k,h,π,F̃

)
=

k−1∑
i=1

(
Fh(x

π,F̃
i,h | s

†
i,h, ai,h)− F̂k,h,π,F̃ (x

π,F̃
i,h | s

†
i,h, ai,h)

)2
Then we can rewrite our version space using the distance metric defined above:

F̂LSR
k,h,π,F̃

=
{
Fh ∈ Fh : DistLSR

k,h,π,F̃

(
Fh||F̂k,h,π,F̃

)
≤ γLSR

}
,

with the confidence radius γLSR = 16 log(HK2/δ) + log(NC(Π†, 1/K, ∥ · ∥1)) + log(NC(F , 1/K, ∥ · ∥∞)).

The next lemma shows the one-step-back concentration guarantee, which will be used to prove Condition 7.2.
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Lemma F.1. For any π ∈ Π†, F ∈ F , h ∈ [H], we have with probability at least 1− δ, for all k ∈ [K]:

T †
h,πF̃h+1 ∈ F̂LSR

k,h,π,F̃
= F̂LSR

k,h,π,F̃
.

Proof. First we fix h ∈ [H], F̃ and π. Since{
T †
h,πF̃h(x

π,F̃
i,h | s

†
i,h, ai,h)−

∫
ah+1

πh+1(ah+1 | s†i,h+1)F̃h+1(x
π,F̃
i,h − ri,h | s

†
i,h+1, ah+1)

}k
i=1

is a 1-sub-Gaussian. Moreover, we have

E
[∫

ah+1

πh+1(ah+1 | s†i,h+1)F̃h+1(x
π,F̃
i,h − ri,h | s

†
i,h+1, ah+1)

∣∣∣∣τi,h]
=

∫
sh+1

Ph(sh+1|si,h, ai,h)
∫
rh+1

Rh(rh+1|si,h, ai,h)
∫
ah+1

πh+1(ah+1|s†h+1)F̃h+1(x
π,F̃
i,h |s

†
h+1, ah+1)

=

∫
s†h+1

Th(s†h+1|s
†
i,h, ai,h)

∫
ah+1

πh+1(ah+1|s†h+1)F̃h+1(x
π,F̃
i,h − rh+1|s†h+1, ah+1)

=Th,πF̃h+1(x
π,F̃
i,h |s

†
i,h, ai,h) ,

where τi,h denotes history up to and include step h in episode i. Thus by Lemma H.2, we have with probability at least
1− δ/H , for all k ∈ [K],

DistLSR
k,h,π,F̃

(
T †
h,πF̃h+1||F̂k,h,π,F̃

)
≤ 8 log

(
2H

δ

)
+ 4

(
1 +

√
log

(
4HK2

δ

))
. (12)

Applying a union bound for all h ∈ [H], F̃ ∈ F , and π ∈ Π, we have:

DistLSR
k,h,π,F̃

(
T †
h,πF̃h+1||F̂k,h,π,F̃

)
≤ O(γLSR) .

Moreover, we have

DistLSR
k,h,π,F̃

(T †
h,πF̃h+1||T †

h,πF̃h+1) ≤ DistLSR
k,h,π,F̃

(T †
h,πF̃h+1||T †

h,πF̃h+1) + DistLSR
k,h,π,F̃

(T †
h,πF̃h+1||T †

h,πF̃h+1) .

For the first term, we have:

DistLSR
k,h,π,F̃

(T †
h,πF̃h+1||T †

h,πF̃h+1)

=

k−1∑
i=1

(∫
s†h+1

Th(s†h+1|s
†
i,h, ai,h)

∫
ah+1

(
πh+1(ah+1|s†h+1)− πh+1(ah+1|s†h+1)

)
F̃h+1(x

π,F̃
i,h − rh|s

†
h+1, ah+1)

)2

≤
k−1∑
i=1

(
max
s†h+1

∥∥∥πh+1(·|s†h+1)− πh+1(·|s
†
h+1)

∥∥∥
1

)2

≤Kϵ .

For the second term, we also have:

DistLSR
k,h,π,F̃

(T †
h,πF̃h+1||T †

h,πF̃h+1)

=

k∑
i=1

(∫
s†h+1

Th(s†h+1|s
†
i,h, ai,h)

∫
ah+1

πh+1(ah+1|s†h+1)
(
F̃h+1 − F̃h+1

)
(x

π,F̃
i,h − rh|s

†
h+1, ah+1)

)2

≤
k∑
i=1

max
ah+1,s

†
h+1

∥∥∥F̃h+1(s
†
h+1, ah+1)− F̃h+1(s

†
h+1, ah+1)

∥∥∥2
∞

≤Kϵ .
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Thus we have

DistLSR
k,h,π,F̃

(
T †
h,πF̃h+1||F̂k,h,π,F̃

)
≤DistLSR

k,h,π,F̃

(
T †
h,πF̃h+1||F̂k,h,π,F̃

)
+DistLSR

k,h,π,F̃
(T †
h,πF̃h+1||T †

h,πF̃h+1)

≤O(γLSR +Kϵ)

=O(γLSR) .

From the definition of the confidence set, we have for any F̃h+1 ∈ Fh+1 and π ∈ Π†, T †
h,πF̃h+1 ∈ F̂LSR

k,h,π,F̃
= F̂LSR

k,h,π,F̃

where the equality is because the ϵ-approximation of π and F̃ are themselves.

Proof of Condition 7.2. We proof the Lemma via induction. If Fπ
h+1 ∈ F̂LSR

k,h+1,π,F , we have Fπ
h = T †

h,πF
π
h+1 ∈ F̂LSR

k,h,π,F .

So for all h ∈ [H] we have Fπ
h = T †

h,πF
π
h+1 ∈ F̂LSR

k,h,π,F . From the definition of Fk,π , we have Fπ ∈ F̂k,π .

The next lemma decomposes the supremum distance between the CDFs of the cumulative return via the bellman error,
which is the distributional analogue of the performance difference lemma.

Lemma F.2 (Performance difference). For any random variable Z representing the estimated cumulative return, with CDF
function F = F1 × F2 × · · ·FH , we can decompose the ℓ∞ distance between the estimated return CDF FZ and the real
return CDF FZπ for policy π ∈ Π† by the bellman error as follows:

∥FZ − FZπ∥∞ ≤
H∑
h=1

Eµπ

∥∥∥Fh(·|s†h, ah)− T †
h,πFh+1(s

†
h, ah)

∥∥∥
∞
.

Proof.

∥FZ − FZπ∥∞

= sup
x∈[0,H]

∣∣∣∣∫
a1

π1(a1|s†1)
(
F1(x|s†1, a1)− Fπ

1 (x|s†1, a1)
)∣∣∣∣

≤Es†1,a1∼µπ

∥∥∥F1(s
†
1, a1)− Fπ

1 (s†1, a1)
∥∥∥
∞

=Es†1,a1∼µπ

∥∥∥F1(s
†
1, a1)− T

†
h,πF2(s

†
1, a1)

∥∥∥
∞

≤Eµπ

∥∥∥F1(s
†
1, a1)− T

†
h,πF2(s

†
1, a1)

∥∥∥
∞

+ Eµπ

∥∥∥T †
h,πF2(s

†
1, a1)− T

†
h,πF

π
2 (s†1, a1)

∥∥∥
∞

≤Eµπ

∥∥∥F1(s
†
1, a1)− T

†
h,πF2(s

†
1, a1)

∥∥∥
∞

+ Eµπ

∥∥∥F2(s
†
2, a2)− Fπ

2 (s†2, a2)
∥∥∥
∞
,

where the first and second inequalities holds by triangle inequality, the third inequality is because:

Eµπ

∥∥∥T †
h,πF2(s

†
1, a1)− T

†
h,πF

π
2 (s†1, a1)

∥∥∥
∞

=

∫
s†1,a1

µπ(s†1, a1) sup
x∈[0,H]

∣∣∣∣∣
∫
s†1,a2

T(s†2|s
†
1, a1)π(a2|s

†
2)
(
F2(x|s†2, a2)− Fπ

2 (x|s†2, a2)
)∣∣∣∣∣

≤
∫
s†1,a1

µπ(s†1, a1)

∫
s†1,a2

T(s†2|s
†
1, a1)π(a2|s

†
2)
∥∥∥F2(s

†
2, a2)− Fπ

2 (s†2, a2)
∥∥∥
∞

=Eµπ

∥∥∥F2(s
†
2, a2)− Fπ

2 (s†2, a2)
∥∥∥
∞
.
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Repeat this analysis for every step h ∈ [H], we have

∥FZ − FZπ∥∞
≤Eµπ

∥∥∥F1(s
†
1, a1)− T

†
h,πF2(s

†
1, a1)

∥∥∥
∞

+ Eµπ

∥∥∥F2(s
†
2, a2)− Fπ

2 (s†2, a2)
∥∥∥
∞

≤ · · ·

≤
H∑
h=1

∥∥∥Fh(·|s†h, ah)− T †
h,πFh+1(s

†
h, ah)

∥∥∥
∞

Equipped with the technical lemmas above, we are able to prove the Condition 7.3 for model-free LSR estimation function.
Lemma F.3 (Condition 7.3). For 0 < δ ≤ 1, we have

K∑
k=1

∥∥FẐk − FZπk

∥∥
∞ ≤ O

(
poly(H)

√
KγLSR dimE(F ,

√
K)

)
,

holds with probability at least 1− δ.

proof of Condition 7.3. Using Hoeffding inequality in Lemma F.2, we have:∥∥FẐk − FZπk

∥∥
∞

≤
H∑
h=1

E
µπk

∥∥∥F̂ kh (·|s†h, ah)− T †
h,πF̂

k
h+1(s

†
h, ah)

∥∥∥
∞

≤
H∑
h=1

∥∥∥F̂ kh (s†k,h, ak,h)− T †
h,πF̂

k
h+1(s

†
k,h, ak,h)

∥∥∥
∞

+O

(√
KH log

1

δ

)
.

Since T †
h,πF̂

k
h+1 ∈ F̂LSR

k,h,πk,F̂
k by Lemma F.1, we have:

K∑
k=1

H∑
h=1

∥∥∥F̂ kh (s†k,h, ak,h)− T †
h,πF̂

k
h+1(s

†
k,h, ak,h)

∥∥∥
∞

≤
K∑
k=1

H∑
h=1

sup
x∈[0,H]

∣∣∣∣∣∣ sup
F1∈F̂LSR

k,h,πk,F̂k

F1(x|s†k,h, ak,h)− inf
F2∈F̂LSR

k,h,πk,F̂k

F2(x|s†k,h, ak,h)

∣∣∣∣∣∣
=

K∑
k=1

H∑
h=1

sup
F1∈F̂LSR

k,h,πk,F̂k

F1(x
πk,F̂

k

k,h |s†k,h, ak,h)− inf
F2∈F̂LSR

k,h,πk,F̂k

F2(x
πk,F̂

k

k,h |s†k,h, ak,h) ,

which is by the definition of xπ
k,F̂

k

k,h in Equation 11. Denote

Gk,h = sup
F1∈F̂LSR

k,h,πk,F̂k

F1(x
πk,F̂

k

k,h |s†k,h, ak,h)− inf
F2∈F̂LSR

k,h,πk,F̂k

F2(x
πk,F̂

k

k,h |s†k,h, ak,h) .

Using similar techniques as Lemma 9 of Chen et al. (2023), we have:
K∑
k=1

H∑
h=1

G2
k,h ≤ H +H dimE(F ,

√
K) + 4HγLSR dimE(F ,

√
K)(log(K) + 1) .

Thus, using Cauchy inequality, we obtain:
K∑
k=1

∥∥FẐk − FZπk

∥∥
∞ ≤ O

(
poly(H)

√
KγLSR dimE(F ,

√
K)

)
.
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G. Model-Free Estimation by MLE approach
G.1. Bellman Eluder Dimension

In this section, we define the bellman eluder dimension (Jin et al., 2021), which is a famous structural complexity. First, we
define the ℓ2 norm distributional eluder dimension for a function class (Definition 7 in Jin et al. (2021)).

Definition G.1 (ℓ2 norm distributional eluder dimension). We consider Φ be a function class on domain X where for ϕ ∈ Φ,
|ϕ(x)| ≤ 1. D is a family of distributions on X . Let L be the longest sequence that there exists ϵ′ > ϵ and µ1 · · ·µL ∈ D,
for all t ∈ [L], there exists ϕ ∈ Φ, |Eµt [ϕ(x)]| ≥ ϵ and

∑t−1
i=1 (Eµi [ϕ(x)])

2 ≤ ϵ2. We denote L as the bellman eluder
dimension dDE(Φ,D, ϵ).

Given the function set have low eluder dimension, we have the standard elliptical potential lemma as below:

Lemma G.2 (Lemma 17 in Jin et al. (2021)). Given a function class ϕ ∈ Φ in domain X with |ϕ(x)| ≤ 1. Let D
be a families of distributions on X . Suppose {ϕk}[K] ⊂ Φ and {µk}[K] ⊂ D be two sequences. If for any k ∈ [K],∑k
i=1 (Eµi

[ϕk])
2 ≤ β, then for any k ∈ [K],

∑k
i=1 |Eµi

[ϕi]| ≤ Õ
(√

dDE(Φ,D, 1/K)βK
)

.

In this section, we define our bellman eluder dimension as the distributional eluder dimension for the specific function class
below:

Definition G.3 (Bellman Eluder Dimension). Given a policy class Π†, and a PDF function class F . For h ∈ [H], we define
the function class Φh as {TV (fh||Th,πfh+1)}, and the distribution family Dh as µπ

h with domain Xh as s†h, ah. We define
the bellman eluder dimension of our problem as:

dBE = max
h∈[H]

dDE(Φh,Dh, 1/K) .

G.2. Setting

G.2.1. NOTATION

In this setting, we assume the density function of Zπ
h ∈ Zh belongs to a function class Fh. We denote the density function

of Zπ
h (s

†, a) ∈ Zh at point z ∈ R as fπh (z|s†, a) ∈ Fh.

Consider an upper and lower ϵ-bracketing of F under ∥·∥1, denoted as F↑ and F↓. We denote the corresponding lower
bracket of g as g↓, and the upper bracket of f as f↑. Since g↓ may not be a valid distribution, we denote the normalized
version as: g, where g = g↓/

∫
z
g↓(z), and 1− ϵ ≤

∫
z
g↓(z) ≤ 1. Thus, we have: g ≤ (1 + 2ϵ)g↓.

G.2.2. BELLMAN COMPLETENESS

Define the augmented bellman operator:

T †
h,πfh+1(z|s†h, ah) =

∫
T(s†h+1|s

†
h, ah)πh+1(ah+1|s†h+1)fh+1(z − rh|s†h, ah) .

Here for completeness we restate the distributional bellman completeness assumption, and give a corresponding example.

Assumption G.4 (augmented distributional bellman completeness). For the density function class F = F1 × · · · FH
corresponding to the class of random variables Z = Z1 × Z2 · · · ZH , we have for any h ∈ [H], such that for any
fh+1 ∈ Fh+1, we have for any π ∈ Π†, T †

h,πfh+1 ∈ Fh.

Instances: for linear MDP with Ph(sh+1|sh, ah) = ⟨ϕ(sh, ah), µh(sh+1)⟩ and suppose the reward is discretized into a
uniform grid of M points {zi}Mi=1. Then we can write the reward distribution as R(zi|sh, ah) = ⟨1M, θ(zi)⟩, where 1M is
a M dimensional vector with all the entries being 1, and θ(zi) is a M dimensional vector with all 0 but the i th entry equal
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to R(zi|sh, ah). Then we have:

T †
h,πfh+1(z|s†h, ah)

=
∑
sh+1

P(sh+1|sh, ah)
∑
zi

R(zi|sh, ah)
∑
s

πh+1 (ah+1|(sh+1, yh + zi)) fh+1 (z − zi|(sh+1, yh + zi), ah+1)

=
∑
sh+1

∑
zi

ϕ(sh, ah)
⊤µh(sh+1)θh(zi)

⊤1M

∑
s

πh+1 (ah+1|(sh+1, yh + zi)) fh+1 (z − zi|(sh+1, yh + zi), ah+1)

=ϕ(sh, ah)
⊤Wπ

h (z, yh)1M ,

where

Wπ
h (z, yh) =

∑
sh+1

∑
zi

µh(sh+1)θh(zi)
⊤
∑
a

πh+1 (ah+1|(sh+1, yh + zi)) fh+1 (z − zi|(sh+1, yh + zi), ah+1)

depends only on yh and z. We can also write the distribution function in a linear form, with fπh (z|s
†
h, ah) =

ϕ̄(sh, ah)
⊤wπ

h (z, yh), with ϕ̄(sh, ah) = ϕ(sh, ah) ⊗ 1M ∈ Rd×M , and wπ
h (z, yh) is the flattened version of Wπ

h (z, yh)
with wπ

h (z, yh)[d × i +m] = Wπ
h (z, yh)[i,m]. Thus the function class has a linear structure similar to the case of risk

neutral setting in linear MDPs (Jin et al., 2020).

G.3. Estimation of confidence set

Here, we estimate the confidence set Zk,π via MLE using the density functions f .

Algorithm 9 V-Est-MLE(Hk,Z,π, γMLE)

Input: History informationHk, density function class F of random variable class Z , and policy π.
For all i ∈ [k], and (h,f ,π) ∈ [H] × F × Π†, sample z

f,π

i,h+1 ∼ f
h+1

(
s†i,h+1, πi,h+1(s

†
i,h+1)

)
, and let z

f,π

i,h =

z
f,π

i,h+1 + ri,h. We define the version space as:

F̂MLE
k+1,π =

{
f ∈ F :

k∑
i=1

log fh(z
f,π

i,h |s
†
i,h, ai,h) ≥ max

f ′∈F

k∑
i=1

log f ′h(z
f,π

i,h |s
†
i,h, ai,h)− γ

MLE,∀h ∈ [H]

}
.

Return Ẑk+1,π as the set of random variables corresponding to F̂MLE
k+1,π .

We now describe the sampling procedure for our target function gh+1 ∈ F and π ∈ Π. Define g
h+1

and π as the normalized

lower bracket in Section G.2.1. For 1 ≤ i ≤ k, we sample z
g,π

i,h+1 ∼ g
h+1

(s†i,h+1, πh+1(s
†
i,h+1)), then we construct a

one-step-back sample as z
g,π

i,h = z
g,π

i,h+1 + ri,h where ri,h = yi,h+1 − yi,h. We estimate the likelihood of fh for T †
h,πgh+1

as log fh(z
g,π

i,h |s
†
i,h, ai,h). Then we can define the MLE confidence set as:

FMLE
h,k,g,π =

{
fh ∈ Fh :

k∑
i=1

log fh(z
g,π

i,h |s
†
i,h, ai,h) ≥ max

f ′∈F

k∑
i=1

log f ′h(z
g,π

i,h |s
†
i,h, ai,h)− γ

MLE

}
,

where γMLE = log
(
N[·] (F , ϵ, ∥∥∞)N[·](Π

†, ϵ, ∥∥1)/δ
)
+Kϵ. Then, we can show that w.h.p, we have

T †
h,πgh+1 ∈ FMLE

h,k,g,π

We can define our version space as:

F̂MLE
k,π =

{
f ∈ F : fh ∈ FMLE

h,k,f,π, h ∈ [H]
}
.

Thus, we can prove that fπ ∈ F̂MLE
k,π , and we have that Zπ ∈ Ẑk,π
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G.3.1. PROOF OF CONDITION E.1

In this section we prove the concentration Condition 7.2 (Condition E.1 in the Appendix)

Following standard MLE concentration analysis, we have:
Lemma G.5. For any fh ∈ Fh , h ∈ [H], there exists a constant c such that:

k∑
i=1

log fh(z
g,π

i,h |s
†
i,h, ai,h) ≤

k∑
i=1

log(T †
h,πgh+1)(z

g,π

i,h |s
†
i,h, ai,h) + cγMLE .

Proof. Consider an upper and lower ϵ-bracketing of F under ∥·∥1, denoted as F↑ and F↓. We denote the corresponding
lower bracket of gh+1 as g↓, and the upper bracket of f as f↑. Since g↓ may not be a valid distribution, we denote the
normalized version as: g, where g = g↓/

∫
z
g↓(z), and 1− ϵ ≤

∫
z
g↓(z) ≤ 1

Then, we have:

E
µπi

h

[
f↑h(z

g,π

i,h |s
†
i,h, ai,h)

T †
h,πg

↓
h+1(z

g,π

i,h |s
†
i,h, ai,h)

]

=

∫
s†h,ah,s

†
h+1,z

µπi

h (s†h, ah, s
†
h+1)

∫
A πh+1(ah+1|s†h+1)gh+1

(
z − rh|s†h+1, ah+1

)
f↑h(z|s

†
h, ah)∫

T(s†h+1|s
†
h, ah)

∫
A πh+1(ah+1|s†h+1)g

↓
h+1

(
z − rh|s†h+1, ah+1

)
=

∫
s†h,ah

µπi

h (s†h, ah)

∫
z

f↑h(z|s
†
h, ah)

∫
s†h+1

T(s†h+1|s
†
h, ah)

∫
A πh+1(ah+1|s†h+1)gh+1

(
z − rh|s†h+1, ah+1

)
∫
s†h+1

T(s†h+1|s
†
h, ah)

∫
A πh+1(ah+1|s†h+1)g

↓
h+1

(
z − rh|s†h+1, ah+1

)
≤
∫
s†h,ah

µπi

h (s†h, ah)

∫
z

f↑h(z|s
†
h, ah)

∫
s†h+1

T(s†h+1|s
†
h, ah)

∫
A(1 + 2ϵ)π↓

h+1(ah+1|s†h+1)gh+1

(
z − rh|s†h+1, ah+1

)
∫
s†h+1

T(s†h+1|s
†
h, ah)

∫
A πh+1(ah+1|s†h+1)g

↓
h+1

(
z − rh|s†h+1, ah+1

)
≤
∫
s†h,ah

µπi

h (s†h, ah)

∫
z

f↑h(z|s
†
h, ah)(1 + 2ϵ)2

≤1 + 6

K
.

Thus we obtain the result via Markov inequality:

P

(
k∑
i=1

f↑h(z
g,π

i,h |s
†
i,h, ai,h)− log(T †

h,πg
↓
h+1)(z

g,π

i,h |s
†
i,h, ai,h) ≥ log (1/δ)

)

≤E

[
exp

(
k∑
i=1

log
f↑(z

g,π

i,h |s
†
i,h, ai,h)

T †
h,πg

↓(z
g,π

i,h |s
†
i,h, ai,h)

)]
exp(− log(1/δ))

≤e6δ .

Applying a union bound, for all f↑ and g↓, we have w.p. 1− δ, there exists a constant c,
k∑
i=1

log f↑h(z
g,π

i,h |s
†
i,h, ai,h)− log(T †

h,πg
↓
h+1)(z

g,π

i,h |s
†
i,h, ai,h) ≤ cβ .

We conclude our result by the definition of upper and lower brackets:
k∑
i=1

log fh(z
g,π

i,h |s
†
i,h, ai,h)− log(T †

h,πgh+1)(z
g,π

i,h |s
†
i,h, ai,h)

≤
k∑
i=1

log f↑h(z
g,π

i,h |s
†
i,h, ai,h)− log(T †

h,πg
↓
h+1)(z

g,π

i,h |s
†
i,h, ai,h)

≤cβ .
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As a result, we have:

T †
h,πfh+1 ∈ FMLE

h,k,f,π

by the definition of FMLE
h,k,f,π

We prove Condition E.1 via induction. If fπh+1 ∈ FMLE
h+1,k,fπ,π, From Lemma G.5, fπh = T †

h,πf
π
h+1 ∈ FMLE

h,k,fπ,π. Since

fπH ∈ FMLE
H,k,fπ,π we have for every h, fπh ∈ Fh,k,fπ,π. Thus fπ ∈ F̂MLE

k,π . As a result, Zπ ∈ Ẑk,π for any k ∈ [K] and
π ∈ Π†.

G.3.2. PROOF OF CONDITION E.2

In this section we prove the elliptical potential Condition 7.3 (Condition E.2 in the Appendix).

The following lemma is the standard result for MLE generalization bound.

Lemma G.6 (MLE concentration). We can bound the square TV distance of the bellman error for any f ∈ Fk,π
k∑
i=1

E
s†h,ah∼µ

πi

h

[
TV2

(
fh(s

†
h, ah)||T

†
h,πfh+1(s

†
h, ah)

)]
≤ O(γMLE) .

Proof. Since we have for any f ∈ Fk,π
k∑
i=1

log
(
T †
h,πfh+1

)
(z
f,π

i,h+1|s
†
i,h, ai,h)− log fh(z

f,π

i,h+1|s
†
i,h, ai,h)

≤
k∑
i=1

log
(
T †
h,π↓f

↓
h+1

)
(z
f,π

i,h+1|s
†
i,h, ai,h)− 2 log(1− ϵ)− log fh(z

f,π

i,h+1|s
†
i,h, ai,h)

which holds by the normalization constant of f and π. By the definition of the lower bracket function f↓h+1, we have

k∑
i=1

log
(
T †
h,π↓f

↓
h+1

)
(z
f,π

i,h+1|s
†
i,h, ai,h)− 2 log(1− ϵ)− log fh(z

f,π

i,h+1|s
†
i,h, ai,h)

≤
k∑
i=1

log
(
T †
h,πfh+1

)
(z
f,π

i,h+1|s
†
i,h, ai,h)− 2 log(1− ϵ)− log fh(z

f,π

i,h+1|s
†
i,h, ai,h)

≤max
f ′∈F

k∑
i=1

log f ′h(z
f,π

i,h |s
†
i,h, ai,h)− log fh(z

f,π

i,h+1|s
†
i,h, ai,h) +O(kϵ)

≤γMLE +O(kϵ)
=O(γMLE) ,

where the second inequality is due to the distributional bellman completeness, which ensures that T †
h,πfh+1 ∈ Fh. The last

two inequalities are due to the construction of the confidence set and the choice of ϵ = 1/K.

Since the conditional distribution of z
f,π

i,h+1 given s†i,h, ai,h is the same as T †
h,πfh+1

(s†h, ah), from Lemma H.1, we have:

k∑
i=1

E
s†h,ah∼µ

πi

h

[
TV2

(
fh(s

†
h, ah)||T

†
h,πfh+1

(s†h, ah)
)]
≤ O(γMLE) .

We also have:

TV
(
T †
h,πfh+1(s

†
h, ah)||T

†
h,πfh+1

(s†h, ah)
)

≤TV
(
T †
h,πfh+1(s

†
h, ah)||T

†
h,πfh+1(s

†
h, ah)

)
+TV

(
T †
h,πfh+1

(s†h, ah)||T
†
h,πfh+1(s

†
h, ah)

)
.
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We can bound the first term as:

TV
(
T †
h,πfh+1(s

†
h, ah)||T

†
h,πfh+1(s

†
h, ah)

)
≤
∫
s†h+1

T(s†h+1|s
†
h, ah)

∫
ah+1

∣∣∣πh+1(ah+1|s†h+1)− πh+1(ah+1|s†h+1)
∣∣∣ ∫
z

(fh+1(z − rh|s†h+1, ah+1)

≤max
s†h+1

∥∥∥πh+1(·|s
†
h+1)− πh+1(·|s†h+1)

∥∥∥
1

≤ϵ .

We can also bound the second term as:

TV
(
T †
h,πfh+1

(s†h, ah)||Th,π†fh+1(s
†
h, ah)

)
≤
∫
s†h+1

T(s†h+1|s
†
h, ah)

∫
ah+1

πh+1(ah+1|s†h+1)

∫
z

∣∣∣(fh+1 − fh+1

)
(z − rh|s†h+1, ah+1)

∣∣∣
≤ max
s†h+1,ah+1

∥∥∥fh+1(s
†
h+1, ah+1)− fh+1

(s†h+1, ah+1)
∥∥∥
1

≤O(ϵ) ,

since f ≤ (1 + 2ϵ)f↓ ≤ (1 + 2ϵ)f and f ≥ f↓ point wise. Then we can have
∥∥f − f∥∥

1
=
∫
z

∣∣f(z)− f(z)∣∣ ≤∫
z
max

{
2ϵf, f − f↓

}
≤
∫
z
2ϵf +

∫
z
(f − f↓) ≤ 3ϵ.

We can conclude that:
∑k
i=1 Es†h,ah∼µπi

h

[
TV2

(
T †
h,πfh+1(s

†
h, ah)||T

†
h,πfh+1

(s†h, ah)
)]
≤ O(kϵ). Thus,

k∑
i=1

E
s†h,ah∼µ

πi

h

[
TV2

(
fh(s

†
h, ah)||T

†
h,πfh+1(s

†
h, ah)

)]
≤ O(γMLE) .

Next, we present the distribution difference lemma for our model free analysis.

Lemma G.7. We can bound the distance between the CDFs of the return by the bellman error of each step as:

∥FZ − FZπ∥∞ ≤
H∑
h=1

E(s†h,ah)∼µ
π
h

[∥∥∥fh(s†h, ah)− T †
h,πfh+1(s

†
h, ah)

∥∥∥
1

]
.

Proof. We begin by induction. By triangle inequality:∥∥∥fh(s†h, ah)− fπh (s†h, ah)∥∥∥
1
≤
∥∥∥fh(s†h, ah)− T †

h,πfh+1(s
†
h, ah)

∥∥∥
1
+
∥∥∥T †

h,πfh+1(s
†
h, ah)− T

†
h,πf

π
h+1(s

†
h, ah)

∥∥∥
1
.

We derive a recursion for the second term.∥∥∥T †
h,πfh+1(s

†
h, ah)− T

†
h,πf

π
h+1(s

†
h, ah)

∥∥∥
1

=

∫
z

∣∣∣∣∣
∫
s†h+1,ah

T(s†h+1|s
†
h, ah)πh+1(ah+1|s†h+1)

(
fh+1(z − rh|s†h+1, ah+1)− fπh+1(z − rh|s

†
h+1, ah+1)

)∣∣∣∣∣
≤
∫
s†h+1,ah

T(s†h+1|s
†
h, ah)πh+1(ah+1|s†h+1)

∫
z

∣∣∣fh+1(z − rh|s†h+1, ah+1)− fπh+1(z − rh|s
†
h+1, ah+1)

∣∣∣
=E(s†h+1,ah+1)∼(s†h,ah)

∥∥∥fh+1(s
†
h+1, ah+1)− fπh+1(s

†
h+1, ah+1)

∥∥∥
1
.
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Then we have:

E(s†h,ah)∼µ
π
h

[∥∥∥fh(s†h, ah)− fπh (s†h, ah)∥∥∥
1

]
≤E(s†h,ah)∼µ

π
h

[∥∥∥fh(s†h, ah)− T †
h,πfh+1(s

†
h, ah)

∥∥∥
1

]
+

∫
s†h,ah

µπ
h (s

†
h, ah)

∫
s†h+1,ah+1

µπ(s†h+1, ah+1|s†h, ah)
∥∥∥fh+1(s

†
h+1, ah+1)− fπh+1(s

†
h+1, ah+1)

∥∥∥
1

≤E(s†h,ah)∼µ
π
h

[∥∥∥fh(s†h, ah)− T †
h,πfh+1(s

†
h, ah)

∥∥∥
1

]
+ E(s†h+1,ah+1)∼µπ

h+1

[∥∥∥fh+1(s
†
h+1, ah+1)− fπh+1(s

†
h+1, ah+1)

∥∥∥
1

]
.

Using the definition of FZ(x) =
∫
s†1,a1

µπ
1 (s

†
1, a1)

∫
z≤x f1(z|s

†
1, a1), we have:

∥FZ − FZπ∥∞
≤Es†1,a1∼µπ

1

[∥∥∥f1 (s†1, a1)− fπ1 (s†1, a1)
∥∥∥
1

]
≤

H∑
h=1

E(s†h,ah)∼µ
π
h

[∥∥∥fh(s†h, ah)− T †
h,πfh+1(s

†
h, ah)

∥∥∥
1

]
.

Combining the elliptical potential condition for low bellman eluder dimension (Lemma G.2) and the concentration result
Lemma G.6, we have for all h ∈ [H] and any f̂k ∈ F̂MLE

k,πk :

K∑
k=1

E
s†h,ah∼µ

πk

h

[
TV

(
f̂kh (s

†
h, ah)||T

†
h,πk f̂

k
h+1(s

†
h, ah)

)]
≤ O(

√
dBE γMLEK) .

Here we invoke Lemma G.2 by setting X : S† × A, Φ : TV
(
fh(s

†, a)||T †
h,πfh+1(s

†, a)
)

for all (f,π) ∈ F × Π†.

D : µπ, π ∈ Π† is the family of all the visitation measures defined on (s†, a).

Thus, using Lemma G.7, we have:
K∑
k=1

∥∥FẐk − FZπk

∥∥
∞ ≤ O(H

√
dBE γMLEK) .

H. Auxiliary Lemmas
Lemma H.1 (MLE generalization bound (Theorem 21 of Agarwal et al. (2020))). Let X be a feature space and Y be the
output space. Given a dataset D = {(xi, yi)}ni=1 which is collected from a martingale process: xi ∼ Di(x1:i−1, y1:i−1),
and yi ∼ p(·|xi). Given a function set F : X × Y → R, we have the real conditional distribution f∗(x, y) = p(y|x) ∈ F .
Then, there exists a constant c, for any δ > 0, with probability at least 1− δ, we have:

n∑
i=1

Ex∼Di

[
TV (f(x, ·)||f∗(x, ·))2

]
≤ c

(
n∑
i=1

log

(
f∗(xi, yi)

f(xi, yi)

)
+ log

(
N[·](ϵ,F , ∥·∥1 /)δ

)
+ nϵ

)
Lemma H.2 (Concentration Lemma(Theorem 5 in Ayoub et al. (2020))). let (Xp, Yp)p=1,2··· be a set of random vari-
ables, Xp ∈ X for some measurable set X and Yp ∈ R. Let F be a set of real valued measurable function with
domain X . Let F = (Fp)p=0,1,2··· be a filtration such that for all p ≥ 1, we have (X1, Y1, · · · , Xp−1, Yp−1, Xp) is
Fp−1 measurable, and such that there exists some function f∗ ∈ F such that E[Yp|Fp−1] = f∗(Xp) for all p ≥ 1. Let
f̂t = argminf∈F

∑t
p=1 (f(Xp)− Yp)2. Let N (F , α) be the α-covering number of set F under ∥·∥∞ metric at scale α.

Define Distt(f ||ft) =
∑t
p=1 (f(Xp)− ft(Xp))

2.

If the functions in F are bounded by some constant C > 0. Assume that for each p ≥ 1, (Yp − f∗(Xp)) is conditionally
σ-sub-gaussian given Fp−1. Then, for any α > 0, with probability 1− δ for all t ≥ 1, we have:

Dist (f∗||ft) ≤ 8σ2 log (N (F , α)/δ) + 4tα
(
C +

√
σ2 log (t(t+ 1)/δ)

)
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I. Linear CVaR
Similarly to Liu et al. (2023); Jin et al. (2021), the general algorithms provided for general version space are information
theoretic, which means that they cannot be implemented efficiently in general. This is because we consider the general risk
measure LRM and the general function approximation settings. However, when specified to the CVaR risk measure under
the discretized linear MDP, a distributional extension of natural linear MDP (Jin et al., 2020), we can design and implement
an efficient model-free algorithm that achieves sub-linear regret.

Definition I.1 (Discretized Linear MDP). An augmented MDP M† is a discretized linear MDP with feature map ϕ :
(s, a)→ Rd and an uniform grid of M points {zi}Mi=1, if for any h ∈ [H], (rh, yh) ∈ {zi}Mi=1, and there exists unknown
measures µh : S → Rd and θh : {zi}Mi=1 → Rd, such that:

Ph(sh+1|sh, ah) = ϕ(sh, ah)
⊤µh(sh+1)

Rh(zi|sh, ah) = ϕ(sh, ah)
⊤θh(zi) ,

for all sh, ah, sh+1, zi.

This discretized linear MDP is the natural extension of the linear MDP assumption in Jin et al. (2020), where we consider
the discretized distributional reward instead of determined reward. and we generalize the linear expected reward to its
distributional counterpart. Another important ingredient in our definition is the discretized reward space, which is commonly
used in practice. C51 and Rainbow (Bellemare et al., 2017; Hessel et al., 2018) both set M = 51 and achieved empirical
success in Atari games. We need the discretized reward space mainly to bound the covering number of the value distribution,
similar to Wang et al. (2023b).

In a discretized linear MDP, we have that the distribution function have a quadratic structure: fπh (zi|(sh, yh), ah) =

ϕ(sh, ah)W
π
h (zi, yh)ϕ(sh, ah). Thus, we can use linear regression in estimating statistical functionals of Zπ

h (s
†
h, ah). We

present our regret bound as follows:

Theorem I.2. If MDP M† is a discretized linear MDP satisfying Definition I.1, and the risk measure ρ(Zπ) =
CV aRτ (Z

π) = maxb
{
b− τ−1E[(b− Zπ)+]

}
, we can bound the regret as:

Regret(K) ≤ Õ(τ−1d3H2
√
MK)

We highlight that this is the first efficient model free algorithm for linear MDPs, and the
√
M dependency is due to the

covering number of the value distribution class which also appears in other model free distributional RL algorithms, such as
Wang et al. (2023b).

Define CVaRτ (Z
π) = argmaxb

{
b− τ−1E[(b− Zπ)+]

}
. We can define the statistical functionals Q and V as:

Qπh(sh, yh, ah) =
∑
zi
fπh (zi|sh, yh, ah)[(−zi − yh)+], and V πh (sh, yh) =

∑
zi
fπh (zi|sh, yh, π(sh, yh))[(−zi − yh)+].

Then we can write the CVaR objective as CVaRτ (Zπ) = argmaxb∈[0,H]

{
b− τ−1V π1 (s1,−b)

}
.

Define recursively π∗
h(sh, yh) = argminaQ

π∗

h (sh, yh, ah), then by Wang et al. (2023a) we have for any b ∈ [0, H],

V ∗
1 (s1,−b) = V π

∗

1 (s1,−b) = argmin
π∈Π†

V π1 (s1,−b)

We denote CVaR∗
τ = maxπ∈Π† CVaRπτ = b∗ − τ−1V ∗

1 (s1,−b∗)

I.1. Linear Augmented MDPs

When consider the linear function approximation (Definition I.1), we can also linearize the augmented MDPs. We ahve

Th(sh+1, rh|sh, ah) = ϕ(sh, ah)
⊤θ(rh)µ(sh+1)

⊤ϕ(sh, ah) = ψ(sh, ah)χ(rh, sh+1)

where ψ(sh, ah) and χ(rh, sh+1) are the flattened versions of ϕ(sh, ah)ϕ(sh, ah)⊤ and θ(rh)µ (sh+1)
⊤. Also, we assume

the reward space is discretized into M points z1 · · · zM such that for all h ∈ [H], yh ∈ {zi}Mi=1. We have that −H ≤ z1 ≤
z2 · · · zM ≤ H . We highlight that this discretization is standard in practice as in C51 (Bellemare et al., 2017) and Rainbow
(Hessel et al., 2018). Here we need this assumption to bound the complexity of the function class.
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I.2. Linear Completeness

Because the density function of the rewards satisfy the distributional bellman equation:

fπh (zi|sh, yh, ah) =
∑

sh+1,rh

Th(sh+1, rh|sh, ah)fπh+1(zi − rh|sh+1, yh + rh, π(sh+1, yh + rh))

We have the statistical functionals satisfy the augmented bellman equation:

Qπh(sh, yh, ah) =
∑
zi

∑
sh+1,rh

Th(sh+1, rh|sh, ah)fπh+1(zi − rh|sh+1, yh + rh, π(sh+1, yh + rh))(−zi − yh)+

=
∑

sh+1,rh

Th(sh+1, rh|sh, ah)
∑
zi

fπh+1(zi|sh+1, yh + rh, π(sh+1, yh + rh))(−zi − yh − rh)+

=(ThVh+1) (sh, yh, ah)

Where we denote the augmented transition operating on a function V as:

ThVh+1(sh, yh, ah) =
∑

sh+1,rh

Th(sh+1, rh|sh, ah)Vh+1(sh+1, yh + rh)

Since fπh (zi|sh, yh, ah) = ϕ(sh, ah)
⊤Wπ

h (yh, zi)ϕ(sh, ah), we have Qπh(sh, yh, ah) = ψ(sh, ah)
⊤wπh(yh). Where wπh [i ·

d+ j] =
∑
zi
Wπ
h (yh, zi)[i, j][(−zi − yh)+]

I.3. Algorithm

In this section, we present our computationally efficient algorithm RSRL-Linear-CVaR. Notice that we present Upper
Confidence Bound Value Iteration (UCV-VI) in this algorithms instead of the general optimistic planning used in previous
frameworks, due to its computation-tractable property.

I.4. Concentration and Covering

In this section we provide the concentration and covering arguments needed for our linear analysis.

Lemma I.3 (Concentration Inequality of Self-normalized Process (Jin et al., 2020)). Let {xτ}∞τ=1 be a stochastic process
on domain X with corresponding filtration {Fτ}. Let {ψτ} be an Rd2 valued stochastic process stochastic process such
that ψτ ∈ Fτ−1 and ∥ψτ∥ ≤ 1. Let Λk =

∑k−1
τ=1 ψτψ

⊤
τ . Then, for any δ > 0, with probability at least 1− δ, for all k > 0,

and any V ∈ V such that |supx V (x)− infx V (x)| ≤ H , we have:∥∥∥∥∥
k−1∑
τ=1

ψτ {V (xτ )− E[V (xτ |Fτ−1]}

∥∥∥∥∥
2

Λ−1
k

≤ H2

[
d

2
log

(
k + λ

λ

)
+ log (NC(ϵ,V, ∥·∥∞) /δ

]
+

8k2ϵ2

λ
.

Lemma I.4 (Lemma D.6 in Jin et al. (2020)). Let V denote a class of functions mapping from domain X to R with the
following parametric form:

V (·) = w⊤ϕ(·) + β ∥ϕ(·)∥Λ−1

where ϕ ∈ Rd are features on domain X . The parameters satisfy ∥w∥ ≤ L, λmin(Λ) ≥ λ, β ∈ [0, B], and ∥ϕ(·)∥ ≤ 1.
Then, the log covering number can be bounded as:

log ((NC(ϵ,V, ∥·∥∞)) ≤ d log(1 + 4L/ϵ) + d2 log(1 + 8d1/2B2/λϵ2)

Lemma I.5 (Lemma B.2 in Jin et al. (2020)). For h ∈ [H] and k ∈ [K], if V kh+1(sh+1, yh+1) ≤ H , then
∥∥wkh∥∥2 ≤

Hd
√
k/λ

Lemma I.6 (Lemma B.1 in Jin et al. (2020)). For any h ∈ [H], ∥wπh∥ ≤ 2Hd
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Algorithm 10 RSRL-Linear-CVaR

Input: Features Ψ : ψ(s, a) Bonus bkh(s, a) = β ∥ψ(s, a)∥Λ−1
k,h

with β = cβd
2H
√
M log(d2UMK/δ)

for k = 1 to K do
Set VH+1(sH+1, y) = [(−y)+] for all y ∈ {zi}Mi=1

for h = H to 1 do

Λk,h =

k−1∑
i=1

ψ(sih, a
k
h)ψ(s

i
h, a

i
h)

⊤ + λI

wkh(yh) = Λ−1
k,h

k−1∑
i=1

ψ(sih, a
i
h)V

k
h+1(s

i
h+1, yh + rih)

Qkh(sh, yh, ah) = ψ(sh, ah)w
k
h(yh)− bkh(sh, ah)

πk(sh, yh) = argmin
a

Qkh(sh, yh, ah)

V kh (sh, yh) = max
{
Qkh(sh, yh, π

k(sh, yh)), 0
}

end for

bk = argmax
b∈{zi}M

i=1

{
b− τ−1V k1 (s1,−b)

}
Start at state s†1 = (s1,−λk) and execute policy πk in the augmented MDP M†, collect information{
(skh, a

k
h, r

k
h)
}
h∈[H]

end for

Lemma I.7. If V kh+1 ≤ H for any k ∈ [K], then there exists a constant C, for any yh ∈ {zi}Mi=1, δ > 0, with probability
1− δ, we can bound the self normalized martingale process as:∥∥∥∥∥

k−1∑
i=1

ψi,h
(
V kh (s

i
h, yh−1 + rih−1)− Th−1V

k
h (s

i
h−1, yh−1, a

i
h−1)

)∥∥∥∥∥
2

Λ−1
k,h

≤ Cd4H2M log(cβd
2KM/δ)

Proof. According to Lemma I.5, we have that
∥∥wkh∥∥2 ≤ Hd

√
k/λ. According to Lemma I.4, we have for a fixed zi the

covering number of the function class V kh (sh, zi) can be bounded as (notice that ψ ∈ Rd2 ):

log ((NC(ϵ,V(·, zi), ∥·∥∞)) ≤ d2 log(1 + 4Hdλ/kϵ) + d4 log(1 + 8dβ2/λϵ2)

Then we can bound the entire function class by regarding each V (·, zi) an individual function. Thus, the total covering
number can be bounded as:

log ((NC(ϵ,V, ∥·∥∞)) ≤Md2 log(1 + 4Hdλ/kϵ) + d4 log(1 + 8dβ2/λϵ2)

Thus, we can apply Lemma I.3, and we have the result by choosing ϵ = 1/k, λ = 1 and β = cβd
4HM

√
log(d2UMK/δ).

I.5. Proof of Theorem I.2

Define the event Optimism at h ∈ [H] and k ∈ [K] as:

Qkh(sh, yh, ah) ≤ Q∗
h(sh, yh, ah) (Optimism)

Also, define

ψ(s, a)wkh(y)−Qπh(s, y, a)− Th(V kh+1 − V πh+1)(s, a, y) = ∆k
h(s, a)
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Then we have the following concentration result:

Lemma I.8. If Optimism holds at h ∈ [H] and k ∈ [K]. We have that ∆k
h(s, a) ≤ β ∥ψ(s, a)∥Λ−1

k,h
.

Proof. Since we have:

ψ(skh, a
k
h)ThV πh+1(s

k
h, a

k
h, yh) =

∑
sh+1,rh

ψ(skh, a
k
h)ψ(s

k
h, a

k
h)

⊤χ(sh+1, rh)V
π
h+1(sh+1, yh + rh)

=ψ(skh, a
k
h)ψ(s

k
h, a

k
h)

⊤wπh(yh)

We bound the bias as:

wkh(yh)− wπh(yh) =Λ−1
k,h

{
−λwπh +

[
k−1∑
i=1

ψi,h
(
V kh+1(s

i
h+1, yh + rih)− ThV πh+1(s

i
h, a

i
h, yh)

)]}

=−λΛ−1
k,hw

π
h︸ ︷︷ ︸

q1

+Λ−1
k,h

k∑
i=1

ψi,h
(
V kh+1(s

i
h+1, yh + rih)− ThV kh+1(s

i
h, a

i
h, yh)

)
︸ ︷︷ ︸

q2

+ Λ−1
k,h

k∑
i=1

ψi,hTh(V kh+1 − V πh+1)(s
i
h, a

i
h, yh)︸ ︷︷ ︸

q3

We have according to Lemma I.6:∣∣ψ(sh, ah)⊤q1∣∣ ≤ √λ ∥wπh∥ ∥ψ(sh, ah)∥Λ−1
k,h
≤ 2
√
λHd ∥ψ(sh, ah)∥Λ−1

k,h

For the second term, on event Optimism, we have that V kh+1 ≤ V ∗
h+1 ≤ H . Apply Lemma I.7 we have:∣∣ψ(sh, ah)⊤q2∣∣ ≤ Cd2H√M log(cβd2KM/δ) ∥ψ(sh, ah)∥Λ−1

k,h

For the third term, we have:

ψ(sh, ah)
⊤q3 =ψ(sh, ah)Λ

−1
k,h

k∑
i=1

ψi,hψ
⊤
i,h

∑
sh+1,rh

χ(sh+1, rh)(V
k
h+1 − V πh+1)(sh+1, yh + rh)

=ψ(sh, ah)
⊤
∑

sh+1,rh

χ(sh+1, rh)(V
k
h+1 − V πh+1)(sh+1, yh + rh)︸ ︷︷ ︸

p1

− λψ(sh, ah)
∑

sh+1,rh

χ(sh+1, rh)(V
k
h+1 − V πh+1)(sh+1, yh + rh)︸ ︷︷ ︸

p2

p1 = Th(V kh+1 − V πh+1)(sh, ah)

|p2| ≤
√
λd2U(H − h+ 1)) ∥ψ(sh, ah)∥Λ−1

k,h

Thus, by choosing the appropriate constants, we have:∣∣ψ(sh, ah)⊤wkh(yh)−Qπh(sh, yh, ah)− Th(V kh+1 − V πh+1)(sh, ah, yh)
∣∣ ≤ β ∥ψ(sh, ah)∥Λ−1

k,h
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Lemma I.9 (Optimism). For any h ∈ [H] and k ∈ [K], event Optimism holds

Proof. We prove the Lemma via induction. For any k ∈ [K], Optimism holds at step H . Suppose that Optimism holds at
step h+ 1, then we have from Lemma I.8,

Qkh(sh, yh, ah) =ψ(sh, ah)w
k
h(yh)− β ∥ψ(s, a)∥Λ−1

k,h

=Qπh(sh, yh, ah) + Th(V kh+1 − V πh+1)(sh, ah, yh) + ∆k
h(sh, ah)

≤ Qπh(sh, yh, ah)

So Optimism holds at step h.

Proof of Thoerem I.2. On event Optimism for all h ∈ [H] and k ∈ [K], we have that:

bk − τ−1V k1 (s1,−bk) ≥ b∗ − τ−1V k1 (s1,−b∗) ≥ b∗ − τ−1V ∗
1 (s1,−b∗) = CVaR∗

τ

Also, we have that CVaRπ
k

τ = argmaxb

{
b− τ−1V π

k

1 (s1,−b)
}
≥ bk − τ−1V π

k

1 (s1,−bk) Thus, the total regret can be
bounded as:

K∑
k=1

CVaR∗
τ −CVaRπ

k

τ ≤
K∑
k=1

τ−1
(
V π

k

1 (s1,−bk)− V k1 (s1,−bk)
)

Define δkh = V π
k

h (skh, y
k
h)− V kh (skh, ykh), and ζkh+1 = E[δkh+1|skh, ykh, akh]− δkh+1. According to Lemma I.8, we have that:

δkh ≤ δkh+1 + ζkh+1 + 2β ∥ψk,h∥Λ−1
k,h

Then we have:

K∑
k=1

V π
k

1 (s1,−bk)− V k1 (s1,−bk) ≤
H∑
h=1

K∑
k=1

ζkh + 2

H∑
h=1

K∑
k=1

β ∥ψk,h∥Λ−1
k,h

Since we have event Optimism, we have
∣∣δkh∣∣ ≤ H . Thus, using the Hoeffding inequality, we have:

H∑
h=1

K∑
k=1

ζkh ≤ O
(
H
√
K log(KH/δ)

)
Using the standard linear elliptical potential lemma, we obtain:

H∑
h=1

K∑
k=1

∥ψk,h∥Λ−1
k,h
≤ O(Hd

√
K log(KH/δ))

Then we have the regret bounded as:

K∑
k=1

CVaR∗
τ −CVaRπ

k

τ ≤ Õ
(
τ−1H2d3

√
MK

)
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I.6. Numerical Experiment Results

In this section we provide the details of our numerical experiments. We construct a zero-mean MDP where the expected
return for all the state-action pairs are 0, thus risk-neutral algorithms such as LSVI-UCB of Jin et al. (2020) will learn
nothing. We also compare our results with the optimistic MDP algorithm of Bastani et al. (2022). For simplicity we
constructed a toy MDP with S = 3, A = 2, d = 2, H = 6, M = 3. The results are in Figure 1. From the figures we can see
that the risk-neutral algorithm LSVI-UCB fails to learn anything, while the model-based algorithm of Bastani et al. (2022)
converges much slower than ours. Also, with smaller τ we have larger regret, which is consistent with previous analysis.

(a) CVaR0.2 (b) CVaR0.3.

(c) CVaR0.5 (d) CVaR0.7

Figure 1. Comparison for different algorithms for the CVaR objective CVaRτ under different risk parameter τ .
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