
Stacking Deep Set Networks and Pooling by Quantiles

Zhuojun Chen 1 Xinghua Zhu 1 Dongzhe Su 1 Justin C. I. Chuang 1

Abstract
We propose Stacked Deep Sets and Quantile Pool-
ing for learning tasks on set data. We introduce
Quantile Pooling, a novel permutation-invariant
pooling operation that synergizes max and av-
erage pooling. Just like max pooling, quantile
pooling emphasizes the most salient features of
the data. Like average pooling, it captures the
overall distribution and subtle features of the data.
Like both, it is lightweight and fast. We demon-
strate the effectiveness of our approach in a variety
of tasks, showing that quantile pooling can out-
perform both max and average pooling in each
of their respective strengths. We also introduce
a variant of deep set networks that is more ex-
pressive and universal. While Quantile Pooling
balances robustness and sensitivity, Stacked Deep
Sets enhances learning with depth.

1. Introduction
Deep learning has made remarkable strides in various do-
mains by leveraging the representational power of neural
networks. A fundamental challenge in this field is the effec-
tive processing and learning from set-structured data (Szabó
et al., 2016). The seminal works of ”Deep Sets” (Zaheer
et al., 2017), ”Pointnet” (Qi et al., 2017a) and ”Set Trans-
former” (Lee et al., 2019) have propelled advancements in
this area by demonstrating that permutation-invariant func-
tions can model set-based data effectively.

Pooling operations are essential in neural network architec-
tures for summarizing variable-sized, unordered set data.
Max pooling, highlighted in Pointnet, excels in robustness
by capturing the most significant features, while average
pooling computes a mean that better represents the overall
data distribution, leading to a more generalized feature ag-
gregation. However, such pooling techniques come with
their limitations and trade-offs, many of which have been

1ASTRI, Hong Kong, China. Correspondence to: Zhuojun
Chen <georgechen@astri.org>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

well studied in the literature (Wagstaff et al., 2019; Bueno
& Hylton, 2021; Wagstaff et al., 2022).

The search for a more suitable pooling function for set data
has prompted the evaluation of alternatives. Learned pooling
methods, which adaptively weight set elements based on
their importance, show promise (Lee et al., 2019; Zhao et al.,
2021; Naderializadeh et al., 2021; Bartunov et al., 2022;
Zhang et al., 2019). However, their high computational
expense limits practicality for many applications (refer to
Appendix A.4 for a comparison).

In our observation on efficient pooling operations, we find
that while max pooling is effective in highlighting domi-
nant features, it can neglect subtle yet informative aspects
of the data, leading to potential information loss. On the
other hand, average pooling, despite its inclusive approach,
risks diminishing unique features by uniformly averaging
all points. This balance poses a significant challenge in
handling complex data distributions where a complete repre-
sentation demands acknowledgement of both subtle nuances
and prominent characteristics.

This paper introduces a new paradigm of pooling for neural
networks in the form of Quantile Pooling, a method that
synergizes the extremes of max and average pooling. Quan-
tile pooling has the potential to offer a dynamic balance,
selectively emphasizing the most relevant aspects of the
data depending on the context, a flexibility that is lacking in
traditional pooling methods. Building on the Stacked Deep
Sets architecture, initially introduced by Zaheer et al. (2017)
but not fully investigated before, our approach showcases
that it surpasses the performance of other pooling strategies
and network architectures while maintaining computational
efficiency.

2. The Quantile Pooling Family
Consider a probability space (Ω,F , P) and a random vari-
able X : Ω → R with cumulative distribution function
FX : R → [0, 1]. X has bounded support [a, b], where
a = inf{x ∈ R : P (X ≤ x) > 0} and b = sup{x ∈ R :
P (X ≥ x) > 0}. A symmetric pooling function P over the
distribution of X can be represented by an operator that ag-
gregates the values of X , taking into account the symmetry
of the underlying distribution.

1

Stacking Deep Set Networks and Pooling by Quantiles

Let us define a functional P : F → R such that for a set of
real numbers {x1, x2, . . . , xn} with associated probabilities
{p1, p2, . . . , pn}, we have:

P(x1, x2, . . . , xn; p1, p2, . . . , pn) =

∫ 1

0

QX(p)dν(p)

where QX(p) is the quantile function, the inverse of FX ,
and ν is a measure on [0, 1] that reflects the pooling strategy.
The measure ν is absolutely continuous with respect to the
Lebesgue measure µ, with a density function fν that satisfies
fν(p) ≥ 0 for all p ∈ [0, 1] and

∫ 1

0
fν(p)dµ(p) = 1. Thus,

we can define:

Definition 2.1. For a given quantile q ∈ [0, 1], the quantile
pooling operation Pq(X) is defined as:

Pq(X) =

∫ 1

0

QX(p)fνq
(p) dp (1)

where fνq
(p) is the density function associated with measure

ν, specifically in the case of δ quantile pooling, a Dirac delta
function δ(p− q) centered at q.

We endow flexibility to fν by not restricting it to be δ.

Lemma 2.2. Quantile pooling approximates max pooling,
as q → 1, with a density function fνϵ

(p) concentrated in
[1− ϵ, 1]:

lim
q→1
Pq(X) = QX(1) ≡ max(X)

This means the measure ν concentrates all its mass at the
supremum of the support of X , and the pooling operation
Pq(X) evaluates the quantile function QX(p) at p = 1,
which is equivalent to max pooling.

Lemma 2.3. Quantile pooling with a density function fνϵ
(p)

spread over an interval [q − ϵ, q + ϵ] approximates average
pooling as ϵ approaches 0.5:

lim
ϵ→0.5

Pϵ(X) = E[X]

This means the density function fνϵ(p) = 1.

In this framework, some examples of pooling functions are:

Max Pooling: fν(p) = δ(p− 1), where δ is the Dirac delta
function. This captures the maximum value of X , as P
effectively evaluates QX(1).

Average Pooling: fν(p) = 1, the constant function, reflect-
ing the uniform distribution. This yields the expected value
(mean) of X .

δ Quantile Pooling: fν(p) = δ(p− q) for a given quantile
q. This selects the q-th quantile of X . This is refered to as δ
quantile pooling.

Attention Pooling: fν(p) = A(p)∫ 1
0
A(p) dp

, where A is a learn-
able function that assigns weights to each quantile. The
pooling function used in Set Transformer (Lee et al., 2019)
is an instance of this.

Relaxed Quantile Pooling: Relaxed from δ quantile pool-
ing, fν(p) = 1

2ϵ for p ∈ [q − ϵ, q + ϵ] and 0 otherwise. We
find this to be a more generalizable form of quantile pooling.

In fact, various pooling functions can be crafted by selecting
alternate density functions fν , enabling the capture of di-
verse data distribution aspects suited to specific applications
or domains. Our focus will be on relaxed quantile pooling
in this paper.

Notably, sum pooling does not fit naturally into this frame-
work unless we relax ν which is a probability measure to a
finite measure. However, if the cardinality is constant, sum
pooling is equivalent to average pooling (Bueno & Hylton,
2021).

3. Characteristics
Bueno & Hylton’s theorem (2021) on the limitations of
max and average pooling reveals critical insights into the
representation power of these pooling functions, specifically
in the context of certain metrics.

We delve deeper into the efficacy of max and average pool-
ing in capturing perturbations, a vital characteristic for han-
dling real-world data, and assess quantile pooling’s ability
to adeptly conbine their benefits.

3.1. Max Pooling

The advantages of max pooling are well-documented and
supported by extensive literature (Qi et al., 2017b; Liu et al.,
2020; Ma et al., 2022), underscoring its widespread use in
various applications. Max pooling preserves the topological
properties of the input set, such as the norm or convexity, as
it select the most salient feature of the data. Nevertheless,
there are still limitations for being a max pooler.

Since max pooling focuses solely on the maximal values,
it is inherently robust to outliers and noise that do not rep-
resent the extreme points of the set. That said, we find
that max pooling is not as effective at capturing the overall
distribution and detailed contrast of the data.

Let X = {x1, x2, . . . , xn} ⊂ R and let x∗ = max(X).
Consider a perturbation ε > 0 such that x∗ > xi + ε for all
i ̸= i∗. For max pooling, we can state the following:

Remark 3.1. Max pooling is invariant to perturbations of
the form xi ← xi + ε for all i ̸= i∗, where i∗ is the index
of the maximum element.

On the other hand, consider a perturbed set X ′ = X ∪{xi+

2

Stacking Deep Set Networks and Pooling by Quantiles

ε |xi ∈ X, i ̸= i∗} where perturbed elements are added to
the set.
Remark 3.2. Max pooling is insensitive to the addition of
the ε-perturbed elements:

max(X ′) = max(X)

Remark 3.1 ties in with the robustness of max pooling, as it
is invariant to perturbations in the form of noise or outliers.
Remark 3.2 marks the limitation of max pooling, as it is
unable to capture the addition of nuanced features to the set.

3.2. Average Pooling

Average pooling is a global summary of the data distribution,
as it considers all the elements of the set equally. Consider
adding just one perturbed element xn+ε to the set X , which
becomes X ′ = {x1, x2, . . . , xn, xn + ε}.
Remark 3.3. Average pooling is sensitive to the addition of
the ε-perturbed element:

avg(X ′) =
1

n+ 1

(
n∑

i=1

xi + xn + ε

)

Compared to max pooling, average pooling is more affected
by perturbations such as noise or outliers, However when
the perturbations are features, average pooling does a better
job at capturing them.

Section 5.2 will demonstrate that average pooling is more
sensitive to the order of elements in a particular type of sets.

3.3. Quantile Pooling

Quantile pooling serves as a versatile intermediary between
average and max pooling. By adjusting its parameters ϵ
and q, it can be fine-tuned to prioritize either sensitivity
or robustness. The pooling function transitions from an
average pooling behavior (ϵ → 0.5, q → 0.5) to a max
pooling behavior (ϵ → 0, q → 1) with ease. This shift is
illustrated in Figure 1, highlighting the adjustable nature of
quantile pooling.

Yet, we establish that only a positive ϵ is necessary for the
below to hold:

Lemma 3.4. Let Pmax be the max pooling function and
Pq,ϵ the relaxed quantile pooling function with quantile
level q and relaxation parameter ϵ. Let ΘF

g ,Θ
F
h ,Θ

G
g ,Θ

G
h be

continuous element-wise functions. ∃ΘF
g ,∃ΘF

h ,∀ΘG
g ,∀ΘG

h ,
which define set functions F(X) = ΘF

g

(
Pq,ϵ

(
ΘF

h (X)
))

and G(X) = ΘG
g

(
Pmax

(
ΘG

h(X)
))

such that ∀ξ > 0, ∀q ∈
(0, 1),

|F(X)− G(X)| < ξ

iff ϵ > 0.

This means that quantile pooling networks can approximate
max pooling networks arbitrarily well, as long as ϵ > 0,
regardless of q. The proof is provided in Appendix A.3,
which is based on Qi’s UAT (Qi et al., 2017a) and by proving
a continuity of the relaxed quantile pooling Pq,ϵ w.r.t X .

However, being able to approximate is a theoretical aspect.
More practically, we can alter the readiness of quantile pool-
ing to approximate certain functions by tuning the param-
eters q and ϵ. As we can see in Figure 1, quantile pooling
accuracies plunge when approaching max pooling in the
sorting task. Providentially, these parameters prove not too
tricky to tune, as we find that relaxing the quantile pooling
with q = 0.95 and ϵ = 0.05 generally yields strong results:

fν(p) =

{
1
0.1 , if p ∈ [0.9, 1]

0, otherwise

This pooling function strikes a balance between max pooling
and average pooling by capturing key data features while
accounting for the broader distribution, offering adaptability
for diverse datasets.

4. Implementation
4.1. Quantile Pooling Layer

Consider the pooling layer operates on a tensor X ∈ RN×D

and outputs a vector y ∈ RD. To approach the quantile
pooling function, the quantile range [q − ϵ, q + ϵ] is divided
into k equal intervals, which determines the granularity of
the approximation. This results in a vector of quantile levels
q ∈ Rk , where q = {q − ϵ + 2ϵ

k , q − ϵ + 4ϵ
k , . . . , q + ϵ}.

Instead of computing all k quantiles for all D dimensions,
we divide the input tensor X into k segments along D,
emulating sampling evenly across D. For each segment Di,
the corresponding subset X[:,Di] is processed to calculate
the quantile values. This results in k quantile-pooled vectors
yDi
∈ R1×D/k, which are concatenated to form the output

vector y, such that y =∥ki=1 yDi
, where ∥ denotes the

concatenation operation. We find that k = 16 is sufficient
for most tasks.

To compute the quantile values, we refer to Hyndman and
Fan’s algorithm (Hyndman & Fan, 1996), which involves
calculating a real-valued index h, which represents the posi-
tion of the q-quantile within the ordered sample. When h
is an integer, the h-th smallest value, denoted xh, is taken
as the quantile estimate. If h is not an integer, interpolation
between x⌊h⌋ and x⌈h⌉ is used to determine the estimate.

The selection of the q and ϵ is critical for the generalization
of the pooling operation across various tasks. For the exper-
iments in this paper, unless otherwise specified, we fix q at
0.95 and ϵ at 0.05, as this configuration has demonstrated
a broad generalizability across different datasets and tasks.

3

Stacking Deep Set Networks and Pooling by Quantiles

While some tasks, such as sorting clusters (Section 5.2), may
benefit from a more task-specific selection of p and ϵ, we
have deliberately refrained from extensive hyperparameter
optimization in those areas.

Notwithstanding, an exploratory (see Figure 1) attempt was
made to endow the quantile level q with the capacity to
be learned from the data. However, empirical results indi-
cate that the learned values of q do not deviate significantly
from their initializations, suggesting a lack of incentive
for the model to adjust this parameter during training. We
conjecture that this phenomenon arises due to the static
nature of the pooling function, which lacks the dynamic
weighting mechanism inherent in more sophisticated archi-
tectures such as the self-attention mechanism in transform-
ers (Vaswani et al., 2017). As a result, the introduction of a
learnable q did not yield substantial improvements in our
experiments. Therefore, our implementation of quantile
pooling is non-parameterized.

Figure 1. Transitioning of quantile pooling functions and learning
of quantile vector q . Varying the quantile level q and the relaxation
parameter ϵ results in a smooth transition between max pooling
and average pooling. Learning experiments are conducted on the
sorting clusters problem in Section 5.2.

4.2. Stacked Deep Sets

We propose an architecture that extends the concept of deep
set networks through a series of transformational and aggre-
gational layers, each designed to extract features at varying
levels of abstraction. The depth of the network is facilitated
by stacking these layers, with each layer l comprising a
transformation followed by an aggregation step.

A pivotal aspect of the architecture is the incorporation of
residual learning (He et al., 2016), which is designed to
refine the learning process within deep networks. An vanilla
residual learning mechanism can be expressed as follows:

Given the output h(l) ∈ RN×D from the l-th layer, where
D is the feature dimension, the subsequent layer output
h(l+1) ∈ RD is computed by:

h(l+1) = h(l) +W(l)
[
h(l) ⊕ P

(
Θ(l)

(
h(l)
))]

(2)

where ⊕ denotes vector concatenation, W(l) ∈ RD×2D

represents the learnable weight matrix associated with the
l-th layer, P signifies the quantile pooling operation, and
Θ(l) embodies the multi-layer perceptron (MLP) that effects
a non-linear transformation.

Each layer l applies a non-linear transformation Θ(l) to
h(l), followed by the relaxed quantile pooling operation P
for feature aggregation. The aggregation is concatenated
with the original output h(l), and the ensemble is linearly
transformed via W(l), producing an enriched feature rep-
resentation that is summed with h(l) to yield h(l+1). Note
that the operation W (h⊕ g) can be done efficiently by
hW⊺

0:D + gW⊺
D:2D, where h ∈ RN×D and g ∈ R1×D.

In a variant of the above architecture, we introduce a modi-
fication to the transformation and aggregation mechanism
within each layer.

Let g(l) = P
(
Θ(l)

(
h(l)
))

be the pooled feature, then the
output of the l-th layer h(l+1) is given by:

h(l+1) = h(l) +W(l)
[(

h(l) − g(l)
)
⊕Θ(l)

g

(
g(l)
)]

(3)

Here, g(l) represents the pooled feature that is derived from
the l-th layer’s output, and Θ

(l)
g is the multi-layer perceptron

applied to g(l). The introduction of Θ(l)
g is intended to pro-

vide a richer and more expressive feature representation by
applying a non-linear transformation to the pooled feature.
The subtraction (h(l) − g(l)) aims to isolate the residual
information, thereby enhancing the model’s capacity to dis-
cern and learn from the subtle nuances in the data. This in
some way shares a similar motivation with Chen’s recycling
procedure (Chen et al., 2022).

This modification has negligible impact on the computa-
tional complexity of the architecture (2% additional forward
time), for the added Θ

(l)
g (g(l)) is a function of the pooled

feature g(l), which is 1/N of the computation of Θ(l) ap-
plied to h(l). Most of the extra computation comes from the
subtraction (h(l) − g(l)), which is also minor.

The improvement of this modification over the vanilla im-
plementation is universal across all tasks, which is demon-
strated in Appendix A.7. This architecture enables the ex-
traction of more complex feature representations. Experi-
ments in the next section show it outperforms Deep Sets and
often exceeds Set Transformer’s learned pooling.

Scaling: The architecture can be scaled to a deeper net-
work by stacking more layers as described by Equation (3),
and we observe a linear improvement in performance with
an increased number of layers across many tasks. In Ap-
pendix A.5, we demonstrate the scaling of the architecture
to as many as 256 layers. For experiments in the main text,
we only use 3 layers.

4

Stacking Deep Set Networks and Pooling by Quantiles

Figure 2. Sample statistic regression results. Refer to Table 1 for the summary of the results.

5. Experiments
Experiments are conducted to reveal the capability of differ-
ent pooling methods in a variety of tasks. Detailed experi-
mental settings are provided in Appendix A.11.

5.1. Sample Statistic Regression

We formulate a simple regression problem to demonstrate
the effectiveness of quantile pooling.

Sample mean regression: Given a set of samples X ⊂ N,
X ∼ U{0, 1, 2, . . . , 255}, we want to predict the mean of
the samples µ = 1

n

∑n
i=1 xi. To avoid trivial solutions, the

input set is first converted to one-hot encoding.

In this task, Set Transformer with PMA outperforms all
other methods by a large margin, the task still seeming
trivial for it. This will explain why Set Transformer also
performs better than Stacked Deep Sets in the Mixture of
Gaussians task in Section 5.4. Average pooling is superior
to max pooling, while quantile pooling is not far behind
average pooling.

Sample maximum regression: With the same setting as
above, this task is to predict the maximum of the samples.

In this task, max pooling is the best, followed by quantile
pooling and PMA.

Sample standard deviation regression: With the same

setting as above, this task is to predict the standard deviation
of the samples.

This is a task not trivial for all methods. Quantile pool-
ing demonstrates the best performance, followed by max
pooling.

Sample 2nd largest regression: With the same setting
as above, this task is to predict the second largest of the
samples.

In this task, quantile pooling is the best, with surprisingly
simple Deep Sets (DS) utilizing quantile pooling as a close
runner-up. Overall, this is not an easy task for any method,
as evidenced by the comparatively large errors observed.

Discussion: The training curves presented in Figure 2 and
the summarized results in Table 1 provide valuable insights
into the performance of various pooling strategies when
dealing with set-structured data. The Set Transformer, uti-
lizing Pooling by Multihead Attention (PMA), consistently
outperforms all Deep Sets (DS) variations, corroborating
the findings from Lee et al. (2019). While different pool-
ing methods exhibit distinct strengths within the Deep Sets
architecture, its overall capability appears somewhat con-
strained. Conversely, the Stacked Deep Sets (DSS) architec-
ture significantly improves upon Deep Sets and frequently
surpasses the Set Transformer, with the notable exception
of mean prediction.

Within the Stacked Deep Sets framework, average pooling

5

Stacking Deep Set Networks and Pooling by Quantiles

excels at estimating means, max pooling at capturing maxi-
mum values, and quantile pooling at identifying the second-
largest elements. When it comes to the more nuanced task of
predicting the standard deviation, quantile pooling emerges
as the superior method, capturing the underlying variability
of the data with remarkable precision.

Table 1. Comparison of Pooling Methods Across Regression Tasks.
The integer in each cell represents the rank of the pooling method
in the corresponding task, where a rank of 1 indicates the best
performance. ”DS” stands for Deep Sets, ”SET TR” stands for Set
Transformer, ”DSS” stands for Deep Sets Stacked (stacked Deep
Sets), ”PMA” stands for Pooling by Multihead Attention used in
Set Transformer.

NET POOLING MEAN MAX STD 2ND MX

DS MAX 7 5 7 7
DS AVG 5 6 5 6
DS QUANT 6 7 6 2
SET TR PMA 1 =2 4 4
DSS MAX 4 1 2 5
DSS AVG 2 4 3 3
DSS QUANT 3 =2 1 1

Figure 3. Visualisation of sorting clusters. For visualization pur-
poses, this perturbation is sampled from a normal distribution.

5.2. Sorting Clusters

We formulate a sorting problem as empirical evidence to
justify the characteristics of pooling functions discussed in
Section 3. The sorting problem serves as a practical sce-
nario to understand how different pooling strategies handle
perturbations and maintain the relative order within a set.

We first construct a multiset X by sampling n integers
from a uniform distribution over N. Repeated elements
are included to ensure that the multiset forms small clus-
ters. The multiset is then perturbed by adding a uniform
noise to each element, with each integer xi ∈ X subjected
to a uniform perturbation ϵi ∼ U(−0.1, 0.1), such that

the perturbed multiset X ′ = {xi + ϵi|xi ∈ X}. For
example, a multiset X = {1, 1, 2, 2, 3} is perturbed by
ϵ = {−0.01, 0.01, 0.0, 0.09,−0.05}, which after perturba-
tion becomes X ′ = {0.99, 1.01, 2.0, 2.09, 2.95}. The min-
imum distance of X ′, denoted dmin(X

′), is deliberately
kept small to create a tightly bound set:

dmin(X
′) = inf{|xi − xj | : xi, xj ∈ X ′} ≤ δ

where δ is a small positive number, such that dmin(X) ≥
1 ≫ δ ≥ dmin(X

′), signifying the maximum allowable
distance between any two elements in X to maintain the
compactness of the clusters.

The task is to predict the sorted index (ranking) of each
element in the perturbed set X ′, which makes it an element-
wise classification problem. The performance metric for
this task is the prediction accuracy of the sorted indices.

Results and discussion: Stacked Deep Sets utilizing aver-
age and quantile pooling surpass the performance of those
with max pooling and Set Transformer. These findings align
with the theoretical insights discussed in Section 3. The ten-
dency of average pooling to be sensitive to minor changes
enables it to preserve the order within smaller data clus-
ters. Quantile pooling, particularly with a high quantile
(i.e., q = 0.95, ϵ = 0.05) effectively retains the intricate
structure of these clusters while also accounting for the
broader distribution, leading to its superior results. In this
experiment, quantile pooling is slightly better than average
pooling. Moreover, we observe that expanding the network
in both depth and width further improves quantile pooling’s
performance over average pooling (similar to Figure 10).

In contrast, max pooling tends to fall short in these sce-
narios due to its disregard for subtle differences among set
elements, opting to highlight only the most dominant value.
The performance of the Set Transformer shows that, despite
its ability to assign varying weights to different elements
through its attention mechanism, it might possess limitations
akin to max pooling.

Figure 4. Sorting clusters results.

6

Stacking Deep Set Networks and Pooling by Quantiles

5.3. Russian-dollable Envolopes

The problem of Russian-dollable Envelopes provides a
robust testbed for evaluating the capacity of neural ar-
chitectures to understand and encode hierarchical spatial
relationships. Consider a collection of envelopes E =
{e1, e2, . . . , en}, where each envelope ei is characterized
by its continuous width and height ei = (wi, hi) ∈ R2. An
envelope ei can be placed inside another envelope ej if and
only if both dimensions of ei are strictly smaller than those
of ej , formally wi < wj and hi < hj . The objective is to
identify the longest sequence of envelopes ei1 , ei2 , . . . , eik
such that each envelope can be nested within the subsequent
one, according to the aforementioned condition. This se-
quence represents the maximum number of Russian-dollable
envelopes.

The task requires discerning intricate orderings based on
two-dimensional continuous variables and constructing a
maximal chain in this ordered set:

max
π
{k : eπ(1), eπ(2), . . . , eπ(k) |

(wπ(i) < wπ(i+1)) ∧ (hπ(i) < hπ(i+1))}

where π is a permutation of the indices {1, 2, . . . , n} and k
is the length of the longest nesting sequence.

We formulate this problem as a classification task, where
the objective is to predict the number of envelopes in the
longest nesting sequence. The performance metric for this
task is the prediction accuracy of the number of envelopes
in the longest nesting sequence. Note that the input to the
model is again unordered, and the envelope dimensions are
sampled continuously from a uniform distribution unlike in
Section 5.2.

Results and discussion: The training curves are presented
in Figure 5. Quantile pooling outshines others, whereas
Set Transformer lagging behind all by a large margin. This
task is emblematic of problems where spatial hierarchies
are paramount. Notably sorting is a sub-problem here. Max
pooling proves better than average pooling in complex sce-
narios without perturbations. Crucially, quantile pooling by-
passes the constraints of max and average pooling, highlight-
ing its resilience and flexibility. Furthermore, we observe
advantage of quantile pooling over max pooling widens as
we scale the network (Appendix A.5).

5.4. Mixture of Gaussians

The Mixture of Gaussians (MoG) problem is a classic clus-
tering task that has been extensively studied in the literature.
It is a problem also presented as a set problem in the original
Set Transformer paper (Lee et al., 2019). The objective is to
determine the set of parameters that maximize the likelihood
of the observed data.

Figure 5. Russian-dollable envelopes results.

Given a dataset X = {x1, x2, . . . , xn}, where each xi ∈ Rd

is drawn from a mixture of Gaussian distributions, the task
is to find the optimal parameters θ∗ that maximize the log-
likelihood function:

θ∗(X) = argmax
θ

log p(X; θ)

The parameter set θ typically includes the means, covari-
ances, and mixing coefficients of the Gaussian components
in the mixture. The log-likelihood of the data under a MoG
model is given by:

log p(X; θ) =

n∑
i=1

log

(
K∑

k=1

πkN (xi;µk,Σk)

)

where K is the number of Gaussian components, πk are
the mixing coefficients such that

∑K
k=1 πk = 1, N (x|µ,Σ)

denotes the Gaussian distribution with mean µ and covari-
ance matrix Σ, and µk and Σk are the parameters of the k-th
Gaussian component.

Results and discussion: Quantile pooling exhibits the most
promising results among Stacked Deep Sets, suggesting
that quantile pooling’s ability to capture nuanced distribu-
tional features is particularly advantageous for modeling the
complex structure of MoGs. Max pooling also performs
well, whilst average pooling slightly lag behind. This sug-
gests this task is not simple statistic modeling, as it requires
learning of sometimes convoluted clusters (Lee et al., 2019)
which complicates its nature. The Set Transformer architec-
ture with PMA achieves the best performance, attributable
to its excellent ability to model the most important statistic,
mean, as demonstrated in Section 5.1.

5.5. Point Cloud Classification

In 3D data analysis, classifying point clouds is a key chal-
lenge. We explore quantile pooling on ModelNet40 (Wu
et al., 2015)—a benchmark dataset with 40 classes of 3D ob-
jects. Unlike methods that use point relationships (typically

7

Stacking Deep Set Networks and Pooling by Quantiles

Table 2. Mixture of Gaussians Results

NET POOLING LOG LIKELIHOOD

ORACLE - -1.4778
SET TR PMA -1.4867
DSS MAX -1.5186
DSS AVG -1.5501
DSS QUANT -1.4937

Table 3. Point Cloud Classification Results

NET POOLING ACCURACY

DS MAX 0.8956 ± 0.0024
DS AVG 0.8638 ± 0.0032
DS QUANT 0.8956 ± 0.0014
SET TR PMA 0.8853 ± 0.0024
DSS MAX 0.9030 ± 0.0035
DSS AVG 0.8997 ± 0.0012
DSS QUANT 0.9071 ± 0.0022

Pointnet++ (Qi et al., 2017b)), we test our models without
explicit consideration of the spatial relationships between
points.

We also test quantile pooling within PointMLP (Ma et al.,
2022), a strong baseline and well-established framework
that does consider spatial point relations using KNN, by
substituting all its max pooling layers with quantile pooling.

Results and discussion: In our experiments within Stacked
Deep Sets, quantile pooling outperformed both max and
average pooling, as detailed in Table 3. This indicates that
quantile pooling excels at capturing deep semantic features
in complex datasets. Though average pooling works so
poorly with Deep Sets, it gains a significant boost in perfor-
mance when used in Stacked Deep Sets.

In subsequent tests on the PointMLP architecture, replacing
max pooling with quantile pooling produced a significant
boost in classification accuracy. These results highlight

Figure 6. Classification accuracy for ModelNet40 using average,
max and quantile pooling in the PointMLP model.

quantile pooling’s adaptability and effectiveness as a robust
component in point cloud neural networks.

6. Related Work
Two cardinal approaches for obtaining permutation invariant
encodings of sets is average and max pooling (Zaheer et al.,
2017; Qi et al., 2017a). It has been found that the latent
space dimensionality of the result of the pooling operation
needs to be at least as large as the number of inputs in order
to guarantee universal function approximation (Wagstaff
et al., 2019). Limitations of both pooling methods have
been identified (Bueno & Hylton, 2021).

Janossy Pooling generalizes coordinate-wise pooling to in-
corporate higher-order interactions between set elements
(Murphy et al., 2019). However, its effectiveness in improv-
ing approximation results in the general case is uncertain
(Wagstaff et al., 2022).

Principal Neighbourhood Aggregation (PNA) (Corso et al.,
2020) addresses the limitations of individual pooling opera-
tors by combining four different pooling operators and three
scaling strategies for graph models.

Equilibrium Aggregation generalizes the functional form of
the aggregation operator beyond traditional pooling methods
(Bartunov et al., 2022). PSWE introduces a geometrically-
interpretable pooling method using sliced-Wasserstein dis-
tances (Naderializadeh et al., 2021).

The Set Transformer (Lee et al., 2019) is a neural network
architecture that uses self-attention to aggregate information
from the set elements. Although transformers have been
shown to be effective in modeling long-range dependencies
in sequential data (Brown et al., 2020), they may not be as
ready to be trained on set-structured data.

Combining different pooling functions is an artless yet favor-
able strategy in numerous works, which we do not list here.
Appendix A.10 demonstrates the unique merits of quantile
pooling over combination of max and average pooling.

7. Conclusion
We have demonstrated that quantile pooling is a robust and
flexible pooling strategy. We have also proposed a novel
architecture, Stacked Deep Sets, that extends the Deep Sets
framework to enable the extraction of more complex feature
representations. Stacked Deep Sets and quantile pooling
prove to be a simple, efficient, and powerful combination
for modeling set-structured data.

8

Stacking Deep Set Networks and Pooling by Quantiles

Acknowledgements
This work is supported by the Smart Traffic Fund (STF)
for the application aspects in the project titled “Evaluation
of Smart Mobility Roadside Infrastructure for Connected
Autonomous Vehicles (PSRI/52/2210/RA CAV),” granted by
Hong Kong Transport Department, which facilitated the
application aspects of the study.

This work is also supported by the Innovation and Technol-
ogy Fund (ITF) for the project titled “Generative Pretrained
Large Traffic Model for Multi-Modal Traffic Data Under-
standing (ARD/309),” granted by Hong Kong Innovation
and Technology Commission, which specifically supported
the design of the methodology.

The authors would like to acknowledge the support
from both the Innovation and Technology Fund & Hetao
Shenzhen-Hong Kong Science and Technology Innovation
Cooperation Zone Shenzhen Park Project (No.HTHZQSWS-
KCCYB-2023042) for the research and development contri-
butions.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Bartunov, S., Fuchs, F. B., and Lillicrap, T. P. Equilibrium

aggregation: Encoding sets via optimization. In Un-
certainty in Artificial Intelligence, pp. 139–149. PMLR,
2022.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Bueno, C. and Hylton, A. On the representation power of
set pooling networks. Advances in Neural Information
Processing Systems, 34:17170–17182, 2021.

Chen, J., Kakillioglu, B., Ren, H., and Velipasalar, S. Why
discard if you can recycle?: A recycling max pooling
module for 3d point cloud analysis. In Proceedings of the
IEEE/CVF conference on Computer Vision and Pattern
Recognition, pp. 559–567, 2022.

Corso, G., Cavalleri, L., Beaini, D., Liò, P., and Veličković,
P. Principal neighbourhood aggregation for graph nets.
Advances in Neural Information Processing Systems, 33:
13260–13271, 2020.

Csáji, B. C. et al. Approximation with artificial neural
networks. Faculty of Sciences, Etvs Lornd University,
Hungary, 24(48):7, 2001.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hornik, K., Stinchcombe, M., and White, H. Multilayer
feedforward networks are universal approximators. Neu-
ral networks, 2(5):359–366, 1989.

Hyndman, R. J. and Fan, Y. Sample quantiles in statistical
packages. The American Statistician, 50(4):361–365,
1996.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., and Teh,
Y. W. Set transformer: A framework for attention-based
permutation-invariant neural networks. In Proceedings of
the 36th International Conference on Machine Learning,
pp. 3744–3753, 2019.

Liu, Z., Hu, H., Cao, Y., Zhang, Z., and Tong, X. A closer
look at local aggregation operators in point cloud analysis.
In Computer Vision–ECCV 2020: 16th European Con-
ference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part XXIII 16, pp. 326–342. Springer, 2020.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. arXiv preprint arXiv:1711.05101, 2017.

Ma, X., Qin, C., You, H., Ran, H., and Fu, Y. Re-
thinking network design and local geometry in point
cloud: A simple residual mlp framework. arXiv preprint
arXiv:2202.07123, 2022.

Murphy, R. L., Srinivasan, B., Rao, V., and Ribeiro, B.
Janossy pooling: Learning deep permutation-invariant
functions for variable-size inputs. In International Con-
ference on Learning Representations, 2019.

Naderializadeh, N., Comer, J. F., Andrews, R., Hoffmann,
H., and Kolouri, S. Pooling by sliced-wasserstein em-
bedding. Advances in Neural Information Processing
Systems, 34:3389–3400, 2021.

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. Pointnet: Deep
learning on point sets for 3d classification and segmenta-
tion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 652–660, 2017a.

Qi, C. R., Yi, L., Su, H., and Guibas, L. J. Pointnet++:
Deep hierarchical feature learning on point sets in a met-
ric space. Advances in neural information processing
systems, 30, 2017b.

9

Stacking Deep Set Networks and Pooling by Quantiles

Szabó, Z., Sriperumbudur, B. K., Póczos, B., and Gretton, A.
Learning theory for distribution regression. The Journal
of Machine Learning Research, 17(1):5272–5311, 2016.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wagstaff, E., Fuchs, F., Engelcke, M., Posner, I., and Os-
borne, M. A. On the limitations of representing functions
on sets. In International Conference on Machine Learn-
ing, pp. 6487–6494. PMLR, 2019.

Wagstaff, E., Fuchs, F. B., Engelcke, M., Osborne, M. A.,
and Posner, I. Universal approximation of functions on
sets. The Journal of Machine Learning Research, 23(1):
6762–6817, 2022.

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang,
X., and Xiao, J. 3d shapenets: A deep representation for
volumetric shapes. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 1912–
1920, 2015.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,
Salakhutdinov, R. R., and Smola, A. J. Deep sets. Ad-
vances in neural information processing systems, 30,
2017.

Zhang, Y., Hare, J., and Prügel-Bennett, A. Fspool: Learn-
ing set representations with featurewise sort pooling.
arXiv preprint arXiv:1906.02795, 2019.

Zhao, H., Jiang, L., Jia, J., Torr, P. H., and Koltun, V. Point
transformer. In Proceedings of the IEEE/CVF interna-
tional conference on computer vision, pp. 16259–16268,
2021.

10

Stacking Deep Set Networks and Pooling by Quantiles

A. Appendix
A.1. Mathematical Background

In this appendix, we provide a derivation of the generalized quantile pooling integral in Equation (1).

For a continuous random variable X , the cumulative distribution function (CDF), denoted as FX(x), is defined as the
probability that the random variable X will take a value less than or equal to x:

FX(x) = P (X ≤ x) =

∫ x

−∞
fX(t) dt (4)

where fX represents the probability density function (PDF) of X .

The quantile function QX(p) is the functional inverse of the CDF, FX(x), and is defined for p ∈ [0, 1] as:

QX(p) = F−1
X (p) = inf{x ∈ R : FX(x) ≥ p} (5)

The expected value of X , traditionally calculated using the PDF, can alternatively be expressed using the quantile function:

E[X] =

∫ 1

0

QX(p) dp (6)

This expression for the expected value is derived from the relationship between the expected value and the integral of the
CDF.

We can generalize the concept of expected value to include a measure that assigns weights to each quantile, denoted as
dν(p). This leads us to define a generalized pooling function P(X):

P(X) =

∫ 1

0

QX(p) dν(p) (7)

Here, dν(p) could represent any finite measure on the interval [0, 1]. In the special case where dν(p) is the Lebesgue measure
(the standard measure assigning length to intervals on the real line), the generalized pooling function P(X) simplifies to
E[X].

This general pooling function can be interpreted as a weighted average where the weights are given by the measure ν. If the
measure ν is absolutely continuous with respect to the Lebesgue measure µ, there exists a density function fν(p) such that
for any measurable set A, ν(A) =

∫
A
fν(p) dµ(p). Consequently, the pooling function P(X) can be expressed in terms of

the Lebesgue measure as:

P(X) =

∫ 1

0

QX(p)fν(p) dµ(p) (8)

As the Lebesgue measure on p ∈ [0, 1] is equivalent to the uniform distribution, the pooling function P(X) can be expressed
as:

P(X) =

∫ 1

0

QX(p)fν(p) dp (9)

In this case, fν(p) represents the Radon-Nikodym derivative of ν with respect to µ, often interpreted as the density of
ν relative to µ. When fν(p) = 1, the measure ν coincides with the Lebesgue measure, and the pooling function P(X)
simplifies to E[X], assuming QX(p) represents a probability density function.

11

Stacking Deep Set Networks and Pooling by Quantiles

A.2. Proof of Lemma 2.3

Lemma 2.3: Quantile pooling with a density function fνϵ(p) spread over an interval [q − ϵ, q + ϵ] approximates average
pooling as ϵ approaches 0.5.

Proof. Consider the density function fνϵ
(p) defined over the interval [q − ϵ, q + ϵ] as follows:

fνϵ
(p) =

{
1/(2ϵ), for p ∈ [q − ϵ, q + ϵ]

0, otherwise

The pooling operation Pϵ(X) is then:

Pϵ(X) =

∫ 1

0

QX(p)fνϵ
(p) dp

Because of the interval [q − ϵ, q + ϵ] being contained within [0, 1] for all ϵ ∈ [0, 0.5], as ϵ approaches 0.5, the interval
[q − ϵ, q + ϵ] covers the entire support of p, and the density function fνϵ(p) converges to a uniform density over [0, 1], i.e.
fνϵ(p)→ 1. Therefore, the pooling operation Pϵ(X) converges to the mean of X:

lim
ϵ→0.5

Pϵ(X) = E[X]

A.3. Proof of Lemma 3.4

Lemma 3.4: Let Pmax be the max pooling function and Pq,ϵ the relaxed quantile pooling function with quantile level q and
relaxation parameter ϵ. Let ΘF

g ,Θ
F
h ,Θ

G
g ,Θ

G
h be continuous element-wise functions. ∃ΘF

g ,∃ΘF
h ,∀ΘG

g ,∀ΘG
h , which define

set functions F(X) = ΘF
g

(
Pq,ϵ

(
ΘF

h (X)
))

and G(X) = ΘG
g

(
Pmax

(
ΘG

h(X)
))

such that ∀ξ > 0, ∀q ∈ (0, 1),

|F(X)− G(X)| < ξ

iff ϵ > 0.

Proof. We first prove Pq,ϵ is continuous with respect to X when ϵ > 0. To do that, we need to establish that small changes
in the random variable X lead to small changes in the pooling operation Pq(X).

By the definition of Equation (1), the pooling operation over a quantile q with a smoothing window ϵ can be written as:

Pq(X) =

∫ q+ϵ

q−ϵ

QX(p)
1

2ϵ
dp

Consider a sequence of random variables {Xn} converging in distribution to X . This means that the cumulative distribution
functions FXn converge to FX at every continuity point of FX . Since QX is the inverse of FX , we can also say that QXn

will converge to QX at every continuity point of QX , which is almost everywhere because QX is non-decreasing and hence
has at most countably many points of discontinuity.

Let’s take two random variables X and X ′ with quantile functions QX and QX′ respectively, such that X and X ′ are close
in distribution. Then their quantile functions will also be close,

Given the definition of the relaxed quantile pooling:

|Pq(X)− Pq(X
′)| =

∣∣∣∣∫ q+ϵ

q−ϵ

QX(p)
1

2ϵ
dp−

∫ q+ϵ

q−ϵ

QX′(p)
1

2ϵ
dp

∣∣∣∣
=

∣∣∣∣∫ q+ϵ

q−ϵ

QX(p)−QX′(p)

2ϵ
dp

∣∣∣∣
12

Stacking Deep Set Networks and Pooling by Quantiles

≤
∫ q+ϵ

q−ϵ

∣∣∣∣QX(p)−QX′(p)

2ϵ

∣∣∣∣ dp
Since QX and QX′ are close due to X and X ′ being close in distribution, and the factor 1

2ϵ is constant, the integral on the
right-hand side will be small if ϵ > 0. This shows that Pq(X) is indeed continuous with respect to X .

Besides, applying continuous functions ΘF
g ,Θ

F
h to Pq,ϵ will not change the continuity, we can conclude that F(X) is

continuous with respect to X .

Next, we apply the UAT from Pointnet (Qi et al., 2017a), which states G(X) is a universal approximator of all continuous
functions h : X → R on compact sets for any ξ > 0:

|h(x)− G(x)| < ξ

Given that Pq,ϵ is a continuous function w.r.t X when ϵ > 0, we can state ∀ΩF
g ,∀ΩF

h ,∃ΩG
g ,∃ΩG

h such that

|ΩF
g

(
Pq,ϵ

(
ΩF

h (X)
))
− ΩG

g

(
Pmax

(
ΩG

h(X)
))
| < ξ

, written as
|FΩ(X)− GΩ(X)| < ξ

We define any continuous neural network ΛA to transform the input X to XA = ΛA(X) such that XA also satisfies the
definition of X, and then we have,

|FΩ(XA)− GΩ(XA)| < ξ

We define any continuous neural network ΛB to transform the output space of GΩ. By continuity, we have:

|ΛB(FΩ(XA))− ΛB(GΩ(XA))| < ξ

We can define G(X) as:
G(X) = ΛB(Ω

G
g

(
Pmax

(
ΩG

h(ΛA(X))
))
)

∀ΛA,∀ΛB , let ΘG
g = ΛB ◦ ΩG

g ,Θ
G
h = ΩG

h ◦ ΛA.

G(X) = ΘG
g

(
Pmax

(
ΘG

h(X)
))

Given that ΛA and ΛB are continuous neural networks, by the Universal Approximation Theorem (Hornik et al., 1989;
Csáji et al., 2001), ΛA and ΛB can approximate any continuous transformations that the compositions ΘG

g and ΘG
h represent,

within any desired level of accuracy on compact subsets of their domain.

On the other hand, we can define F(X) as:

F(X) = ΛB(Ω
F
g

(
Pq,ϵ

(
ΩF

h (ΛA(X))
))
)

Let ΘF
g = ΛB ◦ ΩF

g ,Θ
F
h = ΩF

h ◦ ΛA, we have:

F(X) = ΘF
g

(
Pq,ϵ

(
ΘF

h (X)
))

We can state ∃ΘF
g ,∃ΘF

h , ∀ΘG
g ,∀ΘG

h ,

|ΘF
g

(
Pq,ϵ

(
ΘF

h (X)
))
−ΘG

g

(
Pmax

(
ΘG

h(X)
))
| < ξ

, which is
|F(X)− G(X)| < ξ

This completes the proof.

13

Stacking Deep Set Networks and Pooling by Quantiles

Figure 7. Comparing the performance of different pooling methods on the sorting clusters problem.

A.4. Comparative Analysis of Parameterized Pooling Methods

We have compared the representational effectiveness and computational efficiency of various pooling strategies, including
max pooling, average pooling, attention-based pooling, learned pooling strategies, and our proposed quantile pooling.

Parameterized pooling methods are designed to learn a data-driven way of aggregating features, which can potentially lead
to better task performance. However, this often comes at the cost of increased computational complexity. We compare two
notable parameterized pooling methods:

Equilibrium Pooling: This method incorporates a small ResNet-like architecture within the pooling mechanism and
employs a small optimization loop during each forward pass. This iterative process, while expressive, is inherently slow due
to the multiple layers of transformations and the optimization routine required for each input set.

PSWE (Pooling by Sliced-Wasserstein Embedding): PSWE requires sorting and indexing over the entire input set
, followed by two separate linear layers. Sorting and indexing large sets is computationally intensive, and the linear
transformations add significant computational overhead.

In contrast to these complex parameterized methods, quantile pooling operates on a much simpler principle. It computes
statistical quantiles, which involve minimal processing akin to finding the max or average values. The process does not
involve learning any additional parameters specific to the pooling operation, thus avoiding the overhead associated with
iterative optimization or complex sorting operations.

Parameterized methods not only are computationally expensive, but also introduce additional layers of neurons which can
also be beneficial to quantile pooling models. In an experiment on the sorting clusters problem (Section 5.2), we compare
the performance of these pooling methods. Results are shown in Figure 7.

When quantile pooling compares to Equilibrium Pooling and PSWE without adding any additional layers, it is 30 times
faster than Equilibrium pooling and 13 times faster than PSWE, while maintaining around 86% of the accuracy (with less
parameters). However, when quantile pooling is also enhanced with additional layers or dimensions, it can achieve much
better performance without getting near the computational complexity of Equilibrium Pooling or PSWE.

This brings us to the scaling of our proposed Stacked Deep Sets architecture.

14

Stacking Deep Set Networks and Pooling by Quantiles

Figure 8. Scaling of Stacked Deep Sets and Set Transformer on the sorting clusters problem.

A.5. Scaling of Stacked Deep Set Networks

We investigate the scaling of the Stacked Deep Sets architecture by varying the number of layers and the hidden dimension-
ality of each layer.

In our analysis, Stacked Deep Sets consistently outperforms Set Transformer on the sorting clusters problem (Section 5.2),
as detailed in Figure 8. To scale Set Transformer, we increase the number of multihead self-attention layers, as well as the
hidden dimensionality of each layer. While both architectures scale positively, Set Transformer’s performance declines
at higher depths with 64 hidden dimensions, suggesting a complex interplay between layer count and dimensionality.
Conversely, Stacked Deep Sets achieves near-perfect accuracy with 16 layers and 256 hidden dimensions. Across all scales,
Stacked Deep Sets outperforms Set Transformer.

We then evaluate Stacked Deep Sets with various pooling methods on the more challenging Russian-dollable envelopes
problem (Section 5.3), as shown in Figure 9. Despite the increased difficulty, Stacked Deep Sets demonstrates linear scaling.
Across all scales, quantile pooling outperforms max pooling, which in turn outdoes average pooling.

Scaling Stacked Deep Sets to 256 layers with 256 hidden dimensions (Figure 10) shows continued performance improvements
and an increasing advantage for quantile pooling over max pooling at greater depths.

Scaling DS? Attempting to scale basic Deep Sets with both the number of layers and the hidden dimensionality results in
hardly any improvement in performance. This starkly contrasts with the scalable Stacked Deep Sets, which consistently
exhibit performance gains with scaling, highlighting the importance of architectural choices in scaling neural networks.

Figure 9. Scaling of Stacked Deep Sets with different pooling methods on the Russian-dollable envelopes problem.

15

Stacking Deep Set Networks and Pooling by Quantiles

Figure 10. Scaling Stacked Deep Sets to 256 layers

A.6. Network Architecture Details

To implement the Stacked Deep Sets architecture, we first use a three-layer MLP, with batch normalization and ReLU
activation, to map the input set to a higher-dimensional space h(0). Recall the residual layers:

g(l) = P
(
Θ(l)

(
h(l)
))

h(l+1) = h(l) +W(l)
[(

h(l) − g(l)
)
⊕Θ(l)

g

(
g(l)
)]

For Θ(l)
g , we use a three-layer MLP with the same hidden dimension D, while for Θ(l), we employ another three-layer MLP

with a hidden dimension of D/2 in the middle layer. Shrinking the hidden dimension of Θ(l) is to improve the computational
efficiency for a large number of layers. We do not shrink the hidden dimension of Θ(l)

g because it is only applied to the
global feature vector, and thus does not affect the overall computational complexity of the model.

Output layers are implemented as a three-layer MLP, ending without any activation function. If the task requires element-wise
outputs, the network architecture described suffices. Otherwise, the final output is taken by averaging of all element-wise
outputs. All MLPs come with batch normalization and ReLU activation following each linear layer.

A.7. Comparison of Vanilla Stacking

We summarize the comparison of stacking Equation (2) (vanilla) and Equation (3) in Table 4. Note that Equation (3)
compared to vanilla stacking has just around 2% of additional forward pass time.

Table 4. Comparison of vanilla stacking and Stacked Deep Sets
METHOD POOLING SORTING (ACCURACY) ENVELOPES (ACCURACY) MOG (LOG LIKELIHOOD)

DSS (VANILLA) QUANT 0.7259 0.4550 -1.5053
DSS QUANT 0.7419 0.4624 -1.4937

A.8. Inference Time Comparison

We compare the inference time of Stacked Deep Sets with different pooling methods and different choices of k in
Appendix A.8. It is shown that quantile pooling has comparable inference time to max pooling and average pooling, and the
inference time is little sensitive to the choice of k. Such increases in inference time is not certainty; indeed, we foresee
potential enhancements in implementation that could effective mitigate this aspect. We note that the choice of k depends on

16

Stacking Deep Set Networks and Pooling by Quantiles

set cardinality and hidden dimensionality. Higher cardinality would benefit from a larger k, while larger k would require
higher hidden dimensionality to work properly.

Figure 11. Inference time comparison of Stacked Deep Sets with different pooling methods and different choices of k. Left: comparing
different pooling methods. Right: zooming in to quantile vs max vs average pooling.

A.9. Complexity of Quantile Pooling

The computational complexity of quantile pooling can be efficiently managed using algorithmic strategies suited to the
specific requirements of identifying the q-th largest element. One common approach involves employing a heap-based
algorithm, which maintains a min-heap of size q and operates with a complexity of O(N log q), where N is the set cardinality.
This method is particularly effective when q is small relative to N , as is often the case in practice.

Alternatively, the Quickselect algorithm presents a lower complexity of O(N) on average. In practical scenarios, despite the
theoretically higher complexity, the heap-based approach often proves to be faster. This can be attributed to the smaller
constant factors and the reduced overhead in managing a heap of limited size compared to handling the entire set.

A.10. Mix Pooling

We explore naive combinations of different pooling methods, which we refer to as mix pooling. Our objective was to assess
whether a straightforward combination of max and average pooling could match or surpass the performance of our proposed
quantile pooling method. The combination takes place through division of the dimensionality and subsequent concatenation
of the outputs. The results demonstrate that while mixing max and average pooling does not enhance performance beyond
that achieved with quantile pooling, integrating quantile pooling with either max or average pooling significantly boosts
performance. This indicates that quantile pooling imparts unique and advantageous properties not attainable through mere
combinations of max and average pooling. All pooling methods retain unique advantages and can often complement each
other, enhancing the overall performance of the model by leveraging their distinct strengths.

Table 5. Comparison of mix pooling
POOLING SORTING ENVELOPES POINT CLOUD

AVG 0.7336 ± 0.0056 0.4313 ± 0.0029 0.9322 ± 0.0025
MAX 0.4016 ± 0.0045 0.4527 ± 0.0021 0.9345 ± 0.0010
AVG + MAX 0.7270 ± 0.0100 0.4593 ± 0.0028 0.9352 ± 0.0012
QUANT 0.7419 ± 0.0034 0.4624 ± 0.0021 0.9369 ± 0.0012
QUANT + AVG 0.8089 ± 0.0049 0.4583 ± 0.0024 0.9338 ± 0.0023
QUANT + MAX 0.7170 ± 0.0042 0.4651 ± 0.0034 0.9366 ± 0.0005

17

Stacking Deep Set Networks and Pooling by Quantiles

A.11. Experiment Details

A.11.1. SAMPLE STATISTIC REGRESSION

We formulate a simple regression problem to demonstrate the effectiveness of quantile pooling. To construct the dataset, we
first sample n integers from a uniform distribution over N (X ∼ U{0, 1, 2, . . . , 255}). We always sample n = 32 integers,
without replacement. We then convert the set to one-hot encoding, such that each integer xi ∈ X is represented by a vector
of length 256, with the xi-th element being 1 and all other elements being 0. This encoding avoids trivial solutions by simply
learning the identity function.

Number of residual layers is set to 3, with a hidden dimension of 64. We use a batch size of 1000 so that after 2000 training
steps, the model has seen 2 million samples. We use the AdamW optimizer (Loshchilov & Hutter, 2017), which is a
modification of the Adam optimizer (Kingma & Ba, 2014) that decouples the weight decay from the gradient updates., with
a learning rate of 0.0001 and weight decay of 0.1. Learning rate is decayed by a factor of 0.5 every 600 steps.

A.11.2. SORTING CLUSTERS

We first construct a multiset X by sampling n integers from a uniform distribution over N. Repeated elements are included
to ensure that the multiset forms small clusters. We sample n = 32 integers from U{0, 1, 2, 3}. We then perturb the multiset
by adding a uniform noise to each element, with each integer xi ∈ X subjected to a uniform perturbation ϵi ∼ U(−0.1, 0.1),
such that the perturbed multiset X ′ = {xi + ϵi|xi ∈ X}.

As this task is more challenging, we increase the hidden dimension of the residual layers to 128. The rest of the training
configurations are the same as in Appendix A.11.1.

A.11.3. RUSSIAN-DOLLABLE ENVELOPES

Algorithm 1 Maximum Envelopes
Input: a list of envelopes with dimensions (w, h)
Output: the maximum number of envelopes that can be nested
Ensure each envelope is represented by a pair of width and height (w, h)
Sort the envelopes by width w in ascending order and then by height h in descending order
Initialize an empty list res
for each height h of the sorted envelopes do

Find the position p to insert h in res, keeping res in sorted order
if p is equal to the size of res then

Append h to the end of res
else

Replace the element at index p in res with h
end if

end for
return the size of res

We construct a dataset of Russian-dollable envelopes by sampling n pairs of numbers from a uniform distribution over R2.
We sample n = 32 pairs of numbers from a uniform distribution over the interval [0, 1)2. Ground truth labels are computed
using Algorithm 1.

This task is found to be so much harder that we increase the hidden dimension to 256 and the number of residual layers to 6
to get a smooth and stable training curve. The rest of the training configurations are the same as in Appendix A.11.1.

A.11.4. MIXTURES OF GAUSSIANS

This experiment follows the same setting as in (Lee et al., 2019), except that we fix the number of samples to 300 and we
use a batch size of 64. We use 3 residual layers in the Stacked Deep Sets architecture, with a hidden dimension of 256, same
as the Set Transformer architecture. Remarkably, we find using batch normalization is detrimental to the performance, and
increasing the number of layers does not help on this task. This suggests that there is an identity function as a component in
the solution space, and the trick is to use it to capture the mean of the data. Batch normalization obviously destroys this

18

Stacking Deep Set Networks and Pooling by Quantiles

identity function, and increasing the number of layers makes the function harder to find.

A.11.5. POINT CLOUD CLASSIFICATION

We use the same setting as in (Ma et al., 2022). We report the results over 6 runs. For the Stacked Deep Sets architecture, we
use 6 residual layers with a hidden dimension of 512, the same as Set Transformer.

19

