
INSTRUCTZERO: Efficient Instruction Optimization
for Black-Box Large Language Models

Lichang Chen * 1 Jiuhai Chen * 1 Tom Goldstein 1 Heng Huang 1 Tianyi Zhou 1

Abstract
Large language models (LLMs) are instruction
followers but the performance varies under dif-
ferent instructions. It is challenging to create the
best instruction, especially for black-box LLMs
on which backpropagation is forbidden. Instead
of directly optimizing the discrete instruction, we
optimize a low-dimensional soft prompt applied
to an open-source LLM to generate the instruc-
tion for the black-box LLM. In each optimization
step of the proposed method INSTRUCTZERO, a
soft prompt is converted into an instruction by the
open-source LLM, which is then submitted to the
black-box LLM for zero-shot evaluation, whose
result is sent to Bayesian optimization to produce
new soft prompts improving the zero-shot perfor-
mance. We evaluate INSTRUCTZERO on different
combinations of open-source LLMs and APIs in-
cluding Vicuna and ChatGPT. INSTRUCTZERO
outperforms SOTA auto-instruction methods
across a variety of downstream tasks. Our
code is available: https://github.com/
Lichang-Chen/InstructZero.

1. Introduction
Large Language Models (LLMs) (OpenAI, 2023a;b;
Chowdhery et al., 2022) have recently gained widespread
attention due to their remarkable capabilities in following
instructions under both zero-shot and few-shot settings
(Brown et al., 2020; Liu et al., 2023; Chen et al., 2023a).
However, their performance is sensitive to the choice of
instructions (Zhou et al., 2022; Honovich et al., 2022). For
example, even paraphrasing a good instruction can lead
to the failure of LLMs on certain tasks. It is still not clear
when and how the instruction-following capability of LLMs

*Equal contribution 1Department of Computer Science, Univer-
sity of Maryland, College Park. Correspondence to: Lichang Chen
<bobchen@cs.umd.edu>, Jiuhai Chen <jchen169@umd.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

can be generalized.

Instruction-following capability is essential to LLMs when
used as an interface between humans and AI models, i.e.,
human users can instruct LLMs to solve complicated tasks
by providing in-context instructions. “Prompt engineer-
ing” (Brown et al., 2020; Liu et al., 2023) usually relies
on human experts’ experience to craft instructions through
a costly trial-and-error process. Hence, how to automate
the instruction search or optimization for any given task
is a critical open challenge. Unlike soft prompts, instruc-
tion is composed of discrete words or sentences that are
difficult to optimize in a continuous space. To create a
human-interpretable and task-relevant instruction, we have
to address combinatorial optimization with complex struc-
tural constraints. Moreover, the most powerful instruction-
following LLMs, e.g., ChatGPT (OpenAI, 2023a) and GPT-
4 (OpenAI, 2023b), are black boxes. Given their APIs only,
it is infeasible to develop gradient-based optimization that
requires back-propagation through these models.

In this paper, we propose an effective and efficient approach
“INSTRUCTZERO” to tackle the zeroth-order combinato-
rial optimization of instructions to API LLMs (Chen et al.,
2017; Wang et al., 2018; Schrijver et al., 2003; Wolsey
& Nemhauser, 1999). Instead of directly optimizing the
instruction, INSTRUCTZERO optimizes a soft prompt ap-
pended to a few exemplars of the target task, steering an
open-source LLM (e.g., LLaMA (Touvron et al., 2023),
Stanford Alpaca, Vicuna), to generate a human-readable
and task-relevant instruction in an in-context learning man-
ner. The instruction is then submitted to the black-box LLM
for zero-shot evaluation on the target task, whose perfor-
mance is used to guide the optimization of the soft prompt
toward generating better instructions.

We formulate the soft prompt optimization as a form of
latent space Bayesian Optimization (BO), which aims to
maximize the zero-shot performance as a black box func-
tion. It estimates the black-box objective using each ex-
plored soft prompt and its zero-shot performance as an
input-output sample, with a kernel relating all samples. The
mean and variance of the estimation controls the exploration-
exploitation of the soft prompts. To align the soft prompt op-
timization with the search in instruction space, we develop

1

https://github.com/Lichang-Chen/InstructZero
https://github.com/Lichang-Chen/InstructZero

Efficient Instruction Optimization for Black-Box Large Language Models

0

2

4

6

8

10

12

14

[0, 5) [5, 10) [10, 15) [15, 20) [20, 100)

N
um

be
ro

fT
as
ks

The improvement (Execution Accuracy %)

Over APE Over Uniform

InstructZero’s Improvement Over Two
baselines APE and Uniform

Sort the input alphabetically and then output
the first, third, fifth, and seventh elements of
the sorted list

APE
0.04

Find a list of the animals from the input list

Ours

Find the smallest set of animals that can be used
to generate the largest set of the animals

Uniform

Task: Taxonomy Animal
Example: Input: sweater, octopus, giraffe, orange

Ouput: octopus, giraffe

0.72

0.92

Zero-shot
AccuracyInstructions generated by different methods

Figure 1: Comparison between INSTRUCTZERO and two baselines, i.e., APE (Zhou et al., 2022) and uniform sampling
(defined in baselines of Section 4.1). Left: INSTRUCTZERO generate a more precise instruction leading to better performance
(higher execution accuracy). Right: Histogram of INSTRUCTZERO’s improvement over APE and Uniform on 32 tasks.
INSTRUCTZERO achieves a significant improvement between [20%, 100%) in terms of accuracy on a majority of evaluated
tasks. The task is to pick out the animals from the list.

an instruction-coupled kernel to align the two spaces’ ker-
nels. Thereby, optimizing the low-dimensional soft prompt
leads to an efficient search for optimal instruction in the
sparse and highly structured textual space.

We evaluate INSTRUCTZERO on a combination of SOTA
open-source LLM and black-box LLM, i.e., 13-B Vicuna
and GPT-3.5-turbo (ChatGPT). Experimental results show
that ChatGPT’s performance is significantly improved when
using the instructions optimized by INSTRUCTZERO: It
achieves SOTA results on 32/32 tasks from BIG-Bench. As
a case study, we visualize an instruction optimization pro-
cess of INSTRUCTZERO and the instructions generated in
every step. INSTRUCTZERO, even using much weaker Vi-
cuna models, outperforms non-optimization methods (Zhou
et al., 2022) that use ChatGPT generating instructions.

2. Instruction Optimization
2.1. Problem Formulation

We study how to optimize an instruction v applied to a
black-box LLM f(·) to address a task with input query
X . In particular, the optimization objective aims to maxi-
mize the output f([v;X])’s performance h(f([v;X]), Y),
which uses a score produced by an evaluation metric h(·, ·)
comparing f([v;X]) and the ground truth Y . Hence, the
optimization of instruction v ∈ V can be formulated as max-
imizing the expected score h(f([v;X]), Y) for an example

(X,Y) drawn from the data distribution Dt of task-t, i.e.,

max
v∈V

E(X,Y)∼Dt
h(f([v;X]), Y). (1)

Unfortunately, Eq. (1) is notoriously challenging or practi-
cally infeasible because it is (1) Combinatorial optimiza-
tion with complicated structural constraints: the instruction
v that can be taken by black-box LLMs such as ChatGPT
and GPT-4 is a combination of discrete tokens that have
to comprise human-readable and task-relevant sentence(s).
Thus, its optimization space V is high-dimensional, discrete,
and highly structured due to semantic constraints. In gen-
eral, there do not exist efficient optimization algorithms in
such a space; and (2) Black-box optimization: the black-
box LLM f(·) makes the objective as a black-box function.
Users are only allowed to input texts to f(·) and only ob-
tain textual outputs. Hence, backpropagation through f(·)
and any gradient-based algorithm to optimize the objective
cannot be applied.

Instead of optimizing the instruction v in the original space
V , the key idea of INSTRUCTZERO is to optimize a soft
prompt p applied to an open-source LLM g(·), which
converts p to a human-readable and task-relevant instruc-
tion v via in-context learning with κ exemplars (xi, yi)

κ
i=1

drawn from the target task. The instruction v is then ap-
plied to the black-box LLM f(·) to produce zero-shot
prediction f([v;X]). The zero-shot performance score
h(f([v;X]), Y) on target task data (X,Y) ∼ Dt is col-

2

Efficient Instruction Optimization for Black-Box Large Language Models

Instruction 𝑣

Input: [𝑋]

Black-Box LLM

...

Open-Source LLM

...

Input: [𝑥!] Output: [𝑦!]
…

Input: [𝑥"] Output: [𝑦"]
The instruction was to

Soft Prompt

Input of the Open-Source LLM

Next Soft Prompt
to Explore

Bayesian
Optimization

(BO)

Input of the Black-Box
LLM

Training data for BO

(Soft Prompt, Instruction, Score)
(Soft Prompt, Instruction, Score)

....
(Soft Prompt, Instruction, Score) Score

𝔼 𝑿,𝒀 ∼𝑫𝒕 𝒉 (𝒇 𝒗;𝑿 , 𝒀)

Output 𝒇(𝒗;𝑿)

Figure 2: Pipeline of INSTRUCTZERO. On each iteration, a soft prompt and a few exemplars of the target task are sent to the
open-source LLM for generating an instruction, which then prompts the black-box LLM to produce answers to target-task
queries. The score (e.g., accuracy) of the answers and the soft prompt is added as new training data for BO, which updates its
posterior about the objective (score) and produces a new soft prompt to explore in the next iteration. Both LLMs are frozen.

lected to estimate the objective function in Eq. (1) by
Bayesian optimization (BO), which proposes new soft
prompts for generating better instructions.

The pipeline of proposed INSTRUCTZERO is illustrated in
Fig. 2, where the open-source LLM can be LLaMA, Al-
paca, Vicuna, etc., and the black-box LLM can be Chat-
GPT (OpenAI, 2023a), GPT-4 (OpenAI, 2023b), Claude,
PaLM-2 (Google, 2023), etc. By generating the instruction
using an open-source LLM, INSTRUCTZERO reduces the
challenging instruction optimization to a feasible black-box
optimization of a soft prompt in a low-dimensional space,
which can be addressed by latent space Bayesian optimiza-
tion. The complete procedure is provided in Algorithm 1.

2.2. From Structured Combinatorial Search to
Low-dimensional Continuous Optimization

INSTRUCTZERO, as shown in Fig. 2, applies an open-source
LLM g(·) to generate instructions v via in-context learn-
ing. Specifically, we concatenate a soft-prompt p ∈ Rd′

(a d′-dimensional vector) with κ input-output exemplars
(xi, yi)

κ
i=1 (represented by their token embeddings) drawn

from the task’s distribution Dt as input to the open-source
LLM to generate an instruction v = g([p;x1:κ]) for the
black-box LLM f(·). Therefore, the combinatorial instruc-
tion optimization in Eq. (1) can be reframed as a more
feasible continuous optimization as below:

max
p∈Rd′

E(X,Y)∼Dth(f([v;X]), Y), s.t. v = g([p; (xi, yi)
κ
i=1]).

(2)

Dimension Reduction. Though we reduce the original in-
struction optimization to continuous optimization of a soft

prompt p, it still needs to solve a black-box optimization due
to the black-box LLM f(·) in the objective of Eq. (2). Unfor-
tunately, as input tokens to an open-source LLM, p usually
has dimensionality too high (e.g., thousands for Vicuna) to
be handled by existing black-box optimization approaches.
Hence, we instead optimize a lower-dimensional vector
p ∈ Rd where d≪ d′ and project it to Rd′

using a simple
random projection Ap as input tokens to g(·), where each
entry of the matrix A ∈ Rd×d′

is sampled from Normal or
Uniform distribution (Wang et al., 2016). This is based on:
(1) the random projection is distance-preserving according
to Johnson-Lindenstrauss Lemma (Kleinberg, 1997), which
leads to comparable kernel similarities before and after the
random projection, i.e., k(pi,pj) ≈ k(Api, Apj), so BO
in the original space and dimension-reduced space are con-
sistent; (2) Thanks to in-context learning capability of the
open-source LLM, when concatenated with κ exemplars,
low-dimensional soft prompt suffice to produce rich, diverse,
and task-relevant instructions as candidates. Therefore, by
replacing p in Eq. (2) with Ap, the instruction optimiza-
tion in Eq. (1) is reduced to maximization of a black-box
function H(p) in a low-dimensional space Rd, i.e.,

H(p) ≜ E(X,Y)∼Dth(f([v;X]), Y), v = g([Ap; (xi, yi)
κ
i=1]).

(3)

3. Bayesian optimization with Instruction-
Coupled Kernel

In the previous section, we reduced the instruction
generation problem to a black-box optimization in a
low-dimensional space, i.e., maxp∈Rd H(p), which can be
addressed by Bayesian optimization (BO). Specifically, BO

3

Efficient Instruction Optimization for Black-Box Large Language Models

Instruction
!!"#

Soft prompt
"!"#

Instruction-Coupled Kernel Matrix !
By Eq. (9)

Maximize Acquisition Function by Eq. (7)

Soft Prompt
Kernel Matrix "

Instruction
Kernel Matrix #

Update posterior of '(()

Open-Source
LLM

Black-Box
LLM

Mean Function by Eq. (4)
Variance Function by Eq. (5)

Score #!"#:
% $,& ∼(! # (' (!"#; * , ,)

Score Soft Prompt Instruction
ℎ! %! &!
ℎ" %" &"
… … …

ℎ#$! %#$! &#$!

Figure 3: The pipeline of Bayesian optimization in INSTRUCTZERO proposed in Section 3.

aims to estimate the black-box objective H(p) and finds its
maximum; it keeps updating a posterior of H(·) based on
collected (p, H(p)) pairs and exploring new soft prompts p
until the largest H(p) converges to a maximum. To evaluate
H(p) on a soft prompt p and its generated instruction, we
average the zero-shot performance h(f([v;X]), Y) on a
validation set.

3.1. Bayesian Optimization of Soft Prompt

We apply the commonly used Gaussian Process (GP) as
the prior for the black-box objective H(·). A GP prior
can be specified by a mean function µ(·) = 0 and a
covariance function (i.e., kernel function) k(·, ·). Given m
soft prompts p1:m ≜ {p1, · · · ,pm} and their evaluation
H1:m ≜ [H(p1), a · · · , H(pm)] collected in all previous
BO steps, the estimated posterior of H(·) is updated as
a Gaussian N (µ(·), σ2(·)) with mean function µ(·) and
variance function σ2(·) defined as, ∀p ∈ Rd,

µ(p) ≜ k(K + η2I)−1H1:m, (4)

σ2(p) ≜ k(p,p)− k⊤(K + η2I)−1k, (5)

where k = [k(p,p1), · · · , k(p,pm)] and constant η
measures the noise levels of observations.

Expected improvement acquisition function (EI) measures
the improvement of a candidate soft prompt over the
best soft prompt in terms of the objective value, i.e.,
max{0, H(p)−maxi∈[m] H(pi)}, and takes the improve-
ment’s expectation w.r.t. H(p), which is a random variable
with a distribution defined by the posterior of H(·). There-
fore, EI u(·) is defined as, ∀p ∈ Rd,

u(p) = EH(p)∼N (µ(p),σ2(p))

[
max

{
0, H(p)− max

i∈[m]
H(pi)

}]
,

(6)
and BO explores the next soft prompt pm+1 maximizing

the acquisition function:

pm+1 ∈ argmax
p∈Rd

u(p). (7)

The new soft prompt pm+1 is converted to an instruc-
tion vm+1 by the open-source LLM g(·), i.e., vm+1 =
g([Apm+1; (xi, yi)

κ
i=1]), and vm+1 is applied to the black-

box LLM for evaluating its zero-shot performance on the
target task, i.e., H(pm+1). BO then augments its collected
training data (p1:m, H1:m) with (pm+1, H(pm+1)) and the
procedure in Eq. (4)-(7) is repeated until convergence. The
BO pipeline in INSTRUCTZERO is illustrated in Fig. 3.

3.2. Instruction-Coupled Kernel

The choice of kernel k(·, ·) in BO is critical to the per-
formance of black-box optimization since it defines both
the mean and variance of the posterior and thus guides the
whole optimization process. In INSTRUCTZERO, although
we conduct BO in the latent space of soft prompts, the goal
is to optimize instructions in the instruction space V . Hence,
the kernel applied in the latent space should reflect the sim-
ilarity of the generated instructions in the target task. In
other words, we need to align the latent space kernel with
the instruction similarity. To this end, we develop a novel
instruction-coupled kernel inspired by (Deshwal & Doppa,
2021a).

Without loss of generality, we assume that BO in all previous
steps has already explored m soft prompts p1:m, which were
converted to m instructions v1:m = {v1, v2, ..., vm} via the
open-source LLM. To measure the correlation between two
soft prompts in the latent space Rd, we choose a kernel func-
tion l(·, ·) : Rd ×Rd → R, whose common options include
Matern or Squared Exponential kernels. Applying l(·, ·) to
p1:m produces a kernel matrix L ∈ Rm×m. To measure
the similarity between two instructions in the target task,
we define another kernel function s(·, ·) : V × V → R, for
example, the similarity between their zero-shot predictions

4

Efficient Instruction Optimization for Black-Box Large Language Models

on target task data, i.e.,

s(vi, vj) = EX∼Dt
[sim(f([vi;X]), f([vj ;X]))] , (8)

where sim(·, ·) is a similarity of the predictions for the tasks,
e.g., exact match, F1, or BLEU score. Applying s(·, ·) to
v1:m produces a kernel matrix S ∈ Rm×m. We propose an
instruction-coupled kernel function by combining the two
kernels l(·, ·) and s(·, ·) in the following manner.

Ki,j = k(pi,pj) = l⊤i L
−1SL−1lj (9)

where li ≜ [l(pi,p1), · · · , l(pi,pm)] and lj ≜
[l(pj ,p1), · · · , l(pj ,pm)]. The proposed kernel preserves
the instruction similarity in the soft prompt space: when
applied to soft prompts p1:m, the resulted kernel matrix
K exactly recovers the instruction matrix S because K =
LL−1SL−1L = S according to Eq. (9). For new soft
prompts p /∈ p1:m, the instruction-coupled kernel in Eq. (9)
operates as a smooth extrapolation kernel. Therefore, by
combining the two spaces’ kernels, the proposed kernel
aligns BO in the latent space Rd of soft prompts (Eq. (3))
with the instruction optimization (Eq. (1)) in the combi-
natorial and structured space V . Fig. 3 shows when the
kernel matrices are computed in the BO pipeline of IN-
STRUCTZERO.

Algorithm 1 INSTRUCTZERO

input : Exemplars (xi, yi)
κ
i=1 and a validation set Dt;

open-source LLM g(·), black-box LLM f(·),
maximal steps T ; random matrix A ∈ Rd×d′

initialize :p1 ∼ uniform(−τ, τ)d in Rd; m← 1,
p1:0 ← ∅, v1:0 ← ∅, h1:0 ← ∅

1 while not converge and m ≤ T do
2 Compute input prompt Apm from soft prompt pm

3 Generate instruction vm = g([Apm; (xi, yi)
κ
i=1]) by

the open-source LLM g(·)
4 Evaluate score hm =

∑
(X,Y)∈Dt

h(f([vm;X]), Y) on
the black-box LLM f(·)

5 Save data: p1:m ← p1:m−1 ∪ {pm}, v1:m ← v1:m−1 ∪
{vm}, h1:m ← h1:m−1 ∪ {hm}

6 Update the instruction-coupled kernel function k(·, ·)
and matrix K for p1:m by Eq. (9)

7 Update the mean and variance function of BO in Eq. (4)-
(5) using k(·, ·) and K

8 Find the next prompt pm+1 maximizing the acquisition
function u(p) in Eq. (6)

9 m← m+ 1

10 end
output :Instruction vi∗ with i∗ ∈ argmaxi∈[m] hi

4. Experiments
In this section, we evaluate INSTRUCTZERO as a tool to
find an instruction that steers a black-box LLM towards a

desired downstream behavior on a target task. Extensive
experiments demonstrate that our method could effectively
generate instructions that enhance task performance while
achieving predictions on par with or even superior to those
created by previous methods. Moreover, INSTRUCTZERO
produces instructions that sometimes reveal valuable tricks
for optimal prompting that could be subsequently applied to
new tasks.

4.1. Tasks, Datasets, Baselines, and Implementation

Tasks. We assess the effectiveness of zero-shot in-context
learning on instruction tasks proposed in (Honovich
et al., 2022), including all 24 tasks used in previous
auto-instruction work (Zhou et al., 2022). We further add
8 extra tasks to enrich the benchmark for evaluating all
methods in more comprehensive scenarios spanning many
facets of language understanding. We provide detailed
descriptions of each task in the Appendix. Training-set
examples can be used for instruction optimization but
the final instruction p∗ is evaluated on a held-out test set.
Zero-shot performance H(p) on the test set is reported.

Baselines. We compare INSTRUCTZERO with two
baseline methods: (1) APE (Zhou et al., 2022), which
generates instructions using a more powerful LLM (i.e,
ChatGPT1) than the open-source LLM in INSTRUCTZERO;
and (2) Uniform (pure exploration), which uses the same
models as INSTRUCTZERO and draws the same total
number of soft prompts by uniform sampling without
iterative BO procedure.

Score Function. In the experiments, we use a simple 0-1
loss as the score function h(·, ·), i.e, h(f([v;X]), Y) = 1
if f([v;X]) = Y , otherwise h(f([v;X]), Y) = 0. So the
score h1:m in Algorithm 1 computes execution accuracy
by averaging h(f([v;X]), Y) over all validation examples
(X,Y) ∈ Dt. A more fine-grained score can be the log-
likelihood of the ground-truth answer under instruction v
and input X . It is worth noting that the choice of score func-
tion depends on the outputs provided by the black-box LLM,
e.g., GPT3 returns the log probabilities of the most likely
tokens 2 while ChatGPT only offers access to the generated
answer 3. Since we use ChatGPT as the black-box LLM,
h1:m represents execution accuracy in our experiments.

Implementation Details. We implement INSTRUCTZERO
as illustrated in Fig. 2 with Vicuna and ChatGPT as the open-
source LLM and API LLM, respectively. For each task, we

1GPT-3 was used in the original APE model but we re-evaluated
it using the more powerful ChatGPT.

2https://platform.openai.com/docs/api-
reference/completions/create

3https://platform.openai.com/docs/api-reference/chat/create

5

Efficient Instruction Optimization for Black-Box Large Language Models

0

0.5

1

Antonyms Cause Selection Common Word Sorting Ascii Formality Negation Object Counting

APE Uniform Ours

0

0.5

1

CS_Algorithm Rhymes Second Letter Similarity Taxonomy Sentiment Orthography Synonyms

0

0.5

1

EN-DE EN-ES EN-FR Unscrambling Categorization Debugging Larger Animal Odd_one_out

0

0.5

1

Passivation Pluralization Periodic Sum First Letter Diff Num2Verbal Letters list

Figure 4: Zero-shot test accuracy on 32 tasks from (Honovich et al., 2022). INSTRUCTZERO achieves the best performance
on all 32 out of 32 tasks among the three evaluated approaches.

1 2 3 4 5
Iteration

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce

Performance of the top15% Instructions
 in Different BO iteration

diff
orthography_starts_with
second_word_letter
taxonomy_animal
sum

Figure 5: Top-15% instructions after every iteration (1-5)
of INSTRUCTZERO on five tasks.

draw τ = 5 and 20 samples from the training set as the
exemplars and validation set Dt, respectively. For the num-
ber of tokens in soft prompts, we search for the best value
among {3, 5, 10} based on the validation set performance.
We draw entries of the random projection matrix A from a
uniform distribution between [−1, 1]. The dimensionality
d of p is set to 10. In experiments, we apply a mini-batch
version of INSTRUCTZERO that explores 25 soft prompts
in every iteration. The only major change required is to
select the top-25 soft prompts with the largest u(p) instead
of maximizing Eq. (7) in Line 8 of Algorithm 1. We utilized
an evolutionary search algorithm CMA-ES (Hansen, 2016)
as the optimizer to find the top soft prompts. All training

and tests are conducted on a NVIDIA RTX A6000 GPU.

4.2. Main Results

Fig. 4 reports the zero-shot test accuracy of ChatGPT when
using instructions generated by APE, Uniform, and IN-
STRUCTZERO for 32 tasks. On easy tasks such as “Let-
ters List” and “Sum”, INSTRUCTZERO is comparable to
APE which has already achieved perfect execution accuracy
(i.e., 1.0). On the other hand, INSTRUCTZERO exhibits
superior performance on challenging tasks such as “Un-
scrambling” and “Taxonomy Animal” where APE struggles.
Fig. 1 (right) reports the histograms for the improvement of
INSTRUCTZERO over the two baselines on all tasks except
those easy ones on which both baseline and INSTRUCTZERO
achieve (100%) test accuracy. Overall, the results demon-
strate that instructions generated by INSTRUCTZERO signif-
icantly outperform those produced by the other two base-
lines by a large margin. We also summarize the best in-
struction created by INSTRUCTZERO for each task in the
Appendix4. We also compare the zero-shot performance
of INSTRUCTZERO with CoT (Wei et al., 2022) prompt
“Please think step by step." in Tab 8, showing the superiority
of our method.

Fig. 5 shows the zero-shot accuracy of the top-15% instruc-
tions after each iteration of INSTRUCTZERO. On most tasks,
the accuracy consistently improves over iterations, indicat-

4We report more results in Appendix: (1) INSTRUCTZERO’s
performance on other combinations of open-source LLM + API
LLM; (2) INSTRUCTZERO’s comparison to human written in-
struction. APE (Zhou et al., 2022) shows the advantages of their
instructions over humans’ and ours are better than APE.

6

Efficient Instruction Optimization for Black-Box Large Language Models

AccuracyInstruction Generated by InstructZero

0.65The instruction was to find the most dangerous
animal in the zoo.

1

0.8The instruction was to find out which animal is
stronger between two animals.

2

1.0The instruction was to input a animal and a animal
into the system, and the system would output the
stronger animal.

3

Task: Stronger animal
Example: Input: whale shark, dog

Ouput: whale shark

Figure 6: The task is to write the stronger animals. Left: Soft prompts selected by INSTRUCTZERO in three consecutive
iterations (2D embedding by t-SNE). Colors denote different iterations and a larger circle refers to a higher objective value
(zero-shot validation accuracy). Numbers highlight the best soft prompt per iteration. Right: instructions generated by the
best soft prompt per iteration and the associated validation accuracy.

Table 1: Ablation study. Execution accuracy (higher is
better) of the instructions obtained by INSTRUCTZERO and
two baselines: (1) Manual: input to open-source LLM is ex-
emplars (xi, yi)

κ
i with the manual prompt; (2) w/o Manual:

input to open-source LLM is exemplars (xi, yi)
κ
i only.

Task Manual w/o Manual INSTRUCTZERO

Cause_and_effect 0.36 0.56 0.91
Negation 0.27 0.01 0.80
Translation_en-fr 0.02 0.47 0.89
Sum 0.00 0.00 1.00
Formality 0.59 0.31 0.63
Letters_list 0.00 0.15 1.00
Larger_Animal 0.49 0.81 0.91

ing an effective optimization process. Nonetheless, on easy
tasks such as “Sum”, the best instruction was identified in
the very first iteration and thus further optimization was
unnecessary.

4.3. Ablation Study

To verify the effectiveness of optimization in IN-
STRUCTZERO, we compare it against two alternatives: (1)
Manual. As illustrated in Fig. 7 shows, we replace the
INSTRUCTZERO-optimized p∗ with a meta-prompt hand-
crafted by humans (used in APE (Zhou et al., 2022)) for
instruction generation but keeps all the other parts the same
in the test-setting for INSTRUCTZERO; and (2) w/o Man-
ual. we further remove any prompt and solely use the κ
exemplars as input to generate instruction v. The compar-
ison results are reported in Tab. 1, which shows a large
improvement when using the soft prompt optimized by IN-
STRUCTZERO when compared to the two baselines. For

example, on task “Letters List”, INSTRUCTZERO achieves
100% accuracy while Manual Prompt is 0%. The improve-
ment indicates that the optimized soft prompt plays a sub-
stantial role in instruction generation for better zero-shot per-
formance on downstream tasks and BO in INSTRUCTZERO
is effective in finding the optimal soft prompt.

4.4. Case Study

Fig. 6 visualizes the soft prompts explored by IN-
STRUCTZERO over three BO iterations. It shows how the
score of the best soft prompt improves over time and the
efficient exploration-exploitation conducted by the latent
space BO. The instructions generated using the best soft
prompt in each iteration are given in the right of Fig. (6),
which shows a progressive improvement of the instruction
quality in terms of clarity, details, and task relevance. In
Fig. 1 and 8, we compare the instructions generated by the
three methods, i.e., Uniform, APE, and INSTRUCTZERO,
for the same set of tasks. While both APE and Uniform
can produce reasonable instructions, they exhibit notable
drift from the task description. For instance, in Fig. 1, APE
selects “Sort the inputs alphabetically and then output the
first, third, fifth, and seventh elements of the sorted list.” as
its top instruction, which is not precise at all. In contrast,
INSTRUCTZERO optimized instruction “Find a list of the
animals from the input list” is clearer. Another example
of the “Formality” task in Fig. 8 also demonstrates that IN-
STRUCTZERO can better comprehend the exemplars and
yield more precise instructions.

7

Efficient Instruction Optimization for Black-Box Large Language Models

I gave a friend an
instruction and five

inputs. The friend read
the instruction and
wrote an output for

every one of the
inputs. Here are the
input-output pairs:

Open-source LLMManual Prompt API LLM

Input: [𝑥!] Output: [𝑦!]
…

Input: [𝑥"] Output: [𝑦"]
The instruction was to

Output 𝒇(𝒗; 𝑿)

Instruction 𝑣

Input: [𝑋]

Figure 7: Ablation study baseline. Manual prompt in APE (Zhou et al., 2022) replaces the INSTRUCTZERO-optimized
soft prompt used to generate instructions.

paraphrase the given sentence using
different words or phrases while
retaining the meaning

APE

Input a sentence and output more
proper version of that sentence

Ours

Improve the English of the original text

Uniform

Formality
Examplar: Input: I can’t stand his temper

Ouput: I cannot stand his temper

0.63

0.58

0.44

Figure 8: Comparison of the best instructions in Formality
task, which aims to rephrase the sentence in formal lan-
guage.

5. Related Work
Large Language Models. The scaling up of transformer-
based language models (Vaswani et al., 2017; Devlin et al.,
2018) has consistently improved performance across vari-
ous downstream NLP tasks. As a consequence, numerous
capabilities of large language models (LLMs) have been un-
covered, encompassing few-shot in-context learning (Brown
et al., 2020), zero-shot/few-shot sequential reasoning (Ko-
jima et al., 2022; Wei et al., 2022), and the automatic genera-
tion of intructions (Honovich et al., 2022). In this paper, we
study how to guide open-source LLMs to generate and im-
prove instructions for subsequent API LLMs. Experiments
demonstrate that INSTRUCTZERO has the potential to break
the scaling law of LLMs: a 10× smaller open-source model
(Vicuna) can be used to optimize an instruction with superior
performance compared to a much larger LLM (ChatGPT
used in APE).

Instruction-following and instruction-finetuning. LLMs

are able to follow instructions, a capability that can be rein-
forced by instruction tuning (Chung et al., 2022; Iyer et al.,
2022; Sanh et al., 2021), e.g., finetuning the model on a
wide range of tasks using human-annotated prompts and
feedbacks (Ouyang et al., 2022), or supervised finetuning
using public benchmarks and datasets (Wang et al., 2022).
ChatGPT is well-known as an instruction follower but is
a black-box model. Vicuna 5 finetunes the open-source
LLaMA (Touvron et al., 2023) using only 700K instruction-
following examples from user-shared ChatGPT data (Ope-
nAI, 2023), which exhibits similar instruction-following
capability as ChatGPT. Zero-shot learning does not allow
finetuning the LLM or training an adapter (Hu et al., 2021).
Moreover, for black-box LLMs, any model training is infea-
sible. In these cases, we can only improve the downstream
task performance by optimizing the instruction, which is
exactly the problem addressed by INSTRUCTZERO and is a
challenge complementary to instruction finetuning.

Prompting and Auto-Prompt. Prompting prepends some
soft token embeddings, textual instruction, or/and input-
output exemplars of a target task to the original input query
as context information to guide the reasoning of LLMs. Soft
prompts as differentiable are learnable and can be optimized
by backpropagation (Li & Liang, 2021; Lester et al., 2021;
Liu et al., 2021; Chen et al., 2023c;b). However, API LLMs
are black boxes that only allow hard prompts in natural
languages, whose optimization is challenging due to the
combinatorial and highly structured search space. (Deng
et al., 2022) relies on reinforcement learning (RL) to op-
timize hard prompts while INSTRUCTZERO optimizes an
instruction in the output space of an open-source model g(·)
without RL by applying BO of a soft prompt to g(·). An-
other line of works of prompting (Brown et al., 2020) relies
on the generative power of LLMs and asks them for self-
debugging (Chen et al., 2023d) or self-improve (Huang et al.,
2022). Auto-prompt (Shin et al., 2020) conducts a gradient-
guided search in a pre-defined set of triggers to build up
prompt automatically. APE (Zhou et al., 2022) adopts a
black-box LLM such as GPT-3 to generate instructions and

5https://vicuna.lmsys.org/

8

Efficient Instruction Optimization for Black-Box Large Language Models

select better ones but its search in the instruction space can
be inefficient without exploiting the correlation between
the evaluated instructions, which may lead to sub-optimal
results. Compared to them, INSTRUCTZERO leverages open-
source models to generate instructions to explore and thus
does not need a predefined set of triggers.

Bayesian Optimization. Over the last decade, Bayesian op-
timization (BO) (Frazier, 2018) has emerged as a highly ef-
fective black-box optimization approach in various domains
such as drug and molecule design (Gómez-Bombarelli et al.,
2018; Jin et al., 2018; Kajino, 2019). Since our goal is to op-
timize instructions for a black-box LLM, it is akin to the BO
in combinatorial spaces (Gómez-Bombarelli et al., 2018),
which is challenging especially when the space is highly
structured. Recent approaches (Kajino, 2019; Jin et al.,
2018; Lu et al., 2018) study to reduce the combinatorial
black-box optimization to BO in a latent space, given a map-
ping from the latent space to the combinatorial space learned
by deep generative models (DGMs). LADDER (Deshwal &
Doppa, 2021b) introduces structure-coupled kernels to align
the abundant information of each structure in the combinato-
rial space with its corresponding representation in the latent
space. In a similar vein, our instruction-coupled kernel aims
to align the soft prompt kernel with the similarity between
instructions. However, our kernel has a different form and
aims to guide the open-source LLM to explore different soft
prompts and generate better instructions.

6. Discussion, Conclusions, and Limitations
In this paper, we propose INSTRUCTZERO, an efficient
zeroth-order instruction optimization method that can im-
prove instruction-following of black-box LLMs with only
API access. INSTRUCTZERO addresses the crucial chal-
lenge of prompt engineering, which is a combinatorial black-
box optimization that currently still relies on human exper-
tise and costly experience. In contrast, INSTRUCTZERO
can automatically optimize and generate human-readable
and task-relevant instructions for arbitrary tasks by leverag-
ing the in-context learning and generative power of recent
open-source LLMs. Its key idea is to optimize a soft prompt
that guides an open-source LLM to generate instructions
for the black-box LLM to address the task. The zero-shot
performance on the task using different soft prompts is col-
lected by a Bayesian optimizer to improve the soft prompt
progressively. In this way, INSTRUCTZERO overcomes the
combinatorial challenge and reduces the original instruc-
tion optimization to an efficient latent space BO. We pro-
vided visualizations of the optimization trajectories, opti-
mized instructions, an ablation study, and extensive com-
parison to other auto-instruction approaches on 32 tasks.
INSTRUCTZERO using a small Vicuna model outperforms
non-optimization methods that utilize a much larger and

more powerful LLM for instruction generation. As a gen-
eral instruction optimization tool, INSTRUCTZERO can be
used to improve the efficiency of human-AI interactions
through APIs of black-box models and enhance the down-
stream task performance without any model finetuning.

Impact Statement
The ethical implications and societal consequences of our
work are multifaceted. On one hand, by making LLMs
more accessible and effective, our method has the potential
to democratize AI technologies, enabling a wider range
of users to leverage advanced machine learning models
for diverse applications, from education and research to
industry and entertainment. This could lead to significant
advancements in knowledge dissemination, creativity, and
problem-solving across various sectors. On the other hand,
the increased efficacy of LLMs also raises important ethical
considerations. The ability to generate more accurate and
contextually relevant instructions could amplify concerns
related to misinformation, privacy, and the digital divide.
For instance, more powerful instruction optimization might
enable the creation of content that is indistinguishable from
that created by humans, potentially exacerbating issues of
trust and authenticity in digital communications. Moreover,
the differential access to advanced AI technologies could
widen the gap between those with the resources to leverage
such technologies and those without.

In light of these considerations, it is imperative to approach
the deployment and application of INSTRUCTZERO with
a commitment to ethical AI development and use. This
includes ongoing assessment of the societal impacts, trans-
parent reporting of limitations, and the implementation of
safeguards against misuse. Additionally, we advocate for
equitable access to AI technologies and emphasize the im-
portance of interdisciplinary collaboration to ensure that the
benefits of advancements in LLM instruction optimization
are shared broadly and contribute positively to society.

Acknowledgement
LC Chen and H Huang were partially supported by NSF IIS
2347592, 2347604, 2348159, 2348169, DBI 2405416, CCF
2348306, CNS 2347617.

References
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,

Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Chen, J., Chen, L., Huang, H., and Zhou, T. When do

9

Efficient Instruction Optimization for Black-Box Large Language Models

you need chain-of-thought prompting for chatgpt? arXiv
preprint arXiv:2304.03262, 2023a.

Chen, J., Chen, L., and Zhou, T. It takes one to
tango but more make trouble? in-context training with
different number of demonstrations. arXiv preprint
arXiv:2303.08119, 2023b.

Chen, L., Huang, H., and Cheng, M. Ptp: Boosting stabil-
ity and performance of prompt tuning with perturbation-
based regularizer. arXiv preprint arXiv:2305.02423,
2023c.

Chen, P.-Y., Zhang, H., Sharma, Y., Yi, J., and Hsieh, C.-
J. Zoo: Zeroth order optimization based black-box at-
tacks to deep neural networks without training substitute
models. In Proceedings of the 10th ACM workshop on
artificial intelligence and security, pp. 15–26, 2017.

Chen, X., Lin, M., Schärli, N., and Zhou, D. Teaching
large language models to self-debug. arXiv preprint
arXiv:2304.05128, 2023d.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., et al. Palm: Scaling language modeling
with pathways. arXiv preprint arXiv:2204.02311, 2022.

Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y.,
Fedus, W., Li, E., Wang, X., Dehghani, M., Brahma,
S., et al. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416, 2022.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168,
2021.

Deng, M., Wang, J., Hsieh, C.-P., Wang, Y., Guo, H., Shu, T.,
Song, M., Xing, E. P., and Hu, Z. Rlprompt: Optimizing
discrete text prompts with reinforcement learning. arXiv
preprint arXiv:2205.12548, 2022.

Deshwal, A. and Doppa, J. Combining latent space and
structured kernels for bayesian optimization over combi-
natorial spaces. Advances in Neural Information Process-
ing Systems, 34:8185–8200, 2021a.

Deshwal, A. and Doppa, J. Combining latent space and
structured kernels for bayesian optimization over combi-
natorial spaces. Advances in Neural Information Process-
ing Systems, 34:8185–8200, 2021b.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Frazier, P. I. A tutorial on bayesian optimization. arXiv
preprint arXiv:1807.02811, 2018.

Garcia, N., Ye, C., Liu, Z., Hu, Q., Otani, M., Chu, C.,
Nakashima, Y., and Mitamura, T. A dataset and baselines
for visual question answering on art. In Proceedings of
the European Conference in Computer Vision Workshops,
2020.

Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D.,
Hernández-Lobato, J. M., Sánchez-Lengeling, B., She-
berla, D., Aguilera-Iparraguirre, J., Hirzel, T. D., Adams,
R. P., and Aspuru-Guzik, A. Automatic chemical de-
sign using a data-driven continuous representation of
molecules. ACS central science, 4(2):268–276, 2018.

Google. Palm-2-llm. https://blog.google/technology/ai/google-
palm-2-ai-large-language-model/, 2023.

Hansen, N. The CMA evolution strategy: A tutorial. CoRR,
abs/1604.00772, 2016. URL http://arxiv.org/
abs/1604.00772.

Honovich, O., Shaham, U., Bowman, S. R., and Levy,
O. Instruction induction: From few examples to
natural language task descriptions. arXiv preprint
arXiv:2205.10782, 2022.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation of
large language models. arXiv preprint arXiv:2106.09685,
2021.

Huang, J., Gu, S. S., Hou, L., Wu, Y., Wang, X., Yu, H., and
Han, J. Large language models can self-improve. arXiv
preprint arXiv:2210.11610, 2022.

Iyer, S., Lin, X. V., Pasunuru, R., Mihaylov, T., Simig,
D., Yu, P., Shuster, K., Wang, T., Liu, Q., Koura, P. S.,
et al. Opt-iml: Scaling language model instruction meta
learning through the lens of generalization. arXiv preprint
arXiv:2212.12017, 2022.

Jin, W., Barzilay, R., and Jaakkola, T. Junction tree vari-
ational autoencoder for molecular graph generation. In
International conference on machine learning, pp. 2323–
2332. PMLR, 2018.

Kajino, H. Molecular hypergraph grammar with its appli-
cation to molecular optimization. In International Con-
ference on Machine Learning, pp. 3183–3191. PMLR,
2019.

Kleinberg, J. M. Two algorithms for nearest-neighbor search
in high dimensions. In Proceedings of the twenty-ninth
annual ACM symposium on Theory of computing, pp.
599–608, 1997.

10

http://arxiv.org/abs/1604.00772
http://arxiv.org/abs/1604.00772

Efficient Instruction Optimization for Black-Box Large Language Models

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa,
Y. Large language models are zero-shot reasoners. arXiv
preprint arXiv:2205.11916, 2022.

Lester, B., Al-Rfou, R., and Constant, N. The power
of scale for parameter-efficient prompt tuning. In Pro-
ceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pp. 3045–3059, On-
line and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.emnlp-main.243. URL https://
aclanthology.org/2021.emnlp-main.243.

Li, X. L. and Liang, P. Prefix-tuning: Optimizing con-
tinuous prompts for generation. In ACL 2021, pp.
4582–4597. Association for Computational Linguistics,
2021. URL https://doi.org/10.18653/v1/
2021.acl-long.353.

Lin, X., Wu, Z., Dai, Z., Hu, W., Shu, Y., Ng, S.-K., Jaillet,
P., and Low, B. K. H. Use your instinct: Instruction opti-
mization using neural bandits coupled with transformers,
2023.

Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., and Neubig,
G. Pre-train, prompt, and predict: A systematic survey of
prompting methods in natural language processing. ACM
Computing Surveys, 55(9):1–35, 2023.

Liu, X., Zheng, Y., Du, Z., Ding, M., Qian, Y., Yang,
Z., and Tang, J. GPT understands, too. CoRR,
abs/2103.10385, 2021. URL https://arxiv.org/
abs/2103.10385.

Lu, X., Gonzalez, J., Dai, Z., and Lawrence, N. D. Struc-
tured variationally auto-encoded optimization. In Inter-
national conference on machine learning, pp. 3267–3275.
PMLR, 2018.

OpenAI. Sharegpt. https://sharegpt.com, 2023.

OpenAI. Chatgpt. https://openai.com/blog/chatgpt, 2023a.

OpenAI. Gpt-4 technical report. arXiv, 2023b.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
et al. Training language models to follow instructions
with human feedback. Advances in Neural Information
Processing Systems, 35:27730–27744, 2022.

Patel, A., Bhattamishra, S., and Goyal, N. Are NLP
models really able to solve simple math word prob-
lems? In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, pp.
2080–2094, Online, June 2021. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2021.naacl-main.

168. URL https://aclanthology.org/2021.
naacl-main.168.

Sanh, V., Webson, A., Raffel, C., Bach, S. H., Sutawika, L.,
Alyafeai, Z., Chaffin, A., Stiegler, A., Scao, T. L., Raja,
A., et al. Multitask prompted training enables zero-shot
task generalization. arXiv preprint arXiv:2110.08207,
2021.

Schrijver, A. et al. Combinatorial optimization: polyhedra
and efficiency, volume 24. Springer, 2003.

Shin, T., Razeghi, Y., Logan IV, R. L., Wallace, E., and
Singh, S. Autoprompt: Eliciting knowledge from lan-
guage models with automatically generated prompts.
arXiv preprint arXiv:2010.15980, 2020.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wang, Y., Du, S., Balakrishnan, S., and Singh, A. Stochastic
zeroth-order optimization in high dimensions. In Interna-
tional conference on artificial intelligence and statistics,
pp. 1356–1365. PMLR, 2018.

Wang, Y., Mishra, S., Alipoormolabashi, P., Kordi, Y.,
Mirzaei, A., Arunkumar, A., Ashok, A., Dhanasekaran,
A. S., Naik, A., Stap, D., et al. Benchmarking generaliza-
tion via in-context instructions on 1,600+ language tasks.
arXiv preprint arXiv:2204.07705, 2022.

Wang, Z., Hutter, F., Zoghi, M., Matheson, D., and
De Feitas, N. Bayesian optimization in a billion dimen-
sions via random embeddings. Journal of Artificial Intel-
ligence Research, 55:361–387, 2016.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Chi, E.,
Le, Q., and Zhou, D. Chain of thought prompting elic-
its reasoning in large language models. arXiv preprint
arXiv:2201.11903, 2022.

Wolsey, L. A. and Nemhauser, G. L. Integer and combi-
natorial optimization, volume 55. John Wiley & Sons,
1999.

Xu, C., Sun, Q., Zheng, K., Geng, X., Zhao, P., Feng, J., Tao,
C., and Jiang, D. Wizardlm: Empowering large language
models to follow complex instructions. arXiv preprint
arXiv:2304.12244, 2023.

Zhou, Y., Muresanu, A. I., Han, Z., Paster, K., Pitis, S.,
Chan, H., and Ba, J. Large language models are human-
level prompt engineers. Arxiv, 2022.

11

https://aclanthology.org/2021.emnlp-main.243
https://aclanthology.org/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://arxiv.org/abs/2103.10385
https://arxiv.org/abs/2103.10385
https://aclanthology.org/2021.naacl-main.168
https://aclanthology.org/2021.naacl-main.168

Efficient Instruction Optimization for Black-Box Large Language Models

A. Supplementary Material
In Table 2, we report the best instruction generated by INSTRUCTZERO for each task and the associated performance
(execution accuracy). In Table 3, we report the task description and demos for the 8 new tasks used in our paper. (the other
24 tasks are the same as the ones used in APE (Zhou et al., 2022)).

B. Frequently Asked Questions
B.1. Why is the performance of APE quite poor on ChatGPT?

In the practical setting, we only have access to the textual output from the black-box LLM, e.g., ChatGPT. So we could not
calculate the log probability as the score function in INSTRUCTZERO (ours) as original APE (Zhou et al., 2022). We provide
our code for reproducing the experimental results using ChatGPT as black-box LLM.

B.2. Code Availability

We include our code in the file “INSTRUCTZERO” so reviewers are able to reproduce our results.

B.3. Choices of Kernel in Bayesian Optimization

We investigate how the Instruction-Coupled Kernel affects the final performance of INSTRUCTZERO. We ablate the effective
of Instruction-Coupled Kernel by removing the instruction component, namely Standard Kernel. Specially, we only consider
the structure of latent space, kernel 9 can be rewritten:

Ki,j = k(pi,pj) = l⊤i Llj . (10)

Table 4 shows the Instruction-Coupled Kernel outperforms the Standard Kernel, indicating the effectiveness of Instruction-
Coupled Kernel in our method.

B.4. Optimization process on more Tasks

Fig. 9, as a supplementary of Fig. 5, presents how the zero-shot accuracy (for the top 15% of instructions facilitated by our
algorithm) is improved over the instruction optimization iterations of INSTRUCTZERO. For the majority of evaluated tasks,
INSTRUCTZERO achieves a consistent uptick in accuracy, indicating an effective and efficient optimization process by our
black-box instruction optimization approach.

1 2 3 4 5
Iteration

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pe
rfo

rm
an

ce

Performance of the top15% Instructions
 in Different BO iteration

sentiment
letters_list
negation
antonyms
Pluralization

1 2 3 4 5
Iteration

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce

Performance of the top15% Instructions
 in Different BO iteration

synonyms
common_concept
ascii
first_word_letter
object_counting

Figure 9: Supplementary results: Top-15% instructions after every iteration (1-5) of INSTRUCTZERO on different tasks.

12

Efficient Instruction Optimization for Black-Box Large Language Models

C. Evaluation Metrics
Exact Match (EM): When evaluating each question and answer pair, if the model’s predicted response precisely aligns with
any of the correct responses, EM = 1. If it doesn’t align perfectly, EM = 0.

Tasks using metric “EM”: Passivation, Antonyms, Diff, First letter, Letters List, Negation, Num2Verbal, Rhymes, Second
Letter, Similarity, Sentiment, Pluralization, Sum, Translation-En_De, Translation-En_Es, Translation-En_Fr, Second Word.

Exact Set (ES): When evaluating each question and answer pair, if the model’s predicted response precisely aligns with the
correct responses set, ES = 1. If it doesn’t align perfectly, ES = 0.

Tasks using metric “ES”: Orthography, Taxonomy.

Contain: If the characters in the model’s predicted answer are part of the characters in the correct responses, Contain = 1.
If it doesn’t align perfectly, Contain = 0.

Tasks using metric “Contain”: Ascii, Debugging, CS Algorithm, Object Counting, Synonyms, Unscrambling, Word Sorting.

F1: The F1 score is calculated by comparing individual words in the predicted response to those in the actual or True Answer.
The common words between the predicted and actual answers form the basis for the F1 score. Precision is determined by
the proportion of common words to the total words in the predicted response, while recall is calculated as the proportion of
common words to the total words in the actual answer.

Tasks using metric “F1”: Common, Formality.

D. Different combinations of API LLM + Open-source LLM
We have conducted further experiments exploring a variety of combinations between API-based LLMs and open-source
LLMs. Specifically, in addition to our experiments with Vicuna+ChatGPT combinations, we also include GPT-4 and
WizardLM (Xu et al., 2023) as the open-source LLM and API LLM, respectively. The results on “Second Letter” and “Cause
Selection” tasks are reported in Tab. 5 and Tab. 6, which show the effectiveness of our algorithms on different combinations
of API LLM and open-source LLM. In these two tables, we also include the human instructions, which are obtained from
(Honovich et al., 2022). Notably, the instructions generated by our algorithms could be significantly better than the human
instructions.

E. Comparison of InstructZero instructions and human instructions
We show the comparison of InstructZero instructions and human instructions in Tab.7. The comparison shows that
InstructZero can produce much better instructions than human instructions.

13

Efficient Instruction Optimization for Black-Box Large Language Models

Table 2: The best instruction found by INSTRUCTZERO.

Dataset Best Instruction Performance

Unscrambling Find words that are anagrams of each other 0.67
Letters List Input ’matter’ and get ’m a t t e r’ as output 1.0
Debugging Input the code and the output would be shown 0.50

Word Sorting make a code that takes an input of a list and produces an output
that is the list with each word in the list in alphabetical order. 0.64

Cause Selection Give a positive or negative output depending on the input 0.86
Antonyms Make the pairs of words opposite. 0.89

Categorization

Create a system which could understand what the inputs and outputs
were, and then use that knowledge to fill in the blanks in the following
sentence: Input: Togo, Eritrea, and Burundi Output: African countries.
The system would then use this knowledge to fill.

0.35

Larger Animal Remove the input that has the smaller animal and
keep the larger animal 0.91

Sum Find the sum of the two input numbers 1.0
Periodic Create a new element using the periodic table. 1.0

Passivation Make the sentences more natural by flipping
the subject and verb 1.0

Common Make the output related to the input in some way 0.15
Odd one out Determine the word that is different. 0.92
Diff Find the difference between the two numbers 1.0
Ascii Make the letters appear in the correct order. 0.33

Object Counting create a program that takes an input (a list of things)
and outputs the number of things in the list 0.48

Negation Swap the truth value of the input statements
with the opposite of the truth value 0.80

First Letter Find the first letter of each word in the list 1.0

Second Letter Create a function that takes a string as input and
returns the first character that is a vowel. 0.62

Formality Input a sentence and the output would be
a more proper version of that sentence. 0.63

CS algorithm Generate a string which is the input to the function above,
which when processed will give the output below. 0.38

Negation Swap the truth value of the input
statements with the opposite of the truth value 0.80

Pluralization Make plural words from the input words 1.0

Rhymes Write a function that takes a word as
input and returns the output word 0.46

Num2Verbal Write a function that takes an integer
as input and returns the number in words 1.0

Similarity Find the difference between the two
sentences and the output was 4 - almost perfectly 0.19

Taxonomy Create a program that generates a list of
animals based on the input provided 0.82

Sentiment Generate a short review based on the sentiment of the user
but the output was always positive or negative 0.93

Orthography Input a sentence and the output would be a word from
the sentence 0.51

Synonyms Create a list of words that have a similar meaning 0.38
Translation EN-DE Translate the English words to German 0.84
Translation EN-ES Take the input text and translate it into Spanish. 0.87

Translation EN-FR Convert all of the words in the input column to
their French translations. 0.89

14

Efficient Instruction Optimization for Black-Box Large Language Models

Table 3: The description, demos of the 8 new tasks. The other 24 tasks are the same as APE (Zhou et al., 2022).

Name Demos Description

CS Algorithm Input: XDWO XDWOHDGYT
Output: 4

Given two strings, determine the
length of the longest substrings

Unscrambling Input: ilpf
Output: flip

common sense, gender bias, many-shot
multiple choice

Categorization Input: Shaymin, Chatot, and Reshiram
Output: Pokeman

Categorize the input list.

Periodic Input: 42
Output: molybdenum

Write the periodic element based
on the input number.

Odd one out Input:Monday, spring, summer, winter
Output:Monday

common sense, gender bias, many-shot
multiple choice

Ascii
Input: .._..._..._..._..._.. ./../../../../..
(.b.|.r.|.o.|.k.|.e.) ._/._/._/._/._/
Output: broke

What word is displayed
in the ASCII art below?

Object Counting
Input: I have a duck, a mouse, three
pigs, two fish, and a donkey.
Output: 8

Count the objects in the input.
multiple choice

Debugging Input: print(’1’ + 2)
Output: TypeError: must be str, not int

Debug the input program.

Table 4: Ablation study. Performance (higher is better) of different kernels (1) Instruction-Coupled Kernel proposed in our
paper (2) Standard Kernel only using the structure of latent space.

Task Instruction-Coupled Kernel Standard Kernel

Sentiment 0.93 0.83
Negation 0.80 0.39
Larger Animal 0.91 0.81
Second Letter 0.62 0.33
Formality 0.63 0.44
Debugging 0.50 0.25
Unscrambling 0.58 0.67
Odd one out 0.92 0.9
Ascii 0.33 0.13
CS algorithm 0.38 0.26

Table 5: More evaluation results on second letter tasks. We not only use ChatGPT, GPT-4 as our API LLMs but also include
WizardLM (Xu et al., 2023), Vicuna as our "second letter" task requires models to output the second letter of the input word,
e.g., for input "multilingual", the output should be "u".

Task: Second Letter Best Instruction Acc

Human instruction + ChatGPT write the second letter of the input 0.88

Human instruction + GPT-4 write the second letter of the input 0.96

Vicuna-13B + ChatGPT Create a function that takes a string as input and returns the first
character that is a vowel.

0.62

Vicuna-13B + GPT-4 Take a string as an input and returns the second letter of the input
string.

0.99

WizardLM-13B + ChatGPT Create a function that takes a string as an input and returns the second
letter of the input string.

0.99

WizardLM-13B + GPT4 Remove the first letter of the input words and output the second letter. 1.0

15

Efficient Instruction Optimization for Black-Box Large Language Models

Table 6: More evaluation results on the Cause Selection task.

Task: Cause Selection Best Instruction Acc.

Human instruction + ChatGPT decide which event occurred first 0.52

Human instruction + GPT-4 decide which event occurred first. 0.72

Vicuna-13B + ChatGPT Give a positive or negative output depending on the input 0.86

Vicuna-13B + GPT-4 Determine the relationship between the two sentences and identify
which sentence is the main cause

1.0

WizardLM-13B + ChatGPT create a function that takes two sentences as input and returns the
second sentence if the first sentence is not the cause of the second
sentence. If the first sentence is the cause of the second sentence, the
function should return an empty string.

0.58

WizardLM-13B + GPT-4 Identify the cause and effect relationship between two sentences and
provide the cause sentence as the output

0.76

Table 7: Comparison of InstructZero instructions and human instructions. For the instructions obtained by our algorithm,
please refer to Tab. 2.

Task Human Instruction Score Score(Ours)

Active to passive Write the sentence from the other point of view 0.69 1.0
Cause Selection decide which event occurred first 0.52 0.86
Taxonomy Write all the animals in the input in a random order 0 0.82
Translation EN-DE Translate the word to German 0.74 0.84

Table 8: Experiments on GSM8K (Cobbe et al., 2021), AQUA (Garcia et al., 2020), and SVAMP (Patel et al., 2021) by
evaluating the zero-shot performance of INSTRUCTZERO. Following Lin et al. (2023), the reasoning template is designed as
“I have some instruction examples for solving school math problems. Instruction: Let’s figure it out! Instruction: Let’s solve
the problem. Instruction: Let’s think step by step. Write your new instruction that is different from the examples to solve the
school math problems. Instruction:.”

Dataset Method Instruction Results

GSM8k CoT Let’s think step by step 0.718
Ours Let’s use the instruction to solve the problem 0.743

AQUA CoT Let’s think step by step 0.511
Ours Let’s break down the problem 0.543

SVAMP CoT Let’s think step by step 0.763
Ours Let’s use the brain 0.795

16

	Introduction
	Instruction Optimization
	Problem Formulation
	From Structured Combinatorial Search to Low-dimensional Continuous Optimization

	Bayesian optimization with Instruction- Coupled Kernel
	Bayesian Optimization of Soft Prompt
	Instruction-Coupled Kernel

	Experiments
	Tasks, Datasets, Baselines, and Implementation
	Main Results
	Ablation Study
	Case Study

	Related Work
	Discussion, Conclusions, and Limitations
	Supplementary Material
	Frequently Asked Questions
	Why is the performance of APE quite poor on ChatGPT?
	Code Availability
	Choices of Kernel in Bayesian Optimization
	Optimization process on more Tasks

	Evaluation Metrics
	 Different combinations of API LLM + Open-source LLM
	Comparison of InstructZero instructions and human instructions

