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Abstract

The growing richness of large-scale datasets has
been crucial in driving the rapid advancement
and wide adoption of machine learning technolo-
gies. The massive collection and usage of data,
however, pose an increasing risk for people’s pri-
vate and sensitive information due to either in-
advertent mishandling or malicious exploitation.
Besides legislative solutions, many technical ap-
proaches have been proposed towards data privacy
protection. However, they bear various limita-
tions such as leading to degraded data availability
and utility, or relying on heuristics and lacking
solid theoretical bases. To overcome these limita-
tions, we propose a formal information-theoretic
definition for this utility-preserving privacy pro-
tection problem, and design a data-driven learn-
able data transformation framework that is capa-
ble of selectively suppressing sensitive attributes
from target datasets while preserving the other
useful attributes, regardless of whether or not
they are known in advance or explicitly annotated
for preservation. We provide rigorous theoretical
analyses on the operational bounds for our frame-
work, and carry out comprehensive experimental
evaluations using datasets of a variety of modal-
ities, including facial images, voice audio clips,
and human activity motion sensor signals. Results
demonstrate the effectiveness and generalizability
of our method under various configurations on a
multitude of tasks. Our source code is available
at this URL.
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1. Introduction
The recent rapid advances and wide adoption of machine
learning technologies are largely attributed to not only the
explosive growth in raw computing power, but also the un-
precedented availability of large-scale datasets, for example,
the monumental computer vision dataset ImageNet (Deng
et al., 2009), the large multi-lingual web corpus Common
Crawl (2023), and the widely used UCI HAR dataset (An-
guita et al., 2013). While the vast amount of data serves
as the rich basis for machine learning algorithms to learn
from, the ubiquitous data collection and usage have drawn
serious privacy concerns since people’s private and sensitive
information could be leaked through inadvertent mishan-
dling as well as deliberate malicious exploitation. Therefore,
various regulatory policies, such as GDPR and CCPA, have
been drafted and put in place to guardrail the handling and
usage of data. While such legislative solutions do generally
help mitigate the privacy concerns, they also tend to pose
blanket restrictions that result in degraded data availability.
Therefore, there has been a growing interest in developing
more sophisticated, flexible technical solutions.

Towards this goal, many techniques have been proposed.
One of the most well-known studies is the protection against
membership inference attacks, also known as Differential
Privacy (Dwork et al., 2014; Mironov, 2017; Abadi et al.,
2016). It focuses on preventing attackers from differentiat-
ing between two neighboring sets of samples by observing
the change in the distribution of output statistics. Another
widely discussed notion of privacy is the protection against
attribute inference attacks, often referred to as Information-
theoretic (IT) Privacy (Hukkelås et al., 2019; Bertran et al.,
2019; Huang et al., 2018; Hsu et al., 2020). This line of
work aims at transforming a dataset to remove or suppress
its sensitive attributes while preserving its utility for down-
stream tasks. In this paper, we focus our discussion on
providing IT Privacy protection.

Developing a data transformation framework for IT Pri-
vacy presents multiple challenges. Specifically, we identi-
fied 5 desired properties for an IT Privacy data transforma-
tion framework, which can be summarized as SUIFT: 1)
Sensitivity suppression: the capability to suppress annotated
sensitive attributes from the dataset; 2) Utility preservation:
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Table 1. A summary of related works on IT Privacy.  , # and G#
indicate satisfied, not satisfied and partially satisfied, respectively.
S, U, I, F, and T are abbreviations of Sensitivity suppression, Utility
preservation, Invariance of sample space, Feature management
without annotation, and Theoretical basis respectively. Apart
from our method, MaSS (to be introduced shortly, and described
in detail in Section 4), none of the listed methods fully satisfy
all components of SUIFT (discussed in detail in Section 2 and
Appendix B).

Method S U I F T

DeepPrivacy (Hukkelås et al., 2019)  G#  G# #
CiaGAN (Maximov et al., 2020)  G#  G# #
Hsu et al. (2020)  #  G#  
ALR (Bertran et al., 2019)    #  
PPDAR (Wu et al., 2020)    # #
BDQ (Kumawat & Nagahara, 2022)    # #
ALFR (Edwards & Storkey, 2016) G#  #  G#
LAFTR (Madras et al., 2018) G#  #  G#
GAP (Huang et al., 2018)  #   G#
MSDA (Malekzadeh et al., 2019)     G#
SPAct (Dave et al., 2022) #    #

MaSS (our method)      

the capability to preserve specifically annotated useful at-
tributes in the dataset to facilitate downstream usage; 3)
Invariance of sample space: keeping the transformed data in
the original space as the input data, to enable plug-in usabil-
ity for pretrained off-the-shelf models and to deliver better
re-usability for the community; 4) Feature management
without annotation: the capability to manage unannotated
generic features in the dataset, by either suppressing them or
preserving them when they are considered either useful or
sensitive. 5) Theoretical basis: all the proposed components
of the data transformation frameworks being entirely driven
by a unified information-theoretic basis to ensure safety.

Various techniques have been proposed towards the goal of
SUIFT in IT Privacy, as summarized in Table 1. However,
each of them is limited in missing some of the desired
properties of SUIFT. For example, Bertran et al. (2019),
Wu et al. (2020), and Kumawat & Nagahara (2022) can
only ensure the predictability in the transformed data for
attributes that have already been explicitly annotated for
preservation; no considerations are given to managing data’s
unannotated attributes. On the other hand, Huang et al.
(2018), Malekzadeh et al. (2019) and Madras et al. (2018)
do account for unannotated attributes, but their designs for
unannotated attributes preservation are mostly heuristic-
driven and lack rigorous theoretical bases, which could limit
their applicability, especially for scenarios involving highly
sensitive information.

To address these limitations, in this paper we present MaSS,
a Multi-attribute Selective Suppression framework that aims
at satisfying all 5 components of SUIFT. Specifically, we
formulate the IT Privacy as an optimization problem from
the perspective of information theory, and then convert the
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Figure 1. An illustrative use case of MaSS: The original data sam-
ple is a voice clip of a person speaking a digit, where its attributes
“gender” and “accent” are considered as sensitive, while its “age”
and “spoken digit” are annotated as useful. We are also interested
in preserving generic features of the data. For example, the voice
clip may contain attributes such as “speaker ID” or “recording
room” that could prove to be useful down the road, but are not
necessarily explicitly annotated yet at the time of processing. After
the transformation of MaSS, sensitive attributes can no longer be
accurately inferred, but the other useful attributes are preserved in
the transformed data.

optimization problem into a fully differentiable trainable
framework parameterized by neural networks, with sound
analyses on the design derivation and operational bounds.
MaSS is capable of suppressing multiple selected sensitive
attributes, and preserving multiple useful attributes regard-
less of whether they are annotated or not. An illustrative
use case of MaSS is shown in Figure 1. We also compare
MaSS with various baselines extensively on three datasets
of different modalities, namely voice recordings, human
activity motion sensor signals, and facial images, and show
its practical effectiveness under various configurations.

The contributions of this paper are summarized as follows:
1) We propose MaSS, an information theory driven data
transformation framework satisfying all 5 identified desir-
able properties in IT Privacy, namely SUIFT; 2) We pro-
vide rigorous theoretical analyses on the design derivation
and operational bounds of our proposed multi-attribute data
transformation framework; and 3) We experimentally evalu-
ate MaSS extensively on voice audio, human activity motion
sensor signal, and facial image datasets, and demonstrate its
effectiveness and generalizability.

Omitted proofs, details on experiment setups and training,
and additional results are included in the Appendix.

2. Related Works
Privacy-preserving mechanisms. A privacy-preserving
mechanism ensures privacy by randomizing a function of
data in order to thwart unwanted inferences. There are
two selections of the functions that lead to different pri-
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vacy notions. If the function is the output of a query over
a database, the privacy notion is termed differential pri-
vacy (DP) (Dwork et al., 2006), which requires the results
of a query be approximately the same for small perturba-
tions of data, and can usually be achieved by additive noise
mechanisms (e.g., Gaussian, Laplacian or exponential noise
(Dwork et al., 2014; Sun et al., 2020; Zhang et al., 2018;
Abadi et al., 2016)). Different from DP, if the function is
a conditional distribution that anonymizes sensitive infor-
mation in the data while preserving non-sensitive informa-
tion, it leads to the other privacy notion called information-
theoretic (IT) privacy. The motivation behind IT privacy
is to improve the data quality after anonymization with the
additional information of the utility attributes. See Hsu et al.
(2021a) for a more detailed discussion on the two privacy
notions. Since our goal is to not only suppress the sensitive
attributes but also preserve the data utility concurrently, the
MaSS framework falls within the field of IT privacy.

IT Privacy protection for annotated attributes. By re-
viewing related studies for IT Privacy and examining the
requirements of downstream applications, we identified 5 de-
sirable properties of IT Privacy mechanisms, namely SUIFT
as summarized in Section 1 and Table 1. Nevertheless,
previous studies proposed for IT Privacy are limited in
certain properties. For instance, DeepPrivacy (Hukkelås
et al., 2019) employs a CGAN, conditioned on image back-
ground and pose features, to synthesize anonymized facial
images. To further ensure de-identification, CiaGAN (Max-
imov et al., 2020) proposes to condition the CGAN on an
identity control vector, creating images with fabricated iden-
tities. Nevertheless, these methods prioritize visual quality
of the generated images over the preservation of utilities,
for both annotated and unannotated useful attributes, un-
dermining the data’s usefulness for downstream ML tasks.
(Hsu et al., 2020) proposes to suppress sensitivity by only
locating and obfuscating information-leaking features, but
is also limited in providing a mechanism to quantify and pre-
serve the utilities. To explicitly preserve useful annotated
attributes, ALR (Bertran et al., 2019) ensures that anno-
tated useful attributes remain predictable in anonymized
data, while thwarting inference of sensitive attributes from
an information-theoretic perspective. PPDAR (Wu et al.,
2020) extends this approach by introducing a cross-entropy-
based suppression and preservation loss. This idea is further
blended with a prior-based suppression loss by BDQ (Ku-
mawat & Nagahara, 2022). Despite their advancements in
preserving annotated useful attributes, these studies do not
consider managing the unannotated attributes in the data.

Unannotated attributes management based on heuris-
tics. In the neighboring field of fair representation learn-
ing, ALFR (Edwards & Storkey, 2016) proposes to preserve
the unannotated attributes by minimizing the ℓ2 reconstruc-

tion loss, while selectively suppress and preserve annotated
attributes. Building upon this, LAFTR (Madras et al., 2018)
introduces a fairness metrics driven optimization objective
for suppression. However, these studies focused on sup-
pressing only one binary sensitive attribute to achieve fair-
ness. In contrast, in IT Privacy literature, GAP (Huang
et al., 2018) advocates for suppressing multiple sensitive
attribute, and simultaneously contraining the ℓ2 reconstruc-
tion loss. (Malekzadeh et al., 2019) further combines ℓ2
reconstruction loss with information theoretic losses for an-
notated attributes. On the other hand, Dave et al. targets
their work at suppressing the unannotated attributes of the
data, utilizing contrastive learning technique, while ensuring
the predictability of annotated attributes. Despite the prac-
tical relevance of their handling of unannotated attributes,
these works fall short in providing a robust theoretical foun-
dation regarding the derivation and operational bounds of
their design, raising concerns in scenarios demanding high
safety assurances. We discuss related works in more detail
in Appendix B.

3. Problem Formulation
In this paper, we focus on a multi-attribute dataset comprised
of original data X , a set of M sensitive attributes S =
(S1, S2, . . . , SM ), a set of N annotated useful attributes
U = (U1, U2, . . . , UN ), and a set of unannotated useful
attributes or generic features F . However, our access is
limited to the observable joint distribution P (X,U, S), as
opposed to the intrinsic joint distribution P (X,U, S, F ).
We base our work on pragmatic assumptions that S,U are
random variables following finite categorical distributions,
allowing the mutual information between S,U , and X to be
bounded. Additionally, we presuppose that with the given
X , the corresponding annotated attributes S,U are entirely
determined (i.e., P (Si|X) and P (Uj |X) are degenerate
distributions). For broad applicability, we do not make
assumptions regarding the dimension or distribution family
for F and X . Furthermore, we do not assume independence
between F and other variables, which means that F may
correlate with the joint distribution of X,S,U .

Our goal of IT Privacy is then formulated as finding the
optimal data transformation Pθ(X ′|X), where the random
variable X ′ is the transformed data, and the strongest unan-
notated useful attribute extractor Pη(F |X) by solving the
following constrained optimization problem:

max
θ,η

I(X ′;F )

s.t. I(X ′;Si) ≤ mi and I(X ′;Uj) ≥ nj ,
(1)

where I(·, ·) is Shannon mutual information, i ∈ 1 . . .M ,
j ∈ 1 . . . N , Pθ(X ′|X) and Pη(F |X) are parameterized by
θ, η respectively. By solving this optimization problem, we
try to ensure that, at least nj nats (the counterpart of bits
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Figure 2. The Markov chain of all variables. F is correlated with
U, S,X . X ′ is only dependent on X .

with Napierian base) information is preserved for Uj in the
transformed data X ′, at most mi nats information is leaked
for Si in X ′, and the information preserved for F in X ′ is
maximized when the most informative F is extracted from
X . For clarity, the Markov Chain of variables U, S, F,X ,
and X ′ corresponding to our problem formulation is sum-
marized in Figure 2.

3.1. Operational Bounds

In preparation for solving our optimization problem for-
mulated in Equation 1, a thorough comprehension of its
operational bounds is imperative. Specifically, we will eluci-
date formally that the parameters mi and nj must be chosen
under certain constraints to ensure the solvability of Equa-
tion 1. Moreover, it will be established that the optimization
objective I(X ′;F ) has an upperbound which can not be
exceeded.

Theorem 3.1. For the Markov Chain shown in Figure 2,
there exists a solution to the optimization problem defined
in Equation 1, only if for any pair of (mi, nj), i ∈ 1 . . .M ,
j ∈ 1 . . . N , it satisfies:

nj ≤ mi + I(X;Uj |Si), nj ≤ I(X;Uj) and mi ≥ 0.
(2)

Under the assumptions that P (Si|X) and P (Uj |X) are
degenerate distributions, Equation 2 can be simplified to

nj ≤ mi +H(Uj |Si), nj ≤ H(Uj) and mi ≥ 0. (3)

where H(·) is Shannon entropy.

Besides, for any mi, i ∈ 1 . . .M , I(X ′;F ) is upper
bounded by

I(X ′;F ) ≤ H(X|Si) +mi. (4)

Please refer to Appendix A.1 for the proof. It is important
to note that the values in Equation 3, specifically H(Uj |Si)
and H(Uj), are independent of our model’s parameters and
can be computed prior to training to assess solvability.

To understand the requirement of nj ≤ mi +H(Uj |Si) in
Equation 3 intuitively, consider a facial image dataset with
two attributes “hair color” and “age”. The high correlation
between these attributes is evident, as older individuals are
more likely to have white or gray hair. Should “age” be
suppressed with a small mage, the “hair color” information
in the facial image must be correspondingly sacrificed to

prevent inadvertently disclosing “age” information. The ex-
tent of this sacrifice is intuitively determined by the certainty
with which “age” predicts “hair color”.

To intuitively understand Equation 4, revert to the example
we discussed above. When suppressing “age”, certain fea-
tures that were in X no longer reside in X ′, such as hair
color and wrinkles, etc. This results in a necessary sacrifice
of the information of F contained in X ′. The extent of
sacrifice is determined by the certainty with which “age”
determines the image.

4. Data-driven Learnable Data
Transformation Framework

Building upon our problem formulation, we design a learn-
able data-driven data transformation framework as an ap-
proximation to Equation 1, which we call Multi-attribute
Selective Suppression (abbreviated as MaSS). Notably, we
adopt neural networks as conditional probability approxima-
tors in our framework, and design our training objectives to
be fully differentiable, allowing gradient descent based opti-
mization. MaSS can be flexibly implemented with various
neural network structures to adapt to different application
requirements. The overarching architecture of MaSS is de-
picted in Figure 3. In the subsequent sections, we elaborate
on the modules of MaSS in detail.

4.1. Data Transformation

The data transformation module takes in the original data X
and outputs the transformed data X ′. In line with Bertran
et al., we parameterize Pθ(X

′|X) as a neural network
X ′ = gθ(X, a), wherein a is a noise variable sampled from
a multi-variate unit Gaussian distribution, serving as the
source of randomness for X ′.

4.2. Sensitive Attributes Suppression

Given the transformed data, we calculate a suppression loss
LS,i for each of the sensitive attributes, which is differ-
entiable and can be minimized to achieve the constraint
I(X ′;Si) ≤ mi mentioned in Equation 1. Next, we discuss
in depth on the derivation of LS,i.

The direct computation of I(X ′;Si) is infeasible because of
the intractability of P (Si|X ′). Consequently, we incorpo-
rate an adversarial neural network Pϕi(Si|X ′) as an estima-
tion of P (Si|X ′), where ϕi is trained with the cross-entropy
loss used in traditional supervised learning method:

LCE(Si) = EP (X)Pθ(X′|X) [H(P (Si|X), Pϕi
(Si|X ′))] ,

ϕi = argmin
ϕi

LCE(Si),

(5)
where H(·, ·) denotes cross-entropy and the expectation is
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Figure 3. The overall architecture of MaSS. The data transformation module converts the original data into a transformed version. Then
the transformed data is sent to both the sensitive attributes suppression module and the annotated useful attributes preservation module, to
calculate a relaxed suppression or preservation loss for each attribute respectively. Additionally, the original and transformed data are sent
to the unannotated useful attributes preservation module to calculate a contrastive loss. Finally, these losses are aggregated to minimize θ
and η jointly. ϕ, ψ are optimized with traditional supervised learning.

estimated using mini-batch during training. Under the as-
sumption that Si can be fully determined givenX , P (Si|X)
effectively refers to the deterministic ground-truth label of
each sample.

With the help of ϕi, the mutual information I(X ′;Si) can
be estimated as

I(X ′;Si) ≈ EP (X)Pθ(X′|X)P (Si|X)

[
log

Pϕi(Si|X ′)

P (Si)

]
= H(Si)− LCE(Si),

(6)
where H(Si) is a constant for each dataset and can be cal-
culated before training. Consequently, we can also convert
the constraint I(X ′;Si) ≤ mi in Equation 1 to

H(Si)−mi ≤ LCE(Si). (7)

Following Bertran et al., we relax the Constraint 7 to a
differentiable loss LS,i function eligible for gradient descent
using the penalty method, which can be written as

dS,i = min(LCE(Si) +mi −H(Si), 0),

LS,i = d2S,i + |dS,i|.
(8)

4.3. Annotated Useful Attributes Preservation

The annotated useful attributes preservation module follows
a symmetric design and derivation as the annotated sensitive
attributes suppression module. Analogously, a differentiable
preservation loss LU,j is calculated for each useful attribute
to achieve the constraint I(X ′;Uj) ≥ nj in Equation 1. A
collaborative neural network Pψj (Uj |X ′) is also introduced

to estimate P (Uj |X ′), which is trained with cross-entropy
loss:

LCE(Uj) = EP (X)Pθ(X′|X)[H(P (Uj |X), Pψj (Uj |X ′))],

ψj = argmin
ψj

LCE(Uj),

(9)
Following the same derivation as Section 4.2, we can convert
the constraint I(X ′;Uj) ≥ nj to

H(Uj)− nj ≥ LCE(Uj). (10)

which can also be relaxed into a differentiable loss LU,j
using penalty method:

dU,j = max(LCE(Uj) + nj −H(Uj), 0)

LU,j = d2U,j + |dU,j |.
(11)

In order to accelerate the training process, we further pro-
pose to pre-train an attribute inference network on original
data X for each Si, Ui, denoted as ϕi,0 and ψj,0 respec-
tively, using the cross-entropy loss. And then we initialize
the transformed data attribute inference models ϕi and ψj
with ϕi,0 and ψj,0 respectively, so that they can converge
faster during training.

Note that, different from our method, previous studies such
as Bertran et al. propose to freeze the useful attribute in-
ference model ψj during training after it is initialized with
ψj,0. However, we abandoned this strategy, because a frozen
useful attribute inference model will introduce a notice-
able error in estimating I(X ′;Uj). Specifically, the esti-
mation error will be KL(P (Uj |X ′)||Pψj,0(Uj |X ′)), where
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Pψj,0
(Uj |X ′) denotes P (Uj |X ′) estimated with the frozen

useful attribute inference network ψj,0, KL(·||·) is Kull-
back–Leibler divergence. This error can be large and even
unbounded because ψj,0 is trained to approximate P (Uj |X)
rather than P (Uj |X ′). Please refer to Appendix A.2 for
proof and analysis.

4.4. Unannotated Useful Attributes Preservation

The unannotated useful attributes preservation module aims
at calculating and maximizing a differentiable loss approxi-
mating the negative I(X ′;F ), without any assumption on
the distribution family of F and X ′. Consequently, we
can not approximate I(X ′;F ) using the aforementioned
method in Section 4.2 because it requires the assumption
that P (F |X ′) follows a finite categorical distribution.

Moreover, approximating I(X ′;F ) using ℓ2 reconstruction
loss ∥X ′ − F∥2 (or ∥X ′ −X∥2), as did in Huang et al.
(2018), Malekzadeh et al. (2019), Edwards & Storkey (2016)
and Madras et al. (2018) is also infeasible since it also re-
quires the assumptions that P (F |X ′) (or P (X|X ′)) follows
a fully factorized Gaussian distribution where each element
of F (orX) is only dependent on the corresponding element
of X ′ at the same position. In addition, we will also show
empirically in Section 5.1 that ℓ2 reconstruction loss hin-
ders the overall performance seriously due to its unrealistic
assumptions.

In order to approximate I(X ′;F ) without assumption on the
distribution family of X ′ or F , we choose the InfoNCE loss
LF (Oord et al., 2018) as the approximation of the shifted
negative I(X ′;F ). InfoNCE is known as an effective ap-
proximation method for mutual information, regardless of
the distribution family of the random variables, and is stable
in mini-batch based training. We also tried other mutual
information estimator, e.g., MINE (Belghazi et al., 2018),
and empirically compared them in Section 5.1.

To calculate LF , we first sample one anchor f , one pos-
itive sample x′p, and K negative samples x′(K)

n given a
specific realization of X , from the conditional distribution
Pη(F |X), Pθ(X ′|X) and the marginal distribution Pθ(X ′)
respectively. Then we take expectation over X and all pos-
sible sampling of f, x′p, x

′(K)
n to calculate LF as

LF = E

[
log

F(f, x′p)

F(f, x′p) +
∑
x′
n∈x

′(K)
n

F(f, x′n)

]
, (12)

where F is a score function defined in the same way as
SimCLR (Chen et al., 2020), which can be written as

F(f, x′) = ecos(f,h(x
′))/τ , (13)

where τ is the temperature hyper-parameter. h(x′) is a
feature extractor trained jointly with data transformation

module, θ. Note that unlike SimCLR, our loss do not sample
negative samples from P (F ). As proved in Oord et al.
(2018), we can approximate I(X ′;F ) as

I(X ′;F ) ≈ −LF + log(K + 1). (14)

In order to further encourage the transformed data X ′ to
remain in the original sample space of X , we propose to
use a single neural network η to parameterize both hη(x′)
and Pη(F |X). This symmetric design can also reduce the
number of parameters and hence stabilize the training. Im-
portantly, an alternative interpretation of this design is to
apply the InfoNCE loss on X and X ′ to estimate and maxi-
mize I(X ′, X).

Aligned with pretraining the attribute inference networks,
our unannotated useful attributes extractor η is also initial-
ized with η0 pretrained using InfoNCE loss on the original
dataset X . In the pretraining stage we use one sample in the
mini-batch as both the anchor and the positive sample and
use the other samples in the mini-batch as negative samples.

Analogous to LF , which is anchored in F space, we can
define another InfoNCE loss L′

F anchored in the X ′ space
and use both losses for training. A more detailed elaboration
on the calculation and the advantage of InfoNCE loss is
presented in Appendix C.1.

4.5. Module Aggregation

Aggregating the losses calculated from all modules above,
we convert our original constrained optimization problem
defined in Equation 1 into the following differentiable opti-
mization problem:

min
θ,η

Ltotal =
LF + L′

F

2
+λ

∑
i

LS,i +
∑
j

LU,j

 (15)

where λ is a hyper parameter controlling the degree of re-
laxation. Equation 15 effectively recovers the constrained
optimization problem defined in Equation 1 when λ→ ∞,.

5. Evaluation
In this section, we present our experimental evaluation of
MaSS against several baselines methods using multiple
datasets of varying modalities.

5.1. Experimental Setup

Datasets. The evaluation of MaSS is exhaustively con-
ducted on three multi-attribute benchmark datasets of differ-
ent modalities, namely the AudioMNIST (Becker et al.,
2018) dataset for recorded human voices, the Motion
Sense (Malekzadeh et al., 2019) dataset for human activ-
ity sensor signals, and the Adience (Eidinger et al., 2014)

6



Multi-attribute Selective Suppression for Utility-preserving Data Transformation from an Information-theoretic Perspective

dataset for facial images. We use the raw data points for
training on Motion Sense and Adience, whereas we convert
the raw data points to feature embeddings for AudioMNIST
using state-of-the-art feature extractor HuBERT-B (Hsu
et al., 2021b) for training efficiency.

Baselines. We compare our method with 5 baselines,
namely ALR (Bertran et al., 2019), GAP (Huang et al.,
2018), MSDA (Malekzadeh et al., 2019), BDQ (Kumawat &
Nagahara, 2022), and PPDAR (Wu et al., 2020). All 6 meth-
ods rely on adversarial training a sensitive attribute inference
model. However, ALR, BDQ, and PPDAR do not consider
the preservation of unannotated useful attributes, whereas
GAP and MSDA do, using a ℓ2 heuristic loss. Notwithstand-
ing, GAP does not consider the preservation of annotated
useful attribute.

Evaluation Metrics. This paper is focused on suppressing
sensitive attributes while preserving useful attributes, rather
than generating high quality synthetic data. Therefore, we
adopt classification accuracy for each attribute on evaluation
set as our metric to measure the effectiveness of the suppres-
sion or preservation. Specifically, for sensitive attributes,
we report the classification accuracy of the adversarially
trained classifier ϕi. For useful attributes, to ensure a fair
comparison with baselines, we report the classification accu-
racy of a classifier tuned on the transformed data X ′ and its
attributes Uj . The performance is considered better when
the sensitive attributes’ accuracies are lower and the useful
attributes’ accuracies are higher.

Furthermore, since the datasets we use are unbalanced, we
adopt the classification accuracy of the majority classifier
as a lower reference value, which can also be interpreted as
the accuracy of guessing the attribute without accessing X ′

(Asoodeh et al., 2018; Liao et al., 2019). On the other hand,
we also adopt the accuracy of the ϕi,0 and ψj,0 on original
data X in the evaluation set as a upper reference value
of classification accuracy, which reflects the classification
accuracy when no attributes are suppressed.

Based on the lower and upper reference values of classifica-
tion accuracy, we introduce a noval normalized metric for
our task, namely Normalized Accuracy Gain (NAG), which
is defined as NAG = max

(
0,

Acc−Accguessing
Accno suppression−Accguessing

)
,

where Acc denotes classification accuracy. NAG is in-
herently non-negative, with NAG = 0 suggesting that
Acc ≤ Accguessing. We consider all Acc ≤ Accguessing as
equally effective, which indicates that this attribute is com-
pletely suppressed from X ′. NAG can be seen as a more
informative indicator of how the classification accuracy of
each attribute is increased or decreased. Therefore, we only
report NAG throughout the main paper for clarity, while
the corresponding results and reference values measured in
classification accuracy are also shown in Appendix E.

Table 2. Comparison of the NAG between MaSS, ablations and
baselines on Motion Sense. We suppress gender, ID, while pre-
serve activity as if unannotated useful attribute.

Method Normalized Accuracy Gain

gender (↓) ID (↓) activity (↑)

ALR 0.0828 0.0432 0.7704
GAP 0.0053 0.0314 0.8379
MSDA 0.0063 0.0708 0.8418
BDQ 0.1178 0.0613 0.7426
PPDAR 0.0000 0.0000 0.6912

MaSS-NF 0.0000 0.0000 0.7275
MaSS-ℓ2 0.0085 0.0260 0.8156
MaSS-MINE 0.3294 0.1271 0.6847

MaSS 0.0000 0.0026 0.8977

In order to evaluate the performance of MaSS on preserving
unannotated useful attributes, we conceal the labels (anno-
tations) of certain annotated attributes during training and
only use these labels for evaluation.

Hyperparameters. Throughout our experiments, λ is sim-
ply set to 1. When an attribute is suppressed we simply set
its mutual information constraint m as 0. Unless otherwise
noted, we set the n of all preserved annotated attributes as
the maximal value permitted by Equation 3.

Additional detailed descriptions of the datasets, model struc-
tures, and optimization process are elaborated in Appendix
D. Next we present and discuss our experimental results.

5.2. Evaluation on Human Activity Sensor Signals

We first experiment on the human activity sensor signal
dataset, Motion Sense. Initial experiment focuses on sup-
pressing gender and ID attributes, while concealing the
labels of the activity attribute, treating activity as an unanno-
tated attribute for preservation. This setup mirrors scenarios
aspiring to eliminate sensitive identity-related information
from a dataset lacking explicit annotation on non-sensitive
attributes. Apart from the 5 baselines described above, we
also compare MaSS with 3 ablations to examine the unan-
notated useful attributes preservation module of MaSS: 1)
removing the InfoNCE loss (denoted as MaSS-NF); 2) re-
placing InfoNCE loss to ℓ2 reconstruction loss (denoted
as MaSS-ℓ2); and 3) replacing InfoNCE loss to a negative
mutual information estimated using MINE (Belghazi et al.,
2018) (denoted as MaSS-MINE). Results as shown in Ta-
ble 2 demonstrate that MaSS attains the highest NAG on
the activity attribute compared with all baselines and ab-
lations. Additionally, in comparison to GAP, MSDA and
MaSS-ℓ2, our method showcases a higher NAG on activity
and a reduced NAG on both suppressed attributes. We be-
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Table 3. Comparison of the NAG between MaSS, ablations and
baselines on AudioMNIST. We suppress gender, accent, age, ID,
while preserve digit as if an unannotated attribute.

Method Normalized Accuracy Gain

gender (↓) accent (↓) age (↓) ID (↓) digit (↑)

ALR 0.0000 0.0000 0.0000 0.0004 0.1036
GAP 0.0000 0.0000 0.0000 0.0281 0.9485
MSDA 0.0000 0.0000 0.0000 0.0074 0.9451
BDQ 0.0000 0.0000 0.0000 0.0112 0.5565
PPDAR 0.0000 0.0000 0.0000 0.0016 0.2839

MaSS-NF 0.0000 0.0001 0.0000 0.0000 0.1846
MaSS-ℓ2 0.0008 0.0001 0.0020 0.0306 0.9517
MaSS-MINE 0.0076 0.0000 0.0112 0.0434 0.5031

MaSS 0.0000 0.0000 0.0000 0.0029 0.9675

lieve it is because the unrealistic assumptions made by ℓ2
reconstruction loss overly restrict the flexibility of the data
transformation. Moreover, MaSS outperforms MaSS-MINE
in all attributes, which can be partly attributed to the insta-
bility of MINE mutual information estimator in the training
process of our task. These results underscore MaSS’s profi-
ciency in maintaining a superior balance between preserving
meaningful features and suppressing sensitive attributes.

We further experiment with suppressing gender, while pre-
serving ID as annotated, and preserving activity as unanno-
tated. Please refer to Appendix E.1 for results and corre-
sponding analysis.

5.3. Evaluation on Voice Audio Dataset

Next, the application of MaSS is extended to the AudioM-
NIST dataset. The initial experiment involves the suppres-
sion of gender, accent, age, and ID attributes while treating
digit as an unannotated attribute for preservation. Results
of this experiment are shown in Table 3. We can observe
that MaSS achieves the highest NAG on digit compared
with all baselines and ablations, as well as a lower or equal
NAG on suppressed attributes compared with GAP, MSDA
and MaSS-ℓ2, further substantiating the limitation of the ℓ2
heuristic reconstruction loss and the effectiveness of MaSS.

In the subsequent experiment, we aim to suppress gender,
accent, and age, while preserve digit as annotated and ID
as unannotated. This scenario emulates conditions wherein
the dataset encompasses both sensitive and useful annotated
attributes, alongside with to-be-preserved unannotated at-
tributes. It is observable from the results shown in Table
4 that MaSS secures the highest NAG on ID, along with
a NAG on digit that is comparably high to other methods.
Notably, although MSDA’s NAG on ID is close to MaSS, it
adversely bears higher NAG across all suppressed attributes.

Table 4. Comparison of the NAG between MaSS and baselines
on AudioMNIST. We suppress gender, accent, age, while pre-
serve digit as annotated useful attribute, and preserve ID as if an
unannotated attribute.

Method Normalized Accuracy Gain

gender (↓) accent (↓) age (↓) ID (↑) digit (↑)

ALR 0.0000 0.0000 0.0056 0.7032 0.9994
GAP 0.0000 0.0000 0.0000 0.7036 0.9579
MSDA 0.0015 0.0013 0.0323 0.8428 0.9981
BDQ 0.0000 0.0007 0.0013 0.4038 0.9980
PPDAR 0.0000 0.0000 0.0000 0.7027 0.9983

MaSS 0.0000 0.0000 0.0000 0.8514 0.9983

Table 5. Comparison of the NAG for different configurations of
MaSS on AudioMNIST. ✓ denotes that this attribute is suppressed,
while all other attributes are preserved as annotated useful at-
tributes.

Method MaSS Suppressed Attributes Normalized Accuracy Gain

gender accent age ID digit gender accent age ID digit

MaSS

✓ 0.0000 0.9342 0.9574 0.9632 0.9972
✓ ✓ 0.0000 0.0000 0.9199 0.9372 0.9987
✓ ✓ ✓ 0.0000 0.0000 0.0000 0.8680 0.9964
✓ ✓ ✓ ✓ 0.0000 0.0000 0.0000 0.0017 0.9953

We next conduct an ablation experiment of different config-
urations of suppressed and preserved attributes using MaSS
on AudioMNIST. The configurations and their correspond-
ing results are shown in Table 5. We can see that MaSS
consistently achieves NAG = 0 for most of the suppressed
attributes, alongside with high NAG for preserved attributes.

We also conducted ablation experiments of varying mutual
information constraints m and n, as well as an experiment
comparing our method and SPAct (Dave et al., 2022). The
results and analyses can be found in Appendix E.2.

5.4. Evaluation on Facial Images

Finally, we apply MaSS to Adience, suppressing gender
while treating age and activity as unannotated attributes that
should be preserved. The results shown in Table 6 reveal
that, among all methods with NAG = 0 for gender, MaSS
accomplishes the highest NAG for the preserved attributes.

Additionally, we also empirically show that the transformed
facial images can be accurately exploited by off-the-shelf
pre-trained landmark detection model PIPNet (Jin et al.,
2021). The NME (Normalized Mean Error) (Jin et al., 2021)
of PIPNet between transformed Adience and original Adi-
ence is 3.30%, in comparison with the 3.94% NME of PIP-
Net between original WLFW dataset (Wu et al., 2018) and
ground truth label. The comparable performance showed
that transformed Adience dataset can be accurately exploited
by pre-trained PIPNet.
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Table 6. Comparison of the NAG between MaSS and baselines
on Adience. We suppress gender, while preserve age, ID as if
unannotated useful attributes.

Method Normalized Accuracy Gain

gender (↓) age (↑) ID (↑)

ALR 0.0128 0.0023 0.0128
GAP 0.0000 0.4907 0.5616
MSDA 0.3114 0.7928 0.8461
BDQ 0.0026 0.0000 0.0075
PPDAR 0.0000 0.0000 0.0000

MaSS 0.0000 0.7418 0.7662

Visualized transformed images, together with additional
results on suppressing age, and an ablation study on re-
training the sensitive attribute inference model are shown in
Appendix E.3.

Apart from the above mentioned 3 datasets, we additionally
experiment MaSS on a tabular dataset (Marketing Cam-
paign, 2023) . The experimental setup, results and analysis
are shown in Appendix E.4, which similarly validate the
generalizability and effectiveness of MaSS.

6. Conclusion
In this paper, we present MaSS, a generalizable and
highly configurable data-driven learnable data transfor-
mation framework that is capable of suppressing sensi-
tive/private information from data while preserving its util-
ity. Compared to existing privacy protection techniques
that have similar objectives, MaSS is superior by satisfying
all 5 desired properties of SUIFT. We thoroughly evalu-
ated MaSS on three datasets of different modalities, namely
voice recordings, human activity motion sensor signals, and
facial images, and obtained promising results that demon-
strate MaSS’ practical effectiveness under various tasks and
configurations.

Impact Statement
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Neither JPMorgan Chase & Co. nor any of its affiliates
makes any explicit or implied representation or warranty
and none of them accept any liability in connection with
this paper, including, without limitation, with respect to
the completeness, accuracy, or reliability of the information
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Appendix

A. Proofs
A.1. Proof of Theorem 3.1

Proof. Proof for Equation 2. For the Markov Chain shown in Figure 2, for any i ∈ 1 . . .M , and j ∈ 1 . . . N , if both
I(X ′;Si) ≤ mi and I(X ′;Uj) ≥ nj hold, then we have

mi + I(X;Uj |Si) ≥ I(X ′;Si) + I(X;Uj |Si)
= I(X ′;Si) + I(X ′, X;Uj |Si)
= I(X ′;Uj , Si)− I(X ′;Uj |Si) + I(X ′, X;Uj |Si)
= I(X ′;Uj , Si) + I(X;Uj |X ′, Si)

= I(X ′;Uj) + I(X ′;Si|Uj) + I(X;Uj |X ′, Si)

≥ I(X ′;Uj)

≥ nj

(16)

which proves the first inequation. Following Data Processing Inequality, we can also have

nj ≤ I(X ′;Uj) ≤ I(X;Uj) (17)

which proves the second inequation. Finally, we also have

mi ≥ I(X ′;Si) ≥ 0 (18)

which proves the third inequation.

Proof for Equation 3. Under the assumption that U, S are fully determined given X (P (Si|X), P (Uj |X) are degenerate
distributions), we can have

H(Si|X) = 0, H(Uj |X) = 0 (19)

for any i ∈ 1 . . .M , and j ∈ 1 . . . N . Since adding a condition can not increase the entropy, we can also have

0 ≤ H(Uj |X,Si) ≤ H(Uj |X) = 0 (20)

Therefore we have
H(Uj |X,Si) = 0 (21)

Inserting H(Uj |X,Si) = 0 and H(Uj |X) = 0 into the inequations 2, we can further convert them to the inequations 3 as

nj ≤ mi + I(X;Uj |Si)
= mi +H(Uj |Si)−H(Uj |X,Si)
= mi +H(Uj |Si),

(22)

and
nj ≤ I(X;Uj)

= H(Uj)−H(Uj |X)

= H(Uj).

(23)

Proof for Equation 4. For the Markov Chain shown in Figure 2, according to Data Processing Inequality, we have

I(X ′;X)− I(X ′;F ) = I(X ′;X|F ) ≥ 0 (24)

Therefore, we have
I(X ′;F ) ≤ I(X ′;X) (25)
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We can also have
I(X ′;X) = H(X ′)−H(X ′|X)

= H(X ′)−H(X ′|X,Si)
≤ H(X ′)−H(X ′|X,Si) +H(X|X ′, Si)

= H(X ′) +H(X|Si)−H(X ′|Si)
= I(X ′;Si) +H(X|Si)
≤ H(X|Si) +mi

(26)

A.2. Proof and Analysis for the Estimation Error of I(X ′;Uj) with Frozen Useful Attribute Inference Network

Let Pψj,0
(Uj |X ′) and Iψj,0

(X ′;Uj) denote the conditional distribution of Uj given X ′ and the mutual information between
Uj and X ′ estimated with the frozen useful attribute inference network ψj,0. For the Markov Chain shown in Figure 2,
Iψj,0

(X ′;Uj) is calculated as

Iψj,0
(X ′;Uj) = EP (X)Pθ(X′|X)P (Uj |X)[log

Pψj,0(Uj |X ′)

P (Uj)
] (27)

Therefore, we can prove

I(X ′;Uj)− Iψj,0(X
′;Uj) = EP (X)Pθ(X′|X)P (Uj |X)[log

P (Uj |X ′)

Pψj,0(Uj |X ′)
]

= EPθ(X′)P (Uj |X′)[log
P (Uj |X ′)

Pψj,0
(Uj |X ′)

]

= KL(P (Uj |X ′)||Pψj,0
(Uj |X ′))

(28)

where KL(P (Uj |X ′)||Pψj,0
(Uj |X ′)) can be large and even unbounded, because ψj,0 is trained to approximate P (Uj |X)

rather than P (Uj |X ′). Therefore, this strategy is not adopted in our design.

B. Additional Descriptions of Related Works
In this section we present additional discussions on related works, especially on why they are categorized as not satisfying
or partially satisfying certain properties of SUIFT. DeepPrivacy (Hukkelås et al., 2019) and CiaGAN (Maximov et al.,
2020) are considered partially satisfying U and F because the CGAN based framework would prioritize the visual quality of
generated samples (whether they are differentiable by discriminator) over the preservation of useful information (whether
generated samples contain the same useful information as their original prototypes). Besides, they do not provide theoretical
justification for the CGAN based framework. (Hsu et al., 2020) is considered partially satisfying F because it does not enforce
the preservation of generic features explicitly. On the contrary it proposes to only obfuscate information-leaking features,
while keep other features unaltered, which implicitly preserves the generic features. In addition, (Hsu et al., 2020) also does
not consider the existence of useful annotated attributes. ALR (Bertran et al., 2019) proposes a rigorous information-theoretic
framework for annotated attributes, but does not incorporate unannotated attributes in the discussion. PPDAR (Wu et al.,
2020) and BDQ (Kumawat & Nagahara, 2022) also propose effective solutions for annotated attributes preservation or
suppression. But they do not take unannotated attributes and a detailed theoretical foundation into consideration as well.

For the works that consider the management of unannotated attributes, ALFR (Edwards & Storkey, 2016) and
LAFTR (Madras et al., 2018) are proposed in fairness literature, which are designed to release a compact representa-
tion for downstream tasks, and only suppress a binary sensitive attribute. GAP (Huang et al., 2018) does not consider the
preservation of annotated useful attributes. And importantly, all of ALFR, LAFTR, GAP and MSDA (Malekzadeh et al.,
2019) do not theoretically justify their design for unannotated attributes in the same framework proposed for annotated
attributes. SPAct (Dave et al., 2022) does not consider the existence of annotated senstive attributes and does not theoretically
justify its design.
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C. Additional Description of Proposed Method
C.1. InfoNCE Contrastive Learning

InfoNCE contrastive learning loss (Oord et al., 2018) is a classical contrastive learning loss, which learns useful repre-
sentations of data by making the representations of positive samples (similar or related samples) closer while pushing the
representations of negative samples further apart from the anchor. The sampling strategy in our framework is as follows.
Suppose we have K + 1 samples {xi}K+1

i=1 in a mini-batch. We first pass them through the feature extractor Pη(F |X)
and data transformation module to sample a batch of {fi}K+1

i=1 and {x′i}
K+1
i=1 respectively. Then suppose we choose the

j-th feature fj as the anchor. Then the corresponding x′j would be designated as positive sample, and all other x′i ̸=j are
designated as negative samples. After sampling, we calculate the contrastive learning loss as Equation 14 in our paper. For
training stability, in our implementation each of K + 1 features in a batch is used as anchor once and then averaged.

An analogous InfoNCE contrastive learning loss L′
F is anchored in X ′ space, which is defined as

L′
F := Ex∼P (X)Ex′∼Pθ(X′|X)Efp∼Pη(F |X)Ef(K)

n ∼Pη(F )
[log

F(fp, x
′)

F(fp, x′) +
∑
fn∈f(K)

n
F(fn, x′)

] (29)

where x′, fp, f
(K)
n are the anchor, the positive sample, and the negative samples respectively.

Compared with ℓ2 reconstruction loss, our contrastive learning loss is advantageous in that it does not presuppose the
distributions of F,X ′, making it broadly applicable across various domains like images, language, and sensor signals.
Moreover, its superior empirical effectiveness is demonstrated in our experiments.

D. Additional Experimental Setup
D.1. Datasets

We next introduce the datasets. The Adience dataset, consisting of 26580 facial images, was originally published to help
study the recognition of age and gender. Each face image has 3 attributes: ID, gender and age. We filter out the IDs with
only one image. For the rest of data points, we split them into training and evaluation set as 7:3, and ensure that for each ID
there is at least one image in training set and one image in evaluation set. Data points used in our experiment contains 1042
different DataIDs, 8 age groups, and 2 gender classes. The images are resized to 80*80, converted to grayscale images, and
normalzied to 0-1 in our experiments.

The AudioMNIST dataset contains audio recordings of spoken digits (0-9) in English from 60 speakers. The dataset contains
8 attributes, from which we used 5 most representative attributes for our experiments, namely gender, accent, age, ID,
spoken digits, with 2, 16, 18, 60, 10 classes, respectively. There are 30,000 audio clips in total. We split the data into 24000,
6,000 for training and evaluation. The audio data are transformed to feature embeddings by HuBERT-B feature extractor
and normalized to unit L2-norm.

The Motion Sense dataset contains the accelerometer and gyroscope data for human doing 6 daily activities. It contains
5 attributes, form which we used 3 most representative attributes for our experiments, namely gender, ID, and activity,
with 2, 24, 6 classes respectively. Following (Malekzadeh et al., 2019), we did not use ”sit” and ”stand up” activity in
experiments. We used the same split and data pre-processing method as (Malekzadeh et al., 2019), which resulted in 74324
segmented data points. Specifically, we used ”trail” split strategy as described in (Malekzadeh et al., 2019), and we only
used the magnitude of gyroscope and accelerometer as input. Signals are normalized to 0-mean and 1-std, and then cut into
128-length clips.

D.2. Model Structures and Optimization

We elaborated the model structures and optimization methods used for our experiments in Table 7. For faster convergence
and training stability, we design the ϕ, ψ, η models used in facial image experiments as a fixed FaceNet (Schroff et al., 2015)
backbone followed by learnable 3-layer MLPs, and design the θ model of facial image experiment as U-Net (Ronneberger
et al., 2015). For the same reason, we add residual structures from input of the first layer to the output of the second layer
for 3-layer MLP θ models used in audio and human activity experiments.
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Table 7. Model structures and optimization methods used for our experiments.
Experiment Audio Human activity Facial image
Dataset AudioMNIST Motion Sense Adience
# total data points 30000 74324 26580
Training-evaluation split 4:1 7:4 7:3
Optimizer AdamW (Loshchilov & Hutter, 2019)
Learning rate 0.0001
Weight decay 0.001
Learning rate scheduler Cosine scheduler
Epoch 2000 200 4000
θ model structure 3-layer MLP 3-layer MLP U-Net

ϕ, ψ, η model structure 3-layer MLP 6-layer Convolutional NN
Fixed FaceNet backbone

followed by
learnable 3-layer MLP

Table 8. Comparison of the accuracy and NAG between MaSS, ablations and baselines on Motion Sense. We suppress gender, ID, while
preserve activity as if unannotated useful attribute.

Method Accuracy (Normalized Accuracy Gain)

gender (↓) ID (↓) activity (↑)

No suppression 0.9817 (1.0000) 0.9026 (1.0000) 0.9764 (1.0000)
Guessing 0.5699 (0.0000) 0.0533 (0.0000) 0.4663 (0.0000)

ALR 0.6040 (0.0828) 0.0900 (0.0432) 0.8593 (0.7704)
GAP 0.5721 (0.0053) 0.0800 (0.0314) 0.8937 (0.8379)
MSDA 0.5725 (0.0063) 0.1134 (0.0708) 0.8957 (0.8418)
BDQ 0.6184 (0.1178) 0.1054 (0.0613) 0.8451 (0.7426)
PPDAR 0.5698 (0.0000) 0.0498 (0.0000) 0.8189 (0.6912)

MaSS-NF 0.5699 (0.0000) 0.0508 (0.0000) 0.8374 (0.7275)
MaSS-ℓ2 0.5734 (0.0085) 0.0754 (0.0260) 0.8823 (0.8156)
MaSS-MINE 0.7056 (0.3294) 0.1613 (0.1271) 0.8156 (0.6847)

MaSS 0.5686 (0.0000) 0.0555 (0.0026) 0.9242 (0.8977)

E. Additional Experiments Results
E.1. Evaluation on Human Activity Sensor Signals

In addition to the experimental results measured in NAG shown in Table 2, we also show the experimental results measured
in accuracy below in Table 8.

We also conducted an experiment where we suppress gender, while preserve ID as annotated attribute, and preserve activity
as unannotated attribute. We set the n for ID as 1.6, which meets the requirements of Equation 3. The results are shown in
Table 9. We can observe that MaSS achieved lowest NAG on gender as well as comparable NAG on the other preserved
attributes. This outcome stems from the fact the sensitive attribute gender is determined by ID, therefore when we suppress
gender, the information retained for ID is inherently limited as Equation 3. MaSS is explicitly aware of this limit and is
adjusted to preserve only limited amount of information for ID. In contrast other baselines can only heuristically trade-off
between suppressing and preserving.

E.2. Evaluation on Voice Audio Dataset

In addition to the experimental results measured in NAG shown in Table 3 and Table 4, we also show the experimental
results measured in accuracy below in Table 10 and Table 11 respectively.
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Table 9. Comparison of the classification accuracy and NAG between MaSS and baselines on Motion Sense. We suppress gender, while
preserve ID as annotated useful attribute, and preserve activity as if an unannotated attribute.

Method Accuracy (Normalized Accuracy Gain)

gender (↓) ID (↑) activity (↑)

No suppression 0.9817 (1.0000) 0.9026 (1.0000) 0.9764 (1.0000)
Guessing 0.5699 (0.0000) 0.0533 (0.0000) 0.4663 (0.0000)

ALR 0.8258 (0.6214) 0.6147 (0.6610) 0.8966 (0.8436)
GAP 0.6599 (0.2186) 0.6628 (0.7176) 0.9378 (0.9243)
MSDA 0.6418 (0.1746) 0.6360 (0.6861) 0.9030 (0.8561)
BDQ 0.7092 (0.3383) 0.6583 (0.7124) 0.9269 (0.9030)
PPDAR 0.7830 (0.5175) 0.5680 (0.6060) 0.8867 (0.8242)

MaSS 0.5870 (0.0415) 0.5931 (0.6356) 0.9168 (0.8832)

Table 10. Comparison of the classification accuracy and NAG between MaSS, ablations and baselines on AudioMNIST. We suppress
gender, accent, age, ID, while preserve digit as if an unannotated attribute.

Method Accuracy (Normalized Accuracy Gain)

gender (↓) accent (↓) age (↓) ID (↓) digit (↑)

No suppression 0.9962 (1.0000) 0.9843 (1.0000) 0.9657 (1.0000) 0.9808 (1.0000) 0.9975 (1.0000)
Guessing 0.8000 (0.0000) 0.6833 (0.0000) 0.1667 (0.0000) 0.0167 (0.0000) 0.1000 (0.0000)

ALR 0.8000 (0.0000) 0.6833 (0.0000) 0.1667 (0.0000) 0.0171 (0.0004) 0.1930 (0.1036)
GAP 0.8000 (0.0000) 0.6828 (0.0000) 0.1663 (0.0000) 0.0438 (0.0281) 0.9513 (0.9485)
MSDA 0.8000 (0.0000) 0.6833 (0.0000) 0.1665 (0.0000) 0.0238 (0.0074) 0.9482 (0.9451)
BDQ 0.8000 (0.0000) 0.6833 (0.0000) 0.1667 (0.0000) 0.0275 (0.0112) 0.5995 (0.5565)
PPDAR 0.8000 (0.0000) 0.6833 (0.0000) 0.1667 (0.0000) 0.0182 (0.0016) 0.3548 (0.2839)

MaSS-NF 0.8000 (0.0000) 0.6833 (0.0001) 0.1658 (0.0000) 0.0152 (0.0000) 0.2657 (0.1846)
MaSS-ℓ2 0.8002 (0.0008) 0.6833 (0.0001) 0.1683 (0.0020) 0.0462 (0.0306) 0.9542 (0.9517)
MaSS-MINE 0.8015 (0.0076) 0.6833 (0.0000) 0.1757 (0.0112) 0.0585 (0.0434) 0.5515 (0.5031)

MaSS 0.8000 (0.0000) 0.6833 (0.0000) 0.1667 (0.0000) 0.0195 (0.0029) 0.9683 (0.9675)

We also compare our method with SPAct (Dave et al., 2022). Since SPAct does not consider preserving unannotated useful
attributes. Therefore we compare it in a scenerio where we only have annotated attributes. We can observe that MaSS
achieved slightly lower NAG on digit compared with SPAct, but significantly lower NAG on all sensitive attributes (up to
5%), which shows that our method may achieve a better trade-off between suppression and preservation.

We also conducted experiments to show the effect of varying the constraint on sensitive attributes suppression (m). We take
gender, accent, age and ID as sensitive attributes and take digit as annotated useful attribute on the AudioMNIST dataset.
We fix m = 0 for gender, accent and age and n = 2.3 for digit (its maximal value). Then we vary m for ID from 0 to 1.46
(its maximal value). The results are shown in Table 13. We can observe that as m increases, the constraint is gradually
loosened, which results in the gradually increasing accuracy and NAG for ID.

Another experiment is to vary constraint n for digit on AudioMNIST, while suppress gender, accent, age, ID with fixed
m = 0. The results are shown in Table 14. We can observe when ndigit is large enough, as ndigit increases, the constraint
posed by annotated attribute preservation module is gradually taken into effect, which gradually turns digit from an
unannotated useful attribute (protected by unannotated useful attribute preservation module) to an annotated useful attribute
(protected mostly by the annotated useful attribute module), and consequently gradually increases the accuracy and NAG of
digit.
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Table 11. Comparison of the classification accuracy and NAG between MaSS and baselines on AudioMNIST. We suppress gender, accent,
age, while preserve digit as annotated useful attribute, and preserve ID as if an unannotated attribute.

Method Accuracy (Normalized Accuracy Gain)

gender (↓) accent (↓) age (↓) ID (↑) digit (↑)

No suppression 0.9962 (1.0000) 0.9843 (1.0000) 0.9657 (1.0000) 0.9808 (1.0000) 0.9975 (1.0000)
Guessing 0.8000 (0.0000) 0.6833 (0.0000) 0.1667 (0.0000) 0.0167 (0.0000) 0.1000 (0.0000)

ALR 0.7995 (0.0000) 0.6832 (0.0000) 0.1712 (0.0056) 0.6947 (0.7032) 0.9970 (0.9994)
GAP 0.8000 (0.0000) 0.6828 (0.0000) 0.1663 (0.0000) 0.6950 (0.7036) 0.9597 (0.9579)
MSDA 0.8003 (0.0015) 0.6837 (0.0013) 0.1925 (0.0323) 0.8292 (0.8428) 0.9958 (0.9981)
BDQ 0.8000 (0.0000) 0.6835 (0.0007) 0.1677 (0.0013) 0.4060 (0.4038) 0.9957 (0.9980)
PPDAR 0.8000 (0.0000) 0.6833 (0.0000) 0.1667 (0.0000) 0.6942 (0.7027) 0.9960 (0.9983)

MaSS 0.8000 (0.0000) 0.6833 (0.0000) 0.1667 (0.0000) 0.8375 (0.8514) 0.9960 (0.9983)

Table 12. Comparison of the classification accuracy and NAG between MaSS and SPAct on AudioMNIST. We suppress gender, accent,
age, id, while preserve digit as annotated useful attribute.

Method Accuracy (Normalized Accuracy Gain)

gender (↓) accent (↓) age (↓) ID (↓) digit (↑)

No suppression 0.9962 (1.0000) 0.9843 (1.0000) 0.9657 (1.0000) 0.9808 (1.0000) 0.9975 (1.0000)
Guessing 0.8000 (0.0000) 0.6833 (0.0000) 0.1667 (0.0000) 0.0167 (0.0000) 0.1000 (0.0000)

SPAct 0.8087 (0.0442) 0.6833 (0.0001) 0.1753 (0.0108) 0.0707 (0.0560) 0.9948 (0.9970)

MaSS 0.8000 (0.0000) 0.6833 (0.0000) 0.1662 (0.0000) 0.0183 (0.0017) 0.9933 (0.9953)

Table 13. Varying the suppression constraint m for ID on AudioMNIST. We suppress gender, accent, age, ID, while preserve digit as if an
annotated useful attribute.

Method mID
Accuracy (Normalized Accuracy Gain)

gender (↓) accent (↓) age (↓) ID (↓) digit (↑)

No suppression - 0.9962 (1.0000) 0.9843 (1.0000) 0.9657 (1.0000) 0.9808 (1.0000) 0.9975 (1.0000)
Guessing - 0.8000 (0.0000) 0.6833 (0.0000) 0.1667 (0.0000) 0.0167 (0.0000) 0.1000 (0.0000)

MaSS

0.0 0.8000 (0.0000) 0.6833 (0.0000) 0.1662 (0.0000) 0.0183 (0.0017) 0.9933 (0.9953)
0.3 0.8000 (0.0000) 0.6833 (0.0000) 0.1665 (0.0000) 0.0598 (0.0447) 0.9938 (0.9959)
0.6 0.8000 (0.0000) 0.6833 (0.0000) 0.1668 (0.0002) 0.1120 (0.0988) 0.9940 (0.9961)
0.9 0.8000 (0.0000) 0.6833 (0.0000) 0.1670 (0.0004) 0.1493 (0.1376) 0.9937 (0.9957)
1.2 0.8000 (0.0000) 0.6833 (0.0000) 0.1667 (0.0000) 0.1963 (0.1863) 0.9928 (0.9948)

1.46 0.8000 (0.0000) 0.6833 (0.0000) 0.1667 (0.0000) 0.2597 (0.2520) 0.9937 (0.9957)

E.3. Evaluation on Facial Images

In addition to the experimental results measured in NAG shown in Table 6, we also show the experimental results measured
in accuracy below in Table 15.

In the next experiment we demonstrate the performance of MaSS on Adience with different attribute to suppress. We
can observe from Table 16 that MaSS achieved 0 NAG for suppressed attributes as well as acceptable NAG for preserved
unannotated attributes.

The visualization results for both original and transformed data in the Adience dataset are depicted in Figure 4. Observing
the second row, we can see that the gender information has been effectively removed from the images. Similarly, the third
row demonstrates the removal of age information from the images, highlighting the efficacy of our approach in suppressing
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Table 14. Varying the preservation constraint n for digit on AudioMNIST. We suppress gender, accent, age, ID, while preserve digit as if
an annotated useful attribute.

Method ndigit
Accuracy (Normalized Accuracy Gain)

gender (↓) accent (↓) age (↓) ID (↓) digit (↑)

No suppression - 0.9962 (1.0000) 0.9843 (1.0000) 0.9657 (1.0000) 0.9808 (1.0000) 0.9975 (1.0000)
Guessing - 0.8000 (0.0000) 0.6833 (0.0000) 0.1667 (0.0000) 0.0167 (0.0000) 0.1000 (0.0000)

MaSS

0.0 0.8000 (0.0000) 0.6833 (0.0000) 0.1667 (0.0000) 0.0192 (0.0026) 0.9685 (0.9677)
1.8 0.8000 (0.0000) 0.6833 (0.0000) 0.1657 (0.0000) 0.0207 (0.0041) 0.9683 (0.9675)
1.9 0.8000 (0.0000) 0.6833 (0.0000) 0.1658 (0.0000) 0.0178 (0.0012) 0.9725 (0.9721)
2.0 0.8000 (0.0000) 0.6833 (0.0000) 0.1658 (0.0000) 0.0163 (0.0000) 0.9733 (0.9731)
2.1 0.8000 (0.0000) 0.6833 (0.0000) 0.1642 (0.0000) 0.0182 (0.0015) 0.9823 (0.9831)
2.2 0.8000 (0.0000) 0.6833 (0.0000) 0.1665 (0.0000) 0.0202 (0.0036) 0.9885 (0.9900)
2.3 0.8000 (0.0000) 0.6833 (0.0000) 0.1662 (0.0000) 0.0183 (0.0017) 0.9933 (0.9953)

Table 15. Comparison of the classification accuracy and NAG between MaSS and baselines on Adience. We suppress gender, while
preserve age, ID as if unannotated useful attributes.

Method Accuracy (Normalized Accuracy Gain)

gender (↓) age (↑) ID (↑)

No suppression 0.9774 (1.0000) 0.9321 (1.0000) 0.9382 (1.0000)
Guessing 0.5240 (0.0000) 0.2892 (0.0000) 0.0284 (0.0000)

ALR 0.5298 (0.0128) 0.2907 (0.0023) 0.0400 (0.0128)
GAP 0.5240 (0.0000) 0.6047 (0.4907) 0.5393 (0.5616)
MSDA 0.6652 (0.3114) 0.7989 (0.7928) 0.7982 (0.8461)
BDQ 0.5252 (0.0026) 0.2892 (0.0000) 0.0352 (0.0075)
PPDAR 0.5231 (0.0000) 0.2892 (0.0000) 0.0284 (0.0000)

MaSS 0.5240 (0.0000) 0.7661 (0.7418) 0.7255 (0.7662)

Table 16. Comparison of the Accuracy and NAG for different configurations of MaSS on Adience. ✓ denotes that this attribute is
suppressed, while all other attributes are preserved as unannotated useful attributes.

Method MaSS Suppressed Attributes Accuracy (Normalized Accuracy Gain)

gender age ID gender age ID

No suppression 0.9774 (1.0000) 0.9321 (1.0000) 0.9382 (1.0000)
Guessing ✓ ✓ ✓ 0.5240 (0.0000) 0.2892 (0.0000) 0.0284 (0.0000)

MaSS ✓ 0.5240 (0.0000) 0.7661 (0.7418) 0.7255 (0.7662)
✓ 0.7985 (0.6054) 0.2892 (0.0000) 0.5005 (0.5189)

specific attributes.

Although we would not release the labels of sensitive attributes to the public, here we conducted an ablation experiment
with the assumption that the attacker can access the ground truth labels of sensitive attributes as an oracle and retrain the
discriminator on transformed data. The results are shown in Table 2. We can observe that, using MaSS, the accuracy of the
retrained discriminator is higher than adversarial discriminator but is still significantly lower than the discriminator trained
using original data.
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Figure 4. The visualization of the original data and transformed data in Adience dataset. The first row presents the original facial images,
while the second and third rows show the transformed images with gender and age suppressed respectively. Other attributes are preserved
as unannotated.

Table 17. Comparison of the accuracy and NAG between a trained-from-scratch discriminator and adversarial discriminator on the Adience
dataset. We suppress gender, while preserve age, ID as if unannotated useful attributes.

Method Accuracy (Normalized Accuracy Gain)

gender (↓)

No suppression 0.9774 (1.0000)
Guessing 0.5240 (0.0000)

MaSS (discriminator retrained with oracle) 0.6029 (0.1740)
MaSS (adversarial discriminator) 0.5240 (0.0000)

E.4. Evaluation on Tabular Marketing Campaign Dataset

We further evaluate MaSS on the tabular Marketing Campaign (2023) dataset and compare the effectiveness of MaSS to
MaSS-ℓ2. We first convert the categorical attributes into one-hot vectors and normalize the continuous attributes by their
ranges. Note that, the ℓ2 reconstruction loss applied to one-hot vectors can be interpreted as a 0-1 loss. During training
MaSS, we adopt Gumbel-Softmax for the categorical attributes to keep their differentiability and the flexibility to convert
them back to the original value.

Tabular data is slightly different from other data types we experimented in the main paper, the utility and sensitive attributes
(columns) are also a part of data X rather than separated attributes. Thus, we first left out the utility columns as separated
attributes (U ) and train the MaSS over remaining columns to generate a transformed data (X ′). Then, we evaluate the
classification accuracy of utility attributes (U ) using the transformed X ′; meanwhile, we separate the sensitive column
out from the transformed data X ′ and then using the remaining columns to predict original sensitive columns. The results
are shown in Table 18. We can observe that MaSS achieved both higher NAG for response and lower NAG for education
compared with MaSS-ℓ2, which further validate the generaizability and effectiveness of our framework.
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Table 18. Comparison of the classification accuracy and NAG between MaSS and ablation on the Marketing Campaign dataset. We
suppress education, while preserve response as annotated useful attribute.

Method Accuracy (Normalized Accuracy Gain)

education (↓) response (↑)

No suppression 0.5223 (1.0000) 0.8973 (1.0000)
Guessing 0.4732 (0.0000) 0.8504 (0.0000)

MaSS-ℓ2 0.4933 (0.4094) 0.8728 (0.4776)

MaSS 0.4621 (0.0000) 0.9084 (1.2367)
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