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Abstract
Large language models (LLMs) have accom-
plished remarkable reasoning performance in var-
ious domains. However, in the domain of rea-
soning tasks, we discover a frailty: LLMs are
surprisingly brittle to the ordering of the premises,
despite the fact that such ordering does not alter
the underlying task. In particular, we observe
that LLMs achieve the best performance when the
premise order aligns with the context required in
intermediate reasoning steps. For example, in de-
ductive reasoning tasks, presenting the premises
in the same order as the ground-truth proof in the
prompt (as opposed to random ordering) drasti-
cally increases the model’s accuracy. We first
examine the effect of premise ordering on de-
ductive reasoning on a variety of LLMs, and our
evaluation shows that even if the model perfor-
mance is decent on the optimal order, permuting
the premise order can cause a performance drop of
over 30%. In addition, we release the benchmark
R-GSM, based on GSM8K, to examine the order-
ing effect for mathematical problem-solving, and
we again observe a significant drop in accuracy,
relative to the original GSM8K benchmark.

1. Introduction
Large language models (LLMs) have demonstrated impres-
sive performance across a variety of reasoning tasks (Wei
et al., 2022; Cobbe et al., 2021; Hendrycks et al., 2021;
Chen et al., 2021; Austin et al., 2021). In particular, recent
state-of-the-art LLMs have reached or even surpassed hu-
man performance on multiple reasoning benchmarks, includ-
ing STEM problem-solving and code generation (Bubeck
et al., 2023; Gemini, 2023; Li et al., 2022). However, re-
cent works show that LLMs exhibit failure modes that align
with human-like cognitive biases (Berglund et al., 2023; Shi
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et al., 2023; Hagendorff et al., 2023; Jones & Steinhardt,
2022; McCoy et al., 2023). For example, Berglund et al.
(2023) revealed the Reversal Curse; i.e., LLMs trained on
“A is B” tend to fail to infer that “B is A.” Distractibility is
another failure mode (Shi et al., 2023; Jones & Steinhardt,
2022), in which LLM performance drastically decreases
when irrelevant context is included in the task description.

In this work, we investigate the effect that premise order
has on LLM reasoning. Specifically, in deductive reasoning,
changing the order of premises alone does not change the
conclusion. Consider the following illustrative example:

1. If A then B.

2. If B then C.

3. A is True.

We can derive thatC is True regardless of the order of these
3 premises. While some studies show that humans have a
preference on the premise order to facilitate their reason-
ing (Dekeyser et al., 2000; Girotto et al., 1997), the premise
order does not drastically affect human performance, espe-
cially for problems that only involve modus ponens (if P
then Q; P ; therefore Q), which are relatively straightfor-
ward for humans.

In contrast to humans, we observe that for LLMs, the
premise order has a significant impact on reasoning per-
formance. In particular, LLMs reach the best performance
when the premises are arranged in the same order as they
appear in the ground-truth proof. Taking the illustrative
problem above as an example, we observe two phenomena:

1. Presenting “If A then B” before “If B then C” in the
prompt generally achieves a higher accuracy compared
to the reverse order.

2. The performance gap is more significant when the
number of premises increases.

Intuitively, such a preference on the premise order aligns
with human preference (Dekeyser et al., 2000) because in
the preferred order, each derivation step can be done on-the-
fly while looking at premises one by one, without needing
to look back and forth across all premises at each step.

We conduct a systematic study on the premise order effect
using a variety of LLMs, including GPT-4-turbo, GPT-3.5-
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Figure 1. Premise order affects the reasoning performance: a failure case for logical reasoning. Left: rules are sorted in the same order as
the ground-truth proof (forward order with τ = 1 as defined in Section 2.1). Right: the wrong prediction with GPT-4-turbo after shuffling
the rule set (τ = 0). Distracting rules are bold and in light blue.

turbo (OpenAI, 2023), PaLM 2-L (Google, 2023), and Gem-
ini 1.0 Pro (Gemini, 2023). Our primary focus is deductive
reasoning, and we benchmark all LLMs on problems that
only involve modus ponens (if P then Q; P ; therefore Q),
where all LLMs in our evaluation at least achieve decent
performance with a small number of premises. We show
that the accuracy decrease caused by different ordering can
be more than 30%. The ordering effect is further amplified
when irrelevant premises (i.e., premises that are not needed
to derive a conclusion) are presented in the prompt. Figure 1
illustrates a failure case, where all LLMs fail to generate
the proof after changing the order of relevant rules. Inter-
estingly, while all LLMs perform best when the premise
order follows the ground-truth proof, they reveal different
preferences on other alternative orderings. Specifically, com-
pared to randomly ordering the premises, GPT-4-turbo and
GPT-3.5-turbo generally achieve better performance when
the premise order is exactly the reverse of the ground-truth
proof. On the other hand, PaLM 2-L generally achieves the
worst performance with such a reversed order.

Besides logical reasoning, we construct R-GSM to further
investigate the ordering effect on mathematical reasoning.
Specifically, we build R-GSM on top of a subset of the
GSM8K benchmark (Cobbe et al., 2021), where we change
the order of sentences in the problem description and manu-

ally verify that the ground-truth answer remains the same.
Despite the fact that multiple LLMs have achieved very
high accuracies on the original GSM8K benchmark, our
experiments again show that even on such relatively simple
reasoning problems, changing the premise order could still
cause a notable performance drop for all LLMs, especially
on longer problems that require more reasoning steps.

Our evaluation highlights that even in reasoning domains
where the premise order does not matter, premise order
does matter in LLM reasoning. In particular, starting
from tasks where LLMs achieve decent performance with
the forward order, the performance can significantly degrade
with alternative premise orderings. The premise ordering
effect indicates that LLMs are more comfortable reasoning
via reading left-to-right instead of back-and-forth, which
can be attributed to the auto-regressive model design or the
reasoning bias learned from the training corpus. We leave
proposing new training and modeling techniques to mitigate
the premise order effect as future work.

2. Benchmarks
2.1. Logical Reasoning

Prior work has revealed the weaknesses of LLMs in logi-
cal reasoning (Han et al., 2022; Xu et al., 2023; Saparov

2



Premise Order Matters in Reasoning with Large Language Models

Figure 2. R-GSM example where the original problem can be correctly solved by all LLMs in our evaluation, but all of them failed on
the reordered one. Different calculation steps and their corresponding problem statements are annotated in light blue. Specifically, the
reasoning steps of the original problem follows the ordering of problem statements, while the reordered problem does not.

et al., 2023; Saparov & He, 2022; Wan et al., 2024), es-
pecially when the proof is long and requires the knowl-
edge of multiple deduction theorems. To isolate the effect
of premise orders, we focus on a confined problem space
adapted from SimpleLogic (Zhang et al., 2022), which only
includes propositional logic problems with definite clauses.
Specifically, each problem includes: (1) a set of factsA1,. . .,
An that hold true; (2) a set of rules of the form “If X , then
Y ”, “If X0 and X1, then Y ”, or “If X0 and X1 and X2,
then Y ”; and (3) a conclusion “C is True” to be proved.
As opposed to SimpleLogic — which formulates the prob-
lem as a binary classification task (i.e., indicate whether
the conclusion is True or False) — in our benchmark,
every problem has a ground-truth label of True, and we
consider the prediction to be correct only when the gener-
ated proof is completely valid. With these strict criteria,
the LLM is required to produce the step-by-step deduction
that leads to the conclusion, and any hallucination of non-
existent facts and rules is considered erroneous. In addition,
differently from SimpleLogic, which uses English words
as predicates (e.g., an example rule is “If Alice is fast and
smart, then Alice is bad”), all predicates are randomly gen-
erated pseudowords in our benchmark. This design choice
is motivated by our observation that when presented with
rules of randomly selected English words, LLMs often ques-
tion the validity of various rules and tend not to generate a
proof. Using pseudowords eliminates this issue; addition-

ally, this design also forces the LLM to generate the proof
solely based on the problem statement, without relying on
its internal knowledge.

The key characteristic of our benchmark is that for each logi-
cal reasoning problem, we synthetically generate variants
with different premise orders. Specifically, we denote the
order that conforms to the ground-truth proof with forward
chaining as the forward order, where the rule applied in
each derivation step is sequentially presented in the problem
description. Intuitively, presenting premises in the forward
order simplifies the problem for humans, as this allows us to
write the proof on-the-fly while reading the premises. Con-
versely, a premise ordering that is more random increases
the task difficulty, since carrying out the derivation requires
us to repetitively look for premises for each reasoning step.
Motivated by this intuition, we categorize different premise
orders based on their Kendall tau distance τ (Cicirello, 2019;
Sen, 1968) to the forward order, normalized into the range
[−1, 1]. Specifically, τ = 1 is the forward order, and we
denote the order with τ = −1 as the backward order, which
is the reverse of the forward order and aligns with the proof
via backward chaining. τ ≈ 0 suggests that there is no
strong correlation between the premise order in the problem
description and the proof. To thoroughly investigate the
LLM preference on different premise orders, we evaluate
the model performance on τ = 0.5, 0 and −0.5, in addition
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to the forward (τ = 1) and backward (τ = −1) orders. We
present examples with τ = 1 and 0 in Figure 1, and defer
examples with other τ values to Figure 11 in Appendix B.

We measure the premise order effect by varying the follow-
ing two factors:

• Number of rules required in the proof. It is expected
that the premise order effect is more significant for a
proof with more rules. For our benchmark, we generate
problems whose numbers of rules in the proof range
from 4 to 12.

• Number of distracting rules (i.e., rules that are not
useful for the proof) presented in the problem. The
presence of distracting rules also complicates the prob-
lem, as premise selection itself is challenging (Wang
et al., 2017; Ferreira & Freitas, 2020; Irving et al.,
2016), and LLMs are shown to be easily distracted
by irrelevant context (Shi et al., 2023). We include
problem variants with 0, 5 and 10 distracting rules.

We generate 200 problems for each number of required rules.
Considering different premise orders and numbers of dis-
tracting rules, each problem includes 15 variants, resulting
in a total of 27K problems in our benchmark.

2.2. R-GSM for Mathematical Reasoning

To further assess the effect of premise orders beyond log-
ical reasoning, we construct the R-GSM dataset based on
GSM8K (Cobbe et al., 2021), which is a popular bench-
mark of grade school math word problems. Specifically, we
first select GSM8K test problems with at least 5 sentences
in the problem description. Afterward, we filter out those
problems where there is no alternative ordering that does
not change the ground truth answer. An example of such
problems is those with sentences that follow the causal order
of an event series. For each of the remaining problem, we
keep the last sentence untouched and rewrite the problem
description with a different ordering of other sentences. Mi-
nor editing on words is allowed to ensure the grammatical
correctness of the problem description. To facilitate the
annotation process, for each problem, we write a simple
function to enumerate all alternative orderings of problem
statements until an ordering that causes the LLM predic-
tion failure is discovered. Such enumeration is able to find
failure cases on more than 70% problems for GPT-4-turbo
and PaLM 2-L. However, as opposed to logical reasoning
tasks, simply shuffling sentences in GSM8K problems of-
ten results in different ground truth answers or renders the
problem invalid. Therefore, a manual rewriting process is
done to ensure that the rewritten problems preserve the same
ground truth answer and are grammatically correct. In to-
tal, our R-GSM benchmark contains 220 pairs of problems,

including both the original GSM8K problem description
and the manually rewritten one with a different ordering of
problem statements.

Despite that over 60% of problems in R-GSM only have 5
sentences, and all problems have at most 8 sentences and
less than 200 tokens, our evaluation shows that all LLMs still
perform considerably worse on rewritten problems. Figure 2
presents an example in R-GSM where all LLMs correctly
solve the original problem but not the rewritten one. Specif-
ically, the reasoning steps for the original problem follows
the ordering of problem statements, while for the rewritten
problem, the second calculation step in the correct solution
should refer to the second-to-last sentence instead of the
second sentence in the problem description. We provide a
more detailed case study in Section 3.3, and present the full
dataset statistics in Appendix A.

3. Experiments
3.1. Experimental Setup

We evaluate the premise ordering effect on GPT-4-turbo,
GPT-3.5-turbo, PaLM 2-L and Gemini 1.0 Pro. We perform
the greedy decoding with the temperature 0, and apply the
zero-shot prompting in all experiments unless otherwise
specified. On R-GSM, the model input only contains the
problem description without additional instructions. For log-
ical reasoning, as shown in Figure 1, we add an instruction
in the prompt to ask for a derivation that specifies which
premise is used in each step.

3.2. Logical Reasoning

Figure 3 presents the results with different numbers of rele-
vant rules included in ground-truth proofs, where the prob-
lem does not contain distracting rules, and the shuffled ac-
curacy is the aggregation of results with τ = 0.5, 0, and
−0.5. Across different LLMs, the forward order consis-
tently achieves the best performance, which aligns with
the human preference. The performance drop caused by
alternative orderings becomes more significant when the
number of rules increases. Meanwhile, models with weaker
reasoning capabilities are also more sensitive to different
premise orders. Specifically, while the accuracy decrease of
GPT-4-turbo and PaLM 2-L is up to 20−30%, with Gemini
1.0 Pro and GPT-3.5-turbo, changing the premise order from
the forward order can degrade the accuracy from over 65%
to below 25%, with an accuracy decrease of more than 40%.

Breakdown on different premise orders. We present the
results of fine-grained breakdown on premise ordering in
Figure 5, where the orders are categorized based on Kendall
tau distance τ as described in Section 2.1. Interestingly,
while the top preference of all LLMs is the forward order,
their preferences on other orders are not alike. Specifically,
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Figure 3. Results on logical reasoning without distracting rules. See Table 7 in Appendix E for accuracy numbers.

Figure 4. Results on logical reasoning with distracting rules. See Tables 8 and 9 in Appendix E for accuracy numbers.

Figure 5. Fine-grained results on different τ without distracting rules. See Table 10 in Appendix E for accuracy numbers.

Figure 6. Fine-grained results on different τ with distracting rules. See Tables 11 and 12 in Appendix E for accuracy numbers.
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GPT-4-turbo generally prefers the backward order over other
orders, and the overall performance decreases with a smaller
absolute value of τ . This observation is also consistent
with human reasoning patterns, as backward chaining is
another well-established inference method. On the other
hand, PaLM 2-L generally performs the worst with the
backward order. With the decrease of τ (i.e., the premise
order deviates more from the forward order), the accuracy
drops. The preferences of Gemini 1.0 Pro and GPT-3.5-
turbo are less consistent; still, they prefer the backward
order more often than other non-forward premise orders.

Effect of distracting rules. We assess the effect of dis-
tracting rules of GPT-4-turbo and PaLM 2-L, which reach
a decent performance without the presence of distracting
rules. Figures 4 and 6 show that adding distracting rules fur-
ther decreases the reasoning performance and magnifies the
effect of different premise orders. Still, the overall prefer-
ences of both LLMs remain the same as the scenario without
distracting rules. Specifically, both LLMs again achieve the
best performance with the forward order, and GPT-4-turbo
prefers the backward order over other non-forward orders,
while PaLM 2-L performance decreases with a smaller τ .

Error analysis. In Table 1, we present a breakdown on pre-
diction errors across different premise orders. We consider
the following error categories:

1. wrong refutation: the LLM wrongly claims that the
conclusion can not be proved;

2. rule hallucination: the LLM generates rules that do
not exist in the problem;

3. fact hallucination: the LLM generates facts that do not
exist in the problem, or are not proved yet.

We observe that for all LLMs, fact hallucination is typically
the most common error pattern, and this error type escalates
dramatically with the decrease of τ . The main reason is that
LLMs are inclined to use the rules in the sequential order
as they present in the problem, so when the next rule in the
problem is not yet applicable, LLMs might still hallucinate
facts to complete the proof step. Simultaneously, we observe
that the percentage of wrong refutation is generally lower
for τ = −1 than for |τ | < 1. We present an example of
wrong refutation in Figure 1, and we include more examples
of rule and fact hallucination in Figure 10 of Appendix B.

3.3. R-GSM for Mathematical Reasoning

Table 2 demonstrates the overall results on R-GSM. Again,
all LLMs achieve a lower performance on R-GSM, as com-
pared to GSM8K. Note that the original GSM8K problems
are not necessarily written in the most preferable way, and
thus sometimes the manual rewriting facilitates the reason-
ing and allows the model to correctly solve the reordered

τ Correct Wrong Hallucination
Refutation Rule Fact

GPT-4-turbo

1 96.5% 0.5% 1.5% 1.5%
0.5 76.0% 10.5% 2.0% 11.5%

0 82.0% 4.5% 3.5% 10.0%
-0.5 84.5% 1.0% 4.5% 10.0%

-1 84.0% 0.0% 3.5% 12.5%

GPT-3.5-turbo

1 30.0% 24.5% 9.5% 35.5%
0.5 1.0% 54.5% 9.5% 33.0%

0 0.5% 55.0% 7.5% 34.5%
-0.5 2.0% 50.0% 8.5% 37.5%

-1 1.5% 34.5% 14.5% 47.0%

PaLM 2-L

1 88.0% 0.5% 3.0% 8.5%
0.5 74.5% 1.5% 9.5% 14.5%

0 65.5% 2.0% 11.0% 21.5%
-0.5 59.5% 1.5% 10.0% 29.0%

-1 57.5% 1.0% 11.5% 30.0%

Gemini 1.0 Pro

1 16.5% 28.0% 5.0% 50.5%
0.5 0.0% 59.0% 3.5% 37.5%

0 0.0% 34.0% 9.0% 57.0%
-0.5 0.5% 24.5% 9.5% 65.5%

-1 0.5% 27.5% 11.5% 60.5%

Table 1. Breakdown on error types for logical reasoning with 12
relevant rules and no distracting rules.

Init Acc Reorder Acc

GPT-4-turbo 94.1% 85.0%
PaLM 2-L 86.4% 79.5%
Gemini 1.0 Pro 80.5% 69.1%
GPT-3.5-turbo 67.3% 51.8%

Table 2. Results on the R-GSM dataset.

Init Acc Reorder Acc

GPT-4-turbo 100% 89.9%
PaLM 2-L 100% 87.9%
Gemini 1.0 Pro 100% 74.6%
GPT-3.5-turbo 100% 64.9%

Table 3. For each model, the accuracies on the R-GSM subset
where the original problems are correctly solved, thus the initial
accuracy is 100% for all models.
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Figure 7. R-GSM results with different numbers of reasoning steps in the ground truth. See Table 13 in Appendix F for accuracy numbers.

Figure 8. R-GSM results with different problem lengths. See Table 14 in Appendix F for accuracy numbers.

Temporal Unknown Others

GPT-4-turbo 45.0% 15.0% 40.0%
GPT-3.5-turbo 21.6% 19.6% 58.8%
PaLM 2-L 34.8% 4.3% 60.9%
Gemini 1.0 Pro 29.5% 18.2% 52.3%

Table 4. Error analysis on R-GSM. “Temporal” refers to the tem-
poral order, and “Unknown” refers to the unknown variables.

version of a problem that it fails on the original one. There-
fore, in Table 3, for each LLM, we also present the accuracy
on those problems with their original descriptions solved
by the model. We show that all LLMs fail on at least 10%
of reordered problems that they are initially able to solve,
and this performance degradation is more than 35% with
GPT-3.5-turbo.

Given the performance degradation with zero-shot prompt-
ing, one potential mitigation is to apply few-shot chain-of-
thought prompting and include demonstrations of solving
reordered problems in the prompt. However, we observe
that the few-shot results are mostly similar to or even worse
than zero-shot ones. The only improvement we have seen is
with GPT-3.5-turbo: using 5 exemplars of reordered prob-
lems annotated with ground truth solutions, the accuracy
on original problems becomes 79.1%, and the accuracy on
reordered problems becomes 66.4%. Despite the perfor-
mance improvement, there is still a 13% accuracy drop after

reordering. These results show that using few-shot demon-
strations alone is insufficient for addressing the effect of
premise orders.

Breakdown of problem complexity. Figures 7 and 8
present the breakdown results on different number of rea-
soning steps and different number of problem sentences,
respectively. Unsurprisingly, across all LLMs, the proof ac-
curacy suffers on problems that require more reasoning steps
and contain a greater number of sentences. Overall, the gap
between the accuracies on initial and rewritten problems is
more significant with more reasoning steps and longer prob-
lems for both GPT-4-turbo and Gemini 1.0 Pro, while the
gap remains similar across different numbers of reasoning
steps and problem lengths for PaLM 2-L and GPT-3.5-turbo.

Error analysis. To further understand the failure modes,
for each LLM, we analyze those error cases where the origi-
nal problems can be correctly solved but not the reordered
ones, and we categorize the common error types in Table 4.
Similar to our observation in logical reasoning experiments,
the prediction errors in R-GSM are primarily due to the
LLMs blindly using numbers in the sequential order of their
appearances in the problem. Specifically, the most com-
mon error case for all LLMs is their tendency to overlook
temporal order. Figure 2 presents such an example, where
the prediction failure is because some earlier events are de-
scribed in the later part of the problem. Another category of
errors occurs when some quantities are not specified while
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Figure 9. R-GSM example where the original problem can be correctly solved by all LLMs, but GPT-3.5-Turbo fails on the reordered
version while all the other LLMs still solve it correctly.

processing the problem in the sequential order, which intro-
duces unknown variables for calculation. Take, for example,
the problem in Figure 9. In the original problem, the num-
ber of each animal can be directly calculated based on its
preceding sentence. However, in the reordered problem, the
number of gerbils cannot directly be computed based on
the preceding sentences, since the number of fish remains
unknown up to that point, and the LLM must read the re-
maining sentences and calculate the number of fish first.
However, the prediction from GPT-3.5-turbo instead uses
the number calculated in the previous step (i.e., the number
of rabbits) to calculate the number of gerbils, resulting in an
error. Such a failure mode is less common with PaLM 2-L,
but still constitutes a non-negligible proportion of prediction
errors for the other LLMs. We present more examples of
model predictions in Appendix C.

4. Related Work
Failure modes of LLMs. The premise order effect in this
work is connected to several failure modes of LLMs in
the literature, including the reversal curse (Berglund et al.,
2023), distractibility (Shi et al., 2023), position bias (Liu
et al., 2024; Wang et al., 2023), and limited capability of
logical reasoning (Han et al., 2022; Xu et al., 2023; Saparov
et al., 2023; Saparov & He, 2022; Wan et al., 2024; Zhu
et al., 2023; Yan et al., 2023). Specifically, Shi et al. (2023)

show that including irrelevant context in the problem state-
ment leads to a considerable performance drop on GSM8K
and other reasoning benchmarks, revealing that LLMs are
distractible. This finding is in-line with our evaluation on
logical reasoning, where we observe that adding irrelevant
rules not only degrades the overall logical reasoning perfor-
mance, but also escalates the premise order effect. Similarly,
the Reversal Curse (Berglund et al., 2023) unveils another
perspective of the order effect, where they show that an
LLM that recognizes “A is B” does not necessarily learn
that “B is A.” While their work studies the order effect
between two entities within a single factual statement, our
work focuses on reasoning problems with multiple premises,
without restrictions on the number of (or relationship be-
tween) entities. In particular, for logical reasoning, we
demonstrate that random permutations of premises often re-
sult in worse accuracy than the purely backward order. Liu
et al. (2024) discover the lost-in-the-middle phenomenon in
the long-context scenario: the LLM performance is the best
when the relevant information to solve the task is placed
at the beginning or the end of the input context, while the
performance is the worst when the LLM needs to utilize
input context in the middle. In Appendix D, we show that
lost-in-the-middle phenomenon does not affect the perfor-
mance on our tasks, since the length of input problems does
not exceed 300 tokens in our benchmark, which is relatively
small compared to the context length limit of LLMs in our
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evaluation. Yan et al. (2023) present an approach called
Concise and Organized Perception for deductive reasoning,
which first generates directed graphs by connecting facts
and rules in the problem, then prune and reorder the context
accordingly before calling the LLM to solve the problem.
The improvement achieved by this approach again demon-
strates the effect of premise ordering and irrelevant premises
on logical reasoning. While such input preprocessing meth-
ods can mitigate the ordering effect on certain reasoning
tasks, they require task-specific design and do not generalize
across domains. We consider developing generic end-to-end
reasoning techniques for LLMs to address the premise order
effect as future work.

Order effect for human logical reasoning. Although the
premise order does not matter in deductive reasoning, sev-
eral studies show that the premise order can impact the hu-
man reasoning performance (Dekeyser et al., 2000; Girotto
et al., 1997). Dekeyser et al. (2000) described co-reference
as a human preference of premise order; i.e., humans prefer
the premises to be presented in an order where they can draw
immediate conclusions after seeing each one. In this work,
we show that LLMs also have such a preference, and they
achieve the best performance when the ordering of rules
follows the ground-truth proof. Girotto et al. (1997) studied
how the premise order affects logical reasoning for humans,
and found that the premise order has a significant effect
in solving modus tollens problems (i.e., if P , then Q; not
Q; therefore, not P ), but not modus ponens problems (i.e.,
if P , then Q; P ; therefore, Q). However, differing from
our work, they studied the influence of different ordering
between rules and facts, e.g., their experiments on modus
tollens problems show that presenting negation statements
(not Q) before rules (if P , then Q) improves the perfor-
mance over the reverse order. On the other hand, our work
focuses on modus ponens problems that are easier for both
humans and LLMs, and we show that the LLM performance
is still quite sensitive to the ordering of the premises.

Order effect of language models. Some prior works show
that language models are able to understand permuted texts
to some extent, i.e., after a random permutation of words,
models usually maintain reasonable performance (Abdou
et al., 2022; Sinha et al., 2020). Moreover, Cao et al. (2023)
show that even when a large fraction of words are scrambled,
GPT-4 still achieves decent performance on several reason-
ing benchmarks. In contrast to permuted texts in these works
that are typically unnatural and nonsensical, our premise
order permutations do not alter the semantic meaning and
remain syntactically valid (we manually verify this). Never-
theless, we demonstrate that LLM reasoning performance is
highly brittle to the ordering of the premises. For long-digit
addition, prior works demonstrate that reversing the input
numbers is a key to achieve better length generalization
performance (Lee et al., 2023; Zhou et al., 2023; 2024).

Specifically, by reversing the input numbers so that the least
significant digit is presented first, the Transformer learns a
simpler way of performing addition, where the model only
needs to perform computation with the corresponding digits
of operands and the carry-on digit at each step, without the
need of looking at other digits. This approach enables the
Transformer to better perform addition when trained from
scratch, which also aligns with our finding: after reversing
the input numbers, the premise order (i.e., orders of digits)
follows the right ordering of performing long-digit addition,
thus enables Transformers to better learn the task.

5. Conclusion
In this work, we show that the premise order significantly
affects LLMs’ performance on reasoning tasks, even when
the premise order does not change the underlying task itself.
Our comprehensive evaluation demonstrates that LLM ten-
dencies resemble human preference w.r.t. premise order, i.e.,
LLMs achieve the best performance when the premise order
follows the intermediate reasoning steps to solve the prob-
lem. Conversely, LLMs face difficulties when the reasoning
problem requires the model to read the problem description
back-and-forth, resulting in a performance drop of over 30%.
We further extend the study to mathematical reasoning and
present the R-GSM benchmark, and again experimentally
confirm the ordering effect.

While humans also have a preference of premise orders for
reasoning problems, LLMs are much more susceptible to
such ordering effects. We can attempt to ascribe the premise
order effect to several candidate factors, such as the auto-
regressive model design, training objectives, and training
data mixture. However, we leave proposing theoretical ex-
planations of this limitation and developing new techniques
towards addressing the premise order effect as future work.

Impact Statement
Our work presents an empirical study on weaknesses of
LLM reasoning. One limitation of our work is that we did
not conduct a rigorous human study on our benchmarks,
and thus the LLM performance is not directly comparable
to humans. This work can inspire future studies on the
comparison of human and LLM reasoning.

While our work has not yet proposed a solution to address
the premise order effect of LLMs, this work helps the com-
munity better understand the capabilities of existing LLMs,
and thus better use them in practice. It may also motivate
the community to identify the root cause of these pitfalls
and address them, leading to the development of LLMs with
stronger reasoning abilities.
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A. R-GSM Dataset Statistics
Table 5 presents the statistics of our R-GSM benchmark.

# Steps # Problems

2 20
3 43
4 65
5 43
6 23
7 15
8 11

(a)

# Sentences # Problems

5 133
6 65
7 19
8 3

(b)

Table 5. Statistics of the R-GSM dataset, with 220 problems in total: (a) breakdown on the number of reasoning steps; (b) breakdown on
the number of sentences in the questions.

B. Logical Reasoning Examples
Figure 10 presents common classes of errors — hallucinated rules and facts — by LLMs while solving our logical reasoning
benchmark.

Figure 11 presents a sample logical reasoning problem with premise orders of different τ values. We can see that the rules
become less ordered when the absolute value of τ decreases.

C. R-GSM Examples
In this section, we present more examples of LLM predictions on R-GSM problems.

Figure 12 presents a failure case of a probability problem, which falls into the “Others” category in the error analysis
(Table 4). Specifically, in the reordered problem, after the LLM reads the sentence about the scenario with a normal teacher
coming in, the LLM immediately attempts to compute the probability that Marcus has to turn in his homework, ignoring
that the LLM needs to compute the probability that a normal teacher will come in using the next sentence.

Figures 13 shows another wrong prediction of GPT-4 Turbo, where the error pattern is analogous to rule hallucination in
logical reasoning evaluation. Interestingly, when moving the sentence about yellow cars preceding to the sentence about
quantities of blue and green cars, GPT-4 Turbo starts to hallucinate the relationship between the number of yellow cars and
the number of blue cars, resulting in insufficient information to correctly solve the problem.

Figures 14 and 15 present examples where both the original and reordered problems are correctly solved by LLMs in our
evaluation. In both original problems, the succeeding sentences do not strongly depend on the preceding sentences.

D. Discussion: Does Logical Reasoning Suffer from the Lost-in-the-middle Issue?
Liu et al. (2024) demonstrate that when the input context becomes long, LLMs might suffer from the lost-in-the-middle
issue: the model performance significantly degrades when relevant information to solve the task is in the middle of the input,
instead of at the beginning or the end. Therefore, when given distracting rules for logical reasoning, another potential factor
that might affect the model performance is the position of relevant rules in the model input.
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Figure 10. Examples of hallucinated rules (left) and facts (right) produced by GPT-3.5-Turbo while solving our logical reasoning
benchmark.
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Figure 11. An example logical reasoning problem with different premise orders. The number emojis are for ease of viewing. The
ampersands were originally “and”s in the original prompt. The facts and query have been excluded for brevity.

To examine the effect of such position bias, we conduct ablations on PaLM 2-L with 10 distracting rules, and we compare
the performance with relevant rules added in the beginning, middle or the end of the problem description. Table 6 shows that
with the same order and number of rules, the variation in performance is very small, whereas changing the order significantly
affects the results. Note that the longest inputs in our logical reasoning benchmark, i.e., problems with 12 relevant rules and
10 distracting rules, only contain no more than 300 tokens, which is relatively short compared to the context length limit of
LLMs in our evaluation. These results confirm that for our tasks where the input problems (and thus input context) are short,
the lost-in-the-middle phenomenon is not the primary cause of the performance difference. In our primary experiments, for
all logical reasoning problems, we interleave distracting rules with relevant rules in the input context.

E. Full Results for Logical Reasoning
Tables 7 and 10 present the accuracy numbers for Figures 3 and 5, which are results on different numbers of relevant rules
without distracting rules.

Tables 8 and 11 present the accuracy numbers for Figures 4 and 6 with 5 distracting rules.

Tables 9 and 12 present the accuracy numbers for Figures 4 and 6 with 10 distracting rules.
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# rules, position \order Forward Backward Shuffled

8, beginning 68.0% 40.0% 45.5%
8, middle 67.0% 39.0% 44.5%
8, end 67.0% 40.0% 45.5%
12, beginning 36.5% 17.0% 16.0%
12, middle 36.5% 17.0% 18.5%
12, end 35.0% 16.0% 19.5%

Table 6. Logical reasoning results performance of PaLM 2-L, with relevant rules at different positions of the input context.

F. Full Results on R-GSM
Tables 13 and 14 present the accuracy numbers for Figures 7 and 8, which are breakdown results on R-GSM problems with
different numbers of reasoning steps and different numbers of sentences in the problem description respectively.
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Figure 12. R-GSM example where the original problem can be correctly solved by GPT-4 Turbo, but the model fails on the reordered one.
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Figure 13. R-GSM example where the original problem can be correctly solved by all models, but GPT-4 Turbo and Gemini Pro failed on
the reordered one.
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Figure 14. R-GSM example where both the original and the reordered problems were correctly solved by all LLMs in our evaluation.
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Figure 15. R-GSM example where both the original and the reordered problems were correctly solved by all LLMs in our evaluation.
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# Rules Order Acc

4
Forward 99.0%
Backward 99.5%
Shuffled 98.8%

5
Forward 98.5%
Backward 99.5%
Shuffled 98.2%

6
Forward 100%
Backward 100%
Shuffled 98.3%

7
Forward 99.0%
Backward 98.0%
Shuffled 97.0%

8
Forward 99.0%
Backward 95.5%
Shuffled 93.5%

9
Forward 98.5%
Backward 95.5%
Shuffled 93.5%

10
Forward 99.0%
Backward 92.5%
Shuffled 87.3%

11
Forward 98.5%
Backward 91.0%
Shuffled 87.5%

12
Forward 96.5%
Backward 84.0%
Shuffled 80.8%

(a) GPT-4-turbo.

# Rules Order Acc

4
Forward 98.5%
Backward 98.5%
Shuffled 98.3%

5
Forward 98.5%
Backward 98.5%
Shuffled 98.3%

6
Forward 98.0%
Backward 93.5%
Shuffled 95.3%

7
Forward 96.5%
Backward 89.0%
Shuffled 91.2%

8
Forward 95.5%
Backward 77.0%
Shuffled 87.7%

9
Forward 94.0%
Backward 79.0%
Shuffled 85.7%

10
Forward 95.0%
Backward 75.5%
Shuffled 81.0%

11
Forward 94.0%
Backward 66.0%
Shuffled 78.7%

12
Forward 88.0%
Backward 57.5%
Shuffled 66.5%

(b) PaLM 2-L.
# Rules Order Acc

4
Forward 93.0%
Backward 73.5%
Shuffled 77.0%

5
Forward 90.0%
Backward 58.0%
Shuffled 57.0%

6
Forward 87.5%
Backward 77.5%
Shuffled 72.0%

7
Forward 65.5%
Backward 25.0%
Shuffled 22.5%

8
Forward 50.0%
Backward 17.5%
Shuffled 12.5%

9
Forward 47.5%
Backward 11.5%
Shuffled 8.7%

10
Forward 34.0%
Backward 4.5%
Shuffled 2.5%

11
Forward 33.0%
Backward 2.0%
Shuffled 1.5%

12
Forward 16.5%
Backward 0.5%
Shuffled 0.2%

(c) Gemini 1.0 Pro.

# Rules Order Acc

4
Forward 88.5%
Backward 70.0%
Shuffled 71.8%

5
Forward 84.0%
Backward 55.0%
Shuffled 51.7%

6
Forward 87.5%
Backward 67.0%
Shuffled 62.0%

7
Forward 64.0%
Backward 23.0%
Shuffled 20.2%

8
Forward 56.5%
Backward 15.5%
Shuffled 13.0%

9
Forward 50.5%
Backward 9.5%
Shuffled 8.7%

10
Forward 37.0%
Backward 3.5%
Shuffled 3.5%

11
Forward 36.0%
Backward 1.0%
Shuffled 2.8%

12
Forward 30.0%
Backward 1.0%
Shuffled 1.2%

(d) GPT-3.5-turbo.

Table 7. Result table corresponding to Figure 3.
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# Rules Order Acc

4
Forward 98.0%
Backward 99.5%
Shuffled 99.0%

5
Forward 99.5%
Backward 98.5%
Shuffled 98.0%

6
Forward 97.5%
Backward 97.0%
Shuffled 96.7%

7
Forward 93.5%
Backward 92.0%
Shuffled 90.2%

8
Forward 89.5%
Backward 85.5%
Shuffled 82.2%

9
Forward 88.0%
Backward 84.0%
Shuffled 82.7%

10
Forward 89.0%
Backward 77.0%
Shuffled 74.2%

11
Forward 84.5%
Backward 75.5%
Shuffled 71.5%

12
Forward 80.5%
Backward 72.5%
Shuffled 57.2%

(a) GPT-4-turbo.

# Rules Order Acc

4
Forward 98.5%
Backward 95.5%
Shuffled 94.5%

5
Forward 97.0%
Backward 93.5%
Shuffled 94.8%

6
Forward 88.0%
Backward 85.0%
Shuffled 88.5%

7
Forward 87.5%
Backward 68.0%
Shuffled 75.8%

8
Forward 84.5%
Backward 63.0%
Shuffled 66.0%

9
Forward 81.5%
Backward 56.5%
Shuffled 60.8%

10
Forward 79.5%
Backward 46.5%
Shuffled 55.5%

11
Forward 73.0%
Backward 43.5%
Shuffled 42.5%

12
Forward 64.0%
Backward 32.5%
Shuffled 38.2%

(b) PaLM 2-L.

Table 8. Results corresponding to Figure 4 with 5 distracting rules.
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# Rules Order Acc

4
Forward 97.0%
Backward 98.0%
Shuffled 97.7%

5
Forward 98.0%
Backward 96.0%
Shuffled 96.5%

6
Forward 92.5%
Backward 88.5%
Shuffled 90.3%

7
Forward 84.5%
Backward 80.0%
Shuffled 76.0%

8
Forward 81.5%
Backward 76.5%
Shuffled 70.5%

9
Forward 73.0%
Backward 65.0%
Shuffled 62.8%

10
Forward 64.5%
Backward 59.0%
Shuffled 53.7%

11
Forward 58.5%
Backward 53.0%
Shuffled 48.7%

12
Forward 57.5%
Backward 46.5%
Shuffled 40.0%

(a) GPT-4-turbo.

# Rules Order Acc

4
Forward 97.5%
Backward 95.0%
Shuffled 96.3%

5
Forward 94.0%
Backward 91.0%
Shuffled 92.5%

6
Forward 89.0%
Backward 77.0%
Shuffled 79.7%

7
Forward 71.5%
Backward 55.0%
Shuffled 60.7%

8
Forward 68.5%
Backward 39.5%
Shuffled 46.7%

9
Forward 61.5%
Backward 38.0%
Shuffled 42.7%

10
Forward 47.0%
Backward 29.5%
Shuffled 30.7%

11
Forward 46.5%
Backward 15.5%
Shuffled 25.0%

12
Forward 36.5%
Backward 15.5%
Shuffled 18.2%

(b) PaLM 2-L.

Table 9. Results corresponding to Figure 4 with 10 distracting rules.
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# Rules τ Acc

8

1.0 99.0%
0.5 95.0%
0.0 91.0%
-0.5 94.5%
-1.0 95.5%

10

1.0 99.0%
0.5 91.0%
0.0 82.5%
-0.5 88.5%
-1.0 92.5%

11

1.0 98.5%
0.5 90.0%
0.0 84.5%
-0.5 88.0%
-1.0 91.0%

12

1.0 96.5%
0.5 76.0%
0.0 82.0%
-0.5 84.5%
-1.0 84.0%

(a) GPT-4-turbo.

# Rules τ Acc

8

1.0 95.5%
0.5 89.5%
0.0 86.5%
-0.5 87.0%
-1.0 77.0%

10

1.0 95.0%
0.5 84.0%
0.0 83.0%
-0.5 76.0%
-1.0 75.5%

11

1.0 94.0%
0.5 80.5%
0.0 76.5%
-0.5 79.0%
-1.0 66.0%

12

1.0 88.0%
0.5 74.5%
0.0 65.5%
-0.5 59.5%
-1.0 57.5%

(b) PaLM 2-L.

# Rules τ Acc

6

1.0 87.5%
0.5 68.5%
0.0 75.5%
-0.5 72.0%
-1.0 77.5%

8

1.0 50.0%
0.5 10.5%
0.0 12.0%
-0.5 15.0%
-1.0 17.5%

10

1.0 34.0%
0.5 2.0%
0.0 3.5%
-0.5 2.0%
-1.0 4.5%

12

1.0 16.5%
0.5 0.0%
0.0 0.0%
-0.5 0.5%
-1.0 0.5%

(c) Gemini 1.0 Pro.

# Rules τ Acc

6

1.0 87.5%
0.5 68.5%
0.0 75.5%
-0.5 72.0%
-1.0 77.5%

8

1.0 50.0%
0.5 10.5%
0.0 12.0%
-0.5 15.0%
-1.0 17.5%

10

1.0 34.0%
0.5 2.0%
0.0 3.5%
-0.5 2.0%
-1.0 4.5%

12

1.0 16.5%
0.5 0.0%
0.0 0.0%
-0.5 0.5%
-1.0 0.5%

(d) GPT-3.5-turbo.

Table 10. Result table corresponding to Figure 5.
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# Rules τ Acc

8

1.0 89.5%
0.5 86.5%
0.0 78.0%
-0.5 82.0%
-1.0 85.5%

10

1.0 89.0%
0.5 75.5%
0.0 70.5%
-0.5 76.5%
-1.0 77.0%

11

1.0 84.5%
0.5 68.5%
0.0 67.5%
-0.5 78.5%
-1.0 75.5%

12

1.0 80.5%
0.5 49.5%
0.0 61.5%
-0.5 60.5%
-1.0 72.5%

(a) GPT-4-turbo.

# Rules τ Acc

8

1.0 84.5%
0.5 67.5%
0.0 67.0%
-0.5 63.5%
-1.0 63.0%

10

1.0 79.5%
0.5 58.0%
0.0 56.0%
-0.5 52.5%
-1.0 46.5%

11

1.0 73.0%
0.5 41.5%
0.0 40.0%
-0.5 46.0%
-1.0 43.5%

12

1.0 64.0%
0.5 39.0%
0.0 42.0%
-0.5 33.5%
-1.0 32.5%

(b) PaLM 2-L.

Table 11. Results corresponding to Figure 6 with 5 distracting rules.

# Rules τ Acc

8

1.0 81.5%
0.5 73.0%
0.0 65.5%
-0.5 73.0%
-1.0 76.5%

10

1.0 64.5%
0.5 48.5%
0.0 50.5%
-0.5 62.0%
-1.0 59.0%

11

1.0 58.5%
0.5 54.0%
0.0 41.0%
-0.5 51.0%
-1.0 53.0%

12

1.0 57.5%
0.5 33.0%
0.0 42.0%
-0.5 45.0%
-1.0 46.5%

(a) GPT-4-turbo.

# Rules τ Acc

8

1.0 68.5%
0.5 48.5%
0.0 45.5%
-0.5 46.0%
-1.0 39.5%

10

1.0 47.0%
0.5 35.0%
0.0 30.0%
-0.5 27.0%
-1.0 29.5%

11

1.0 46.5%
0.5 30.0%
0.0 24.5%
-0.5 20.5%
-1.0 15.5%

12

1.0 36.5%
0.5 18.0%
0.0 19.0%
-0.5 17.5%
-1.0 15.5%

(b) PaLM 2-L.

Table 12. Results corresponding to Figure 6 with 10 distracting rules.

24



Premise Order Matters in Reasoning with Large Language Models

# Steps Init Acc Reorder Acc

>= 2 94.1% 85.0%
>= 3 94.0% 84.0%
>= 4 94.3% 82.8%
>= 5 92.4% 79.3%
>= 6 89.8% 73.5%

(a) GPT-4-turbo.

# Steps Init Acc Reorder Acc

>= 2 86.4% 79.5%
>= 3 85.5% 78.5%
>= 4 84.1% 77.7%
>= 5 80.4% 71.7%
>= 6 69.4% 63.3%

(b) PaLM 2-L.

# Steps Init Acc Reorder Acc

>= 2 80.5% 69.1%
>= 3 79.0% 68.0%
>= 4 80.3% 66.2%
>= 5 80.4% 59.8%
>= 6 71.4% 55.1%

(c) Gemini 1.0 Pro.

# Steps Init Acc Reorder Acc

>= 2 67.3% 51.8%
>= 3 66.5% 51.0%
>= 4 63.1% 47.8%
>= 5 58.7% 39.1%
>= 6 42.9% 26.5%

(d) GPT-3.5-turbo.

Table 13. Results corresponding to Figure 7.

# Sentences Init Acc Reorder Acc

>= 5 94.1% 85.0%
>= 6 89.7% 81.6%
>= 7 86.4% 68.2%

(a) GPT-4-turbo.

# Sentences Init Acc Reorder Acc

>= 5 86.4% 79.5%
>= 6 78.2% 69.0%
>= 7 77.3% 72.7%

(b) PaLM 2-L.

# Sentences Init Acc Reorder Acc

>= 5 80.5% 69.1%
>= 6 80.5% 60.9%
>= 7 72.7% 54.5%

(c) Gemini 1.0 Pro.

# Sentences Init Acc Reorder Acc

>= 5 67.3% 51.8%
>= 6 62.1% 46.0%
>= 7 54.5% 36.4%

(d) GPT-3.5-turbo.

Table 14. Results corresponding to Figure 8.
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