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Abstract
Harnessing the power of human-annotated data
through Supervised Fine-Tuning (SFT) is pivotal
for advancing Large Language Models (LLMs).
In this paper, we delve into the prospect of grow-
ing a strong LLM out of a weak one without the
need for acquiring additional human-annotated
data. We propose a new fine-tuning method
called Self-Play fIne-tuNing (SPIN), which starts
from a supervised fine-tuned model. At the heart
of SPIN lies a self-play mechanism, where the
LLM refines its capability by playing against in-
stances of itself. More specifically, the LLM
generates its own training data from its previ-
ous iterations, refining its policy by discerning
these self-generated responses from those ob-
tained from human-annotated data. Our method
progressively elevates the LLM from a nascent
model to a formidable one, unlocking the full po-
tential of human-annotated demonstration data
for SFT. Theoretically, we prove that the global
optimum to the training objective function of our
method is achieved only when the LLM policy
aligns with the target data distribution. Empiri-
cally, we evaluate our method on several bench-
mark datasets including the HuggingFace Open
LLM Leaderboard, MT-Bench, and datasets from
Big-Bench. Our results show that SPIN can sig-
nificantly improve the LLM’s performance across
a variety of benchmarks and even outperform
models trained through direct preference opti-
mization (DPO) supplemented with extra GPT-4
preference data. This sheds light on the promise
of self-play, enabling the achievement of human-
level performance in LLMs without the need
for expert opponents. Codes are available at
https://github.com/uclaml/SPIN.
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1 Introduction

Large Language Models (LLMs) have began a ground-
breaking era in artificial general intelligence (AGI), demon-
strating extraordinary capabilities across a wide range of
domains that require intricate reasoning and specialized
knowledge. These models excel in areas such as math-
ematical reasoning/problem solving (Cobbe et al., 2021;
Wei et al., 2022; Lewkowycz et al., 2022), code genera-
tion/programming (Chen et al., 2021; Austin et al., 2021; Li
et al., 2022), text generation (Bubeck et al., 2023; Anil et al.,
2023; Touvron et al., 2023), summarization and creative
writing, among others. A significant advancement in LLMs
is the post-pre-training alignment with the more desirable
behaviors (Mishra et al., 2021; Victor et al., 2022; Chung
et al., 2022; Thoppilan et al., 2022), a process often reliant
on the costly human-annotated data. Typical alignment
methods include Supervised Fine-Tuning (SFT) (Ouyang
et al., 2022; Tunstall et al., 2023a) based on human demon-
strations, and Reinforcement Learning from Human Feed-
back (RLHF) (Christiano et al., 2017; Ziegler et al., 2019;
Stiennon et al., 2020; Bai et al., 2022a) based on human
preferences.

All the aforementioned alignment methods require a sub-
stantial volume of human annotated data. Therefore, there
is increasing interest in developing fine-tuning methods that
can effectively utilize human data, thereby streamlining the
alignment process. This motivates us to study fine-tuning
LLMs without the need for additional human-annotated data
beyond the fine-tuning dataset. Our study is also related to
the broader goal of converting weak models to strong mod-
els without the requirement for extra training data, which
is of central interest in machine learning that can be traced
back to the boosting algorithms (Kearns & Valiant, 1994;
Schapire, 1990; Freund, 1995; Freund & Schapire, 1997).
The self-training algorithm (Vapnik, 1999; Grandvalet &
Bengio, 2004; Lee, 2013) has also been proved to be able to
convert weak learners to strong learners in mixture models
without the need for additional labeled data (Frei et al., 2022;
Kou et al., 2022). However, the pursuit of autonomously
enhancing a weak LLM without external guidance is both
intriguing and understudied. This raises the following ques-
tion:
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Can we empower a weak LLM to improve itself without
acquiring additional human annotated data?

In this paper, we answer this question affirmatively. Inspired
by the success of self-play mechanisms (Samuel, 2000) in
games, exemplified by AlphaGo Zero (Silver et al., 2017b),
AlphaZero (Silver et al., 2017a), with historical roots traced
back to TD-Gammon (Tesauro et al., 1995), we propose to
convert a weak LLM to a strong one through the lens of
self-play, where the model is enhanced by playing against
itself without requiring any direct supervision. In particu-
lar, we propose a novel fine-tuning method called Self-Play
fIne-tuNing (SPIN), which begins from a supervised fine-
tuned model. SPIN allows the LLM to engage in self-play,
eliminating the need for an expert annotator such as a hu-
man or more advanced LLMs like GPT-4. In detail, with
the LLM from previous iteration t denoted by pθt

, we em-
ploy it to generate responses y′ to the prompts x in the
human-annotated SFT dataset. The subsequent objective
is to find a new LLM pθt+1

, capable of distinguishing the
responses y′ generated by pθt from the responses y gener-
ated by humans. This process can be seen as a two-player
game: the main player, or the new LLM pθt+1

, seeks to dis-
cern between the responses of the opponent player pθt

and
human-generated responses, while the opponent, or the old
LLM pθt

, generates responses as similar as possible to those
in the human-annotated SFT dataset. The new LLM pθt+1 is
obtained by fine-tuning the old one pθt to prefer responses
from pdata over pθt

, resulting in a distribution pθt+1
that

is more aligned with pdata. In the next iteration, the newly
obtained LLM pθt+1

becomes the opponent for response
generation, with the self-play process aiming for the LLM
to eventually converge to pθ∗ = pdata, so that the strongest
possible LLM can no longer differentiate the responses gen-
erated by its previous version and those generated by the
human.

Interestingly, our method exhibits similarity with the re-
cently introduced direct preference optimization (DPO)
method (Rafailov et al., 2023), with the notable distinc-
tion being the self-play nature of our method. Conse-
quently, our approach stands out by eliminating the need
for extra human preference data, a requirement present in
the DPO method. Additionally, the self-play mechanism
in our method resembles the idea of generative adversar-
ial networks (GAN) (Goodfellow et al., 2014; Arjovsky
et al., 2017), albeit that both the discriminator (main player)
and the generator (the opponent) in our method are in-
stances of the same LLM from different iterations. The-
oretically, we prove that our method converges when the
distribution of the LLM is identical to the target data dis-
tribution, i.e., pθt

= pdata. Our experimental results on
zephyr-7b-sft-full (Tunstall et al., 2023a), a fine-
tuned LLM based on Mistral-7B (Jiang et al., 2023), show
that while continued training using SFT on its own SFT

dataset Ultrachat200k (Ding et al., 2023) reaches a perfor-
mance plateau or even diminished evaluation scores, our
method consistently improves zephyr-7b-sft-full
across successive iterations while leveraging only a 50k sub-
set of Ultrachat200k dataset. Ultimately, SPIN effectively
improves the base model’s average score from 58.14 to
63.16 on the HuggingFace Open LLM Leaderboard (Beech-
ing et al., 2023) with remarkable 10%+ improvement in
scores on GSM8k and TruthfulQA, and from 5.94 to 6.78
on MT-Bench (Zheng et al., 2023). Notably, SPIN achieves
results that are even comparable to models trained on ad-
ditional 62k preference dataset (Tunstall et al., 2023a) on
Open LLM leaderboard and MT-Bench.

Concurrent to our work, Singh et al. (2023) proposed the
use of synthetic data with binary feedback in self-training,
reducing the reliance on human data. In contrast, our ap-
proach eliminates the need for additional binary feedback
from humans or an extra reward model thanks to the self-
play mechanism. Additionally, Burns et al. (2023) employed
a weak LLM model as the guidance to train stronger LLMs
in a fashion of weak-to-strong generation. Unlike Burns
et al. (2023), which necessitates both a weak supervisor and
a strong model, our SPIN operates effectively with a single
LLM.

Notation. We use lowercase letters and lowercase bold-
face letters to denote scalars and vectors, respectively. We
use [N ] to denote the index set {1, . . . , N}. In the func-
tion space, let F be the function class. The symbol qdata
designates the target data distribution, while p represents
the conditional probability of LLM’s response (i.e., LLM
policy).

2 Related Work

Self-Play. Self-play (Samuel, 1959; Tesauro et al., 1995),
where the algorithm learns by playing against itself, has
gained notable attention due to its effectiveness in multi-
agent reinforcement learning (MARL). This method in-
volves agents engaging in interactions with copies of them-
selves, enabling an increasing level of challenge and com-
plexity within the learning environment. A fundamental
work in the field of self-play is AlphaGo Zero (Silver
et al., 2017b), which demonstrated exceptional performance
against human players using a self-play learning scheme.
Subsequent research has expanded upon the concept of
self-play, exploring various adaptations and implementa-
tions (Anthony et al., 2017; Lanctot et al., 2017; Bansal
et al., 2018; Hernandez-Leal et al., 2018; Muller et al., 2019;
Vinyals et al., 2019). Our method takes the self-play ap-
proach akin to AlphaGo Zero, which can convert a weak
model to a strong one without additional human-annotated
data. While the effectiveness of self-play in MARL is well-
established, to our knowledge, our work is the first to apply
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this approach to the enhancement of LLMs.

Synthetic Data for LLMs. In the context of supervised
fine-tuning (SFT) of LLMs, human-crafted data has proven
to be a remarkably effective source that enhances the perfor-
mance of LLMs on tasks such as code generation (Roziere
et al., 2023; Yang et al., 2023) and mathematical reason-
ing (Yuan et al., 2023; Luo et al., 2023). While human data
typically exhibits high quality, acquiring sufficient amount
of such data poses a challenge in cost. In light of this con-
sideration, the use of synthetic data has become increasingly
popular and considered as a proxy for human data. This ap-
proach primarily leverages advanced LLMs such as the GPT
series (Radford et al., 2019; Brown et al., 2020; OpenAI,
2023) as the guidance to generate high-quality data (Josi-
foski et al., 2023; Taori et al., 2023; Chiang et al., 2023;
Li et al., 2023). Recent research has also highlighted the
rephrasing capability of LLMs in prompting for better LLM
response (Deng et al., 2023; Prasad et al., 2023) as well
as augmenting synthetic data for more effective SFT (Yu
et al., 2023; Liu et al., 2023). In contrast to prior studies
that utilized more advanced models for synthetic data gener-
ation when pre-training or fine-tuning a target model, our
approach directly generates synthetic data from the target
model itself.

3 Problem Setting and Preliminaries

We consider a Large Language Model (LLM) parameter-
ized by θ and denoted by pθ. The model takes as in-
put a sequence x = [x1, . . . , xn], commonly referred to
as the prompt, to generate the corresponding response
y = [y1, . . . , ym]. The response y is therefore considered
as a sample from the conditional probability distribution
pθ(·|x). In LLMs, xi and yj represent individual tokens
from a predetermined vocabulary within the sequences x
and y, respectively. The auto-regressive model pθ generates
tokens sequentially for a given position, leveraging only the
sequence of previously generated tokens. This model there-
fore constitutes a Markov process, where the conditional
probability distribution pθ(y|x) can be expressed through a
decomposition as follows:

pθ(y|x) =
m∏
j=1

pθ(yj |x,y<j),

where y<1 is null and y<j = [y1, . . . , yj−1] for j =
2, . . . ,m. In the following, we review two major fine-tuning
methods for LLMs: supervised fine-tuning and reinforce-
ment learning (RL) fine-tuning.

3.1 Supervised Fine-Tuning

Supervised fine-tuning (SFT) is employed to tailor a pre-
trained LLM to specific downstream tasks, leveraging rel-
atively smaller dataset of labeled examples in comparison

to the large-scale pre-training data (Ouyang et al., 2022;
Yu et al., 2023). In this context, we consider a specific
task where the prompts, denoted by x, are derived from
a specified distribution q(·). The notation pdata(·|x) then
represents the probability distribution of the associated high-
quality responses y from the training data. Consequently,
SFT involves training the LLM to minimize the following
negative log-likelihood loss associated with these distribu-
tions,

LSFT(θ) = −Ex∼q(·),y∼pdata(·|x)

[
log pθ

(
y|x

)]
. (3.1)

It should be noted that excluding x ∼ q(·) from the expecta-
tion term yields the typical cross-entropy loss, expressed as
−Ey∼pdata(·|x)[log pθ(y|x)]. LSFT(θ) attains its minimum
when the model’s predictive distribution pθ(y|x) aligns
perfectly with the distribution of the labeled high-quality
responses pdata(y|x).

Consequently, the LLM after SFT is anticipated to generate
responses that closely resemble those from pdata(y|x). This
procedure is therefore expected to significantly enhance the
model’s performance in generating appropriate responses
for a specific task.

3.2 RL Fine-Tuning

RL fine-tuning (Christiano et al., 2017; Bai et al., 2022a;
Gao et al., 2023a) offers another method for enhancing the
specific capabilities of general-purpose pre-trained models.
Typically, RL fine-tuning is employed subsequent to SFT
to achieve improved alignment for LLMs (Tunstall et al.,
2023a).

For a given sequence pair (x,y), RL fine-tuning necessitates
a deterministic reward function r(x,y). The higher the
reward r(x,y), the better the response y is to the given
prompt x. The objective of the RL fine-tuning process is
then to maximize the following objective function:

LRL(θ) = Ex∼q(·),y∼pθ(·|x)[r(x,y)]

− λEx∼q(·)KL
(
pθ(·|x)||pref(·|x)

)
,

where the Kullback-Leibler (KL) regularization enforces
the new model pθ to be close to the reference model pref ,
and λ > 0 is the regularization parameter to control the
deviation of the new model pθ from the reference model
pref . In practice, the reference model pref is often initialized
as the supervised fine-tuned model. The inclusion of KL
regularization is vital for preventing excessive deviation
from the reference model, which in turn reduces the risk of
mode collapse.

Meanwhile, the primary challenge in RL fine-tuning lies
in finding a good reward function. Typically, this function
requires training on a preference dataset. The compila-
tion of such a dataset demands significant resources, often
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involving comprehensive evaluations either by human an-
notators, i.e., reinforcement learning from human feedback
(RLHF) (Christiano et al., 2017; Bai et al., 2022a) or strong
AI agents, i.e., reinforcement learning from AI feedback
(RLAIF) (Bai et al., 2022b).

4 Method

In this section, we introduce a new fine-tuning method for
enhancing the performance of LLMs without relying on
additional human or AI feedback. Consider a high-quality
supervised fine-tuning (SFT) dataset SSFT = {(x,y)}ni=1,
which are sampled from the marginal distribution q(x) and
pdata(y|x). Given a supervised fine-tuned LLM pθ0 , further
application of the SFT approach in (3.1) with SSFT will be
ineffective and potentially lead to worse performance. In
addition, without human and/or AI feedback, it becomes
infeasible to acquire a preference dataset for RL fine-tuning
(e.g., RLHF and RLAIF). This hinders the application of
RL fine-tuning techniques.

We evaluate pθ0
against SSFT, where pθ0

is the LLM
achieved by SFT using (3.1). We notice a persistent quality
gap between the groundtruth response y from SSFT and the
LLM-generated response y′ ∼ pθ(·|x) (refer to Figure 1).
This disparity indicates that there is still room for improve-
ment over pθ0

. Therefore, we propose to use the synthetic
data generated by the LLM to enhance LLM’s performance
starting from pθ0 iteratively.

4.1 Self-Play Fine-Tuning (SPIN)

Let us consider a two-player game, where the main player’s
objective is to distinguish the responses generated by the
LLM and those generated by the human. Meanwhile, the
opponent’s role is to generate responses that are indistin-
guishable from the human’s responses. The core of our
method is the self-play mechanism, where both the main
player and the opponent are the same LLM, but from dif-
ferent iterations. More specifically, the opponent is the old
LLM from the previous iteration, and the main player is the
new LLM to be learned in the current iteration.

In iteration t+1, the opponent is the LLM from the previous
iteration, denoted by pθt

, which generates responses y′ for
those prompts x in the SFT dataset according to pθt(·|x).
Our method, therefore, consists of the following two steps at
iteration t+1: (1) training the main player, and (2) updating
the opponent player.

Training the Main Player. We begin with illustrating how
we expect a main player is trained to distinguish LLM re-
sponses from human responses. Motivated by integral prob-
ability metric (IPM) (Müller, 1997), we formulate our ob-
jective function such that the main player ft+1 maximizes
the expected value gap between the target data distribution

pdata and the opponent player’s distribution pθt
:

ft+1 = argmax
f∈Ft

E
[
f(x,y)− f(x,y′)

]
, (4.1)

where the expectation is computed over the distributions
x ∼ q(·),y ∼ pdata(·|x),y′ ∼ pθt

(·|x), and Ft is a se-
quence of highly expressive function classes that we will
determine in later deduction. The subscript t in Ft is due
to that the function class is dependent on pθt . Given such a
ft+1 and a response sequence y to the prompt x, the value
of ft+1(x,y) reflects the main player’s degree of belief that
y originates from pdata rather than pθt

. Ideally, the main
player ft+1 should yield a high value when y ∼ pdata(·|x)
and a low value when y′ ∼ pθt

(·|x), where pθt
is the op-

ponent’s distribution. Instead of solving (4.1), we can also
solve the following more general optimization problem,

ft+1 = argmin
f∈Ft

E
[
ℓ
(
f(x,y)− f(x,y′)

)]
, (4.2)

where the expectation is computed over the distribution
x ∼ q(·),y ∼ pdata(·|x), y′ ∼ pθt

(·|x), and ℓ(·) is a loss
function that is both monotonically decreasing and convex.
For example, a linear loss function ℓ(t) = −t reduces (4.2)
to the minimization version of (4.1). However, the use of
a linear loss function results in an unbounded objective
value, which, during continuous training, leads to a negative
infinite value of f(x,y′) on the opponent player’s responses.
Therefore, in our work, we choose the logistic loss function
ℓ(t) := log(1+exp(−t)) for its non-negativity, smoothness,
and exponentially decaying tail as t → ∞. Such a choice
of loss function aids in preventing the excessive growth in
the absolute value of f .

Updating the Opponent Player. Previously we have dis-
cussed the training of ft+1 given the opponent player’s
distribution pθt

. Now suppose we have optimized our main
player ft+1 that can distinguish pdata from pθt

, within a cer-
tain function class Ft, we elaborate how we get parameter
θt+1 of the opponent player. Specifically, when presented
with two responses y and y′ to the same prompt x, ft+1

assesses the values ft+1(x,y) and ft+1(x,y
′). It then in-

fers that the response with the higher value is from the real
data distribution pdata and the response with lower value
is attributed to the LLM pθt . Subsequently, the objective
of the opponent player is to find a better LLM that gener-
ates responses indistinguishable from pdata for the main
player. This is achieved by maximizing the expected value
Ex∼q(·),y∼p(·|x)[ft+1(x,y)]. In addition, to prevent exces-
sive deviation of pθt+1

from pθt
and stabilize the self-play,

we incorporate a Kullback-Leibler (KL) regularization term.
Putting these together gives rise to the following optimiza-
tion problem:

argmax
p

Ex∼q(·),y∼p(·|x)[ft+1(x,y)]
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In Southampton, what is the most popular form of 
transportation for commuters?

I don't have access to current data. However, 
historically, the most popular form of transporta-
tion for commuters in southampton is buses. The 
city also has a good network of trains and taxis. 

In Southampton, what is the most popular form of 
transportation for commuters?

55% of commuters in Southampton use cars as 
their primary mode of transportation, while 23% 
use public transportation, 12% use bikes, and 
10% walk.

Chosen: ground truth completion Rejected: model generation @Iter 0

I do not have access to the latest updates and statistics of southampton. However, based on 
previous reports, the most popular form of transportation for commuters in southampton is 
the public transport network, which includes buses, trains, and ferries. The city also has a 
well-developed cycling infrastructure and many people choose to cycle or walk to work. 
Additionally, private cars and taxis are also commonly used for commuting.

Model generation @Iter 1

Figure 1. Example of ground truth completion compared to the fine-tuned model generation at iteration 0 and 1. We can observe that
the model generation at iteration 0, although fluent, incorrectly quantifies transportation preferences with specific percentages that are
potentially hallucinations. The model generation at iteration 1 provides a qualitative summary of the transportation forms at Southampton
without specific percentage, aligning more closely with the ground truth while adding more details.

− λEx∼q(·)KL
(
p(·|x)||pθt

(·|x)
)
, (4.3)

where λ > 0 is the regularization parameter. Notably, (4.3)
has a closed-form solution p̂(·|x):

p̂(y|x) ∝ pθt
(y|x) exp

(
λ−1ft+1(x,y)

)
. (4.4)

It is worth noting that p̂(·|x) is not guaranteed to be belong
to the LLM space {pθ(·|x)|θ ∈ Θ}. Since we hope that the
closed-form solution p̂ in the probability space can be real-
ized by an LLM with parameter θ, i.e., pθ(y|x) = p̂(y|x),
solving for pθ(y|x) ∝ pθt

(y|x) exp
(
λ−1ft+1(x,y)

)
gives ft+1(x,y) = λ · log pθ(·|x)

pθt (·|x)
. This suggests the fol-

lowing function class Ft for ft+1:

Ft =

{
λ · log pθ(y|x)

pθt(y|x)

∣∣∣∣θ ∈ Θ

}
, (4.5)

where Θ is the parameter space of LLMs being considered.
Given the choice of Ft in (4.5), optimizing (4.2) gives ft+1

parameterized by θt+1 in the following form:

ft+1(x,y) = λ · log
pθt+1

(y|x)
pθt

(y|x)
. (4.6)

Substituting (4.6) into (4.4) yields p̂(y|x) = pθt+1
(y|x). In

other words, θt+1 learned from (4.2) is exactly the LLM
parameter for our ideal opponent selection.

End-to-end Training Objective. We integrate the previ-
ously discussed two steps into a single end-to-end train-
ing objective with an update rule of θt+1. Specifically,
plugging (4.5) into (4.2) arrives at the update rule θt+1 =

argminθ∈Θ LSPIN(θ,θt), where LSPIN is the training ob-
jective defined as follows

LSPIN = E
[
ℓ

(
λ log

pθ(y|x)
pθt(y|x)

− λ log
pθ(y

′|x)
pθt(y

′|x)

)]
,

(4.7)

where the expectation is computed over the distribution x ∼
q(·),y ∼ pdata(·|x),y′ ∼ pθt

(·|x). We summarize the
iterative self-play process of our method SPIN as follows,

. . . → pθt
(·|x)︸ ︷︷ ︸

Opponent Player at t

→ λ · log
pθt+1(·|x)
pθt

(·|x)︸ ︷︷ ︸
Main Player at t + 1

→ pθt+1(·|x)︸ ︷︷ ︸
Opponent Player at t + 1

→ . . .

Namely, the opponent player chosen from the previous it-
eration t is employed to train the main player at iteration
t+1, resulting in the LLM parameterized by θt+1. Then we
determine the next opponent player at iteration t+ 1 by di-
rectly copying the LLM parameter θt+1, which is then used
in training the main player at iteration t+ 2. The detailed
algorithm is presented in Algorithm 1.

4.2 Comparison between SPIN and DPO

In Section 4.1, we propose Self-Play Fine-Tuning (SPIN)
with an end-to-end training objective (4.7) for each iter-
ation. (4.7) bears resemblance to direct preference opti-
mization (DPO) (Rafailov et al., 2023) for RL fine-tuning.
However, SPIN and DPO are fundamentally different.
DPO is based on the Bradley-Terry (BT) model: p(y1 ≻
y2|x) = exp(r∗(x,y1))

exp(r∗(x,y1))+exp(r∗(x,y2))
, and maximizes the
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Algorithm 1 Self-Play Fine-Tuning (SPIN)

Input: {(xi,yi)}i∈[N ]: SFT Dataset, pθ0
: LLM with

parameter θ0, T : Number of iterations.
for t = 0, . . . , T − 1 do

for i = 1, . . . N do
Generate synthetic data y′

i ∼ pθt
(·|xi).

end for
Update θt+1 = argminθ∈Θ

∑
i∈[N ] ℓ

(
λ log pθ(yi|xi)

pθt (yi|xi)
−

λ log
pθ(y

′
i|xi)

pθt (y
′
i|xi)

)
.

end for
Output: θT .

log-likelihood of p(y1 ≻ y2|x) by direct policy optimiza-
tion without explicit reward estimation. In contrast, SPIN
relies on maximizing the IPM to compete with an increas-
ingly stronger version of itself. More detailed comparisons
are highlighted as follows:

1. DPO does not inherently lead to iterative training. More
specifically, DPO aims to match the preference prob-
ability p(y1 ≻ y2|x) induced from its reward model
with the data distribution pdata(y1 ≻ y2|x) in a single
iteration. On the contrary, SPIN’s self-play mechanism
naturally leads to an iterative training procedure. SPIN
iteratively refines its generation distribution pθ(y|x) to
match the target distribution pdata(y|x) across iterations.

2. SPIN only requires the SFT dataset, represented by pairs
(x,y). In contrast, DPO necessitates a preference dataset,
represented by (x,yw,yl), where yw and yl denote the
winner (chosen) and loser (rejected) responses, respec-
tively. Moreover, SPIN can be applied between SFT and
RL fine-tuning.

3. In SPIN, we can choose different loss functions ℓ which
only need to be convex and decreasing (detailed later
in Theorem 5.2), which includes correlation loss, hinge
loss, and logistic loss. Only when ℓ is chosen as the lo-
gistic loss would the training objective of SPIN become
similar to that of DPO.

Recently, Xu et al. (2023) proposed to use iterative prefer-
ence optimization with the Pairwise Cringe Loss (PCO), and
generalized DPO to iterative DPO. Concurrent to our work,
Yuan et al. (2024) further proposed a framework named
“self-rewarding language models”, which leverages the LLM
itself as the reward model to provide the preference feed-
back, and employs iterative DPO to train the LLM. Com-
pared with Xu et al. (2023); Yuan et al. (2024), SPIN’s
self-assessment is implicit, as no intermediate reward or
preference feedback is required.

5 Theoretical Analysis

In this section, we provide a theoretical analysis for Algo-
rithm 1 in Section 4. Under monotonicity and convexity

assumption of the objective function ℓ, we show that the
global optimum is obtained if and only if parameter θt gen-
erates data distribution. We summarize our assumptions as
follows:

Assumption 5.1. The loss function ℓ(t) : R → R is
monotonically decreasing, i.e., ∀t, ℓ′(t) ≤ 0 and satisfies
ℓ′(0) < 0. In addition, ℓ(t) is a convex function.

Assumption 5.1 holds for a wide range of loss functions
commonly used in machine learning, including correlation
loss ℓ(t) = 1 − t, hinge loss ℓ(t) = max(0, 1 − t), ex-
ponential loss ℓ(t) = exp(−t) and logistic loss ℓ(t) =
log(1 + exp(−t)). Under Assumptions 5.1, we present the
following theorem, which is pivotal in understanding the
optimization dynamics of our method.

Theorem 5.2. Under Assumption 5.1, suppose there exists
pθ(·|x) = pdata(·|x), then we have that

• (Sufficiency) If pθt
(·|x) = pdata(·|x), then θt is the

global minimum of (4.7) for any λ ≥ 0.
• (Necessity) If pθt

(·|x) ̸= pdata(·|x), there exists an appro-
priately chosen λ, such that θt is not the global minimum
of (4.7).

Remark 5.3. Theorem 5.2 suggests that under certain con-
ditions, the optimization process of our method naturally
stops at the point pθ(·|x) = pdata(·|x), implying the effec-
tiveness of our approach in aligning the LLM’s distribution
with the target data distribution. Moreover, Theorem 5.2
also indicates that the optimization process only stops when
the global optimality is achieved, i.e., the LLM’s distribution
aligns with the target data distribution.

For the logistic loss function ℓ(t) = log(1 + exp(−t)), the
following theorem gives a more precise characterization
of the opponent player, enabling a better understanding of
SPIN.

Theorem 5.4. Consider the choice of logistic loss
ℓ(t) = log(1 + exp(−t)) in SPIN. Suppose that
pθt

(y|x)
(
pdata(y|x)/pθt

(y|x)
)1/λ

lies in the LLM space
{pθ(y|x)|θ ∈ Θ} and θt+1 is global minimum of
LSPIN(θ,θt), then the opponent player at iteration t + 1
satisfies

pθt+1
(y|x) ∝ pθt

(y|x)
(
pdata(y|x)/pθt

(y|x)
)1/λ

.

Remark 5.5. According to Theorem 5.4, the model update
from pθt

(y|x) to pθt+1
(y|x) tends to increase the probabil-

ity pθt+1
(y|x) when pθt

(y|x) is less than pdata(y|x), and
decrease it when pθt(y|x) is greater than pdata(y|x). Thus,
Theorem 5.4 further confirms that our method’s optimiza-
tion process naturally converges to the point where pθ(·|x)
equals pdata(·|x). The update of the opponent player is con-
trolled by

(
pdata(y|x)/pθt(y|x)

)1/λ
, which is regulated by
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the factor 1/λ. A smaller λ results in a larger change of the
opponent player, while a larger λ leads to a smaller change.
Therefore, as pθ(·|x) approaches pdata(·|x), increasing λ
enhances the stability of LLM training. This observation
aligns with (4.3), where λ is the regularization parameter
of the KL regularization that is employed to control the
deviation of the opponent player.

6 Experiments

This section provides a detailed empirical analysis of
SPIN. Our findings highlight several key points: (1) SPIN
markedly enhances model performance across a wide range
of evaluation benchmarks by breaking the limit of SFT;
(2) even without introducing new human annotated data,
SPIN at iteration 0 achieves performance on par to DPO
training that utilizes even more data; (3) iterative training
is a necessary component in SPIN as it breaks the limit of
multi-epoch training.

6.1 Experiment Setup

Model and Datasets. In this study, we adopt
zephyr-7b-sft-full as our base model. This model
derives from the pre-trained Mistral-7B (Jiang et al., 2023)
and has been further fine-tuned on the SFT dataset Ultra-
chat200k1 by HuggingFace. Ultrachat200k represents a
high-quality 200k subset of the larger UltraChat (Ding et al.,
2023) corpus, which comprises approximately 1.4M dia-
logues produced using OpenAI’s Turbo APIs. From Ultra-
Chat200k, We randomly sample 50k prompts and use the
base model to generate the synthetic responses. We subse-
quently follow the optimization method described in Section
4.1 for further training. In multiple iterations, we leverage
the synthetic data from the most recent iteration and add
to the newly generated synthetic data, therefore resulting
in a synthetic dataset size of 50k at iteration 0 and 100k at
iteration 1, 2 and 3. At each iteration, we train our model
for 2 epochs.

Evaluation. We employed the widely used Huggingface
Open LLM Leaderboard (Beeching et al., 2023) as our eval-
uation benchmark, using the same Language Model Eval-
uation Harness library (Gao et al., 2023b). This leader-
board encompasses 6 different datasets, each focusing
on a a specific capability of LLMs. Collectively, these
datasets provide a thorough assessment framework, evalu-
ating LLMs on commonsense reasoning (Arc (Clark et al.,
2018), HellaSwag (Zellers et al., 2019), Winogrande (Sak-
aguchi et al., 2021)), multi-task language understanding
(MMLU(Hendrycks et al., 2020)), human falsehood mimic
(TruthfulQA (Lin et al., 2021)) and math problem solving
(GSM8k (Cobbe et al., 2021)). We leave further implemen-

1https://huggingface.co/datasets/
HuggingFaceH4/ultrachat_200k

tation details to Appendix B with detailed evaluation setting
adopted by both the leaderboard and our experiments.

6.2 SPIN Effectively Improves Benchmark
Performance

SFT SPIN
iter-0

SPIN
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SPIN
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SPIN
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62.12

62.97 63.16

HuggingFace Open LLM Benchmark

Figure 2. The average score of SPIN at different itera-
tions on the HuggingFace Open LLM leaderboard datasets.
For “SFT”, we report the performance of our base model
zephyr-7b-sft-full, which has been fine-tuned on the
same dataset we use to generate synthetic data.

In Figure 2, we demonstrate the effectiveness of SPIN us-
ing HuggingFace Open LLM Leaderboard as the evalua-
tion. In Figure 3, we compare the performance of our fine-
tuned model by SPIN after iterations 0 to 3 with the base
model zephyr-7b-sft-full on each task included in
the leaderboard. Detailed performances are presented in
Table 4 in Appendix B. We can observe that SPIN ex-
hibits remarkable effectiveness in improving the model’s
performance by further leveraging the SFT dataset, on
which the base model has already been fully fine-tuned.
At iteration 0, where model responses are generated from
zephyr-7b-sft-full, we observe an overall improve-
ment of 2.66% on the average score. The improvement
is particularly significant on the TruthfulQA and GSM8k
benchmarks, with improvement exceeding 5% and 10% re-
spectively. At iteration 1, we employ the LLM model from
iteration 0 to generate new responses for SPIN, adhering
to the procedure outlined in Algorithm 1. This iteration
yields further enhancements of 1.32% on average, and es-
pecially significant on the Arc Challenge and TruthfulQA
benchmarks. Subsequent iterations continue this trend of
incremental improvement across various tasks. Meanwhile,
the improvement at iteration t+ 1 is naturally smaller than
that at iteration t. As the iterative training progresses, the
degree of improvement gradually approaches zero, suggest-
ing that the model has reached a limiting point in the last
iteration.

Comparison with DPO. zephyr-7b-beta is a model
derived from zephyr-7b-sft-full, trained with DPO
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on approximately 62k preference data. This data, the Ultra-
Feedback Binarized dataset (Cui et al., 2023)2, comprises
both chosen and rejected completions evaluated by GPT-4.
We note that, DPO requires either human input or advanced
language model feedback to determine the preference, mak-
ing data generation a rather expensive procedure. In contrast,
our SPIN only requires the initial model itself. Moreover,
unlike DPO which requires new data source, our method
exclusively leverages the existing SFT dataset. In Figure 3,
we show the performance comparison of SPIN at iterations
0 and 1 (employing 50k SFT data) with DPO training, from
the same SFT checkpoint. We can observe that, while DPO
leverages more data from new sources, SPIN based on the
existing SFT data can already achieve comparable average
performance to DPO training at iteration 0. From iteration
1, SPIN even surpasses the performance of DPO on the
leaderboard benchmark.

6.3 Ablation Studies

In this subsection, we examine the effect of synthetic dataset
size and training epochs within an iteration. Our analysis
demonstrates the effectiveness of the synthetic data used by
SPIN compared to the SFT data, as well as the necessity
of iterative training in SPIN. In Appendix B, we present
assessment of SPIN on additional benchmark tasks.

Training Size. We investigate the effect of varying training
data size on the performance of SPIN. In Figure 5, we
demonstrate the effect of training size for SPIN during it-
eration 0 and additionally compare with SFT with the full
original dataset. Specifically, for the SFT baseline, we fully
fine-tune Mistral-7B on Ultrachat200k for three epochs and
report first epoch performance as the starting point (with
x-axis 0) in the figure for SFT. For SPIN, we report the
zephyr-7b-sft-full checkpoint as the starting point,
which has also been fine-tuned on Ultrachat200k for one
epoch. We select the training size of SPIN at iteration 0
to be 14k, 26k, and 50k and generate the data accordingly,
ensuring that the larger dataset encompasses the smaller
dataset. The performance of SPIN was then evaluated after
1 epoch of self-play fine-tuning for each training size. We
can observe that, while SPIN results in notable improve-
ment with increasing training sizes, SFT on further epochs 2
and 3 fails to yield more than 1% improvement. Additional
results are deferred to Appendix B.

Iterative Training v.s. Training for More Epochs. We
further study the training within iteration 0 and compare
with the performance achieved in iteration 1, particularly
contrasting the test performance obtained from extended
training duration with that from next iteration. Figure 4 de-
picts the performance trajectory of the model trained using

2https://huggingface.co/datasets/
HuggingFaceH4/ultrafeedback_binarized

SPIN over multiple epochs at iteration 0. It is evident that
the most substantial improvement occurs during the first
two epochs, followed by only modest gains in subsequent
epochs. Notably, SPIN exhibits robustness and stability; ex-
tending the training duration does not diminish performance
but rather maintains a rather consistent level. Neverthe-
less, the observation suggests an inherent limitation to the
performance achievable within a single iteration, thereby
underscoring the necessity for iterative training. As shown
by the test performance achieved at iteration 1 in the fig-
ures, extending the training in iteration 0 fails to reach the
performance comparable to iteration 1.

7 Conclusion and Discussion

This paper introduces a novel fine-tuning method SPIN, to
convert a weak LLM to a strong LLM by unleashing the full
power of human-annotated data. Central to this method is a
self-play mechanism, wherein a main player (the LLM) is
fine-tuned to differentiate the responses of opponent player
(the LLM from previous iteration) from the target data dis-
tribution, and the LLM is iteratively aligned with the target
data distribution. Therefore, SPIN facilitates the LLM’s
iterative self-evaluation and enhancement through self-play.
In comparison to supervised fine-tuning and RL fine-tuning
methods, SPIN enables the LLM to self-improve without
additional human data or feedback from stronger LLMs.
Empirical results demonstrate that SPIN significantly en-
hances LLM performance across diverse benchmarks, even
outperforming models trained with additional human data
or AI feedback.

Limitation and Future Work. Our theoretical results
demonstrate that the optimization process of SPIN con-
verges if and only if the LLM’s distribution aligns with
pdata. Therefore, our study focuses on a fixed target data
distribution generated by humans, which inherently imposes
a ceiling on the performance of fine-tuned LLM. Explor-
ing the dynamically changing target data distribution is an
important direction to overcome this limitation and elevate
the LLM’s performance beyond this ceiling or even to a
super-human level. Moreover, considering the resource
demands of synthetic data generation, another promising
avenue for further exploration is to reduce the volume of
required synthetic data.
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Figure 3. Performance comparison with DPO training across the six benchmark datasets. Self-play at iteration 0 achieves comparable
performance to DPO training with 62k new data. At iteration 1, self-play has already surpassed DPO training on the majority of datasets.
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epochs during iteration 0. We can observe that iterative training is pivotal as training for more epochs during iteration 0 reaches a limit
and cannot surpass iteration 1.
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Figure 5. The scaling effect of training size of SPIN compared to
SFT on the average score of Open LLM Leaderboard. For SPIN,
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larger dataset contains the smaller dataset. The starting point for
SPIN (with x-axis 0) is the zephyr-7b-sft-full checkpoint,
which has been fine-tuned on Ultrachat200k for 1 epoch. We
report the model performance trained for 1 epoch with SPIN on
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Impact Statement

This paper presents work whose goal is to advance the field
of Large Language Models. We believe that our work con-
tribute meaningfully to the field, specifically on leveraging
synthetic data to enhance LLM without the requirement for
human preference annotations. The synthetic data generated
by SPIN may be used to further augment the training of
various language models. Moreover, SPIN demonstrated
a substantial improvement in LLMs’ capabilities, opening
new avenues for their application in various downstream
tasks. This advancement underscores the transformative po-
tential of LLM fine-tuning in both technological and societal
contexts.
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A Further Related Work

Curriculum Learning. In deep learning, it has been observed that training models using data samples arranged in a
strategically meaningful order can lead to improved performance compared to training on randomly shuffled data. This
approach is commonly known as curriculum learning (Bengio et al., 2009; Soviany et al., 2022). Initial studies in curriculum
learning introduced efficient algorithms that adhere to an ‘easy-to-hard’ progression (Spitkovsky et al., 2009; Kumar et al.,
2010; Lee & Grauman, 2011; Zhang et al., 2015). In the field of Natural Language Processing (NLP), criteria such as
sentence length and term frequency are commonly utilized (Cirik et al., 2016; Zhang et al., 2018; Liu et al., 2018). More
recent developments include the application of curriculum learning algorithms in multi-modal learning (Liu et al., 2021; Wu
et al., 2022). Our work shares a similar idea to curriculum learning, wherein the training data evolves iteratively—beginning
with responses that are easy to distinguish from human-annotated data and gradually progressing to more challenging
instances.

Generative Adversarial Networks. Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) represent a
distinct class of generative models, characterized by their unique adversarial process. To enhance training stability and data
quality, Mao et al. (2017) introduced the Least Squares GAN, employing a least squares loss function for the discriminator.
A significant advancement in GANs involves the use of Integral Probability Metrics (IPM) (Müller, 1997), particularly
highlighted in the development of Wasserstein GAN by Arjovsky et al. (2017). This model employs IPM in its loss design,
enhancing training stability. Since then, IPMs have become crucial in GAN design (Mroueh & Sercu, 2017; Gulrajani et al.,
2017), particularly in constraining the discriminator to a specific function class, thereby preventing it from overpowering the
generator. Furthermore, Jolicoeur-Martineau (2018) generalized IPM-based GANs by introducing relativistic discriminator
and proposed Relativistic GAN. It is worth noting that the objective function defined in our (4.2) is similar to Relativistic
GAN (Jolicoeur-Martineau, 2018) and reduces to an IPM framework in Wasserstein GAN (Arjovsky et al., 2017) with a
linear loss. However, our approach differs in both the choice of the function class and the training procedure. Inspired by
GAN, Cheng et al. (2023) proposed an adversarial learning framework named Adversarial Preference Optimization (APO)
that trains the LLM and a reward model in an adversarial game. Similarly related to the spirit of our method, Generative
Adversarial Imitation Learning (GAIL) (Ho & Ermon, 2016) was proposed to train separate discriminator and policy
networks in each iteration. In contrast to the above methods, SPIN relies on self-play where both the main player and the
opponent player are the same LLM from two consecutive iterations.

Alignment with AI Feedback. The objective of alignment is to fine-tune LLMs to align with human intentions. In addition
to using human demonstrations, AI feedback is emerging as a crucial component in the alignment process. Constitutional AI
(Bai et al., 2022b) leveraged AI feedback to align language models through a combination of both supervised learning and
reinforcement learning (RL) phases. In the RL phase, (Bai et al., 2022b) applied Reinforcement Learning from AI Feedback
(RLAIF), training a reward model using AI-generated preferences, followed by RL using the reward. Lee et al. (2023)
demonstrated that AI feedback can achieve comparable or superior performance to human feedback in RL fine-tuning. They
also demonstrated that RLAIF can improve upon an SFT policy even when the LLM labeler has the same size as the policy.
Saunders et al. (2022) studied the scaling properties of self-critique and introduced a framework for comparing the critique
ability to generation and discrimination ability. Self-critique models employ the LLM itself to generate natural language
critiques through behavioral cloning, assisting human evaluators.

B Experiments

B.1 Hyperparameters and Implementation Details

Table 1. Detailed information of HuggingFace Open LLM Leaderboard. For each evaluation dataset, we present the number of few-shot
examples and metric adopted for evaluation.

Datasets Arc TruthfulQA Winogrande GSM8k HellaSwag MMLU

# few-shot 25 0 5 5 10 5
Metric acc_norm mc2 acc acc acc_norm acc

We use the Alignment Handbook library (Tunstall et al., 2023b) as the codebase for our self-play fine-tuning method SPIN,
which includes DeepSpeed ZeRO-3 (Rajbhandari et al., 2020) and FlashAttention-2 (Dao, 2023) to reduce training cost. We
train our models with RMSProp (Hinton et al., 2012) optimizer with no weight decay for all iterations as commonly used
in fine-tuning LLMs for alignment, with a global batch size of 64, 10% warmup steps and bfloat16 precision. We set the
peak learning rate to be 5e-7 for iterations 0 and 1, and decay this peak learning rate to 1e-7 for iteration 2 and 3 as we are
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approaching the end of self-play fine-tuning. Lastly, we choose β = 0.1 and max sequence length to be 2048 tokens as in
Tunstall et al. (2023b). We note that at the last iteration (iter-3) where the model is close to convergence, we increase the
value of β to 5.0. We use the Accelerate library (Gugger et al., 2022) to generate our synthetic data using distributed inference
with multiple GPUs with a global batch size of 64. We consider the prompting template “### Instruction: {prompt}\n\n###
Response: ” as commonly used in Taori et al. (2023). For Ultrachat200k containing multi-round conversations, we only
sample the first round as our prompt and ground truth completion pairs.

B.2 Training Overhead

The cost overhead introduced by SPIN is mostly the generation of synthetic data from the LLM that we train. The cost of
the fine-tuning process remains computationally equal to that of SFT and DPO. We report both the generation and training
time for SPIN in Table 2 . Results were obtained using a machine with 8xA100 (80G) GPUs. For per 64 examples, the
generation time and training time are 6.69s and 10s respectively.

Table 2. Generation and Training Times for Different Iterations

Iteration Iter 0 Iter 1 Iter 2 Iter 3

Process Generation Training Generation Training Generation Training Generation Training

Time 1.45h 4.32h 1.45h 8.64h 1.45h 8.64h 1.45h 8.64h

It is evident that the generation time is dominated by the training time at each iteration. The estimated time in Table 2 is
based on the fact that we generate 50k examples per iteration. Please note that the doubled training time from iter 1 to iter 3
is attributed to the utilization of a double-sized dataset (the combination of 50k synthetic data from the previous iteration
and 50k synthetic data in the current iteration), as discussed in our Section 6.1.

B.3 Additional Experiment Result for SPIN+DPO

SPIN requires only the SFT data to improve over the traditional SFT stage and can sit between SFT and RL finetuning.
Suppose additional preference data is provided, we can use the additional data to further improve the performance of the
model after SPIN using RL fine-tuning.

Starting at SPIN iteration 3, we further train the model with DPO for two epochs on the 62k preference data from the
UltraFeedback Binarized dataset (Cui et al., 2023), which consists of both chosen and rejected responses evaluated by
GPT-4. Detailed performances are presented in Table 3.

Table 3. Performance of SPIN + DPO based on zephyr-7b-sft-full across HuggingFace Open LLM Leaderboard datasets,
compared with all baselines. We also denote the average improvement over last iteration in the Average column.

Model Arc TruthfulQA Winogrande GSM8k HellaSwag MMLU Average

zephyr-7b-dpo-full 63.65 55.19 72.61 33.43 84.44 58.52 61.31

zephyr-7b-sft-full 60.41 43.73 74.19 26.76 82.85 60.92 58.14
SPIN iteration 0 63.40 49.18 72.69 35.10 84.38 60.03 60.80(+2.66)

SPIN iteration 1 65.19 55.17 72.30 35.78 84.96 59.34 62.12(+1.32)

SPIN iteration 2 65.96 54.91 73.56 38.06 85.41 59.93 62.97(+0.85)

SPIN iteration 3 65.87 54.90 73.72 38.97 85.54 59.99 63.16(+0.19)

SPIN iteration 3 + DPO 66.47 60.07 78.06 37.98 86.17 59.68 64.05(+0.89)

We can observe that the checkpoint trained by SPIN can be further improved using DPO, yielding an enhancement of 0.89%
on average. Notably, the improvement is particularly significant on the TruthfulQA benchmark with around 5%.

B.4 Further Experiment Results

In Table 4, we show the detailed performance of SPIN at different iterations on each of the task in Open LLM Leaderboard.
In Table 5, we also show the performance of SFT from zephyr-7b-sft-full on Ultrachat200k for one epoch. While
self-play fine-tuning with synthetic data from zephyr-7b-sft-full effectively improves its performance, simply
fine-tuning it again on the SFT data leads to degraded performance, as similarly observed in Figure 5.

Further Investigation on More Tasks. Here, we further investigate the performance of SPIN on a broader variety of

16



Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models

Table 4. Test performance of SPIN based on zephyr-7b-sft-full across HuggingFace Open LLM Leaderboard datasets. We also
denote the average improvement over last iteration in the Average column.

Model Arc TruthfulQA Winogrande GSM8k HellaSwag MMLU Average

zephyr-7b-sft-full 60.41 43.73 74.19 26.76 82.85 60.92 58.14
SPIN iteration 0 63.40 49.18 72.69 35.10 84.38 60.03 60.80(+2.66)

SPIN iteration 1 65.19 55.17 72.30 35.78 84.96 59.34 62.12(+1.32)

SPIN iteration 2 65.96 54.91 73.56 38.06 85.41 59.93 62.97(+0.85)

SPIN iteration 3 65.87 54.90 73.72 38.97 85.54 59.99 63.16(+0.19)

Table 5. Test performance of zephyr-7b-sft-full fine-tuned on Ultrachat200k for 1 more epoch across HuggingFace Open LLM
benchmark datasets. SFT fails to further leverage the fine-tuning data for performance enhancement and even results in degraded
performance.

Model Arc TruthfulQA Winogrande GSM8k HellaSwag MMLU Average

zephyr-7b-sft-full 60.41 43.73 74.19 26.76 82.85 60.92 58.14
SFT epoch 1 57.76 44.39 75.77 25.85 81.69 57.89 57.23

tasks, including MT-Bench (Zheng et al., 2023), Big-Bench (bench authors, 2023) and OpenBookQA (Mihaylov et al.,
2018) in addition to the Open LLM Leaderboard tasks. Specifically, we use the following tasks from Big-Bench-Hard for
a more comprehensive evaluation, including Causal Judgment (causal reasoning), Sports Understanding (commonsense
reasoning) and Formal Fallacies (logical reasoning). In Table 6, we show the resulting scores of SPIN on MT-Bench as
well as those tasks from Big-Bench. In Figure 6, we detail the model performances on MT-Bench with regard to different
types of questions. We can see a notably robust improvement in the performance of SPIN on various tasks besides the
HuggingFace Benchmark, without major degradation. Notably, on MT-Bench, the model fine-tuned by SPIN has surpassed
the performance of vicuna-13b-v1.5 (Chiang et al., 2023) with a score of 6.57.

Table 6. Test performance on other reasoning benchmark datasets for SPIN at different iterations and zephyr-7b-sft-full. We
report the average score for MT-Bench and the accuracy score for Big Bench datasets under standard few-shot CoT evaluation. On
OpenBookQA, we report acc_norm with 1-shot example as used in Anil et al. (2023). As similar to Open LLM Leaderboard evaluation,
we observe a steady improvement in performance on the other benchmark tasks, with no significant degradation.

Model MT-Bench BB-causal BB-formal BB-sports OpenBookQA

zephyr-7b-sft-full 5.94 56.15 49.6 96.0 45.4
SPIN iteration 0 6.46(+0.52) 57.75 51.6 95.2 46.8
SPIN iteration 1 6.65(+0.19) 58.82 51.2 95.2 47.2
SPIN iteration 2 6.78(+0.13) 59.36 51.2 94.4 47.6

B.5 Generation Examples

In Tables 7 and 8, we further provide the generation examples of our fine-tuned model by SPIN from different iterations.
We can observe an improvement in response quality as compared to the generation of the SFT checkpoint. Meanwhile,
the model generations at higher iterations typically becomes more concise than iteration 0 and resemble the ground truth
completion better.
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Figure 6. Model performance on MT-Bench. We compare SPIN across different iterations with the base SFT model. Starting from
iteration 1, our fine-tuned model by SPIN robustly outperforms the SFT checkpoint on all evaluation aspects.

Table 7. Generation example of our fine-tuned model by SPIN at different iterations.

Prompt How does the economic growth of Horsham compare to nearby towns?

Ground truth I do not have access to the latest economic data on horsham and nearby towns. However,
you can check the latest economic statistics and reports provided by the local government
or the official websites of horsham and nearby towns for a detailed comparison of their
economic growth.

zephyr-7b=sft-full According to the given material, Horsham was growing "significantly" faster than nearby
towns, indicating that it was economically thriving.\n However, the given material does
not specify the exact rates or levels of economic growth of Horsham compared to nearby
towns. Without this information, it is challenging to determine whether the differences in
economic growth between Horsham and nearby towns were significant or minimal.

Iteration 0 I do not have access to the latest economic data for horsham and nearby towns. However,
horsham is known to be a prosperous town in west sussex, uk, with a diverse economy that
includes agriculture, manufacturing, and services. The town has a strong retail sector, and
it is also home to several large companies, including the global pharmaceutical company
novartis. In terms of comparison with nearby towns, horsham is generally considered
to be one of the more affluent towns in the region. However, the economic growth of
horsham and its neighboring towns may vary depending on various factors such as industry,
investment, and government policies.

Iteration 1 I do not have access to real-time data or information about the most recent economic
growth of horsesham and nearby towns. However, according to the recent reports from
various sources such as the office for national statistics, horsesham’s economy primarily
relies on retail, healthcare, education, and public administration industries. Compared to
nearby towns such as lewes, chichester, and bognor regis, horsesham’s economy may have
a different composition and growth rate based on their specific industries and economic
policies.

Iteration 2 I don’t have access to the most recent economic data. However, according to a 2019 report
by pwc, horsham’s expected economic growth up to 2025 was projected to be around
2.3% per annum, which is slightly below the average for the south east of england (2.8%).
Neighbouring towns like crawley and bognor regis were projected to experience similar
growth rates. note: this may not reflect the impact of the covid-19 pandemic that occurred
in 2020.
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Table 8. Another generation example of our fine-tuned model by SPIN at different iterations.

Prompt Can you clarify if Poppelsdorfer Allee 45 and the old site of the Mathematical Institute
are the same location? Answer according to: Go straight to Poppelsdorfer Allee 45 and
sign-in.\n There is a big lecture hall at the old site of the Mathematical Institute (Wegelerstr.
10, Bonn).

Ground truth No, Poppelsdorfer Allee 45 and the old site of the Mathematical Institute (Wegelerstr. 10,
Bonn) are not the same location. To sign-in, one should go straight to Poppelsdorfer Allee
45. However, there is a big lecture hall at the old site of the Mathematical Institute.

zephyr-7b=sft-full Yes, Poppelsdorfer Allee 45 and the old site of the Mathematical Institute are the same
location.

Iteration 0 Yes, Poppelsdorfer Allee 45 and the old site of the Mathematical Institute (Wegelerstr. 10,
Bonn) are the same location. The Mathematical Institute has been relocated and renamed
as the Institute for Mathematics and Theoretical Physics, but the building where it used to
be is still referred to as the old site. The big lecture hall at the old site still exists and may
be used for events or classes.

Iteration 1 No, Poppelsdorfer Allee 45 and the old site of the Mathematical Institute are not the
same location. While Poppelsdorfer Allee 45 is where attendees should sign-in, the old
site of the Mathematical Institute (located at Wegelerstr. 10, Bonn) has a large lecture
hall mentioned in the statement. Therefore, it can be assumed that the two locations are
separate and not the same.

Iteration 2 Poppelsdorfer Allee 45 and the old site of the Mathematical Institute (Wegelerstr. 10, Bonn)
are two different locations. As per the instruction, you need to go straight to Poppelsdorfer
Allee 45 and sign-in. However, there is a lecture hall mentioned at the old site of the
Mathematical Institute (Wegelerstr. 10, Bonn).

C Proof of Theorems in Section 5

C.1 Proof of Theorem 5.2

Proof of Theorem 5.2. To begin with, we prove the “Sufficiency” in Theorem 5.2. Since pdata(·|x) = pθt(·|x), by symmetry
property of y and y′, we have for any θ ∈ Θ that

2LSPIN(θ,θt) = Ex∼q(·),y∼pdata(·|x),y′∼pθt (·|x)

[
ℓ

(
γ log

pθ(y|x)
pθt(y|x)

− γ log
pθ(y

′|x)
pθt(y

′|x)

)]
+ Ex∼q(·),y′∼pdata(·|x),y∼pθt (·|x)

[
ℓ

(
γ log

pθ(y|x)
pθt

(y|x)
− γ log

pθ(y
′|x)

pθt
(y′|x)

)]
= Ex∼q(·),y∼pdata(·|x),y′∼pθt (·|x)

[
ℓ

(
γ log

pθ(y|x)
pθt

(y|x)
− γ log

pθ(y
′|x)

pθt
(y′|x)

)
+ ℓ

(
γ log

pθ(y
′|x)

pθt(y
′|x)

− γ log
pθ(y|x)
pθt(y|x)

)]
≥ 2Ex∼q(·),y∼pdata(·|x),y′∼pθt (·|x)

[
ℓ

(
γ

2
log

pθ(y|x)
pθt

(y|x)
− γ

2
log

pθ(y
′|x)

pθt
(y′|x)

+
γ

2
log

pθ(y
′|x)

pθt(y
′|x)

− γ

2
log

pθ(y|x)
pθt(y|x)

)]
= 2ℓ(0),

where the inequality is due to Jensen’s inequality (recalling that ℓ is convex in Assumption 5.1). Therefore, we have that
LSPIN(θ,θt) ≥ ℓ(0) = LSPIN(θt,θt), which means that θt is the global optimum of (4.7). As a consequence, the gradient
at the point θt is zero, which concludes θt+1 = θt.
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Next, we prove the “Necessity”. Define g(λ) as follows:

g(λ) = Ex∼q(·),y∼pdata(·|x),y′∼pθt (·|x)

[
ℓ

(
λ log

pdata(y|x)
pθt(y|x)

− λ log
pdata(y

′|x)
pθt(y

′|x)

)]
.

Then we have g(0) = ℓ(0) and

g′(0) = Ex∼q(·),y∼pdata(·|x),y′∼pθt (·|x)

[
ℓ′(0)

(
log

pdata(y|x)
pθt

(y|x)
− log

pdata(y
′|x)

pθt
(y′|x)

)]
= ℓ′(0)

(
Ex∼q(·),y∼pdata(·|x)

[
log

pdata(y|x)
pθt

(y|x)

]
− Ex∼q(·),y′∼pθt (·|x)

[
log

pdata(y
′|x)

pθt
(y′|x)

])
= ℓ′(0)

[
KL

(
pdata(·|x)

∣∣∣∣pθt
(·|x)

)
+KL

(
pθt

(·|x)
∣∣∣∣pdata(·|x))]

< 0,

where the last inequality is due to the condition that ℓ′(0) < 0. Therefore, there exist a λ0 such that for all 0 < λ < λ0, we
have g(λ) < ℓ(0). Choose θ∗ such that pθ∗(y|x) = pdata(y|x). For those 0 < λ < λ0, we have that

LSPIN(θ
∗,θt) = Ex∼q(·),y∼pθ∗ (·|x),y′∼pθt (·|x)

[
ℓ

(
λ log

pθ∗(y|x)
pθt

(y|x)
− λ log

pθ∗(y′|x)
pθt

(y′|x)

)]
= Ex∼q(·),y∼pdata(·|x),y′∼pθt (·|x)

[
ℓ

(
λ log

pdata(y|x)
pθt

(y|x)
− λ log

pdata(y
′|x)

pθt
(y′|x)

)]
= g(λ)

< g(0)

= LSPIN(θt,θt),

where the second equality holds by the choice of pθ∗(·|x), and the inequality holds due to the choice of λ. Therefore, we
conclude that θt is not the global optimum of (4.7) if pθt

(·|x) ̸= pdata(·|x).

C.2 Proof Theorem 5.4

We need the following auxiliary lemma before we prove Theorem 5.4.

Lemma C.1. Suppose that ℓ(t) = log(1 + exp(−t)) and for a, b > 0, the following inequality holds

aℓ(t) + bℓ(−t) ≥ a log(1 + b/a) + b log(1 + a/b),

the equality holds if and only if t = log(a/b).

Proof of Lemma C.1. Define g(t) = aℓ(t) + bℓ(−t) = a log(1 + exp(−t)) + b log(1 + exp(t)), then we have

g′(t) = − a exp(−t)

1 + exp(−t)
+

b exp(t)

1 + exp(t)
=

−a+ b exp(t)

1 + exp(t)
.

Therefore, g′(t) < 0 when t < log(a/b), g′(t) > 0 when t > log(a/b), which indicates that g achieves it minimum at
t = log(a/b) which concludes the proof.

Lemma C.1 shows that the global minimum of aℓ(t) + bℓ(−t) is achieved when t = log(a/b). Based on Lemma C.1, we
can further prove that (4.2) with the logistic loss function has a closed-form solution if we ignore the constraint set Ft.

Lemma C.2. Denote p+(y,y
′,x) = q(x) · pdata(y|x) · pθt

(y′|x) and p−(y,y
′,x) = q(x) · pθt

(y′|x) · pdata(y|x),

Ex∼q(·),y∼pdata(·|x),y′∼pθt (·|x)
[
ℓ
(
f(x,y)− f(x,y′)

)]
≥ log 2− JSD(p+∥p−),

where JSD(p+∥p−) represents the Jensen–Shannon divergence which is defined as follows

JSD
(
p
∥∥∥q) =

1

2
KL

(
p
∥∥∥p+ q

2

)
+

1

2
KL

(
q
∥∥∥p+ q

2

)
,
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where KL(·∥·) is KL-divergence. JSD is always non-negative and equals zero if and only if p+ and p− are identical.
Moreover, the global minimum value log 2− JSD(p+∥p−) is achieved by f∗ if and only if,

f∗(x,y) = Z(x) + log

(
pdata(y|x)
pθt

(y|x)

)
,

where Z(x) is any function that is possibly dependent on x.

Proof of Lemma C.2. We rewrite the objective function in the following formula,

2Ex∼q(·),y∼pdata(·|x),y′∼pθt (·|x)
[
ℓ
(
f(x,y)− f(x,y′)

)]
=

∫
q(x)pdata(y|x)pθt

(y′|x)
[
ℓ
(
f(x,y)− f(x,y′)

)]
dydy′

+

∫
q(x)pdata(y

′|x)pθt(y|x)
[
ℓ
(
f(x,y′)− f(x,y)

)]
dydy′

=

∫
q(x)pdata(y|x)pθt

(y′|x)ℓ
(
f(x,y)− f(x,y′)

)
+ q(x)pdata(y

′|x)pθt(y|x)ℓ
(
f(x,y′)− f(x,y)

)
dydy′

(i)

≥
∫

q(x)pdata(y|x)pθt
(y′|x) log

(
1 +

pdata(y
′|x)pθt(y|x)

pdata(y|x)pθt
(y′|x)

)
+ q(x)pdata(y

′|x)pθt(y|x) log
(
1 +

pdata(y|x)pθt
(y′|x)

pdata(y′|x)pθt(y|x)

)
dydy′,

where the inequality is due to aℓ(t) + bℓ(−t) ≥ a log(1 + b/a) + b log(1 + a/b) in Lemma C.1 with a =
q(x)pdata(y|x)pθt(y

′|x), b = q(x)pdata(y
′|x)pθt(y|x), t = f(x,y) − f(x,y′). The equality (i) holds if and only if

the following equation holds almost surely for any x,y,y′,

f(x,y)− f(x,y′) = log

(
pdata(y|x)pθt

(y′|x)
pdata(y′|x)pθt(y|x)

)
. (C.1)

Equation (C.1) is equivalent to

f(x,y)− log

(
pdata(y|x)
pθt(y|x)

)
= f(x,y′)− log

(
pdata(y

′|x)
pθt(y

′|x)

)
holds almost surely for any x,y,y′. Therefore, the equality (i) holds if and only if there exists some Z(x) such that

f(x,y) = Z(x) + log

(
pdata(y|x)
pθt(y|x)

)
.

Recall that p+(y,y′|x) = pdata(y|x) · pθt
(y|x) and p−(y,y

′|x) = pθt
(y|x) · pdata(y|x). Then, the right-hand side of (i)

can be written as∫
q(x)pdata(y|x)pθt

(y′|x) log
(
1 +

pdata(y
′|x)pθt

(y|x)
pdata(y|x)pθt(y

′|x)

)
+ q(x)pdata(y

′|x)pθt(y|x) log
(
1 +

pdata(y|x)pθt(y
′|x)

pdata(y′|x)pθt
(y|x)

)
dydy′

=

∫
p+(y,y

′|x) log
(
1 +

p−(y,y
′|x)

p+(y,y′|x)

)
+ p−(y,y

′|x) log
(
1 +

p+(y,y
′|x)

p−(y,y′|x)

)
dydy′

= 2 log 2 +

∫
p+(y,y

′|x) log
(
1/2[p−(y,y

′|x) + p+(y,y
′|x)]

p+(y,y′|x)

)
+ p−(y,y

′|x) log
(
1/2[p−(y,y

′|x) + p+(y,y
′|x)]

p−(y,y′|x)

)
dydy′
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= 2 log 2−KL

(
p+

∥∥∥∥p+ + p−
2

)
−KL

(
p−

∥∥∥∥p+ + p−
2

)
= 2 log 2− 2 · JSD(p+∥p−),

where the last equality is by the definition of JSD. This concludes the proof.

Lemma C.2 provides a closed-form solution to (4.2) if we ignore the constraint set Ft. If this closed-form solution belongs
to Ft, then it should also be the solution to (4.2). This observation is the key to the proof of Theorem 5.4.

Proof of Theorem 5.4. Under the condition of Theorem 5.4, there exists a pθ such that

pθ(y|x) ∝ pθt
(y|x)

(
pdata(y|x)/pθt

(y|x)
)1/λ

.

Therefore, there exists a function Ẑ(x) such that

pθ(y|x) = Ẑ(x) · pθt
(y|x)

(
pdata(y|x)/pθt

(y|x)
)1/λ

. (C.2)

Applying logarithm function on both side of (C.2) yields

λ log(Ẑ(x)) + log

(
pdata(y|x)
pθt(y|x)

)
= λ log

(
pθ(y|x)
pθt(y|x)

)
∈ Ft.

By Lemma C.2, f∗(x,y) = λ log(Ẑ(x)) + log
(pdata(y|x)

pθt (y|x)
)

is the global minimum of the following minimization problem,

argmin
f

Ey∼pdata(·|x),y′∼pθt (·|x)
[
ℓ
(
f(x,y)− f(x,y′)

)]
. (C.3)

Since f∗ ∈ Ft, f∗(x,y) = λ log(Ẑ(x)) + log
(pdata(y|x)

pθt (y|x)
)

is also the global optimum of the optimization problem (4.2),

argmin
f∈Ft

Ey∼pdata(·|x),y′∼pθt (·|x)
[
ℓ
(
f(x,y)− f(x,y′)

)]
.

Therefore, we have proved that

min
f

Ey∼pdata(·|x),y′∼pθt (·|x)
[
ℓ
(
f(x,y)− f(x,y′)

)]
= min

f∈Ft

Ey∼pdata(·|x),y′∼pθt (·|x)
[
ℓ
(
f(x,y)− f(x,y′)

)]
= min

θ∈Θ
LSPIN(θ,θt). (C.4)

Since θt+1 is the global minimum of LSPIN(θ,θt). Then by (C.4), λ log
(

pθt+1
(y|x)

pθt (y|x)

)
should be the global minimum of

problem (C.3). By Lemma C.2, there exists Z(x) such that

λ log

(
pθt+1

(y|x)
pθt

(y|x)

)
= Z(x) + log

(
pdata(y|x)
pθt

(y|x)

)
,

which leads to the result that pθt+1(y|x) ∝ pθt(y|x)
(
pdata(y|x)/pθt(y|x)

)1/λ
.
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