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Abstract
Diffusion models have been applied to improve
adversarial robustness of image classifiers by puri-
fying the adversarial noises or generating realistic
data for adversarial training. However, diffusion-
based purification can be evaded by stronger adap-
tive attacks while adversarial training does not
perform well under unseen threats, exhibiting in-
evitable limitations of these methods. To better
harness the expressive power of diffusion models,
this paper proposes Robust Diffusion Classifier
(RDC), a generative classifier that is constructed
from a pre-trained diffusion model to be adver-
sarially robust. RDC first maximizes the data
likelihood of a given input and then predicts the
class probabilities of the optimized input using the
conditional likelihood estimated by the diffusion
model through Bayes’ theorem. To further reduce
the computational cost, we propose a new dif-
fusion backbone called multi-head diffusion and
develop efficient sampling strategies. As RDC
does not require training on particular adversarial
attacks, we demonstrate that it is more general-
izable to defend against multiple unseen threats.
In particular, RDC achieves 75.67% robust accu-
racy against various ℓ∞ norm-bounded adaptive
attacks with ϵ∞ = 8/255 on CIFAR-10, surpass-
ing the previous state-of-the-art adversarial train-
ing models by +4.77%. The results highlight
the potential of generative classifiers by employ-
ing pre-trained diffusion models for adversarial
robustness compared with the commonly stud-
ied discriminative classifiers. Code is available
at https://github.com/huanranchen/
DiffusionClassifier.
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1. Introduction
A longstanding problem of deep learning is the vulnerability
to adversarial examples (Szegedy et al., 2014; Goodfellow
et al., 2015), which are maliciously generated by apply-
ing human-imperceptible perturbations to natural examples,
but can cause deep learning models to make erroneous pre-
dictions. As the adversarial robustness problem leads to
security threats in real-world applications (e.g., face recog-
nition (Sharif et al., 2016; Dong et al., 2019), autonomous
driving (Cao et al., 2021; Jing et al., 2021), healthcare (Fin-
layson et al., 2019)), there is a lot of work on defending
against adversarial examples, such as adversarial training
(Madry et al., 2018; Zhang et al., 2019; Wang et al., 2023b),
image denoising (Liao et al., 2018; Samangouei et al., 2018;
Song et al., 2018), certified defenses (Raghunathan et al.,
2018; Wong & Kolter, 2018; Cohen et al., 2019).

Recently, diffusion models have emerged as a powerful fam-
ily of generative models, consisting of a forward diffusion
process that gradually perturbs data with Gaussian noise
and a reverse generative process that learns to remove noise
from the perturbed data (Sohl-Dickstein et al., 2015; Ho
et al., 2020; Nichol & Dhariwal, 2021; Song et al., 2021).
Some researchers have tried to apply diffusion models to
improving adversarial robustness in different ways. For ex-
ample, the adversarial images can be purified through the
forward and reverse processes of diffusion models before
feeding into the classifier (Blau et al., 2022; Nie et al., 2022;
Wang et al., 2022). Besides, the generated data from diffu-
sion models can significantly improve adversarial training
(Rebuffi et al., 2021; Wang et al., 2023b), achieving the state-
of-the-art results on robustness benchmarks (Croce et al.,
2020). These works show promise of diffusion models in
the field of adversarial robustness.

However, the existing methods have some limitations. On
one hand, the diffusion-based purification approach incurs
much more randomness compared to conventional methods,
and can be effectively attacked by using the exact gradient
and a proper step size 1. We observe that the adversarial
example cannot make the diffusion model output an image

1We lower the robust accuracy of DiffPure (Nie et al., 2022)
from 71.29% to 44.53% under the ℓ∞ norm with ϵ∞ = 8/255,
and from 80.60% to 75.59% under the ℓ2 norm with ϵ2 = 0.5, as
shown in Table 1.
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of a different class, but the perturbation is not completely
removed. Therefore, the poor robustness of diffusion-based
purification is largely due to the vulnerability of downstream
classifiers. On the other hand, although adversarial training
methods using data generated by diffusion models achieve
excellent performance, they are usually not generalizable
across different threats (Tramèr & Boneh, 2019; Nie et al.,
2022). In summary, these methods leverage diffusion mod-
els to improve adversarial robustness of discriminative clas-
sifiers, but discriminative learning cannot capture the under-
lying structure of data distribution, making it hard to control
the predictions of inputs outside the training distribution
(Schott et al., 2019). As a generative approach, diffusion
models provide a more accurate estimation of score function
(i.e., the gradient of log-density at the data point) across the
entire data space (Song & Ermon, 2019; Song et al., 2021),
which also have the potential to provide accurate class prob-
abilities. Therefore, we devote to exploring how to convert
a diffusion model into a generative classifier for improved
adversarial robustness?

In this paper, we propose Robust Diffusion Classifier (RDC),
a generative classifier obtained from a single pre-trained dif-
fusion model to achieve adversarial robustness. Our method
calculates the class probability p(y|x) using the conditional
likelihood pθ(x|y) estimated by a diffusion model through
Bayes’ theorem. The conditional likelihood is approximated
by the variational lower bound, which involves calculating
the noise prediction loss for every class under different noise
levels. In order to reduce time complexity induced by the
number of classes, we propose a new UNet backbone named
multi-head diffusion by modifying the last convolutional
layer to output noise predictions of all classes simultane-
ously. Theoretically, we validate that the optimal diffusion
model can achieve absolute robustness under common threat
models. However, the practical diffusion model may have
an inaccurate density estimation pθ(x|y) or a large gap be-
tween the likelihood and its lower bound, leading to inferior
performance. To address this issue, we further propose Like-
lihood Maximization as a pre-optimization step to move
the input data to regions of high likelihoods before feeding
into the diffusion classifier. Our RDC, directly constructed
from a pre-trained diffusion model without training on spe-
cific adversarial attacks, can perform robust classification
under various threat models.

We empirically compare our method with various state-of-
the-art methods against strong adaptive attacks, which are
integrated with AutoAttack (Croce & Hein, 2020) for more
comprehensive evaluations. Specifically, at each step, we
obtain the gradient through adaptive attacks (e.g., BPDA,
exact gradient) and then feed the gradient into AutoAttack
to perform update. Additionally, we investigate the gradi-
ent randomness and find that the gradient variance in our
method is exceptionally low. This suggests that, due to the

low variance and precise gradient, our method does not re-
sult in obfuscated gradients (Athalye et al., 2018), indicating
that the evaluation is accurate and reliable. On CIFAR-10
(Krizhevsky & Hinton, 2009), RDC achieves 75.67% robust
accuracy under the ℓ∞ norm threat model with ϵ∞ = 8/255,
exhibiting a +4.77% improvement over the state-of-the-art
adversarial training method (Wang et al., 2023b), and a
+3.01% improvement over the state-of-the-art dynamic de-
fenses and randomized defenses (Pérez et al., 2021; Blau
et al., 2023). Under unseen threats, RDC leads to a more
significant improvement (> 30%) over adversarial training
models, DiffPure (Nie et al., 2022) and generative classifiers.
Our results disclose the potential of generative models for
solving the adversarial robustness problem.

2. Related work
Adversarial robustness. Adversarial examples (Szegedy
et al., 2014; Goodfellow et al., 2015) are widely studied
in the literature, which are generated by adding impercep-
tible perturbations to natural examples, but can mislead
deep learning models. Many adversarial attack methods
(Carlini & Wagner, 2017; Athalye et al., 2018; Dong et al.,
2018; Madry et al., 2018; Chen et al., 2023; Croce & Hein,
2020) have been proposed to improve the attack success
rate under the white-box or black-box settings, which can
be used to evaluate model robustness. To defend against
adversarial attacks, adversarial training (Madry et al., 2018;
Zhang et al., 2019) stands out as the most effective method,
which trains neural networks using adversarially augmented
data. However, these models tend to exhibit robustness only
to a specific attack they are trained with, and have poor
generalization ability to unseen threats (Tramèr & Boneh,
2019; Laidlaw et al., 2021). Another popular approach is
adversarial purification (Liao et al., 2018; Samangouei et al.,
2018; Song et al., 2018; Nie et al., 2022), which denoises
the input images for classification. Most of these defenses
cause obfuscated gradients (Athalye et al., 2018) and can be
evaded by adaptive attacks (Tramer et al., 2020).

Generative classifiers. Generative classifiers, like naive
Bayes (Ng & Jordan, 2001), predict the class probabilities
p(y|x) for a given input x by modeling the data likelihood
p(x|y) using generative models. Compared with discrimina-
tive classifiers, generative classifiers are often more robust
and well-calibrated (Raina et al., 2003; Schott et al., 2019;
Li et al., 2019; Mackowiak et al., 2021; Chen et al., 2024).
Modern generative models like diffusion models (Ho et al.,
2020; Song et al., 2021) and energy-based models (LeCun
et al., 2006; Du & Mordatch, 2019) can also be used as
generative classifiers. SBGC (Zimmermann et al., 2021)
utilizes a score-based model to calculate the log-likelihood
log p(x|y) by integration and calculates p(y|x) via Bayes’
theorem. HybViT (Yang et al., 2022) learns the joint like-
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Figure 1. Illustration of our proposed Robust Diffusion Classifier (RDC). Given an input image x, our approach first maximizes the data
likelihood (Left) and then classifies the optimized image x̂ with a diffusion model (Right). The class probability p(y|x̂) is given by the
conditional log-likelihood log pθ(x̂|y), which is approximated by the variational lower bound involving calculating the noise prediction
error (i.e., diffusion loss) averaged over different timesteps for every class.

lihood log p(x, y) = log p(x) + log p(y|x) by training a
diffusion model to learn log p(x) and a standard classifier
to model log p(y|x) at training time, and directly predicts
p(y|x) at test time. JEM (Grathwohl et al., 2019) utilizes the
energy-based model to predict joint likelihood log p(x, y)
and applies Bayes’ theorem to get p(y|x). We also compare
with these generative classifiers in experiments. Recently,
diffusion models have also been used for generative clas-
sification. Hoogeboom et al. (2021) and Han et al. (2022)
perform diffusion process in logit space to learn the cate-
gorial classification distribution. Concurrent work (Clark
& Jaini, 2023; Li et al., 2023) converts diffusion models to
generative classifiers in a similar way to ours, but they focus
on zero-shot classification while do not consider adversarial
robustness.

Diffusion models for adversarial robustness. As a power-
ful family of generative models (Dhariwal & Nichol, 2021;
Rombach et al., 2022), diffusion models have been intro-
duced to further improve adversarial robustness. DiffPure
(Nie et al., 2022) utilizes diffusion models to purify adver-
sarial perturbations by first adding Gaussian noise to input
images and then denoising the images. Diffusion models
can also help to improve the certified robustness with ran-
domized smoothing (Carlini et al., 2023; Xiao et al., 2023;
Zhang et al., 2023; Chen et al., 2024). Besides, using data
generated by diffusion models can significantly improve the
performance of adversarial training (Rebuffi et al., 2021;
Wang et al., 2023b). However, DiffPure is vulnerable to
stronger adaptive attacks while adversarial training models
do not generalize well across different threat models, as
shown in Table 1. A potential reason of their problems is
that they still rely on discriminative classifiers, which do
not capture the underlying structure of data distribution. As
diffusion models have more accurate score estimation in the
whole data space, we aim to explore whether a diffusion
model itself can be leveraged to build a robust classifier.

3. Methodology
In this section, we present our Robust Diffusion Classi-
fier (RDC), a generative classifier constructed from a pre-
trained diffusion model. We first provide an overview of
diffusion models in Sec. 3.1, then present how to convert a
(class-conditional) diffusion model into a diffusion classi-
fier in Sec. 3.2 with a robustness analysis considering the
optimal setting in Sec. 3.3, and finally detail the likelihood
maximization and time complexity reduction techniques to
further improve the robustness and efficiency in Sec. 3.4
and Sec. 3.5, respectively. Fig. 1 illustrates our approach.

3.1. Preliminary: diffusion models

We briefly review discrete-time diffusion models (Ho et al.,
2020). Given x := x0 from a real data distribution q(x0),
the forward diffusion process gradually adds Gaussian noise
to the data to obtain a sequence of noisy samples {xt}Tt=1 ac-
cording to a scaling schedule {αt}Tt=1 and a noise schedule
{σt}Tt=1 as

q(xt|x0) = N (xt;
√
αtx0, σ

2
t I). (1)

Assume that the signal-to-noise ratio SNR(t) = αt/σ
2
t is

strictly monotonically decreasing in time, the sample xt is
increasingly noisy during the forward process. The scaling
and noise schedules are prescribed such that xT is nearly an
isotropic Gaussian distribution.

The reverse process for Eq. (1) is defined as a Markov chain
aimed to approximate q(x0) by gradually denoising from
the standard Gaussian distribution p(xT ) = N (xT ;0, I):

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt),

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ̃
2
t I),

(2)
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where µθ is generally parameterized by a time-conditioned
noise prediction network ϵθ(xt, t) (Ho et al., 2020; Kingma
et al., 2021):

µθ(xt, t) =

√
αt−1

αt

(
xt −

σ2
t − αt

αt−1
σ2
t−1

σt
ϵθ(xt, t)

)
.

(3)
The reverse process can be learned by optimizing the varia-
tional lower bound on log-likelihood as

log pθ(x) ≥Eq[−DKL(q(xT |x0)∥p(xT )) + log pθ(x0|x1)

−
∑
t>1

DKL(q(xt−1|xt,x0)∥pθ(xt−1|xt))]

=− Eϵ,t

[
wt∥ϵθ(xt, t)− ϵ∥22

]
+ C1, (4)

where Eϵ,t[wt∥ϵθ(xt, t) − ϵ∥22] is called the diffusion loss
(Kingma et al., 2021), ϵ follows the standard Gaussian dis-
tribution N (0, I), xt =

√
αtx0 + σtϵ given by Eq. (1), C1

is typically small and can be dropped (Ho et al., 2020; Song
et al., 2021), and wt =

σtαt−1

2σ̃2
t (1−αt)αt

. To improve the sample
quality in practice, Ho et al. (2020) consider a reweighted
variant by setting wt = 1.

Similar to Eq. (4), the conditional diffusion model pθ(x|y)
can be parameterized by ϵθ(xt, t, y), while the uncondi-
tional model pθ(x) can be viewed as a special case with a
null input as ϵθ(xt, t) = ϵθ(xt, t, y = ∅). A similar lower
bound on the conditional log-likelihood is

log pθ(x|y) ≥ −Eϵ,t

[
wt∥ϵθ(xt, t, y)− ϵ∥22

]
+ C, (5)

where C is another negligible small constant.

3.2. Diffusion model for classification

Given an input x, a classifier predicts a probability pθ(y|x)
for class y ∈ {1, 2, ..,K} over all K classes and outputs
the most probable class as ỹ = argmaxy pθ(y|x). Popular
discriminative approaches train Convolutional Neural Net-
works (Krizhevsky et al., 2012; He et al., 2016) or Vision
Transformers (Dosovitskiy et al., 2020; Liu et al., 2021) to
directly learn the conditional probability pθ(y|x). However,
these discriminative classifiers cannot predict accurately for
adversarial example x∗ that is close to the real example x
under the ℓp norm as ∥x∗−x∥p ≤ ϵp, since it is hard to con-
trol how inputs are classified outside the training distribution
(Schott et al., 2019).

On the other hand, diffusion models are trained to provide
accurate density estimation over the entire data space (Ho
et al., 2020; Song & Ermon, 2019; Song et al., 2021). By
transforming a diffusion model into a generative classifier
through Bayes’ theorem as pθ(y|x) ∝ pθ(x|y)p(y), we hy-
pothesize that the classifier can also give a more accurate
conditional probability pθ(y|x) in the data space, leading
to better adversarial robustness. In this paper, we assume

a uniform prior p(y) = 1/K for simplicity, which is com-
mon for most of the datasets (Krizhevsky & Hinton, 2009;
Russakovsky et al., 2015). We show how to compute the
conditional probability pθ(y|x) via a diffusion model in the
following theorem.

Theorem 3.1. (Proof in Appendix A.1) Let d(x, y, θ) =
log pθ(x|y) + Eϵ,t[wt∥ϵθ(xt, t, y) − ϵ∥22] denote the gap
between the log-likelihood and the diffusion loss. Assume
that y is uniformly distributed as p(y) = 1

K . If d(x, y, θ) →
0 for all y, the conditional probability pθ(y|x) is

pθ(y|x) =
exp(−Eϵ,t[wt∥ϵθ(xt, t, y)− ϵ∥22])∑
ŷ exp(−Eϵ,t[wt∥ϵθ(xt, t, ŷ)− ϵ∥22])

. (6)

In Theorem 3.1, we approximate the conditional likelihood
with its variational lower bound, which holds true when the
gap d(x, y, θ) is 0. In practice, although there is inevitably
a gap between the log-likelihood and the diffusion loss, we
show that the approximation works well in experiments.
Eq. (6) requires calculating the noise prediction error over
the expectation of random noise ϵ and timestep t, which is
efficiently estimated with the variance reduction technique
introduced in Sec. 3.5. Although we assume a uniform prior
p(y) = 1/K in Theorem 3.1, our method is also applicable
for non-uniform priors by adding log p(y) to the logit of
class y, where p(y) can be estimated from the training data.
Below, we provide an analysis on the adversarial robustness
of the diffusion classifier in Eq. (6) under the optimal setting.

3.3. Robustness analysis under the optimal setting

To provide a deeper understanding of the robustness of our
diffusion classifier, we provide a new theoretical result on
the optimal solution of the diffusion model (i.e., diffusion
model that has minimal diffusion loss over both the training
set and the test set), as shown in the following theorem.

Theorem 3.2. (Proof in Appendix A.2.1) Let D denote a set
of examples and Dy ⊂ D denote a subset whose ground-
truth label is y. The optimal diffusion model ϵθ∗

D
(xt, t, y)

on the set D is the conditional expectation of ϵ:

ϵθ∗
D
(xt, t, y) =

∑
x(i)∈Dy

1

σt
s(xt,x

(i)) ·(xt−
√
αtx

(i)) (7)

where s(xt,x
(i)) is the probability that xt comes from x(i):

s(xt,x
(i)) =

exp(− 1
2σ2

t
∥xt −

√
αtx

(i)∥22)∑
x(j)∈Dy

exp(− 1
2σ2

t
∥xt −

√
αtx(j)∥22)

Given the optimal diffusion model in Eq. (7), we can easily
obtain the optimal diffusion classifier by substituting the
solution in Eq. (7) into Eq. (6).
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Corollary 3.3. (Proof in Appendix A.2.2) The conditional
probability pθ∗

D
(y|x) given the optimal diffusion model

ϵθ∗
D
(xt, t, y) is pθ∗

D
(y|x) = softmax

(
fθ∗

D
(x)
)
y
, where

fθ∗
D
(x)y = −Eϵ,t

αt

σ2
t

∥∥∥ ∑
x(i)∈Dy

s(x,x(i), ϵ, t) · (x− x(i))
∥∥∥2

2

 ,

s(x,x(i), ϵ, t) =
exp

(
− ∥√αtx+σtϵ−

√
αtx

(i)∥22
2σ2

t

)
∑

x(j)∈Dy
exp

(
− ∥√αtx+σtϵ−

√
αtx(j)∥22

2σ2
t

) .
Remark. Intuitively, the optimal diffusion classifier utilizes
the ℓ2 norm of the weighted average difference between the
input example x and the real examples x(i) of class y to cal-
culate the logit for x. The classifier will predict a label ỹ for
an input x if it lies more closely to real examples belonging
to Dỹ. Moreover, the ℓ2 norm is averaged with weight αt

σ2
t

.
As αt

σ2
t

is monotonically decreasing w.r.t. t, the classifier
gives small weights for noisy examples and large weights
for clean examples, which is reasonable since the noisy
examples do not play an important role in classification.

Given this theoretical result, we can readily analyze the prob-
lem in diffusion models and diffusion classifiers by compar-
ing the optimal solution with the empirical one. We evaluate
the robust accuracy of the optimal diffusion classifier un-
der the ℓ∞ norm with ϵ∞ = 8/255 and the ℓ2 norm with
ϵ2 = 0.5 by AutoAttack (Croce & Hein, 2020). Since our
method does not cause obfuscated gradients (as discussed in
Sec. 4.4 and Appendix B.2), the robustness evaluation is ac-
curate. We find that the optimal diffusion classifier achieves
100% robust accuracy, validating our hypothesis that the
accurate density estimation of diffusion models facilitates
robust classification. However, the diffusion models are not
optimal in practice. Our trained diffusion classifier can only
achieve 35.94% and 76.95% robust accuracy under the ℓ∞
and ℓ2 threats, as shown in Table 1.

To figure out the problem, we examine the empirical model
and the optimal one on adversarial examples. We find that
the diffusion loss Eϵ,t[wt∥ϵθ(xt, t, y)− ϵ∥22] of the empiri-
cal model is much larger. It is caused by either the inaccurate
density estimation of pθ(x|y) of the diffusion model or the
large gap between the log-likelihood and the diffusion loss
violating d(x, y, θ) → 0. Developing a better conditional
diffusion model can help to address this issue, but we leave
this to future work. In the following section, we propose
an optimization-based algorithm as an alternative strategy
to solve both problems simultaneously with a pre-trained
diffusion model.

3.4. Likelihood maximization

To address the above problem, a straightforward approach
is to minimize the diffusion loss Eϵ,t[wt∥ϵθ(xt, t, y)− ϵ∥22]

Algorithm 1 Robust Diffusion Classifier (RDC)
Require: A pre-trained diffusion model ϵθ , input image x, opti-

mization budget η, step size γ, optimization steps N , momen-
tum decay factor µ.

1: Initialize: m = 0, x̂ = x;
2: for n = 0 to N − 1 do
3: Estimate g = ∇xEϵ,t[wt∥ϵθ(x̂t, t)− ϵ∥22] using one ran-

domly sampled t and ϵ;
4: Update momentum m = µ ·m− g

∥g∥1
;

5: Update x̂ by x̂ = clipx,η(x̂+ γ ·m);
6: end for
7: Calculate Eϵ,t[wt∥ϵθ(x̂t, t, y)−ϵ∥22] for all y ∈ {1, 2, ...,K}

simultaneously using multi-head diffusion;
8: Calculate pθ(y|x) by Eq. (6);
9: Return: ỹ = argmaxy pθ(y|x).

w.r.t. x such that the input can escape from the region that
the pre-trained diffusion model cannot provide an accurate
density estimation or the gap between the likelihood and
diffusion loss d(x, y, θ) is large. However, we do not know
the ground-truth label of x, making the optimization infeasi-
ble. As an alternative strategy, we propose to minimize the
unconditional diffusion loss as

min
x̂

Eϵ,t[wt∥ϵθ(x̂t, t)− ϵ∥22], s.t. ∥x̂− x∥∞ ≤ η, (8)

which maximizes the lower bound of the log-likelihood in
Eq. (4), and thus it can not only minimize the gap d(x, θ),
but also increase the likelihood p(x). We call this approach
Likelihood Maximization. In Eq. (8), we restrict the ℓ∞
norm between the optimized input x̂ and the original input
x to be smaller than η, in order to avoid optimizing x̂ into
the region of other classes. We solve the problem in Eq. (8)
by gradient-based optimization with N steps.

This method can be also viewed as a new diffusion-based pu-
rification defense. On one hand, Xiao et al. (2023) prove that
for purification defense, a higher likelihood and a smaller
distance to the real data of the purified input x̂ tends to re-
sult in better robustness. Compared to DiffPure, our method
restricts the optimization budget by η, leading to a smaller
distance to the real data. Besides, unlike DiffPure which
only maximizes the likelihood with a high probability (Xiao
et al., 2023), we directly maximize the likelihood, leading
to improved robustness. On the other hand, the adversarial
example usually lies in the vicinity of its corresponding
real example of the ground-truth class y, thus moving along
the direction towards higher log p(x) will probably lead to
higher log p(x|y). Therefore, the optimized input x̂ could
be more accurately classified by the diffusion classifier.

3.5. Time complexity reduction

Accelerating diffusion classifier. A common practice for
estimating the diffusion loss in Eq. (6) is to adopt the Monte
Carlo sampling. However, this will lead to a high variance
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Table 1. Clean accuracy (%) and robust accuracy (%) of different methods against unseen threats.

Method Architecture Clean Acc Robust Acc
ℓ∞ norm ℓ2 norm StAdv Avg

AT-DDPM-ℓ∞ WRN70-16 88.87 63.28 64.65 4.88 44.27
AT-DDPM-ℓ2 WRN70-16 93.16 49.41 81.05 5.27 45.24
AT-EDM-ℓ∞ WRN70-16 93.36 70.90 69.73 2.93 47.85
AT-EDM-ℓ2 WRN70-16 95.90 53.32 84.77 5.08 47.72
PAT-self AlexNet 75.59 47.07 64.06 39.65 50.26
DiffPure (t∗ = 0.125) UNet+WRN70-16 87.50 40.62 75.59 12.89 43.03
DiffPure (t∗ = 0.1) UNet+WRN70-16 90.97 44.53 72.65 12.89 43.35
SBGC UNet 95.04 0.00 0.00 0.00 0.00
HybViT ViT 95.90 0.00 0.00 0.00 0.00
JEM WRN28-10 92.90 8.20 26.37 0.05 11.54
LM (ours) UNet+WRN70-16 87.89 71.68 75.00 87.50 78.06
DC (ours) UNet 93.55 35.94 76.95 93.55 68.81
RDC (LM+DC) (ours) UNet 89.85 75.67 82.03 89.45 82.38

with few samples or high time complexity with many sam-
ples. To reduce the variance with affordable computational
cost, we directly compute the expectation over t instead of
sampling t as

Eϵ,t[wt∥ϵθ(xt, t, y)−ϵ∥22] =
∑T

t=1 Eϵ[wt∥ϵθ(xt, t, y)− ϵ∥22]
T

.

(9)
Eq. (9) requires to calculate the noise prediction error for all
timesteps. For ϵ, we still adopt Monte Carlo sampling, but
we show that sampling only one ϵ is sufficient to achieve
good performance. We can further reduce the number of
timesteps by systematic sampling that selects the timesteps
at a uniform interval. Although it does not lead to an obvious
drop in clean accuracy, it will significantly affect robust
accuracy as shown in Sec. 4.5, because the objective is no
longer strongly correlated with log-likelihood after reducing
the number of timesteps.

With this technique, the diffusion classifier requires K × T
NFEs (Number of Function Evaluations), which limits its
applicability to large datasets. It is because current diffusion
models are designed for image generation tasks. They can
only provide noise prediction for one class at a time. To
obtain the predictions of all classes in a single forward pass,
we propose to modify the last convolutional layer in the
UNet backbone to predict noises for K classes (i.e., K × 3
dimensions) simultaneously. Thus, it only requires T NFEs
for a single image. We name this novel diffusion backbone
as multi-head diffusions. More details are in Appendix B.1.

Accelerating likelihood maximization. To further reduce
the time complexity of likelihood maximization, for each
iteration, instead of calculating the diffusion loss using all
timesteps like Eq. (9), we only uniformly sample a single
timestep to approximate the expectation of the diffusion
loss. Surprisingly, this modification not only reduces the

time complexity of likelihood maximization from O(N×T )
to O(N), but also greatly improves the robustness. This is
because this likelihood maximization induces more random-
ness, thus it is more effective to smooth the local extrema.
We provide more in-depth analysis in Appendix B.2.

Given the above techniques, the overall algorithm of RDC
is outlined in Algorithm 1.

4. Experiments
In this section, we first provide the experimental settings
in Sec. 4.1. We then show the effectiveness of our method
compared with the state-of-the-art methods in Sec. 4.2 and
the generalizability across different threat models in Sec. 4.3.
We provide thorough analysis to examine gradient obfusca-
tion in Sec. 4.4 and various ablation studies in Sec. 4.5.

4.1. Experimental settings

Datasets and training details. Following Nie et al. (2022),
we randomly select 512 images from the CIFAR-10 test set
(Krizhevsky & Hinton, 2009) for evaluation due to the high
computational cost of AutoAttack. We also conduct experi-
ments on other datasets and other settings in Appendix B.2.
We adopt off-the-shelf conditional diffusion model in Karras
et al. (2022) and train our multi-head diffusion as detailed
in Appendix B for 100 epochs on CIFAR-10 training set.

Hyperparameters. In likelihood maximization, we set the
optimization steps N = 5, momentum decay factor µ = 1,
optimization budget η = 8/255 (see Sec. 4.5 for an ablation
study), step size γ = 0.1. For each timestep, we only sample
one ϵ to estimate Eϵ[wt∥ϵθ(xt, t, y)− ϵ∥22].

Robustness evaluation. Following Nie et al. (2022), we
evaluate the clean accuracy and robust accuracy using Au-
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toAttack (Croce & Hein, 2020) under both ℓ∞ norm of
ϵ∞ = 8/255 and ℓ2 norm of ϵ2 = 0.5. To demonstrate the
generalization ability towards unseen threat models, we also
evaluate the robustness against StAdv (Xiao et al., 2018)
with 100 steps under the bound of 0.05. Since computing
the gradient through likelihood maximization requires calcu-
lating the second-order derivative, we use BPDA (Athalye
et al., 2018) as the default adaptive attack, approximating the
gradient with an identity mapping. We conduct more com-
prehensive evaluations of gradient obfuscation in Sec. 4.4,
where we show that BPDA is as strong as computing the ex-
act gradient. It is important to note that, except for adaptive
attacks on DiffPure (Nie et al., 2022), all other attacks solely
modify the back-propagation (e.g., BPDA, exact gradient)
or the loss function. The iterative updates are all performed
by AutoAttack (Croce & Hein, 2020).

One of our follow-up works also provides a thorough theo-
retical analysis of the certified robustness of our proposed
diffusion classifier. For more details, see Chen et al. (2024).

4.2. Comparison with the state-of-the-art

We compare our method with the state-of-the-art defense
methods, including adversarial training with DDPM gen-
erated data (AT-DDPM) (Rebuffi et al., 2021), with EDM
generated data (AT-EDM) (Wang et al., 2023b), and Diff-
Pure (Nie et al., 2022). We also compare with perceptual ad-
versarial training (PAT-self) (Laidlaw et al., 2021) and other
generative classifiers, including SBGC (Zimmermann et al.,
2021), HybViT (Yang et al., 2022), and JEM (Grathwohl
et al., 2019). Notably, robust accuracy of most baselines
does not change much on our selected subset. Addition-
ally, we compare the time complexity and robustness of our
model with more methods in Table 3 in Appendix B.2.

DiffPure incurs significant memory usage and substantial
randomness, posing challenges for robustness evaluation.
Their proposed adjoint method (Nie et al., 2022) is insuf-
ficient to measure the model robustness. To mitigate this
issue, we employ gradient checkpoints to compute the exact
gradient and leverage Expectation Over Time (EOT) to re-
duce the impact of randomness during optimization. Rather
than using the 640 times EOT recommended in Fig. 2(a),
we adopt PGD-200 (Madry et al., 2018) with 10 times EOT
and a large step size 1/255 to efficiently evaluate DiffPure.

Table 1 shows the results of Likelihood Maximization (LM),
Diffusion Classifier (DC) and Robust Diffusion Classifier
(RDC) compared with baselines under the ℓ∞ and ℓ2 norm
threat models. We can see that the robustness of DC outper-
forms all previous generative classifiers by a large margin.
Specifically, DC improves the robust accuracy over JEM
by +27.74% under the ℓ∞ norm and +50.58% under the ℓ2
norm. RDC can further improve the performance over DC,
which achieves 75.67% and 82.03% robust accuracy under

Table 2. Robust accuracy (%) of RDC under different adaptive
attacks. Note that N is the number of optimization steps in Likeli-
hood Maximization (LM), not the number of attack iterations. All
iterative updates during these attacks are consistently conducted
by AutoAttack.

LM steps (N ) Attack Clean Acc Robust Acc

5 BPDA 89.85 75.67
5 Lagrange 89.85 77.54
1 Exact Gradient 90.71 69.53
1 BPDA 90.71 69.92

the two settings. Notably, RDC outperforms the previous
state-of-the-art model AT-EDM (Wang et al., 2023b) by
+4.77% under the ℓ∞ norm.

4.3. Defense against unseen threats

Adversarial training methods often suffer from poor gener-
alization across different threat models, while DiffPure re-
quires adjusting purification noise scales for different threat
models, which limits their applicability in real-world sce-
narios where the threat models are unknown. In contrast,
our proposed methods are agnostic to specific threat mod-
els. To demonstrates the strong generalization ability of our
methods across different threat models, we evaluate the gen-
eralization performance of our proposed method by testing
against different threats, including ℓ∞, ℓ2, and StAdv.

Table 1 presents the results, demonstrating that the average
robustness of our methods surpasses the baselines by more
than 30%. Specifically, RDC outperforms ℓ∞ adversarial
training models by +12.30% under the ℓ2 norm and ℓ2 ad-
versarial training models by +22.35% under the ℓ∞ norm.
Impressively, LM, DC and RDC achieve 87.50%, 93.55%
and 89.45% robustness under StAdv, surpassing previous
methods by more than 53.90%. These results indicate the
strong generalization ability of our method and its potential
to be applied in real-world scenarios under unknown threats.

4.4. Evaluation of gradient obfuscation

The Diffusion Classifier (DC) can be directly evaluated us-
ing AutoAttack. However, the Robust Diffusion Classifier
(RDC) cannot be directly assessed with AutoAttack since
attacking Likelihood Maximization (LM) requires calculat-
ing the second-order derivative of the diffusion loss. In this
section, we analyze both gradient randomness and gradi-
ent magnitude (in Appendix B.2), demonstrating that our
method does not result in gradient obfuscation. Further-
more, we establish that our method attains nearly identical
robustness under both exact gradient attack and BPDA
attack. These findings compellingly affirm that our method
is genuinely robust rather than being overestimated by (po-
tentially) insufficient evaluations.
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Figure 2. (a): Randomness of different methods. (b-c): Ablation studies of η and T ′.

Exact gradient attack. To directly evaluate the robustness
of RDC, we utilize gradient checkpoint and create a com-
putational graph during backpropagation to obtain exact
gradients. However, we could only evaluate RDC when the
number of optimization steps N in Likelihood Maximiza-
tion (LM) is N = 1 (Note that this is not the number of
attack iterations) due to the large memory cost for comput-
ing the second-order derivative. As shown in Table 2, our
RDC with N = 1 achieves 69.53% robust accuracy under
the exact gradient attack, about 0.39% lower than BPDA.
This result suggests that BPDA suffices for evaluating RDC.

Lagrange attack. RDC optimizes the unconditional diffu-
sion loss before feeding the inputs into DC. If our adversar-
ial examples already have a small unconditional diffusion
loss or a large log p(x), it may not be interrupted during
Likelihood Maximization (LM). Therefore, to produce ad-
versarial examples with a small diffusion loss, we set our
loss function as

log pθ(y|x) + l · Eϵ,t[wt∥ϵθ(xt, t)− ϵ∥22], (10)

where pθ(y|x) is given by Eq. (6), and the first term is the
(negative) cross-entropy loss to induce misclassification. For
an input, we craft adversarial examples using three different
weights, l = 0, 1, 10. If one of these three loss functions
successfully generates an adversarial example, we count it
as a successful attack. As shown in Table 2, this adaptive
attack is no more effective than BPDA.

Gradient randomness. To quantify the randomness, we
compute the gradients of each model w.r.t. the input ten
times and compute the pairwise cosine similarity between
the gradients. We then average these cosine similarities
across 100 images. To capture the randomness when using
EOT, we treat the gradients obtained after applying EOT as
a single time and repeat the same process to compute their
cosine similarity. As shown in Fig. 2(a), the gradients of our
methods exhibit low randomness, while DiffPure is more
than 640 times as random as DC, RDC, and about 16 times
as random as LM. Thus, the robustness of our methods is

not primarily due to the stochasticity of gradients.

4.5. Ablation studies

In this section, we perform ablation studies of several hyper-
parameters with the first 100 examples in the CIFAR-10 test
set. All the experiments are done under AutoAttack with
BPDA of ℓ∞ bounded perturbations with ϵ∞ = 8/255.

Optimization budget η. To find the best optimization bud-
get η, we test the robust accuracy of different optimization
budgets. As shown in Fig. 2(b), the robust accuracy first
increases and then decreases as η becomes larger. When η
is small, we could not move x out of the adversarial region.
However, when η is too large, we may optimize x into an
image of another class. Therefore, we should choose an
appropriate η. In this work, we set η = 8/255.

Sampling timesteps. We also attempt to reduce the number
of timesteps used in calculating the diffusion loss. Since
only the DC is influenced by this parameter, we conduct
this experiment exclusively on DC to minimize the im-
pact of other factors. One way is to only calculate the
diffusion loss of the first T ′ timesteps {i}T ′

i=1 (“first-clean”
and “first-robust” in Fig. 2(c)). Inspired by Song et al.
(2020), another way is to use systematic sampling, where we
use timesteps {iT/T ′}T ′

i=1 (“uniform-clean” and “uniform-
robust” in Fig. 2(c) ). Both methods achieve similar results
on clean accuracy and robust accuracy. Although a signif-
icant reduction of T ′ does not lead to an obvious drop in
clean accuracy, it will significantly affect robust accuracy
due to the reason discussed in Sec. 3.5.

Sampling steps for ϵ. We also attempt to improve the esti-
mation of Eϵ[wt∥ϵθ(xt, t, y)− ϵ∥22] by sampling ϵ multiple
times or keeping ϵ the same for different timesteps or differ-
ent classes. However, these increase neither robustness nor
accuracy because we have already computed T times for
the expectation over t. From another perspective, the cosine
similarity of the gradients is about 98.48%, suggesting that
additional sampling of ϵ or using the same ϵ is unnecessary.
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5. Conclusion
In this paper, we propose a novel defense method called
Robust Diffusion Classifier (RDC), which leverages a single
diffusion model to directly classify input images by predict-
ing data likelihood by diffusion model and calculating class
probabilities through Bayes’ theorem. We theoretically an-
alyze the robustness of our diffusion classifier, propose to
maximize the log-likelihood before feeding the input images
into the diffusion classifier. We also propose multi-head dif-
fusion which greatly reduces the time complexity of RDC.
We evaluate our method with strong adaptive attacks and
conduct extensive experiments. Our method achieves state-
of-the-art robustness against these strong adaptive attacks
and generalizes well to unseen threat models.

Impact Statement
The emergence of adversarial threats in machine learning,
especially in critical areas such as autonomous vehicles,
healthcare, and financial systems, calls for more robust de-
fense mechanisms. Our work introduces the Robust Dif-
fusion Classifier, a novel framework that harnesses the ca-
pabilities of diffusion models for adversarial robustness in
image classification. This approach not only contributes to
reinforcing the security of machine learning models against
adversarial attacks but also demonstrates significant poten-
tial in leveraging diffusion models for adversarial robustness.
Our findings set a new precedent in the field and could be
inspireful in enhancing trust in AI applications. While our
work primarily focuses on adversarial robustness, it opens
avenues for further research for diffusion models in reliabil-
ity and resilience, moving towards a future where machine
learning can reliably function even in adversarially challeng-
ing environments.
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A. Proofs and Derivations
A.1. Proof of Theorem 3.1

Proof.

pθ(y|x) =
pθ(x, y)∑
ŷ pθ(x, ŷ)

=
pθ(x|y)pθ(y)∑
y pθ(x|ŷ)pθ(ŷ)

=
pθ(x|y)∑
ŷ pθ(x|ŷ)

=
elog pθ(x|y)∑
ŷ e

log pθ(x|ŷ)

=
exp

(
Eϵ,t[wt∥ϵθ(xt, t, y)− ϵ∥22] + log pθ(x|y)− Eϵ,t[wt∥ϵθ(xt, t, y)− ϵ∥22]

)
∑

ŷ exp
(
Eϵ,t[wt∥ϵθ(xt, t, ŷ)− ϵ∥22] + log pθ(x|ŷ)− Eϵ,t[wt∥ϵθ(xt, t, ŷ)− ϵ∥22]

)
=

exp
(
d(x, y, θ)

)
exp

(
− Eϵ,t[w∥ϵθ(xt, t, y)− ϵ∥22]

)
∑

ŷ exp
(
d(x, ŷ, θ)

)
exp

(
− Eϵ,t[wt∥ϵθ(xt, t, ŷ)− ϵ∥22]

) .
When ∀ŷ, d(x, ŷ, θ) → 0, we can get:

∀ŷ, exp
(
Eϵ,t[wt∥ϵθ(xt, t, ŷ)− ϵ∥22] + log pθ(x|ŷ)

)
→ 1.

Therefore,

pθ(y|x) =
exp

(
− Eϵ,t[wt∥ϵθ(xt, t, y)− ϵ∥22]

)
∑

ŷ exp
(
− Eϵ,t[wt∥ϵθ(xt, t, ŷ)− ϵ∥22]

) .

A.2. Derivation of the optimal diffusion classifier

A.2.1. OPTIMAL DIFFUSION MODEL: PROOF OF THEOREM 3.2

Proof. The optimal diffusion model has the minimal error Ex,t,y[∥ϵ(xt, t, y)− ϵ∥22] among all the models in hypothesis
space. Since the prediction for one input pair (xt, t, y) does not affect the prediction for any other input pairs, the optimal
diffusion model will give the optimal solution for any input pair (xt, t, y):

Ex(i)∼p(x(i)|xt,y)[∥ϵθ∗
D
(xt, t, y)− ϵi∥22] = min

θ
Ex(i)∼p(x(i)|xt,y)[∥ϵθ(xt, t, y)− ϵi∥22],

where ϵi =
xt−

√
αtx

(i)

σt
.

Note that

p(x(i)|xt, y) =
p(x(i)|y)p(xt|x(i), y)

p(xt|y)
=

p(x(i)|y)q(xt|x(i))

p(xt|y)
.

Assume that

p(x(i)|y) =

{
1

|Dy| ,x(i) ∈ Dy

0 ,x(i) /∈ Dy

Solving ∂
∂ϵθ(xt,t,y)

Ex(i)∼p(x(i)|xt,y)[∥ϵθ(xt, t, y)− ϵi∥22] = 0, we can get:
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Ex(i)∼p(x(i)|xt,y)[ϵθ(xt, t, y)− ϵi] = 0,∑
x(i)∈D

p(x(i)|xt, y)ϵθ(xt, t, y) =
∑

x(i)∈Dy

p(x(i)|xt, y)ϵi.

Substitute ϵi by Eq. (1):

ϵθ(xt, t, y) =
∑

x(i)∈Dy

p(x(i)|xt, y)
xt −

√
αtx

(i)

σt

=
∑

x(i)∈Dy

p(x(i)|y)q(xt|x(i))

p(xt|y)
xt −

√
αtx

(i)

σt

=
∑

x(i)∈Dy

p(x(i)|y)
p(xt|y)

p(N (xt|
√
αtx

(i), σ2
t I) =

xt −
√
αtx

(i)

σt
)
xt −

√
αtx

(i)

σt

=
∑

x(i)∈Dy

p(x(i)|y)
p(xt|y)

1

(2πσt)
n
2
exp (−

∥xt −
√
αtx

(i)∥22
2σ2

t

)
xt −

√
αtx

(i)

σt

To avoid numerical problem caused by 1

(2πσt)
n
2

and intractable p(x(i)|y)
p(xt|y) , we re-organize this equation using softmax

function:

ϵθ(xt, t, y) =
∑

x(i)∈Dy

p(x(i)|y)
p(xt|y)

1

(2πσt)
n
2
exp (−∥xt−

√
αtx

(i)∥2
2

2σ2
t

)∑|Dy|
j=1 p(xj |xt, y)

xt −
√
αtx

(i)

σt

=
∑

x(i)∈Dy

p(x(i)|y)
p(xt|y)

1

(2πσt)
n
2
exp (−∥xt−

√
αtx

(i)∥2
2

2σ2
t

)∑|Dy|
j=1

p(xj |y)
p(xt|y)

1

(2πσt)
n
2
exp (−∥xt−

√
αtxj∥2

2

2σ2
t

)

xt −
√
αtx

(i)

σt

=
∑

x(i)∈Dy

1

σt
(xt −

√
αtx

(i))
exp(− 1

2σ2
t
∥xt −

√
αtx

(i)∥22)∑
x(j)∈Dy

exp(− 1
2σ2

t
∥xt −

√
αtx(j)∥22)

.

This is the result of Eq. (7).

A.2.2. OPTIMAL DIFFUSION CLASSIFIER: PROOF OF THEOREM 3.3

Proof. Substitute Eq. (7) into Eq. (6):

fθ∗
D
(x)y

=− Et,ϵ[∥ϵθ(xt, t, y)− ϵ∥22]

=− Et,ϵ[∥
∑

x(i)∈Dy

[
(xt −

√
αtx

(i))

σt

exp(− ∥xt−
√
αtx

(i)∥22
2σ2

t
)∑

x(j)∈Dy
exp(− ∥xt−

√
αtx(j)∥22
2σ2

t
)
]− ϵ∥22]

=− Et,ϵ[∥
∑

x(i)∈Dy

[
(
√
αtx+ σtϵ−

√
αtx

(i))

σt

exp
(
− ∥√αtx+σtϵ−

√
αtx

(i)∥22
2σ2

t

)
∑

x(j)∈Dy
exp

(
− ∥√αtx+σtϵ−

√
αtx(j)∥22

2σ2
t

) ]− ϵ∥22]

=− Et,ϵ[∥
∑

x(i)∈Dy

[
1

σt
(
√
αtx−

√
αtx

(i))s(x,x(i), ϵ, t) + ϵ
∑

x(i)∈Dy

s(x,x(i), ϵ, t)]

=− Et,ϵ[∥
∑

x(i)∈Dy

[
1

σt
(
√
αtx−

√
αtx

(i))s(x,x(i), ϵ, t)]∥22]

=− Eϵ,t[
αt

σ2
t

∥
∑

x(i)∈Dy

s(x,x(i), ϵ, t)(x− x(i))∥22].

We get the result.
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A.3. Derivation of conditional elbos in Eq. (5)

We provide a derivation of conditional ELBO in the following, which is similar to the unconditional ELBO in Ho et al.
(2020).

log pθ(x0|y)

= log

∫
pθ(x0:T |y)q(x1:T |x0, y)

q(x1:T |x0, y)
dx1:T

= logEq(x1:T |x0,y)[
pθ(xT |y)pθ(x0:T−1|xT , y)

q(x1:T |x0, y)
]

≥Eq(x1:T |x0,y)[log
pθ(xT |y)pθ(x0:T−1|xT , y)

q(x1:T |x0, y)
]

=Eq(x1:T |x0,y)[log
pθ(xT |y)

∏T−1
i=0 pθ(xi|xi+1, y)∏T−1

i=0 q(xi+1|xi,x0, y)
]

=Eq(x1:T |x0,y)[log
pθ(xT |y)

∏T−1
i=0 pθ(xi|xi+1, y)∏T−1

i=0
q(xi+1|x0,y)q(xi|xi+1,x0,y)

q(xi|x0,y)

]

=Eq(x1:T |x0,y)[log
pθ(xT |y)

∏T−1
i=0 pθ(xi|xi+1, y)∏T−1

i=0 q(xi|xi+1,x0, y)
− log q(xT |x0, y)]

=Eq(x1:T |x0,y)[log

∏T−1
i=0 pθ(xi|xi+1, y)∏T−1

i=0 q(xi|xi+1,x0, y)
− log

q(xT |x0, y)

pθ(xT |y)
]

=

T−1∑
i=0

Eq(xi,xi+1|x0,y)[log
pθ(xi|xi+1, y)

q(xi|xi+1,x0, y)
]−DKL(q(xT |x0, y)∥pθ(xT |y))

=

T−1∑
i=0

Eq(xi+1|x0,y)Eq(xi|xi+1,x0,y)[log
pθ(xi|xi+1, y)

q(xi|xi+1,x0, y)
]−DKL(q(xT |x0, y)∥pθ(xT |y))

=C4 −
T−1∑
i=1

Eq(xi+1|x0,y)[DKL(q(xi|xi+1,x0, y)∥pθ(xi|xi+1, y))]

=− Eϵ,t

[
wt∥ϵθ(xt, t, y)− ϵ∥22

]
+ C.

We get the result of Eq. (5).

A.4. Connection between Energy-Based Models (EBMs)

The EBMs (LeCun et al., 2006) directly use neural networks to learn pθ(x) and pθ(x|y).

pθ(x|y) =
exp(−Eθ(x)y)

Z(θ, y)
,

Where Eθ(x) : R
D → Rn, and Z(θ, y) =

∫
exp(−Eθ(x)y)dx is the normalizing constant.

As described in Grathwohl et al. (2019), we can use EBMs to classify images by calculating the conditional probability:

pθ(y|x) =
exp(−Eθ(x)y)∑
ŷ exp(−Eθ(x)ŷ)

. (11)

Compare Eq. (11) and Eq. (6), we can also set the energy function as:

Eθ(x)y ≈ Et,ϵ

[
wt∥ϵθ(xt, t, y)− ϵ∥22

]
. (12)

Therefore, our diffusion classifier could be viewed as an EBM, and the energy function is the conditional diffusion loss.
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A.5. Computing gradient without computing UNet jacobi

We propose another way to compute the gradient of Eq. (9) without backpropagating through the UNet. Note that we do not
use this method in any of the experiments. We only derive this method and conduct some theoretical analysis.

Lemma A.1. Assuming that z ∼ N (µ,Σ), f : Rni → Rno ∈ C1, p : Rni → R ∈ C1. We can get

∇µEz[f(z)] = Ez[∇µ log p(z)f(z)T ]. (13)

Proof. Inspired by Wierstra et al. (2014), we derive

∇µE[f(z)] = ∇µ

∫
f(z)p(z|µ)dz

= lim
dµ→0

∫
f(z)p(z|µ+ dµ)dz−

∫
f(z)p(z|µ)dz

dµ

=

∫
∇µp(z|µ)f(z)T dz

=

∫
p(z|µ)∇µ log p(z|µ)f(z)T dz

= Ez[∇µ log p(z|µ)f(z)T ].

According to Lemma A.1, we can derive the gradient of Eq. (9) as

d

dx
Eϵ[∥ϵθ(xt, t)− ϵ∥22]

=
d

dx
Ext

[∥ϵθ(xt, t)−
xt −

√
αtx

σt
∥22]

=
d

dx
Ext [g(xt,x, t)]

=
∂

∂xt
Ext

[g(xt,x, t)]
∂xt

∂x
+

∂

∂x
Ext

[g(xt,x, t)]

=Ext
[
∂ log p(xt|x)

∂x
g(xt,x, t)] +

∂

∂x
Ext

[g(xt,x, t)]

=Ext
[
∂ log p(xt|x)

∂x
∥ϵθ(xt, t)−

xt −
√
αtx

σt
∥22] + Ext

[2(ϵθ(xt, t)−
xt −

√
αtx

σt
)

√
αt

σt
]

=Eϵ[
∂ log p(xt|x)

∂x
∥ϵθ(xt, t)− ϵ∥22] + Eϵ[(ϵθ(xt, t)− ϵ)

2
√
αt

σt
].

(14)

Similarly, we can get the gradient of conditional diffusion loss

d

dx
Eϵ[∥ϵθ(xt, t, y)− ϵ∥22]

=Ext
[
∂ log p(xt|x)

∂x
∥ϵθ(xt, t, y)−

xt −
√
αtx

σt
∥22] + Ext

[(ϵθ(xt, t, y)−
xt −

√
αtx

σt
)
2
√
αt

σt
]

=Eϵ[
∂ log p(xt|x)

∂x
∥ϵθ(xt, t, y)− ϵ∥22] + Eϵ[(ϵθ(xt, t, y)− ϵ)

2
√
αt

σt
].

(15)

As shown, the gradient of Eq. (9) have two terms. The first term equals to the weighted sum of ∂ log p(xt|x)
∂x . In VE-SDE

case, where xt = x+ σtϵ, the negative gradient direction is aligned with x− xt (a vector starting from xt and ending at
x). The second term is proportional to the gradient of Score Distillation Sampling (Poole et al., 2022; Wang et al., 2023a),
which also point toward real data. Consequently, optimizing the diffusion loss will move x toward a region with higher log
likelihood.

17



Robust Classification via a Single Diffusion Model

Algorithm 2 Training of multi-head diffusion
Require: A pre-trained diffusion model ϵθ , dataset D, a multi-head diffusion model ϵϕ
1: repeat
2: x0, y ∼ D;
3: t ∼ Uniform({1, 2, ..., T}), ϵ ∼ N (0, I);
4: for y = 0 to K − 1 do
5: Take gradient descent step on ∇ϕEϵ,t[wt∥ϵθ(x̂t, t, y)− ϵϕ(x̂t, t, y)∥22];
6: end for
7: until converged;

B. More experimental results
B.1. Training details

Computational resources. We conduct Direct Attack on 1× A40 GPUs due to the large memory cost of computational
graphs for second-order derivatives. We use 2× 3090 GPUs for other experiments. We also analyze the time complexity and
test the real-time cost on a single 3090 GPU, as demonstrated in Table 3. We are unable to assess the real-time cost of some
methods due to difficulties in replicating them.

Training details of multi-head diffusion. To reduce the time complexity of the diffusion classifier from O(K × T ) to
O(T ), we propose to slightly modify the architecture of the UNet, enabling it to predict for all classes at once. Since our
changes are limited to the UNet architecture, all theorems and analyses remain applicable in this context.

However, this architecture only achieves 60% accuracy on the CIFAR10 dataset, even with nearly the same number of
parameters as the original UNet. We tried to solve this problem by using a larger CFG (i.e., viewing extrapolated result
(1 + cfg) · ϵθ(xt, t, y)− cfg · ϵθ(xt, t) as the prediction of UNet), but it does not work.

We hypothesize that with the traditional conditional architecture, the UNet focuses on extracting features relevant to specific
class labels, leading to a more accurate prediction of the conditional score. In contrast, multi-head diffusion must extract
features suitable for predicting all classes, as different heads use the same features for their predictions. To test this
hypothesis, we measure the cosine similarity between features of a given xt with different embeddings y. We find that for
the traditional diffusion architecture, these features differ from each other. However, for multi-head diffusion, the cosine
similarity of these predictions exceeds 0.98, indicating that the predictions are almost identical due to the identical feature.

It’s worth noting that this does not mean traditional diffusion models are superior to multi-head diffusion. Both architectures
have nearly the same number of parameters, as we only modify the last convolution layer. Additionally, the training loss
curve and validation loss curve for both are almost identical, indicating they fit the training distribution and generalize to the
data distribution similarly. The FID values of these two models are 3.14 and 3.13, very close to each other. The decreased
performance of multi-head diffusion in the diffusion classifier is likely because it isn’t clear on which feature to extract first.
The training dynamic lets multi-head diffusion extracts features suitable for all classes, leading to similar predictions for
each class, similar diffusion loss, and thus lower classification performance.

To prevent predictions for all classes from being too similar, we first considered training the multi-head diffusion with
negative examples. Initially, we attempted to train the multi-head diffusion using the cross-entropy loss. While this achieved
a training accuracy of 91.79%, the test accuracy only reached 82.48%. Moreover, as training continued, overfitting to the
training set became more pronounced. Notably, this model had 0% robustness. Fortunately, this experiment underscores
the strength of our adaptive attacks in evaluating such randomized defenses, affirming that the robustness of the diffusion
classifier is not merely due to its stochastic nature leading to an inadequate evaluation. A lingering concern is our lack of
understanding as to why switching the training loss from diffusion loss to cross-entropy loss drastically diminishes the
generalization ability and robustness.

Our hypothesis posits that, when trained with the diffusion loss, diffusion models are compelled to extract robust features
because they are required to denoise the noisy images. However, when trained using the cross-entropy loss, there isn’t a
necessity to denoise the noisy images, so the models might not extract robust features. As a result, they may lose their image
generation and denoising capabilities, as well as their generalization ability and robustness. We evaluated the diffusion loss
of the diffusion models trained by cross-entropy loss and found that their diffusion losses hovered around 10. Furthermore,
the images they generated resembled noise, meaning that they lose their generation ability.
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Table 3. Clean accuracy (%) and robust accuracy (%) of different methods against unseen threats.

Method Architecture NFEs Real Time (s) Clean Acc Robust Acc
ℓ∞ norm ℓ2 norm Avg

AT-DDPM-ℓ∞ WRN70-16 1 0.01 88.87 63.28 64.65 63.97
AT-DDPM-ℓ2 WRN70-16 1 0.01 93.16 49.41 81.05 65.23
AT-EDM-ℓ∞ WRN70-16 1 0.01 93.36 70.90 69.73 70.32
AT-EDM-ℓ2 WRN70-16 1 0.01 95.90 53.32 84.77 69.05
PAT-self AlexNet 1 0.01 75.59 47.07 64.06 55.57
DiffPure (t∗ = 0.125) UNet 126 0.72 87.50 40.62 75.59 58.11
DiffPure (t∗ = 0.1) UNet 101 0.60 90.97 44.53 72.65 58.59
SBGC UNet 30TK 15.78 95.04 0.00 0.00 0.00
HybViT ViT 1 0.01 95.90 0.00 0.00 0.00
JEM WRN28-10 1 0.01 92.90 8.20 26.37 17.29
Pérez et al. (2021) WRN70-16 9 n/a 89.48 72.66 71.09 71.87
Schwinn et al. (2022) WRN70-16 KN n/a 90.77 71.00 72.87 71.94
Blau et al. (2023) WRN70-16 KN n/a 88.18 72.02 75.90 73.96
LM (ours) WRN70-16 1 +NT 2.50 95.04 2.34 12.5 7.42
LM (ours) WRN70-16 1 +N 0.10 87.89 71.68 75.00 73.34
DC (ours) UNet TK 9.76 93.55 35.94 76.95 55.45
RDC (ours) UNet NT + TK 12.26 93.16 73.24 80.27 76.76
RDC (ours) UNet N + TK 9.86 88.18 80.07 84.76 82.42
RDC (ours) UNet N + T 1.43 89.85 75.67 82.03 78.85

To address this issue, we need to strike a balance between the diffusion loss, which ensures the robustness of the diffusion
models, and the negative example loss (e.g., cross-entropy loss, CW loss, DLR loss) to prevent their predictions for
various classes from becoming too similar. This balancing act turns the training of multi-head diffusion into a largely
hyper-parameter tuning endeavor. To circumvent such a complex training process, we suggest distilling the multi-head
diffusion from a pretrained traditional diffusion model. As illustrated in Algorithm 2, the primary distinction between
multi-head diffusion distillation and traditional diffusion model training is that the predictions for all classes provided by the
multi-head diffusion model are simultaneously aligned with those of a pre-trained diffusion model.

Note that in Algorithm 2, the predictions for different classes are computed in parallel. This approach sidesteps the
need for tedious hyper-parameter tuning. Nevertheless, there’s still potential for refinement. In this algorithm, the input
pair (xt, t, y) is not sampled based on its probability p(xt, t, y) =

∫
p(x|y)p(t)p(xt|x)p(y)dx. This could be why the

multi-head diffusion slightly underperforms compared to the traditional diffusion model. Addressing this issue might involve
using importance sampling, a potential avenue for future research.

B.2. More Analysis and Discussion
Table 4. Gradient magnitudes.

Method 1
D∥g∥1

Engstrom et al. (2019) 7.7× 10−6

Wong et al. (2020) 1.1× 10−5

Salman et al. (2020) 6.6× 10−6

Debenedetti et al. (2022) 9.8× 10−6

Ours 8.2× 10−6

Gradient magnitude. When attacking the diffusion classifiers, we need
to take the derivative of the diffusion loss. This process is similar to what
is done when training diffusion models, so gradient vanishing is unlikely
to occur. We also measure the average absolute value of the gradient (i.e.,
1
D∥g∥1). As shown in Table 4, the magnitude of the gradient in our method
is on the same scale as that of other adversarial training models, validating that our method does not suffer from gradient
vanishing.

Substituting likelihood maximization with DiffPure. We further study the performance by substituting likelihood
maximization with DiffPure. We use the same hyperparameters as in Nie et al. (2022) and follow the identical evaluation
setup as described in Sec. 4.1. The robustness of each method under the ℓ∞-norm threat model with ϵ∞ = 8/255 on
the CIFAR-10 dataset is shown in Table 5. As shown, DC+DiffPure outperforms DiffPure significantly, highlighting the
effectiveness of our diffusion classifier. Furthermore, RDC surpasses DC+DiffPure, indicating that likelihood maximization
is more compatible with the diffusion classifier. Besides, Xiao et al. (2023) provide an interesting explanation of DiffPure. It
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has been demonstrated that DiffPure increases the likelihood of inputs with high probability, resulting in better robustness.
By directly maximizing the likelihood of inputs, our likelihood maximization further enhances the potential for improved
robustness.

Table 5. The robustness of DiffPure,
DiffPure+DC and RDC.

Method Robustness(%)

DiffPure 53.52
DiffPure+DC 69.92
RDC 75.67

Attacking using the adaptive attack in Sabour et al. (2015). Tramer et al. (2020)
propose to add an additional feature loss (Sabour et al., 2015) that minimizes the
class score between the current image and a target image in another class. This
create adversarial examples whose class scores match those of clean examples but
belong to a different class, thereby generating in-manifold adversarial examples,
avoiding to be detected by likelihood-based adversarial example detectors. To
evaluate the robustness of our method against these adaptive attacks, we integrate
them with AutoAttack and test the robust accuracy under ℓ∞ threat model with
ϵ∞ = 8/255. Surprisingly, our method achieves 90.04% robustness against attack using feature loss, and 86.72% robustness
against attack using feature loss combined with the cross entropy loss or DLR loss in AutoAttack. On one hand, our
Lagrange attack in Sec. 4.4 directly maximizes the lower bound of likelihood, making it more effective than feature loss. On
the other hand, our method does not incorporate adversarial example detectors, making it unnecessary to strictly align the
logits of adversarial examples with those of clean images.

Comparison with other dynamic defenses. We also compare our methods with state-of-the-art dynamic defenses. As
some of these methods have not yet been open-sourced, we reference the best results reported in their respective papers. We
use N to denote the optimization steps in their methods (e.g., qualification steps in Schwinn et al. (2022), PGD steps in Blau
et al. (2023)). As shown in Table 3, our methods are not only more efficient but also effective than these dynamic defenses.
Specifically, the time complexities of these dynamic defenses are related to the number of classes K, which limits their
applicability in large datasets. On the contrary, the time complexity of our RDC does not depend on K. Moreover, our RDC
outperforms previous methods by +3.01% on ℓ∞ robustness and +6.33% on ℓ2 robustness, demonstrating the strong efficacy
and efficiency of our RDC.

Table 6. Comparison with other randomized defenses.

Method Attacker Robustness(%)

Fu et al. (2021) PGD-100 66.28
Dong et al. (2022) PGD-20 60.69
Hao et al. (2022) n/a 0
RDC (Ours) AutoAttack 75.67

Comparison with other randomized defenses. As shown
in Table 6, our method outperforms previous state-of-the-art
randomized defenses. This is because diffusion models are
naturally robust to such Gaussian corruptions, and such high
variance Gaussian corruptions are much more effective than
Fu et al. (2021); Dong et al. (2022) to smooth the local extrema
in loss landscape, preventing the existence of adversarial ex-
amples. Our method can also be integrated with randomized
smoothing to get certified robustness. For more detail, refer to Chen et al. (2024).

Comparison between different likelihood maximizations. We compare the LM (1 +NT ) with the improved version
LM (1 + N ). Surprisingly, under the BPDA attack, LM (1 + NT ) achieves only 2.34% robustness. On the one hand,
the likelihood maximization moves the inputs towards high log-likelihood region estimated by diffusion models, instead
of traditional classifiers, thus it is more effective when combined with diffusion classifiers. On the other hand, although
the diffusion losses of LM (1 + NT ) and LM (1 + N ) are same in expectation, the former induces less randomness,
thus it is less effective to smooth the local extrema. LLet’s delve into a special case with N = 1. In this case, the
expectation of LM (1 + NT ) is Eϵ[f(x + ∇xEt[wt∥ϵθ(xt, t, y) − ϵ∥22])], while the expectation of LM (1 + N ) is
Eϵ,t[f(x+∇x[wt∥ϵθ(xt, t, y)− ϵ∥22])]. The primary difference between these two is the placement of the expectation over
T for LM (1 +N ), which is outside the function f . This arrangement implies that the randomness associated with t also
aids in smoothing out local extrema, leading to better smoothed landscape and higher robustness. It is essential to clarify
that this is not a result of the stochasticity hindering the evaluation of their robustness. We have already accounted for
their stochasticity by applying EOT 100 times, as illustrated in Fig. 2(a). Note that the likelihood maximization acts like a
pre-processing module, and it can be used to defend against adversarial attacks to any models in a plug-and-play manner,
including current threat models toward large vision-language models (Wei et al., 2023b; Dong et al., 2023).

Comparison between different RDCs. As shown in Table 3, our vanilla RDC attains 73.24% ℓ∞ robustness and 80.27%
ℓ2 robustness, surpassing prior adversarial training and diffusion-based purification techniques. By substituting the LM with
the enhanced likelihood maximization, we manage to further boost the robustness by 6.83% and 4.49% against the ℓ∞ and
ℓ2 threat models, respectively. When employing multi-head diffusion, the RDC’s time complexity significantly diminishes,
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yet its robustness and accuracy remain intact. This underscores the remarkable efficacy and efficiency of our proposed RDC.

Table 7. Performance of DiffPure when using different architectures and checkpoints.
Method Architecture Diffusion model Clean Acc Robust Acc

ℓ∞ norm ℓ2 norm
DiffPure UNet+WRN-70-16 Score-SDE 90.97% 43.75% 55.47%
DiffPure UNet+WRN-70-16 EDM 92.58% 42.27% 60.94%

RDC UNet EDM 89.85% 75.67% 82.03%

Ablation studies on diffusion checkpoints. We also implemented DiffPure using EDM checkpoints, decoupling the
selection of checkpoints and samplers. One can use EDM checkpoints with EDM samplers or previous DDIM/DDPM
samplers. The code can be found in our repository mentioned in the abstract. As shown in Table 7, when using EDM
checkpoints, there is a slight improvement in clean accuracy and ℓ2 robustness. However, DiffPure still lags significantly
behind our method, as diffusion models still cannot completely purify the adversarial perturbations for the subsequent
discriminative classifiers.

Attacks using multiple EOT steps. Since our methods only induce a small randomness on the gradient (see Fig. 2(a)), the
Expectation Over Transformations (EOT) does not help when attacking our defense. We evaluate the robustness on the first
64 samples of the CIFAR-10 test set against the ℓ∞ threat model with ϵ∞ = 8/255, using EOT numbers of 1, 5, and 10,
respectively. Under all evaluations, RDC achieve 68.75% robustness.

B.3. Experiment on Restricted ImageNet

Datasets and training details. We conduct additional experiments on Restricted ImageNet (Tsipras et al., 2019), since
Karras et al. (2022) provides off-the-shelf conditional diffusion model for imagenet dataset. Restricted ImageNet is a subset
of ImageNet with 9 super-classes. For robustness evaluation, we randomly select 256 images from Restricted ImageNet test
set due to the high computational cost of the attack algorithms, following Nie et al. (2022).

Hyperparameters and robustness evaluation. We use the same hyper-parameters and robustness evaluation as in Sec. 4.1.
Following common settings in adversarial attacks (Wong et al., 2020; Nie et al., 2022; Zhang et al., 2024), we only evaluate
ℓ∞ robustness with ϵ∞ = 4/255 in this subsection.

Compared methods. We compared our method with four state-of-the-art adversarial training models (Engstrom et al.,
2019; Wong et al., 2020; Salman et al., 2020; Debenedetti et al., 2022; Wei et al., 2023a) and DiffPure (Nie et al., 2022). For
discriminative classifiers such as adversarially trained models, DiffPure, and LM, we compute the logit for each super-class
by averaging the logits of its associated classes. For our RDC, we select the logit of the first class within the super-class to
stand for the whole super-class.

Results. As shown in Table 9, our RDC outperforms previous methods by +1.75%, even though RDC only uses the logit of
the first class of each super class for classification. This demonstrates that our method is effective on other datasets as well.

B.4. Experiment on CIFAR-100

We also test the robustness of different method against ℓ∞ threat model with ϵ∞ = 8/255, following the same experimental
settings as CIFAR-10. Due to the time limit, we only random sample 128 images. The results are shown in Table 8.

We find that RDC still achieves superior result compared with the state-of-the-art adversarially trained models and DiffPure.
More surprisingly, we discover that DiffPure does not work well on CIFAR-100. We guess this is because CIFAR-100 has
more fine-grained classes, and thus a small amount of noise will make the image lose its semantic information of a specific
class. Hence, DiffPure is not suitable for datasets with more fine-grained classes but small resolution. This experiment
indicate that our methods could be easily scaled to fine-grained datasets.

B.5. Discussions.

O.O.D. Detection. We test both the unconditional ELBO and the likelihood (expressed in Bits Per Dim (BPD) as mentioned
in Papamakarios et al. (2017)). We evaluate these metrics on the CIFAR-10 test set and CIFAR10-C. As demonstrated in
Fig. 3, while both methods can distinguish in-distribution data from certain types of corruptions, such as Gaussian blur and
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Table 8. Clean Accuracy (%) and robust accuracy (%) on
CIFAR-100.

Method Clean Acc Robust Acc

WRN40-2 78.13 0.00
Rebuffi et al. (2021) 63.56 34.64
Wang et al. (2023b) 75.22 42.67
DiffPure 39.06 7.81
DC 79.69 39.06
RDC 80.47 53.12

Table 9. Clean accuracy (%) and robust accuracy (%) of dif-
ferent methods in Restricted ImageNet.

Method Clean Acc Robust Acc

Engstrom et al. (2019) 87.11 53.12
Wong et al. (2020) 83.98 46.88
Salman et al. (2020) 86.72 56.64
Debenedetti et al. (2022) 80.08 38.67
DiffPure (Nie et al., 2022) 81.25 29.30
RDC (ours) 87.50 58.40

I.I.D.
Glass blur
Gaussian noise
Shot noise
Speckle noise
Im

pulse noise
Defocus blur
Gaussian blur
M

otion blur
Zoom

 blur
Snow
Fog
Brightness
Contrast
Elastic transform
Pixelate
Jpeg com

pression
Spatter
Saturate
Frost

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(a) ELBO on CIFAR10-C

I.I.D.
Glass blur
Gaussian noise
Shot noise
Speckle noise
Im

pulse noise
Defocus blur
Gaussian blur
M

otion blur
Zoom

 blur
Snow
Fog
Brightness
Contrast
Elastic transform
Pixelate
Jpeg com

pression
Spatter
Saturate
Frost

1

2

3

4

5

6

7

(b) BPD on CIFAR10-C

Figure 3. The prediction of ELBO and BPD on CIFAR-10 test set and CIFAR-10-C.

Gaussian noise, they struggle to differentiate in-distribution data from corruptions like fog and frost.

Generation of multi-head diffusion. Since our multi-head diffusion is initialized from an unconditional EDM and distilled
by a conditional EDM, it achieves a generative ability comparable to EDM. The images generated by our multi-head
diffusion are shown in Fig. 4.

C. Limitations
Despite the great improvement, our methods could still be further improved. Currently, our methods requires N + T NFEs
for a single images, and applying more efficient diffusion generative models (Song et al., 2023; Shao et al., 2023; Liu et al.,
2023) may further reduce T . Additionally, while we directly adopt off-the-shelf diffusion models from Karras et al. (2022),
designing diffusion models specifically for classification may further improve performance. We hope our work serves as an
encouraging step toward designing robust classifiers using generative models.
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Figure 4. The images generated by multi-head diffusion.
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