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Abstract

Foundation Models (FMs) have demonstrated re-
markable insights into the relational dynamics of
the world, leading to the crucial question: how do
these models acquire an understanding of world
hybrid relations? Traditional statistical learning,
particularly for prediction problems, may over-
look the rich and inherently structured informa-
tion from the data, especially regarding the rela-
tionships between objects. We introduce a mathe-
matical model that formalizes relational learning
as hypergraph recovery to study pre-training of
FMs. In our framework, the world is represented
as a hypergraph, with data abstracted as random
samples from hyperedges. We theoretically exam-
ine the feasibility of a Pre-Trained Model (PTM)
to recover this hypergraph and analyze the data
efficiency in a minimax near-optimal style. By
integrating rich graph theories into the realm of
PTMs, our mathematical framework offers pow-
erful tools for an in-depth understanding of pre-
training from a unique perspective and can be
used under various scenarios. As an example,
we extend the framework to entity alignment in
multimodal learning.

1. Introduction
Foundation Models (FMs) (Bommasani et al., 2021; Ope-
nAI, 2023) have emerged as transformative forces in the
realm of artificial intelligence, demonstrating impressive
performance in various real-world tasks such as knowledge
retrieval (Liu et al., 2023), mathematics problem solving
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(Frieder et al., 2023), coding (Zhang et al., 2022), common-
sense reasoning (Rajani et al., 2019; Zhao et al., 2023b),
and text-to-image generation (Ramesh et al., 2021; Li et al.,
2023b). During interactions with humans, FMs seem to ex-
hibit an understanding of real-world entities to a certain de-
gree, engaging in reasoning based on these entities (Bubeck
et al., 2023). For example, FMs can deduce the entity “ta-
ble” from descriptions of objects placed on it, such as a cup,
book, or computer, which raises a fundamental question:
how do FMs learn real-world entities from pre-training?

To investigate the learning of entities via pre-training, a
formidable challenge is to formalize how the relationships
between the entities are learned from data. Traditional
statistical learning, such as PAC (Valiant, 1984; Mohri
et al., 2018), particularly in classification problems, typ-
ically treats data as pairs of objects and their corresponding
labels, focusing primarily on predicting these absolute la-
bels. However, this approach may overlook the richer, more
nuanced information that data inherently carry, especially
regarding the relationships between objects. For instance,
an image of a camel does not just represent the animal; it
may also encapsulate its context, like a desert background,
offering deeper relational insights on the camel and the con-
text objects. Similarly, in natural language processing, the
meaning of a sentence transcends the mere sum of its words,
revealing complex interdependencies between the entities
represented by the words. At the same time, PTMs, such
as LLMs, often respond to complex relationships between
objects. Recognizing this, a new mathematical model is es-
sential to capture these critical, yet often overlooked, facets
of relational learning in pre-training, crucial for understand-
ing the capabilities and generalization of the PTMs.

In this work, we propose a novel mathematical framework
based on hypergraph recovery to more fully capture the
essence of relational learning. Specifically, we abstract
the world as a hypergraph: entities are nodes, and rela-
tionships between entities are hyperedges. Each hyperedge
is assigned a weight, signifying the strength of the corre-
sponding relation. We formulate relational learning from
pre-training as hypergraph recovery of the world hypergraph
using the information of data. We model data generation
as random sampling from the hyperedges. This data gen-
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eration process mirrors real-world data collection, where a
sample represents a perception of a relation between entities,
with stronger relations having a higher likelihood of being
observed and recorded. Our framework presents two-fold
advantages: 1) In contrast to traditional statistical learning,
our framework adopts a more nuanced approach. It goes
beyond merely capturing individual labels within each data
sample, delving into the interrelations between entities. This
method yields a richer and more holistic understanding of
relational learning in pre-training scenarios. 2) Additionally,
the framework integrates rich graph theories into the field
of PTMs. This integration invokes powerful analytical tools,
providing a novel perspective for relational learning.

Based on the framework, we can answer two important ques-
tions about relational learning in PTMs: 1) Identification:
Does the data provide sufficient information for relational
learning? 2) Data efficiency: If so, what is the essential
amount of data required? For the first question, we approach
it as an estimation problem within a hypergraph framework
and give an affirmative answer by demonstrating that the
hypergraph can be identified from sufficient hyperedge sam-
ples. To address the second question, we first establish a
lower bound Ω

(
m
ϵ2

)
for ϵ-approximate relational learning

of the hypergraph with m hyperedges. We further inves-
tigate how a model learns relations via Masked Modeling
(MM), a common practical pre-training algorithm (Kenton
& Toutanova, 2019; He et al., 2022). In the hypergraph
recovery framework, an MM PTM learns a set of relative
weight ratios between certain entity relations. We show that
MM achieves the near-optimal (in terms of approximation
error) sample complexity Õ

(
m
ϵ2

)
, matching the information

theoretical lower bound if logarithmic factors are neglected.

Our hypergraph framework is adaptable to scenarios neces-
sitating the capture of entity relations, including multimodal
entity alignment (Chen et al., 2020; Zhao et al., 2023a),
social network privacy (Korolova et al., 2008), and rela-
tional reinforcement learning (Zambaldi et al., 2018a), etc.,
allowing for an analysis of key relational learning from
pre-training data. We focus on multimodal entity align-
ment, demonstrating feasible alignment across modalities
using sufficient unlabeled data, achieved through hyper-
graph matching. Although aligning without labeled pairs is
theoretically possible, practical computational constraints
necessitate labeled pairs to reduce complexity.

We conduct experiments to back up the validity of our hy-
pergraph formulation for relational learning in PTMs. In the
first experiment of synthetic relational learning, we create
synthetic entities whose relations compose weighted graphs,
showing the power of MM for learning the synthetic rela-
tions. In the second experiment, we examine real-world
relational learning of LLMs by evaluating their relational
subgraphs and measuring how well the evaluated subgraphs

align with the real world. Our results show that the evalu-
ated relations do align with the real world to some degree
and more powerful models exhibit better alignment.

We list the contributions of the paper as follows:

• We propose a new mathematical model to formalize rela-
tional learning in PTMs, which is grounded in the princi-
ples of hypergraph recovery.

• We demonstrate the feasibility of a learning model achiev-
ing relational learning and establish a minimax lower
bound for the sample complexity involved. Additionally,
we show that pre-training using Masked Modeling (MM)
approaches near-optimal data efficiency in terms of ap-
proximation error within our framework.

• We extend our framework to entity alignment in multi-
modal learning. We show the feasibility of entity align-
ment without labeled pairs and demonstrate the role of
labeled pairs in reducing the computational complexity.

2. Related Work
Graph Models. Graphs have long been used to characterize
structures of data. For instances, parsing graphs use graphs
to represent the grammatical dependencies of text, (Chom-
sky, 2014; Chen & Manning, 2014; Hewitt & Manning,
2019). Semantic networks model the semantic relationships
between words and entities by graphical representations
(Miller, 1995; Speer et al., 2017). Knowledge graphs repre-
sent knowledge as entities and complex relationships within
graphs (Suchanek et al., 2007; Lin et al., 2015; Dettmers
et al., 2018). Following a similar philosophy, we model the
concepts and the relations in the world as a weighted hyper-
graph and pre-training data as samples of hyperedges from
the hypergraph. Our formulation is, instead, a simplified
mathematical model to explain how pre-training can learn
the complex relations in the world.

Combinatorial Statistics. Combinatorial statistics studies
the statistical properties of data with discrete structures. The
most related topic in combinatorial statistics to this work is
random graph isomorphism. These works model real-world
problems, namely, DNA shotgun assembly (Idury & Wa-
terman, 1995), protein matching (Zaslavskiy et al., 2009),
social network privacy (Korolova et al., 2008), etc., by ran-
dom graph problems such as shotgun assembly (Mossel &
Ross, 2017; Ding et al., 2023) and random graph match-
ing (Cullina & Kiyavash, 2016; Barak et al., 2019; Ding
et al., 2021), exploiting both the combinatorial and statis-
tical properties of the data. Our work takes a step to build
the connections between combinatorial statistics and PTM
capabilities, harnessing mathematical tools from the former
to enhance our understanding of PTMs.
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Figure 1. Our hypergraph recovery framework for relational learning in PTMs. The relational model of the world is viewed as a hypergraph.
Data are generated by sampling hyperedges from the world relational model and mapping them to perception domains. PTMs learn the
entity relations from the data. Recovered relational hypergraphs can be evaluated from the PTMs.

Relational Learning. Relational learning focuses on identi-
fying the relationships among entities (Struyf & Blockeel,
2010). To understand and exploit the relational structure
of data, various relational learning techniques and meth-
ods are employed, including inductive logic programming
(De Raedt, 2008), probabilistic logic learning (De Raedt &
Kersting, 2008), relational reinforcement learning (Džeroski
et al., 2001; Zambaldi et al., 2018b), graph neural networks
(Chen et al., 2021; Fey et al., 2023), etc. While these works
aim to capture entity relations more precisely, our research is
dedicated to exploring the emergence of relational learning
from pre-training in theory.

Theories of PTMs. Various theoretical frameworks have
been proposed to elucidate the mechanisms by which PTMs
leverage pre-training data and tasks to achieve generaliza-
tion. Multi-task learning suggests that PTMs acquire gen-
eralizable representations through simultaneous training on
diverse tasks (Ando et al., 2005; Xie et al., 2020; Hu et al.,
2021; Chen et al., 2022; Yang et al., 2022), under the as-
sumption that these representations are the invariant com-
ponents across the various tasks. Meta-learning posits that
PTMs develop the ability to learn efficiently, postulating
that certain meta parameters exist that enable fast adaptation
to new tasks, with optimization processes geared towards
these meta parameters (Finn et al., 2017; 2018; Tripuraneni
et al., 2021). In certain in-context learning scenarios, some
in-context learning theories propose that PTMs internalize
optimization or learning algorithms, facilitating task and
distribution generalization (Akyürek et al., 2022; Li et al.,
2023a; Von Oswald et al., 2023). This work diverges by
explicitly modeling generalizable knowledge as a relational
hypergraph of the world, framing pre-training as a process

of hypergraph recovery.

3. Preliminary
Hypergraph. A hypergraph H is a tuple (V, E) where V is
a finite set called nodes and E is a family of subsets of V
called hyperedges (Bretto, 2013). A weighted hypergraph
H, denoted by a tuple (V, E , w), is a hypergraph equipped
with an additional weight function w : E 7→ R≥0. The line
graph of the hypergraph H, denoted by L(H), is the graph
whose node set is the set of the hyperedges of H and edge
set is the set of pairs of the hyperedges that intersect. Con-
sider transformations between hypergraphs. Suppose that
ϕ : V 7→ V ′ is a bijection from V to a set of nodes V ′. For a
hyperedge e = {v1, . . . , vk}, we use ϕ(e) to denote the hy-
peredge {ϕ(v1), . . . , ϕ(vk)}. We use ϕ(H) to denote the hy-
pergraph H′ = (V ′, E ′, w′) where E ′ = {ϕ(e) | e ∈ E} and
w′(e′) = w(ϕ−1(e)). We write H1

∼= H2 if H1 equals to
H2 up to some bijection, i.e., there exists a bijection ϕ such
that ϕ(H1) = H2. To measure the differences between two
hypergraphs H1 = (V1, E1, w1) and H2 = (V2, E2, w2), we
consider the following dissimilarity measure

d(H1,H2) =
∑

e∈E1∪E2

|w̄1(e)− w̄2(e)|, (1)

where the weight function w̄i(e) = wi(e) if e ∈ Ei and
w̄i(e) = 0 otherwise, i = 1, 2. This measure corresponds
to the dissimilarity between two graphs constructed from
the hypergraphs by the star expansion algorithm (Surana
et al., 2021) and captures the hyperedge weight differences
between the hypergraphs.

Notation. We use A∗ to denote the Kleene closure of set
A, i.e., A∗ =

⋃∞
i=0 A

i where A0 = {ε} (the set consisting
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of only the empty sequence) and Ai = {(a1, . . . , ai) | aj ∈
A, j = 1, . . . , i}. We use Bij(A,B) to denote the set of all
bijections from set A to set B. The notation O(k) (resp.,
Ω(k)) represents the upper bound (resp., the lower bound)
of C · k for some constant C.

4. Hypergraph Recovery Framework
This section introduces a mathematical framework of hyper-
graph recovery for relational learning in PTMs and how it
could emerge from pre-training. We first model the entities
and their relations in the world as a weighted hypergraph.

Abstraction 4.1 (Relational Model of the World). The
relational model of the world is a hypergraph H0 =
(V0, E0, w0), where each node v ∈ V0 represents an entity,
each hyperedge e ∈ E0 represents a relation between entities,
and the weight function w0 : E 7→ R represents the strength
of the relations. Without loss of generality, we assume the
weight function is normalized, i.e.,

∑
e∈E0

w0(e) = 1. We
further assume that |V0| = n and |E0| = m.

Since data is the perception of the world, we formalize the
data generation as sampling from the relational hypergraph
of the world, as described in Abstraction 4.2.

Abstraction 4.2 (Data Generation). In the data generation
process, the entities are mapped to a perception domain (e.g.,
language and vision). We denote the perception mapping by
ϕ0. In this work, we consider the perception mapping ϕ0 as
a bijection, which keeps the structure of the relational hyper-
graph H0. Each data point e is a perception of the relations
in the domain, corresponding to a hyperedge sampled i.i.d.
from the hypergraph ϕ0(H0) according to the weights, i.e.,
e ∼ Pw(e) = w(e) = w0(ϕ

−1
0 (e)).

Under this model, we define relational learning as follows.

Definition 4.3 (Relational Learning). A hypergraph H =
(V, E , w) achieves relational learning for the relational
model of the world if H ∼= H0, i.e., there exists a bijec-
tion ϕ : V 7→ V0 such that ϕ(H) = H0.

In practice, we have only finite samples and it is unrealistic
to expect that the estimated relational hypergraph is com-
pletely the same as the relational model of the world. We
further define ϵ-approximate relational learning to consider
the approximation error of estimation with finite samples.

Definition 4.4 (ϵ-Approximate Relational Learning). A hy-
pergraph H = (V, E , w) achieves ϵ-approximate relational
learning for the relational model of the world if there exists
a bijection ϕ : V 7→ V0 such that d(ϕ(H),H0) ≤ ϵ.

We also say that a model M achieves (ϵ-approximate) re-
lational learning if we can reconstruct a hypergraph that
(ϵ-approximate) relational learning from the model.

Definition 4.5 ((ϵ-Approximate) Relational Learning of
Models). A model M achieves (ϵ-approximate) relational
learning if there exists a testing algorithm Atest : M 7→
H can estimate hypergraphs from models such that
Atest(M) = HM achieves (ϵ-approximate) relational learn-
ing. Here, M and H denote the sets of all models and all
hypergraphs of interest, respectively.

For PTMs, a typical process of relational learning is as
follows: a pre-training algorithm Apre learns a model M
from a dataset D and a testing algorithm Atest examines
whether the model achieves relational learning, i.e.,

H0
Sample−−−−→ D

Apre−→ M
Atest−→ H. (2)

From the information perspective, whether (ϵ-approximate)
relational learning is achievable from a dataset D is equiv-
alent to whether there exists a pre-training algorithm and
a testing algorithm that can reconstruct a relational hyper-
graph equal to the relational hypergraph of the world (up to
some bijection). The pre-training algorithm and the testing
algorithm are expected to work well for a class of target
relational hypergraphs. This goal can be captured by the
following minimax formula:

inf
Apre,Atest

sup
H0∈H0

d (Atest (Apre(D)) , ϕ0 (H0)) ≤ ϵ, (3)

where the H0 is the set of target relational hypergraphs.

When we consider whether a model pre-trained by a certain
algorithm can achieve relational learning, we need to con-
sider how the pre-training algorithm can utilize the data. In
this work, we consider Masked Modeling (MM), a common
pre-training method that is widely used in various fields. In
MM, a model is pre-trained to predict a sample e based on
an input e− that is generated by masked several tokens in e
according to a masking strategy π = π(e− | e).
Abstraction 4.6 (Masked Modeling). Given a masked input
e−, a model M pretrained by MM complements it and
outputs e, reflecting the model’s belief M(e | e−) on

P (e | e−) = w0(ϕ
−1
0 (e))π(e | e−)∑

e′ w0(ϕ
−1
0 (e′))π(e− | e′)

.

The model predicts a hyperedge e ∼ M(e | e−). With
a slight abuse of notation, we denote the prediction of M
given e− by M(e−).

For two hyperedges e1, e2 such that π(e− | e1) > 0 and
π(e− | e2) > 0, we can further infer their relative weights
from the MM model M as ŵ(e1)

ŵ(e2)
= M(e1|e−)π(e−|e2)

M(e2|e−)π(e−|e1) . To
capture such relations between two hyperedges, we define
e1

π↔ e2 if there exists a masked hyperedge e− such that
π(e− | e1) > 0 and π(e− | e2) > 0. For the sake of no-
tational simplicity and in cases where it does not lead to
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ambiguity, we use e1 ↔ e2 without the superscript π. There-
fore, under our framework, we can view MM as learning
the relative weights between ↔ related hyperedges.

We also abstract the data generation process of MM.
Abstraction 4.7 (Masked Modeling Data Generation). In
the data generation of MM, each hyperedge et is first sam-
pled i.i.d. from Pw(e) where Pw(e) = w0(ϕ

−1
0 (e)), for all

t = 1, . . . , N . For each hyperedge et, K masked hyper-
edges {e−tk}Kk=1 are generated i.i.d. by a masking strategy π,
i.e., e−tk ∼ π(e−tk | etk) where etk = et, for all 1 ≤ k ≤ K.
The dataset for MM is D = {(etk, e−tk)}1≤t≤N,1≤k≤K .

Under Abstractions 4.6 and 4.7, an MM model M pre-
trained on D with a loss ℓ is

M = argmin
M′∈M

N∑
t=1

K∑
k=1

ℓ(M′(e−tk), etk). (4)

For an MM pre-trained model to achieve relational learning,
it needs to learn relative weights from an MM dataset such
that these relative weights amount to the recovery of the
relational hypergraph H0. Denote the MM pre-training
algorithm in (4) by AMM under Abstractions 4.6 and 4.7.
Following (2) and (3), this is to consider

inf
Atest

sup
H0

d (Atest (AMM(D)) , ϕ0 (H0)) ≤ ϵ. (5)

5. Main Results for Entity Relational Learning
5.1. Identification

We first consider whether identifying the relational hyper-
graph H0 from a pre-training dataset is possible at the pop-
ulation level. The following theorem affirms the feasibility
of relational learning if sufficient data are available.
Theorem 5.1 (Identifiability). Under Abstractions 4.1
and 4.2, suppose that et is a generated data sequence. Let
DN be the dataset consisting of the first N elements of the
sequences, i.e., DN = (e1, . . . , eN ). Then there exist an
pre-training algorithm Apre and a testing algorithm Atest,
A = Atest (Apre(·)) : E∗ 7→ H such that A(DN ) con-
verges to a hypergraph H that achieves relational learning
as N → ∞ almost surely, i.e., A(DN )

a.s.→ H ∼= H0.

Theorem 5.1 asserts the asymptotic identifiability of the
target hypergraph as the dataset size approaches infinity. The
proof of Theorem 5.1 leverages the law of large numbers
to show that the distance between the estimated hypergraph
and the actual relational hypergraph converges to 0. For
detailed proof, refer to Appendix A.

5.2. Data Efficiency

Since relational learning is feasible at the population
level, we then consider the data efficiency to achieve ϵ-

approximate relational learning at the sample level. We first
consider an information theoretical lower bound of the sam-
ple complexity to achieve ϵ-approximate relational learning.

Theorem 5.2 (Information Theoretical Lower Bound). Un-
der Abstractions 4.1 and 4.2 and assuming that the gener-
ated dataset D is of size |D| = N ≥ m with m sufficiently
large, the minimax risk of reconstruction error satisfies

inf
Apre,Atest

sup
H0

ED [d(Atest (Apre(D)) , ϕ0(H0))] ≥
1

16

√
m

N
.

Theorem 5.2 presents an information theoretical lower
bound Ω

(
m
ϵ2

)
of the sample complexity for ϵ-approximate

relational learning. This lower bound is derived from the
sample complexity lower of the discrete distribution esti-
mation problem under ℓ1 distance, by a reduction from the
estimation problem to an approximate relational learning
problem. The lower bound highlights that the number of
the hyperedges m is an important factor in the difficulty of
relational learning.

Now we consider the data efficiency of MM to achieve ϵ-
approximate relational learning. We assume that the model
M is expressive enough to fit the pre-training data, i.e., for
a MM dataset D, the model M pre-trained on D satisfies

M = argmin

N∑
t=1

K∑
k=1

ℓ(M′(e−tk), etk). (6)

To characterize the sample complexity, we introduce the
following additional assumptions.

Assumption 5.3 (Range ratio of the weight function). The
range ratio of the weight function is κ = maxe∈E w(e)

mine∈E w(e) .

Assumption 5.4 (Bound on the masking strategy). For each
hyperedge e ∈ E , the support set of masked hyperedges is
upper bounded, i.e., | suppπ(· | e)| < Cπ for some constant
Cπ . For each e ∈ E and e− ∈ suppπ(· | e), the probability
π(e− | e) is lower bounded by some constant cπ .

Assumption 5.5 (Bound on the MM path length). For any
hyperedges e, e′ ∈ E , there exists a path bounded by L such
that e = e1 ↔ e2 ↔ · · · ↔ eℓ = e′.

Assumption 5.3 bounds the weights of each hyperedge
within a certain range. Assumption 5.4 bounds the com-
plexity of the masking strategy by limiting the support set
of masked hyperedges and setting a minimum probabil-
ity threshold for potentially masked hyperedges. Assump-
tion 5.5 bounds the connectivity complexity among the hy-
peredges under the masking strategy.

We analyze the sample complexity for the PTM pre-trained
by MM M to achieve ϵ-approximate relational learning
with cross-entropy loss in Theorem 5.6.
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Figure 2. Extension of our hypergraph framework to entity alignment in multimodal learning (taking vision and language for illustration).
The relational hypergraphs in different modalities can be reconstructed from data. The entities from different modalities can be aligned by
matching the relational hypergraphs. “Rec.” represents “Reconstruct”.

Theorem 5.6 (Upper Bound by MM). Suppose that M
is an FM pre-trained by MM on a dataset D with cross-
entropy loss. Then M achieves ϵ-approximate relational
learning with probability at least 1− δ if

K ≥ 214m2κ2L2

c2πϵ
2

log
6mCπ

δ
,

N ≥ max

{
2mκ

cπ
log

3mCπ

δ
,
8m

ϵ2
log

6m

δ

}
.

(7)

In scenarios defined by specific problems and masking
strategies, the term Õ

(
m
ϵ2

)
predominates at low approxi-

mation errors, especially when ϵ = o
(√

cπ
κ

)
. This aligns

with the information theoretical lower bound Ω
(
m
ϵ2

)
in The-

orem 5.2, disregarding the logarithmic factor. This suggests
that MM is near-optimal in data efficiency.

To prove Theorem 5.6, we design an algorithm that com-
putes the relative weights between the pairs of the hyper-
edges along e1 ↔ · · · ↔ eℓ paths. By normalization, we
obtain an estimation of the hyperedge weights and further a
recovered hypergraph from the relative weights. We show
that when the dataset D is sufficiently large, the model M
can learn all the relative weights well enough and therefore
the reconstructed hypergraph is a good approximation for
the relational hypergraph H0 (up to some bijection).

Theorem 5.6 reveals that the data efficiency to achieve rela-
tional learning is predominantly influenced by three factors:
the number of hyperedges m, the range ratio of the weight
function κ, and the upper bound of the MM path lengths
L. The number of hyperedges m and the range ratio of the
weight function κ characterize the complexity of the world

relational hypergraph, i.e., the hypergraph with more hyper-
edges and a larger range ratio requires more samples to be
recovered by MM. The MM path length bound L reflects
the connectivity under the masking strategy π, influencing
how MM learns the relative weights between hyperedges.
Efficient recovery of the relational hypergraph is contingent
on a small L, indicating well-connected hyperedges; a large
L suggests inefficiency in recovery. This aligns with empir-
ical observations that effective MM performance requires
masking a sufficient proportion of each sample (He et al.,
2022; Wettig et al., 2023).
6. Main Results for Entity Alignment
We further extend our framework to encompass entity align-
ment within the realm of multimodal learning. In this con-
text, the relational models associated with different modali-
ties are interpreted as distinct representations or “images”
of the relational model of the world, each shaped by its
unique perception mapping. Although our focus here is
on two modalities for illustrative purposes, the principles
and methodologies we discuss are readily generalizable to
scenarios involving a greater number of modalities.

Concretely, the relational hypergraph in modality i is
mapped from H0 by the perception ϕi, i.e., Hi = ϕi(H0)
for i = 1, 2. Entity alignment is to find a bijection
ϕ ∈ Bij(V1,V2) such that ϕ(H1) = H2. The data sup-
porting entity alignment consists of three parts: D1, D2,
and D2. Here, D1 and D2 represent data from the two indi-
vidual modalities, while D12 comprises labeled pairs that
denote corresponding relationships across the modalities.
For example, in aligning entities between visual and linguis-
tic modalities, the data includes images, text, and labeled
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Figure 3. Evaluation results of synthetic relational learning. (a) STAR graphs with different numbers of edges (m = n− 1). (b) STAR
graphs with different range ratios. (c) Graphs with different MM path lengths. For each, the experiments are repeated for 5 times and the
evaluation results are averaged over the 5 trials.
pairs that link images with their textual descriptions.

Assuming the data from each modality are sufficient, we
can recover the relational hypergraphs H1 and H2. Entity
alignment is achieved by solving the optimization problem:

ϕ∗ = argmin
ϕ∈Bij(V1,V2)

d(ϕ(H1),H2) (8)

Practically, labeled pairs are typically necessary to address
the computational difficulty of the graph isomorphism prob-
lem in (8), as no polynomial-time solution has been found
to date (Babai, 2016; Neuen & Schweitzer, 2018). Labeled
pairs are external information that pinpoints partial corre-
spondences between the entities of different modalities, po-
tentially reducing the computational complexity. For exam-
ple, the labeled pairs can reduce dimensions of Weisfeiler-
Lehman methods required (Cai et al., 1992) or prune search
trees in individualization-refinement algorithms (McKay &
Piperno, 2014) (See Appendix B for further illustration).

When the underlying hypergraph structure has no automor-
phism, it is possible to align the entities without estimating
the weighted relational hypergraph in each domain. For
instance, we can first estimate the underlying unweighted
hypergraphs and then align the entities by solving the graph
isomorphism problem for these unweighted hypergraphs.
This approach can enhance relational learning in multimodal
models, as the fusion of data from different modalities
can complement and augment the information within each
modality. Proposition 6.1 describes the information gain
brought by the fusion of two modalities.

Proposition 6.1. Suppose that Di is the dataset in modality
i for i = 1, 2. Assume that the entity alignment ϕ∗ ∈

Bij(V1,V2) has been estimated in prior. Suppose that M
is a multimodal pre-trained model by MM on the datasets
D1 and D2. Then M achieves ϵ-approximate relational
learning with probability at least 1− δ if

K1 +K2 ≥ 214m2κ2L2

c2πϵ
2

log
6mCπ

δ
,

N1 +N2 ≥ max

{
2mκ

cπ
log

3mCπ

δ
,
8m

ϵ2
log

6m

δ

}
.

7. Experiments
We conduct two experiments to show empirically that re-
lational learning in PTMs could be seen as relational hy-
pergraph recovery. We consider two settings: synthetic
relational learning and real-world relation evaluation.

7.1. Synthetic Relational Learning

In synthetic relational learning, we train PTMs with text
consisting of synthetic entities, whose underlying data dis-
tribution corresponds to a graph. We show that PTMs can
learn the relations between these synthetic entities. To gener-
ate data for synthetic relational learning, we first construct a
graph, whose nodes are entities (represented by tokens) and
edges are relations. We attach edges with random weights
and normalize the weights. To generate a training dataset,
we sample edges i.i.d. according to the distribution cor-
responding to the normalized edge weights. We consider
masked language modeling (Kenton & Toutanova, 2019).
For evaluation, we query the PTM with each synthetic en-
tity to retrieve information about its related entities and
the weights of the relations. We reconstruct a graph with
the query results and compare the reconstructed graph with

7
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Figure 4. Evaluation results of different LLMs for the real-world relational subgraph generated from the source word “table”. We use
different letters to represent different entities (see Appendix C.3 for their correspondences). The graphs (from left to right) are the ground
truth (extracted from ConceptNet), evaluation results of LLAMA-2-70B, GPT-3.5, and GPT-4, respectively.

Table 1. Summary of the comparison results. The subgraphs are generated from different source entities with k = 2 and d = 3. The
corresponding evaluated graphs are generated from the outputs of different LLMs. The dissimilarity between each pair of the extracted
subgraph H and the estimated graph H′ are measured by their normalized L1 distance, i.e., ∥H−H′∥1

∥H∥1
where we slightly abuse the

notations H and H′ to denote their adjacent matrices.

CAKE DOG FLY HUMAN JACKET ORANGE PAPER SEA TABLE ZOO

LLAMA-2-70B 1.00 0.67 1.25 1.00 1.33 1.33 0.75 0.83 1.25 1.67
GPT-3.5 0.67 1.00 1.00 1.25 1.00 1.33 0.75 0.83 1.00 1.00
GPT-4 0.67 0.67 1.00 1.50 1.33 1.00 0.75 0.83 0.75 1.33

the true underlying graph. We conduct experiments for
different graphs, with different numbers of edges, range
ratios, and MM path lengths, corresponding to the factors
that influence the sample complexity of entity relational
learning. More details of the synthetic relational learning
experiments can be found in Appendix C.1. The evalua-
tion results are shown in Section 5.2. Our results show
that the reconstruction errors of both the unweighted sketch
graph and the weighted graph decrease as the training goes
on. This the PTMs learn the synthetic relations gradually
via MM pre-training. Additionally, the results suggest that
larger numbers of edges and larger MM path lengths lead to
more steps to converge, which coincides with our theoreti-
cal analysis in Theorem 5.6. The effect of the range ratios
on the convergence of relational learning is not obvious in
our experiments. This may suggest a gap between the theo-
retical upper bound and the actual convergence rate in the
experiments in terms of the range ratio.

7.2. Real-World Relation Evaluation

In real-world relation evaluation, we test whether LLMs
such as ChatGPT and GPT-4 learn entities and their relations
that align with the real world. We use subgraphs extracted
from ConceptNet (Speer et al., 2017) as baselines of the
real-world relations graphs. For evaluation, we input the
chosen entities to LLMs and ask them to choose top-related

ones for each entity. We then construct a graph whose nodes
are the entities and edges are those top-related pairs. We
compare the subgraph extracted from ConceptNet and the
graph evaluated from LLMs. If an LLM learns real-world
relations, we expect it to produce a similar graph as the
one extracted from ConceptNet. Table 1 summarizes some
comparison results of the extracted subgraphs generated by
different source entities and the corresponding evaluated
graphs. In Figure 4, we visualize the result of the source
entity “table”. More results are presented in Appendix C.3.
We find that GPT-4 achieves the best overall performance
among the evaluated LLMs and GPT-3.5 performs slightly
better than LLAMA-2-70B. The results suggest different
LLMs have different degrees of relational learning and more
powerful models seem to understand entity relations better
in the sense of relational subgraph reconstruction. Note
that we only consider unweighted graphs here because it
is difficult to evaluate the relation weights from LLMs ac-
curately. Our results illustrate that the LLMs do organize
entities similarly to real-world entities.

8. Conclusion and Outlook
Abstracting the entity relations in the world as a hypergraph,
we formalize relational learning in pre-trained models as
recovery of the world relational hypergraph. Under the for-

8
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mulation, we show the relational hypergraph is identifiable
provided sufficient data at the population level. We also
study the sample efficiency and extend the framework to
entity alignment in multimodal learning.

While only extending in multimodal learning in this paper,
our framework is a general analysis tool. Understanding
the capabilities and generalization potential of the PTM
is crucial in our field. We would say that PTMs, such as
LLMs, often responding to complex relationships between
objects, urgently require new mathematical foundations to
have a deeper study. This paper paves a new way to study
PTM from a unique perspective by capturing the overlooked
data information using a hypergraph. Our framework can
be potentially used under various scenarios and impacts on
application fields. For example, for data and computational
efficiency, it is interesting to design more efficient learning
algorithms or architectures, such as for multimodal learning.
More broadly, for safety, traditional works about adversarial
attack and defense theories often focus on several classes
that need to be protected. Our framework is not restricted
to classification problems and may impose a potential on
the entity concept and even human value level. Further,
based on the hypergraph, it is promising to understand the
reasoning and causality capabilities of PTMs.

Acknowledgements
C. Fang and Z. Lin were supported by National Key R&D
Program of China (2022ZD0160300). Z. Lin was addi-
tionally supported by the NSF China (No. 62276004) and
Qualcomm.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
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A. Proof
A.1. Proof of Theorem 5.1

We can consider the combined algorithm A = Atest ◦ Apre directly. We design an algorithm (Algorithm 1) that recovers
hypergraphs from dataset and show the reconstructed hypergraph converges to H0 up to some bijection almost surely by the
law of large numbers. Denote the hypergraph recovered from DN by HN . Define random variables XN = d(ϕ−1

0 (HN ),H0)

for N = 1, 2, . . . . It remains to show XN
a.s.→ 0.

For any ϵ > 0, define
EN := {ω ∈ Ω : XN (ω) > ϵ}, (9)

where Ω is the sample space.

Let

Ye,t =

{
1 xt = ϕ0(e),

0 otherwise.
(10)

Then we have

P (EN ) = P

(∑
e∈E0

∣∣∣∣∣ 1N
N∑
t=1

Ye,t − w0(e)

∣∣∣∣∣ > ϵ

)

≤ P

( ⋃
e∈E0

∣∣∣∣∣ 1N
N∑
t=1

Ye,t − w0(e)

∣∣∣∣∣ > ϵ

m

)
(a)

≤
∑
e∈E0

P

(∣∣∣∣∣ 1N
N∑
t=1

Ye,t − w0(e)

∣∣∣∣∣ > ϵ

m

)
(b)

≤ 2m exp

(
−2Nϵ2

m2

)
,

(11)

where the inequality (a) is due to union bound and the inequality (b) is due to Hoeffding’s Inequality.

Notice that
∞∑

N=1

P (EN ) ≤
2m exp

(
−2ϵ2/m2

)
1− exp (−2ϵ2/m2)

< ∞. (12)

By the first Borel-Cantelli lemma (Durrett, 2019, Chapter 2), we have

P

(
lim sup
N→∞

EN

)
= 0. (13)

Equivalently, we have
P
(

lim
N→∞

XN > ϵ
)
= 0. (14)

Since (14) holds for any ϵ > 0, we have P (limn→∞ XN = 0) = 1, i.e., XN
a.s.→ 0.

A.2. Proof of Theorem 5.2

We prove the information theoretical lower bound by constructing a reduction from finite distribution estimation under ℓ1
distance to concept understanding.

For any unknown finite distribution P = (p1, . . . , pm) on {1, . . . ,m}, we construct a world model H0 = (V0, E0, w0) as
follows:

1. V0 = {v1, . . . , vm+1};

2. E0 = {{v1, v2}, . . . , {vm, vm+1}};

3. w0({vi, vi+1}) = pi.
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Algorithm 1 Hypergraph Estimation from Datasets
Input: a dataset D, a candidate hyperedge set E0, and a masking strategy π.

Initialize E = {}, V = , and w̃ = 0.
for x ∈ D do
E = E ∪ {x}
V = V ∪ x
w̃(x) = w̃(x) + 1

end for
Compute W =

∑
e∈E w̃(e).

w = w̃/W .

Return H = (V, E , w).

For a dataset D′ = xk
N
k=1 sampled from P . convert it to a dataset D = {{vxk

, vxk+1}}Nk=1 for hypergraph recovery. For an
algorithm A, apply it to the dataset D and we obtain an estimation H = A(D) = (V, E , w) for for the world model H0. We
then compute an estimation P ′ for the finite distribution P , where P ′ = (p′1, . . . , p

′
m) and

p′i = w({vi, vi+1}). (15)

Denote the minimax risk of estimating a finite distribution on {1, . . . ,m} with a dataset of size N as R(m,N). Denote the
minimax risk of estimating a hypergraph H0 of m hyperedges with a dataset of size N as RH(m,N). Then we have

R(m,N) ≤ inf
A

sup
P∈Pm

m∑
i=1

∥p′i − pi∥

= inf
A

sup
H0∈Hm

∑
e∈E0

∥w(e)− w0(e)∥

= inf
A

sup
H0∈Hm

d(H,H0)

=RH(m,N),

(16)

where the first inequality is due to the definition of the minimax risk R(m,N).

According to Theorem 2 in Han et al. (2015), we have

R(m,N) ≥ max
0<ζ≤1

F (ζ), (17)

where

F (ζ) =
1

8

√
em

((1 + ζ)N
1

(
(1 + ζ)N

m
>

e

16

)
+exp

(
−2(1 + ζ)N

m

)
1

(
(1 + ζ)N

m
≤ e

16

)
− exp

(
−ζ2N

24

)
− 12 exp

(
− ζ2m

32 ln2 m

)
.

(18)

Combining (16) and (17) and letting ζ = 1, we have

RH(m,N) ≥ F (1) ≥ 1

8

√
em

2N
− exp

(
−N

24

)
− 12 exp

(
− m

32 ln2 m

)
≥ 1

16

√
m

N
. (19)
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A.3. Proof of Theorem 5.6

Lemma A.1. Suppose that P0 is a finite distribution on [m0] = {1, . . . ,m0} whose range ratio is κ0. Then

min
i∈[m0]

P0(i) ≥
1

m0κ0

max
i∈[m0]

P0(i) ≤
κ0

m0 + κ0 − 1

(20)

Proof of Lemma A.1. Let B1 := mini∈[m0] P0(i) and B2 := maxi∈[m0] P0(i). By the definitions, we have

B1 + (m− 1)B2 ≥ 1

B2 + (m− 1)B1 ≤ 1.

By the definition of range ratio, i.e. κ0
B2

B1
, we further have

B1 + (m0 − 1)κ0B1 ≥ 1

B2 +
m0 − 1

κ0
B2 ≤ 1.

This implies

B1 ≥ 1

m0κ0 + 1− κ0
≥ 1

m0κ0

B2 ≤ κ0

m0 + κ0 − 1
.

Lemma A.2. Suppose that {Xt} is a sequence of random variables sampled i.i.d. from a categorical distribution Cat(K,p)
where p = (p1, . . . , pK). Then we have

P

(
K∑

k=1

∣∣∣∣∣ 1T
T∑

t=1

1 (Xt = k)− pk

∣∣∣∣∣ ≤ ϵ

)
≥ 1− δ (21)

if

T ≥ 2K

ϵ2
log

2K

δ
. (22)

Proof of Lemma A.2. Let S :=
∑K

k=1

√
pk(1− pk) and ϵk :=

√
pk(1−pk)

S ϵ for k = 1, . . . ,K. Then we have

P

(
K∑

k=1

∣∣∣∣∣ 1T
T∑

t=1

1 (Xt = k)− pk

∣∣∣∣∣ ≥ ϵ

)
(a)

≤
K∑

k=1

P

(∣∣∣∣∣ 1T
T∑

t=1

1 (Xt = k)− pk

∣∣∣∣∣ ≥ ϵk

)
(b)

≤
K∑

k=1

2 exp

(
− Tϵ2k
2pk(1− pk)

)
≤2K exp

(
−Tϵ2

2S2

)
,

(23)

where the inequality (a) is due to union bound and the inequality (b) is due to Chernoff bound.

According to the concavity of the function f(x) =
√
x(1− x), we have

S = K · 1

K

K∑
k=1

f(pk) ≤ Kf

(
1

K

K∑
k=1

pk

)
= Kf

(
1

K

)
=

√
K − 1 <

√
K. (24)

Combining (23) and (24), we obtain the desired result.
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We provide a constructive proof of Theorem 5.6 by designing an algorithm that recover hypergraphs from MM pre-trained
models. The algorithm includes two Phases: underlying hypergraph estimation and weight estimation. In Phase 1, we
estimate the underlying hypergraph by evaluating the probability of the MM pre-trained model output and selecting all
hyperedges of positive probabilities. In Phase 2, we evaluate a sequence of relative weights between the hypergraphs. We
estimate the weight function by those relative weights and a normalization. The algorithm is presented in Algorithm 2.
Specially, we implement the weight estimation algorithm in a breadth-first style (Algorithm 3). We utilize the data structure
queue to implement the algorithm. A queue Q supports two operations: Q.push back(x) that pushes the element x to the
back of the queue Q and Q.pop front(x) that removes and returns the front of the queue Q.

Algorithm 2 Hypergraph Estimation from MM Pre-Trained Models
Input: a MM pre-trained model M, a candidate hyperedge set E0, and a masking strategy π.

// Phase 1: underlying hypergraph estimation
Initialize E = {}.
for e ∈ E0 do

Apply π to e and get a masked hyperedge e−.
if M(e | e−) > 0 then
E = E ∪ {e}.

end if
end for
V = ∪e∈Ee.

// Phase 2: weight estimation
Initialize w̃(e) = 0 for all e ∈ E .
Select e0 from E and let w̃(e0) = 1.
w̃ = BFWEIGHTESTIMATION(e0, E ,M, π, w̃) (Algorithm 3).
Compute W =

∑
e∈E w̃(e).

w = w̃/W .

Return H = (V, E , w).

Algorithm 3 BFWEIGHTESTIMATION(einit, E ,M, π, w̃)

Input: a selected hyperedge einit, a hyperedge set E , a MM pre-trained model M, a masking strategy π, and a weight
function w̃.

Initialize an empty queue Q.
Q.push back(einit).
while Q is not empty do
e = Q.pop front().
for e′ ∈ E such that e π↔ e′ do

if w̃(e′) > 0 then
Continue.

end if
w̃(e′) = π(e−|e)M(e′|e−)

π(e−|e′)M(e|e−) w̃(e).
Q.push back(e′).

end for
end while

Return w̃.

We first show that the underlying hypergraph can be recovered with high probability in Phase 1. We denote mine∈E0
w0(e)

and maxe∈E0 w0(e) by cw and Cw, respectively. By the definition of the model M, it suffices to show that each hyperedge
e and possible masked hypergraphs e− (i.e., π(e− | e) > 0) are covered by the training dataset D. According to the
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data generation process, each sample in the dataset D corresponds to a pair of (e, e−) sampled from the distribution
P ((e, e−)) = Pw(e)π(e

− | e). With slight abuse of notation, we write (e, e−) ∈ D if D contains the corresponding sample
of the pair (e, e−). Denote the support set of P ((e, e−)) by Sπ. By Assumptions 5.3 and 5.4, we have |Sπ| ≤ mCπ and
P (e, e−) ≥ cwcπ for all (e, e−) ∈ Sπ. Denote the event that the underlying hypergraph H1 recovered in Phase 1 satisfies
H ∼ H0 by E1. Then we can obtain

P (Ec
1) = P

(
∃(e, e−) ∈ Sπ, (e, e

−) ̸∈ D
)
≤

∑
(e,e−)∈Sπ

P
(
(e, e−) ̸∈ D

)
≤ |Sπ| min

(e,e−)∈Sπ

P
(
(e, e−) ̸∈ D

)
≤ mCπ(1− cwcπ)

N .

(25)

We then consider the weight estimation process in Phase 2, supposing that the underlying hypergraph H1 recovered in Phase
1 satisfies H ∼ H0 and the isomorphism mapping from H to H0 as ϕ. Notice that if we replace M with M0 in Algorithm 3,
the estimated weight function w satisfies w(e) = w0(ϕ(e)) for all e ∈ E . Since we train by MM with cross-entropy loss, we
have

M(e | e−) =
∑N

t=1

∑K
k=1 1(etk = e, e−tk = e−)∑

e∈E
∑N

t=1

∑K
k=1 1(etk = e, e−tk = e−)

. (26)

We first consider only randomness over sampling masked hyperedges for given hyperedges. Denote the number of e in
{et}Nt=1 by fN (e). For any e ∈ E , e− ∼ π(· | e) and ϵ1 > 0, we have

P

(∣∣∣∣∣ 1

NK

N∑
t=1

K∑
k=1

1(etk = e, e−tk = e−)− fN (e)

N
π(e− | e)

∣∣∣∣∣ ≥ fN (e)

N
π(e− | e)ϵ1

)

=P

(∣∣∣∣∣ 1K
K∑

k=1

[
1

N

N∑
t=1

1(etk = e, e−tk = e−)

]
− fN (e)

N
π(e− | e)

∣∣∣∣∣ ≥ fN (e)

N
π(e− | e)ϵ1

)
(a)

≤2 exp

[
−2K

(
fN (e)

N
π(e− | e)ϵ1

)2
]
,

(27)

where the inequality (a) is due to Hoeffding’s inequality. By union bound, we have

P

(
∃(e, e−),

∣∣∣∣∣ 1

NK

N∑
t=1

K∑
k=1

1(etk = e, e−tk = e−)− fN (e)

N
π(e− | e)

∣∣∣∣∣ ≥ fN (e)

N
π(e− | e)ϵ1

)

≤
∑

(e,e−)

2 exp

[
−2K

(
fN (e)

N
π(e− | e)ϵ1

)2
]
.

(28)

When
∣∣∣ 1
NK

∑N
t=1

∑K
k=1 1(etk = e, e−tk = e−)− fN (e)

N π(e− | e)
∣∣∣ ≥ fN (e)

N π(e− | e)ϵ1 holds for all pairs of (e, e−), for

any e, e′ such that e ↔ e′ with e− being the common masked hyperedge, we have∣∣∣∣ w̃(e)w̃(e′)
− fN (e)

fN (e′)

∣∣∣∣ = ∣∣∣∣M(e | e−)π(e− | e′)
M(e′ | e−)π(e− | e)

− fN (e)

fN (e′)

∣∣∣∣
≤
(
1 + ϵ1
1− ϵ1

− 1

)
fN (e)

fN (e′)

=ϵ2
fN (e)

fN (e′)
,

(29)

where ϵ2 := 1+ϵ1
1−ϵ1

− 1 = 2ϵ1
1−ϵ1

. This implies

(1− ϵ2)
fN (e)

fN (e′)
≤ w̃(e)

w̃(e′)
≤ (1 + ϵ2)

fN (e)

fN (e′)
. (30)
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By Assumption 5.5, for any e ∈ E , there exists a path einit = e(1) ↔ · · · ↔ e(ℓ) = e, ℓ ≤ L and we have

(1− ϵ2)
L fN (e)

fN (einit)
≤ w̃(e)

w̃(einit)
= w̃(e) ≤ (1 + ϵ2)

L fN (e)

fN (einit)
. (31)

Notice that

w(e) =
w̃(e)∑

e′∈E w̃(e
′)

=
w̃(e)/w̃(einit)∑

e′∈E w̃(e
′)/w̃(einit)

∈
[
(1− ϵ2)

L

(1 + ϵ2)L
· fN (e)

N
,
(1 + ϵ2)

L

(1− ϵ2)L
· fN (e)

N

] (32)

We then obtain

∥w − w0 ◦ ϕ∥1 =
∑
e∈E

|w(e)− w0(ϕ(e))|

=
∑
e∈E

∣∣∣∣w(e)− fN (e)

N
+

fN (e)

N
− w0(ϕ(e))

∣∣∣∣
≤
∑
e∈E

∣∣∣∣w(e)− fN (e)

N

∣∣∣∣+∑
e∈E

∣∣∣∣fN (e)

N
− w0(ϕ(e))

∣∣∣∣
(a)

≤
[
(1 + ϵ2)

L

(1− ϵ2)L
− 1

]∑
e∈E

fN (e)

N
+
∑
e∈E

∣∣∣∣fN (e)

N
− w0(ϕ(e))

∣∣∣∣
(b)
=

[
(1 + ϵ2)

L

(1− ϵ2)L
− 1

]
+
∑
e∈E

∣∣∣∣fN (e)

N
− w0(ϕ(e))

∣∣∣∣ ,

(33)

where the inequality (a) is due to (32) and the equality (b) is due to
∑

e∈E fN (e) = N . Note that (1+ϵ2)
L

(1−ϵ2)L
− 1 ≤ ϵ

2 if
ϵ1 ≤ ϵ

64L for ϵ sufficiently small. By (33) and Lemma A.2, with ϵ1 = ϵ
64L , we have

P (E1 ∧ ∥w − w0 ◦ ϕ∥1 ≥ ϵ)

≤P

(∑
e∈E

∣∣∣∣fN (e)

N
− w0(ϕ(e))

∣∣∣∣ ≥ ϵ

2

)
+ P

(∑
e∈E

∣∣∣∣fN (e)

N
− w0(ϕ(e))

∣∣∣∣ ≤ ϵ

2

∧∃(e, e−),

∣∣∣∣∣ 1

NK

N∑
t=1

K∑
k=1

1(etk = e, e−tk = e−)− fN (e)

N
π(e− | e)

∣∣∣∣∣ ≥ fN (e)

N
π(e− | e)ϵ1

)

≤
∑

(e,e−)

2 exp

[
−2K

(
fN (e)

N
π(e− | e)ϵ1

)2
]
+ 2m exp

(
−Nϵ2

8m

)
(a)

≤
∑

(e,e−)

2 exp

[
−2K

(cw
2
π(e− | e)ϵ1

)2]
+ 2m exp

(
−Nϵ2

8m

)

≤2mCπ exp

[
−2K

( cwcπ
128L

ϵ
)2]

+ 2m exp

(
−Nϵ2

8m

)
,

(34)

where the inequality (a) is due to fN (e)
N ≥ cw − ϵ

2 ≥ cw
2 when

∑
e∈E

∣∣∣ fN (e)
N − w0(ϕ(e))

∣∣∣ ≤ ϵ
2 holds and ϵ is sufficiently

small.
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Combining (25) and (34), we have

P (∥w − w0 ◦ ϕ∥1 ≤ ϵ)

≥1− P (Ec
1)− P (E1 ∧ ∥w − w0 ◦ ϕ∥1 ≥ ϵ)

≥1−mCπ(1− cwcπ)
N − 2mCπ exp

[
−2K

( cwcπ
128L

ϵ
)2]

− 2m exp

(
−Nϵ2

8m

)
≥1− δ,

(35)

if
mCπ(1− cwcπ)

N ≤ δ

3
,

2mCπ exp

[
−2K

( cwcπ
128L

ϵ
)2]

≤ δ

3
,

2m exp

(
−Nϵ2

8m

)
≤ δ

3
.

(36)

After simplification, we have

K ≥ 214m2κ2L2

c2πϵ
2

log
6mCπ

δ
,

N ≥ max

{
2mκ

cπ
log

3mCπ

δ
,
8m

ϵ2
log

6m

δ

}
.

(37)

A.4. Proof of Proposition 6.1

Proposition 6.1 is directly implication of Theorem 5.6 in the multimodal model with the prior entity alignment ϕ∗. More
concretely, we can generate a dataset D′ = ϕ∗(D1) ∪D2 with N ′ = N1 +N2,K

′ = K1 +K2 by the entity alignment ϕ∗.
Applying Theorem 5.6 to the dataset D′, we obtain Proposition 6.1.
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B. Entity Alignment
While we show that entity alignment is feasible without labeled pairs in theory, labeled pairs are important in practice. A
possible reason is that solving the entity alignment problem is computational challenging, no known polynomial algorithms
addressing the problem. The role of the labeled pairs might be reducing the inherent complexity required to solve the
computational problem. Here are two examples of how the labeled pairs can help to solve the alignment problem more
efficiently.

Example B.1. When all m labeled pairs for the hyperedges are available, we can efficiently determine the alignment
mapping between entities by leveraging hyperedges as identifiers. More concretely, we assign a unique number as the
identifier to each hyperedge. Subsequently, each node is labeled with a tuple containing the identifiers of the hyperedges
it belongs to, arranged in descending order. The nodes within each hypergraph are then organized into sequences based
on their lexicographic order. Correspondence between entities is established through the alignment of nodes at identical
positions within these sequences. The entire alignment process is of computational complexity Õ(mn).

Example B.1 shows that we can align entities efficiently given all m labeled pairs for the hyperedges. This also means that
as long as we can find the graph matching between the line graphs of the hypergraphs, we can also align the hypergraphs
with only polynomial extra computational overhead. Therefore, we can focus on the graph matching problem of the line
graphs of the hypergraphs.

WL test serves as a potent heuristic for graph matching, demonstrating efficacy across a wide range of graphs. Nonetheless,
certain graphs challenge the capabilities of low-dimensional WL tests, leading to their failure (Cai et al., 1992). Although
higher-dimensional WL tests may achieve accurate graph matching, they impose significantly greater computational demands.
Labeled pairs could help to overcome this dilemma.

Example B.2. Frucht graph (Figure 5) is a regular graph without non-trivial automorphism (Frucht, 1939). 1-WL does not
work for Frucht graph because of its regularity. While higher-dimensional WL tests are applicable, they are significantly
less efficient. However, if a labeled pair is identified, one can exclude the nodes in the label pair from both graphs and apply
the 1-WL test to the resulting subgraphs, leading to efficient graph matching.

Figure 5. Frucht graph.
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C. Experiments
C.1. Synthetic Relational Learning

C.2. Data

C.2.1. GRAPH STRUCTURES

When the number of nodes is n, the different graph structures (Figure 6) are

• STAR:

- V = {0, 1, . . . , n− 1};
- E = {{0, i} | i = 1, . . . , n− 1};

• X:

- V = {0, 1, . . . , n− 1};
- E = {{0, k} | k = 1, 2, 3, 4} ∪ {{4i+ k, 4i+ k + 4} | 4i+ k + 4 ≤ n− 1};

• CHAIN:

- V = {0, 1, . . . , n− 1};
- E = {{i, i+ 1} | i = 0, . . . , n− 2}.

(a) STAR. (b) X. (c) CHAIN

Figure 6. Different graph structures (n = 6).

C.2.2. DATA GENERATION

Each node of the graph is attached with a token, starting from “a” and following the order of tokens of BERT’s tokenizer.
Each edge is assigned a weight, sampled from {wmin, wmax}. Specifically, we use wmin = 1.0, wmax = 1.0 for κ = 1.0,
wmin = 1.0, wmax = 10.0 for κ = 10.0, and wmin = 1.0, wmax = 100.0 for κ = 100.0 in our experiments. Then the
weights of the graph are normalized. When generating data, we first sample an edge from the graph, with probability
proportional to the the weights. We then concatenate the tokens of the edges with a random order. Tokens are separated by
spaces to avoid that they are combined by the tokenizer. For each graph, we generate 100000 samples for each graph, with
80000 samples for training, 10000 samples for validation, and 10000 samples for testing.

C.2.3. MODEL

We choose BERT as our underlying PTM. We use the implementation of HuggingFace (Wolf et al., 2020) with the default
tokenizer and the default configuration of BERT.
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C.2.4. PRE-TRAINING

We pre-train our model by MLM from scratch. For the masking strategy, we mask one of the tokens in a sample uniformly
at random. We train the model by AdamW, with the initial learning rate 2× 10−5, weight decay 0.01, the cosine scheduler.
The other hyperparameters of AdamW are the same as the default of HuggingFace TrainerArguments. We pre-train the
model for 100 epochs. Per-device training batch size is 256. The experiments are run on a server with Ubuntu. All the
models are trained on two NVIDIA GeForce RTX 3090 GPUs.

C.3. Real-World Relation Evaluation

To extract a subgraph from ConceptNet, we first choose a source entity, query for the k most related entities, and then repeat
such a process for the returned entities. We adopt a breadth-first-search-like generation process to choose a subset of entities
and construct a subgraph by considering k most related entities within these chosen entities and the generation process is
limited to some depth d (the source entity are of depth 0).

In the real-world relation evaluation, we assess the LLMs’ understanding of entity relationships by querying the k most
related entities within a specified set. We employ the prompt: “Consider the following concepts: [ENTITIES]. Suppose that
these concepts are nodes of an undirected graph. For each concept, consider [k] most related concepts. According to the
relations between these concepts, which edges should be included? Please answer with an edgelist.”, where “[ENTITIES]”
and “[k]” are placeholders for the actual entity set and the number of top-related entities, respectively. The LLMs will
generate responses comprising edgelists, potentially accompanied by additional text, which are then utilized to construct
relational graphs. See Figure 7 for an illustration. These graphs are compared with the corresponding subgraphs extracted
from ConceptNet.

Consider the following concepts: table, furniture, on, house,
room, off, building, home, space, plate. Suppose that these
concepts are nodes of an undirected graph. For each
concept, consider 2 most related concepts. According to the
relations between these concepts, which edges should be
included? Please answer with an edgelist.

(table, furniture), (table, plate), (furniture, house), (on, table),
(on, plate), (house, room), (room, furniture), (off, on), (off, table),
(building, house), (building, room), (home, house), (home,
room), (space, room), (space, building), (plate, on).

Figure 7. An example of real-world relation evaluation using GPT-4. Here, “table” is the source entity, with k = 2 indicating the two
most closely related entities considered for generating the relational graph.

Figures 8-17 are the evaluation results for all the source entities listed in Table 1.

The correspondences between the entities and the letters used in the above figures are summarized in Tables 2 and 3.

D. Additional Experiments
D.1. Additional Synthetic Relational Learning

To show the applicability of our method to general graphs and its scalability to graphs of different magnitudes we conduct
additional synthetic relational learning in random graphs and subgraphs extracted from ConceptNet.
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Table 2. The correspondences between the entities and the letters for ConceptNet (Part 1).

A B C D E F

CAKE CAKE BIRTHDAY DESSERT CELEBRATION LIZARD PARTY
DOG DOG BARK HOUSE TREE BUILDING HOME
FLY FLY INSECT BUG FLEA MEADOW WIRETAP
HUMAN HUMAN SCHOOL HOME LEARN PLACE HOUSE
JACKET JACKET COAT SHELL CLOSET MATERIAL HUSK
ORANGE ORANGE FRUIT PEEL EAT YOU SKIN
PAPER PAPER WRITE SHEET PEN BED CLOSET
SEA SEA OCEAN WATER SAIL LAKE DRINK
TABLE TABLE FURNITURE ON HOUSE ROOM OFF
ZOO ZOO ANIMAL ELEPHANT SQUIRREL CIRCUS TRUNK

Table 3. The correspondences between the entities and the letters for ConceptNet (Part 2).

G H I J K L

CAKE GARDEN ROCK - - - -
DOG PLANT GROW TOWN BANK PLACE -
FLY DOG WOOD HAYFIELD INVESTIGATION TAP -
HUMAN STUDY KNOWLEDGE LOCATION BED BUILDING -
JACKET BEDROOM CLOTHES WOOD WOOL CHAFF -
ORANGE FOOD HUNGER ME BODY MOLE -
PAPER OFFICE POCKET SLEEP FURNITURE BEDROOM CLOTHES
SEA BOAT WIND POND LIQUID BEVERAGE -
TABLE BUILDING HOME SPACE PLATE - -
ZOO RODENT BALLOON ATTIC CAR - -

D.1.1. RANDOM GRAPHS

We address synthetic relational learning tasks in random graphs of varying node counts. Specifically, we generate weighted
connected random graphs (WCGNM) with n nodes and m(n) = pn(n−1)

2 edges, selected uniformly at random. We vary
n across five different magnitudes: 10, 20, 50, 100, and200, maintaining parameters p = 0.2 and κ = 3.0 for each. Each
experimental setting is repeated 5 times. The results are presented in Figure 18.

D.1.2. SUBGRAPHS EXTRACTED FROM CONCEPTNET

We conduct synthetic relational learning tasks using relational graphs derived from ConceptNet, which represent more
intricate real-world relational structures. These subgraphs are generated similarly to the real-world relation evaluation
experiments in Section 7.2 but include additional top-related pairs for each entity to increase complexity. Specifically, we
focus on the three most related pairs of each entity. Each resulting subgraph comprises approximately 50 nodes, making
them more complex than the specific structured graphs used in the experiments of Section 7.1. The results are shown in
Figure 19.

D.2. Additional Real-World Relation Evaluation

D.2.1. RELATION EVALUATION IN WORDNET

We perform similar experiments to that in Appendix C.3 in WordNet (Miller, 1995) to show that our method can be applied
to relational learning scenarios beyond ConceptNet. Figures 20 - 24 are the evaluation results, which are summarized in
Table 6. The correspondences between the entities and the letters used in the figures are summarized in Tables 4 and 5.
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Figure 9. Dog.

D.2.2. RELATION EVALUATION WITH HYPERGRAPHS

We focus on identifying pairwise relationships rather than the full hypergraph structures in Section 7.2 primarily for the ease
of making fair comparisons between the evaluated relations and the ground truth. To the best of our knowledge, there is no
widely used database that characterizes entity relations in the form of hypergraphs. Although the evaluated hypergraphs
cannot be directly compared with an established ground truth, the recovered relations align with our common knowledge.
The PTMs are only asked to identify the two most related entities in Section 7.2. We slightly adapt the prompts to make
them recover the full hypergraph structures, instructing the PTMs to directly output the lists of hyperedges for the extracted
entities in the prompts. We find that the PTMs are capable of reconstructing relational hypergraph structures that align with
our existing knowledge. Figures 25 - 34 are the evaluation results. The correspondences between the entities and the letters
used in the figures are summarized in Tables 2 and 3.
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Figure 10. Fly.
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Figure 11. Human.
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Figure 12. Jacket.
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Figure 13. Orange.
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Figure 14. Paper.
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Figure 15. Sea.
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Figure 16. Table.
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Figure 17. Zoo.
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Figure 18. Synthetic relation learning in WCGNMs with different magnitudes.
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Figure 19. Synthetic relation learning in the subgraphs extracted from ConceptNet.

Table 4. The correspondences between the entities and the letters for WordNet (Part 1).

A B C D E F

CAKE CAKE BAR PATTY BARROOM SALOON DISH
DOG DOG FRUMP CAD BOUNDER BLACKGUARD -
FLY FLY TENT-FLY RAINFLY - - -
PAPER PAPER NEWSPAPER COMPOSITION NEWSPRINT COMPOSING CONSTITUTION
ZOO ZOO MENAGERIE FACILITY COLLECTION INSTALLATION ADEPTNESS

Table 5. The correspondences between the entities and the letters for WordNet (Part 2).

G H I J K L

CAKE DISHFUL SMASHER - - - -
DOG - - - - - -
FLY - - - - - -
PAPER PLACEMENT ESTABLISHMENT FORMATION - - -
ZOO AGGREGATION ACCUMULATION INSTALLING INSTALLMENT ADROITNESS DEFTNESS
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Table 6. Some relation evaluation results in WordNet. Similarly, the subgraphs are generated from different source entities with k = 2 and
d = 3. The dissimilarity measure is the same as that in ConceptNet.

CAKE DOG FLY PAPER ZOO

GPT-3.5 1.33 1.00 0.00 0.75 1.33
GPT-4 1.33 1.00 0.00 1.00 1.00
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Figure 20. Cake (WordNet).
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Figure 21. Dog (WordNet).
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Figure 22. Fly (WordNet).
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Figure 23. Paper (WordNet).

A

B

C
D

E

F

G

H

I
J

K

L

(a) Ground Truth

A

B

C
D

E

F

G

H

I
J

K

L

(b) GPT-3.5

A

B

C
D

E

F

G

H

I
J

K

L

(c) GPT-4

Figure 24. Zoo (WordNet).
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Figure 25. Cake.
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Figure 26. Dog.
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Figure 27. Fly.
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Figure 28. Human.
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Figure 29. Jacket.
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Figure 30. Orange.
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Figure 31. Paper.
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Figure 32. Sea.
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Figure 33. Table.
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Figure 34. Zoo.

33


