
Towards AutoAI: Optimizing a Machine Learning System with Black-box and
Differentiable Components

Zhiliang Chen 1 2 Chuan Sheng Foo 2 3 Bryan Kian Hsiang Low 1

Abstract
Machine learning (ML) models in the real world
typically do not exist in isolation. They are usu-
ally part of a complex system (e.g., healthcare
systems, self-driving cars) containing multiple
ML and black-box components. The problem of
optimizing such systems, which we refer to as au-
tomated AI (AutoAI), requires us to jointly train
all ML components together and presents a signif-
icant challenge because the number of system pa-
rameters is extremely high and the system has no
analytical form. To circumvent this, we introduce
a novel algorithm called A-BAD-BO which uses
each ML component’s local loss as an auxiliary
indicator for system performance. A-BAD-BO
uses Bayesian optimization (BO) to optimize the
local loss configuration of a system in a smaller
dimensional space and exploits the differentiable
structure of ML components to recover optimal
system parameters from the optimized configura-
tion. We show A-BAD-BO converges to optimal
system parameters by showing that it is asymptot-
ically no regret. We use A-BAD-BO to optimize
several synthetic and real-world complex systems,
including a prompt engineering pipeline for large
language models containing millions of system
parameters. Our results demonstrate that A-BAD-
BO yields better system optimality than gradient-
driven baselines and is more sample-efficient than
pure BO algorithms.

1. Introduction
Modern real-world systems that perform complex tasks in
areas such as healthcare, robotics (Karkus et al., 2019), or
even large language model (LLM) pipelines (Zhang et al.,

1Department of Computer Science, National University of Sin-
gapore, Singapore 2Institute for Infocomm Research, A*STAR,
Singapore 3Centre for Frontier AI Research, A*STAR, Singapore.
Correspondence to: Zhiliang Chen <chenzhiliang@u.nus.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

2023; Lin et al., 2024), are typically composed of multiple
interacting components, only some of which have accessible
parameters. To deploy a system effectively, we need to
optimize the system performance by jointly training system
components, a problem which we refer to as AutoAI.

Our work here considers a general system comprising both
(a) differentiable ML components (Bishop & Nasrabadi,
2006; Bruna et al., 2013; Lecun et al., 1998) containing
some accessible trainable parameters, and (b) black-box
non-ML components (i.e., without any analytical form nor
accessible parameters) (Hase et al., 2018) that are typically
too sophisticated or costly to be modeled and replaced by
a differentiable function with high fidelity (e.g., ChatGPT
used in our experiments). These components are then ar-
ranged based on some structure (e.g., a directed acyclic
graph) predefined by a practitioner to accomplish a system-
level task. For example, a healthcare system (Fig. 1) con-
tains multiple ML components (enclosed in blue) making
predictions on the health of different organs of a patient that
are reviewed by two human doctors (black-box components
represented by doctor icons). The doctors’ assessments are
then combined by an aggregation ML model to yield a di-
abetes risk score. The doctors are considered black-box
components as their decisions cannot be characterized in
an analytical form, while the models used to predict the
organs’ health and aggregate the doctors’ decisions are dif-
ferentiable ML components with trainable parameters. The
system performance is then evaluated by its accuracy in
predicting the diabetes risk score of any patient.

Figure 1. A healthcare system processes a patient’s health data
with differentiable ML components (enclosed in blue) and black-
box components (doctor icons) to produce a diabetes risk score.
We propose A-BAD-BO (orange) to optimize the system. The
notations are described in Sec. 2.2.

1

Towards AutoAI: Optimizing a Machine Learning System with Black-box and Differentiable Components

Given fixed black-box components and some input data,
adjusting the trainable parameters of each ML component
would influence the system output directly. So, optimiz-
ing the system performance would require jointly training
all ML components, which is significantly challenging in
practice as the system cannot be characterized analytically
(due to the presence of black-box components) and has an
extremely large number of trainable parameters residing in
ML components.

If no black-box components exist, an obvious approach is
to view the system as a large neural network and learn its
parameters via backpropagation to optimize its performance.
Otherwise, the system lacks an analytical form which pre-
vents the use of gradient-based techniques. To circumvent
this, a typical industry practice, which we coin as a local
approach, is to train each differentiable ML component in-
dependently with a separate dataset using model-dependent
gradient-based techniques (Lecun et al., 1998; Srivastava
et al., 2014; Vaswani et al., 2017). For example, a practi-
tioner optimizing the system in Fig. 1 would use a separate
dataset to train each ML component for predicting each
organ’s health independently. However, training every ML
component independently does not explicitly consider the
system performance nor the black-box components’ behav-
ior in the optimization process. So, global system optimality
is not guaranteed by locally optimizing its differentiable
ML components independently. We have provided rigorous
explanations and examples of this phenomenon in App. B.1.

On the other hand, a global approach treats the entire sys-
tem as a black-box function and views the system optimiza-
tion problem as a black-box optimization problem (Jones
et al., 1998) w.r.t. system parameters (in the ML compo-
nents). Bayesian optimization (BO) (Garnett, 2023; Dai
et al., 2023a) has become a popular framework to optimize
such black-box functions in many application domains such
as drug design (Pyzer-Knapp, 2018), experimental design
(Dai et al., 2023b), hyperparameter tuning (Snoek et al.,
2012), among others. Unfortunately, BO performs poorly in
high-dimensional problems (Bull, 2011; Frazier, 2018) and
ML components in modern systems contain an extremely
large number of parameters (He et al., 2016; Sanh et al.,
2019), invalidating the use of BO to optimize the system
parameters directly.

While more advanced variants of BO (Moriconi et al., 2020;
Eriksson & Jankowiak, 2021) have been developed to tackle
higher-dimensional problems, they have either failed to
scale to the dimensionality in our systems here or make
assumptions of the underlying intrinsic dimensions (Wang
et al., 2016) which may not hold in our setting. Other works
have used BO for function networks (Astudillo & Frazier,
2021) but assumed each component can be remodeled dif-
ferently, whereas our setting involves fixed ML components

and only allows adjustment of parameters. Hence, despite
incorporating the system performance explicitly into the
optimization process, global approaches do not exploit the
differentiable structure of ML components and cannot han-
dle the extreme dimensionality of parameters in our systems.

To address the system optimization problem, our work here
attains the best of both worlds (i.e., the local and global
approaches) by simultaneously leveraging the differentiable
structure of local ML components and incorporating the
global system performance into the optimization process.
To do so, we first identify a novel perspective: The local
loss of each ML component (w.r.t. a local dataset) serves
as an auxiliary indicator of the system performance. This
perspective allows us to maintain a global approach and use
BO over a much smaller-dimensional space to search for
promising local loss configurations for the system. Then,
we exploit the differentiable structure of ML components
to efficiently recover the optimal system parameters from
these promising local loss configurations, hence preserving
the benefits of local approaches. To our best knowledge, our
work in this paper is the first to adopt such a two-pronged
approach to optimize a complex ML system with black-box
and differentiable ML components. The concrete contribu-
tions of our work here can be summarized as follows:

• We introduce AutoAI, a class of problems involving the
optimization of complex systems with multiple ML and
black-box components (Sec. 2.2).

• We show how the system optimization problem can in-
terestingly be reparameterized as a bilevel optimization
problem (Sec. 3.1) capturing the relationship between the
local and global system performance. Then, we present a
novel Algorithm to optimize a complex ML system with
Black-box And Differentiable ML components using BO
called A-BAD-BO, which solves this problem efficiently
via BO over a lower-dimensional local loss space at the
outer level to optimize the system’s local loss configura-
tion (Sec 3.4). At the inner level, we devise a subroutine
(Sec. 3.3) that exploits the differentiable structure of ML
components to recover the optimal system parameters
from the optimized local loss configuration.

• By incorporating our subroutine’s estimation error as
observation noise under the BO framework, we provide
a theoretical analysis of A-BAD-BO’s convergence rate
via its cumulative regret and show that our iterative use
of the global and local approach allows us to eventually
converge to the optimal system parameters (Sec. 4).

• We use A-BAD-BO to optimize a variety of synthetic and
real-world systems found in AutoAI problems, including
a prompt engineering pipeline (Zhou et al., 2022) for
LLMs containing millions of trainable parameters, and
show that A-BAD-BO achieves better optimality than
local approaches and is more sample-efficient than global
approaches (Sec. 6).

2

Towards AutoAI: Optimizing a Machine Learning System with Black-box and Differentiable Components

2. Preliminaries
2.1. Bayesian optimization

Since our algorithm relies partially on BO, we provide an
outline of how the conventional BO algorithm can be used
to optimize a black-box objective function. Consider an un-
known objective function f : Rn 7→ R over the space
of inputs ℓ ∈ Rn. The goal is to find the minimizer
ℓ∗ ≜ argminℓ f(ℓ). In each iteration t = 1, 2, . . . , T of
BO, a selected input ℓt is queried to obtain a noisy obser-
vation ỹt ≜ f(ℓt) + ϵt with a sub-Gaussian noise ϵt (e.g.,
Gaussian or bounded noise) to form the sample (ℓt, ỹt).
Consistent with the work of Chowdhury & Gopalan (2017),
we model f as a realization of a Gaussian process (GP)
(Williams & Rasmussen, 2006) that is fully specified by its
prior mean µ(ℓ) and covariance κ(ℓ, ℓ′) for all ℓ, ℓ′ ∈ Rn
where κ is a kernel function chosen to characterize the cor-
relation of the observations between any two inputs ℓ and
ℓ′; a common choice is the squared exponential (SE) ker-
nel κ(ℓ, ℓ′) ≜ exp(−∥ℓ− ℓ′∥22/(2m2)) with a length-scale
hyperparameter m that can be learned via maximum likeli-
hood estimation. Given a column vector yt ≜ [ỹτ]

⊤
τ=1,...,t

of noisy observations at t previous inputs ℓ1, . . . , ℓt, the
posterior belief of f at any new input ℓ′ is a Gaussian distri-
bution with the following posterior mean and variance:

µt(ℓ
′) ≜ κ⊤t (ℓ

′)(Kt + λI)−1yt

σt(ℓ
′) ≜ κ(ℓ′, ℓ′)− κ⊤t (ℓ

′)(Kt + λI)−1κt(ℓ
′)

(1)

where κt(ℓ
′) ≜ [κ(ℓ′, ℓτ)]

⊤
τ=1,...,t is a column vector,

Kt ≜ [κ(ℓτ , ℓτ ′)]τ,τ ′∈1,...,t is a t × t covariance matrix,
and λ > 0 is viewed as a free hyperparameter dependent
on the problem setting (Chowdhury & Gopalan, 2017). Us-
ing (1), the BO algorithm selects the next input query ℓt+1

by optimizing an acquisition function, such as minimiz-
ing the lower confidence bound (LCB) acquisition function
(Srinivas et al., 2010): ℓt+1 = argminℓ µt(ℓ) − βt+1σt(ℓ)
with an exploration parameter βt+1. The cumulative re-
gret (for T BO iterations w.r.t. a minimization problem)
RT ≜

∑T
t=1[f(ℓt)− f(ℓ∗)] is typically used to assess the

performance of a BO algorithm theoretically (Chowdhury
& Gopalan, 2017; Tay et al., 2023) where f(ℓ∗) is the true
function minimum. A lower cumulative regret indicates a
faster convergence rate of the BO algorithm. In Sec. 3.4, we
will show how A-BAD-BO uses BO to search for promising
local loss configurations in the local loss space, concepts of
which will be introduced next. We also provide a theoretical
analysis of A-BAD-BO’s cumulative regret in Sec. 4.

2.2. AutoAI problem setting

In this subsection, we will formally define several notations
used in the AutoAI problem setting. We consider a general
system with n ML components and at least one black-box
component arranged in a directed acyclic graph; we will

discuss in App. B.3 special systems not covered by our set-
ting. Let each ML component i contain trainable parameters
θ(i) ∈ Rdi for i = 1, . . . , n where di ∈ N. For concise-
ness, let θ ≜ (θ(1), θ(2), ..., θ(n)) ∈ Rd denote all model
parameters in the system with a potentially extremely high
dimension d =

∑n
i=1 di. Since adjusting θ would directly

influence the system output, let F (x, θ) represent the system
output w.r.t. some system input x and θ such that it captures
the complex interaction between components in a system
and has no analytical form. So, given a fixed system test
dataset (xj , zj)j=1,...,N , the system loss

L(θ) ≜
∑N
j=1 loss(F (xj , θ), zj) (2)

quantifies how the system performs w.r.t. any pre-defined
loss function (e.g., predictive loss of a healthcare system).
For simplicity, we assume black-box components are noise-
less and hence, L(θ) is also noiseless (i.e., given a fixed
system test dataset and parameters, the system loss is deter-
ministic). This assumption eases our theoretical analyses
(Theorems 3.2 and 4.1) but our experiments show that A-
BAD-BO can optimize stochastic systems surprisingly well
too (Sec. 6.1). We also provide some additional discussions
in Sec. 5 related to how theoretical results in our paper could
be extended for noisy systems.

Let li be a differentiable local loss function for ML com-
ponent i (e.g., see Fig. 1) trained on a separate local
dataset for i = 1, . . . , n. For example, if g(x′, θ(i)) rep-
resents the ML component i’s output w.r.t. some input
x′ and its model parameters θ(i) trained on local dataset
(x′j , z

′
j)j=1,...,N . then the mean squared error li(θ(i)) ≜

N−1
∑N
j=1(g(x

′
j , θ

(i))− z′j)
2 is a possible local loss func-

tion defined over θ(i). So, li is differentiable w.r.t. θ(i).
Using the same example shown in Fig. 1, a liver model’s
loss function can be defined as its cross-entropy loss over an
open source liver health test dataset (Hepatitis, 1988). For
conciseness, define the vector function ℓ(θ) : Rd 7→ Rn as

ℓ(θ) ≜
(
l1(θ

(1)), l2(θ
(2)), . . . , ln(θ

(n))
)

to map the system parameters θ to a n-dimensional real-
valued vector of the local loss of every ML component
in the system. From hereon, we refer to this function’s
output as the system’s local loss configuration (shown in
Fig. 1) which lies in the local loss space. Note that the local
datasets in which the local loss configuration is obtained
from does not have to coincide with the distribution of the
system dataset. For example, a liver health dataset or a
traffic agent dataset (Helou et al., 2021) used to train a local
ML component may not have the same demographics as
the place in which a system is deployed in. This is one of
the main reasons why simply optimizing the local losses till
convergence might not necessarily lead to optimal system
performance.

3

Towards AutoAI: Optimizing a Machine Learning System with Black-box and Differentiable Components

Our goal is to solve the system optimization problem (i.e.,
AutoAI):

minθ L(θ) (3)

by jointly training the system parameters across all ML
components. As mentioned in Sec. 1, both local and global
approaches cannot solve this problem optimally as L has no
analytical form and dimension of θ is extremely large.

3. Introducing A-BAD-BO
A-BAD-BO uses the system’s local loss configuration as
an auxiliary information source to ease the difficulty of
solving problem (3). Intuitively, some relationship exists
between ℓ(θ) (i.e., ML components’ local losses) and L(θ)
(i.e., system loss) in real-world ML systems: If the local
performance of each ML component is good, then the sys-
tem performance should be good as well, even though this
relationship is not necessarily monotonic. We have provided
some empirical results in App. B.2 to validate this relation-
ship. In the next subsection, we formalize this relationship
and show how A-BAD-BO leverages this relationship to
simplify and solve problem (3) efficiently.

3.1. Problem reparameterization

To explicitly capture the relationship between local loss
configurations and the system’s performance, we show that
the system optimization problem (3) can interestingly be
reparameterized into a bilevel optimization problem:

Theorem 3.1. Let Sℓ ≜ {θ | ℓ(θ) = ℓ}. Then, θ∗ is a solu-
tion of the original system optimization problem, minθ L(θ),
iff ℓ∗ = ℓ(θ∗) is a solution of the reparameterized problem:

minℓ minθ∈Sℓ
L(θ) (4)

where ℓ ∈ Rn is a local loss configuration of the given
system with n ML components.

Its proof is in App. C.1 and shows that the solution set of θ∗

in the original problem admits a set of ℓ∗ which is exactly
the solution set of the reparameterized problem. The repa-
rameterized problem (4) describes how a change in local
loss configuration (at outer level) affects the best attainable
system performance (at inner level) and presents us with
another way to optimize a complex ML system: At the outer
level, a local loss configuration ℓ is selected in the local loss
space. At the inner level, the selected local loss configura-
tion is used to identify the set Sℓ of θ, from which the system
parameters minimizing the system loss are obtained. So, an
optimal local loss configuration ℓ∗ is one that can recover
the optimal system parameters θ∗ (for the original problem)
at the inner level. However, simply locally optimizing each
ML component to convergence does not produce an optimal
local loss configuration ℓ∗ as such a local approach does not
guarantee global system optimality, as shown in App. B.1.

Existing bilevel optimization techniques (Sinha et al., 2017)
also cannot tackle problem (4) easily because θ at the inner
level is still extremely high-dimensional and the relationship
between ℓ and the minimum of the system loss at the inner
level has no analytical form. However, this problem’s unique
nested structure allows us to novelly combine the local and
global approaches to solve it efficiently, as discussed next.

3.2. Brief algorithm description

Briefly, our algorithm, A-BAD-BO, solves the reparame-
terized problem (4) via an iterative approach (see orange
box in Fig. 1). Firstly, we introduce a simple yet effective
subroutine (Sec. 3.3) which exploits the differentiable struc-
ture of ML components (i.e., local approach) to solve the
high-dimensional inner problem, minθ∈Sℓ

L(θ). Secondly,
we model the relationship between the selected ℓ at the outer
level and the minimum of the system loss at the inner level
using a GP; this design choice will be explained in Sec. 3.4.
This allows us to use BO (i.e., global approach) to account
for any estimation error incurred by our subroutine and ef-
ficiently search for the optimal local loss configuration ℓ∗

(in a lower-dimensional local loss space) to run our subrou-
tine (Sec. 3.4) on, asymptotically recovering optimal system
parameters θ∗.

To illustrate our algorithm more concretely, consider a syn-
thetic healthcare system (i.e., a much simpler variant than
that in Fig. 1) with two sequential components represented
by a composite function g1 ◦ g2. Here, g2 is a simple ML
component with two trainable parameters θ(0) and θ(1),
which estimates a patient’s kidney health based on the kid-
ney health data. On the other hand, g1 is a doctor (i.e.,
black-box component) who looks at g2’s prediction and the
patient’s other clinical data to estimate the patient’s diabetes
risk score. Fig. 2 shows the local and system loss landscape
for this system based on the local and system test datasets.

Figure 2. Local and system loss landscape in a simple sequential
system. A-BAD-BO uses BO to find the optimal local loss con-
figuration ℓ∗. The brown region is the set Sℓ∗ of θ that attains ℓ∗.
Our subroutine recovers the optimal system parameters from Sℓ∗ .

In Fig. 2 (right), directly finding optimal system parameters
(green triangle) is challenging: The system loss landscape
has no known analytical form since g1 is black-box. More-

4

Towards AutoAI: Optimizing a Machine Learning System with Black-box and Differentiable Components

over, performing gradient descent directly on the local loss
of g2 (left) results in convergence to suboptimal system
parameters (red square). A-BAD-BO instead uses BO to
search for the optimal local loss configuration ℓ∗ in a lower-
dimensional local loss space; in this case, it is 1-dimensional
due to only one ML component. The brown region is the set
Sℓ∗ of θ which attains the optimal local loss configuration
ℓ∗. A-BAD-BO then recovers the optimal system parame-
ters from Sℓ∗ using a subroutine (Sec. 3.3) which exploits
the differentiable structure of the ML component g2.

3.3. Subroutine to solve inner optimization problem
Let ℓ ∈ Rn be a candidate local loss configuration provided
and Sℓ ≜ {θ | ℓ(θ) = ℓ}. We propose a simple yet effective
subroutine to estimate the solution of the inner problem:

θ∗ℓ ≜ argminθ∈Sℓ
L(θ) (5)

and minimum for the inner problem yℓ ≜ L(θ∗ℓ).

Inspired by previous works on distribution extremum esti-
mation (de Haan, 1981; Lee & Miller, 2022), our subroutine
samples system parameters from the set Sℓ to estimate yℓ.
To satisfy the constraint in Sℓ, we exploit the differentiable
structure of ML components: Given a local loss configura-
tion ℓ ∈ Rn, we randomly initialize θ and perform gradi-
ent descent on each ML component i’s local loss function
li(θ

(i)) w.r.t. θ(i) using appropriately chosen learning rates
(Nesterov, 2013) until the constraint ℓ(θ) = ℓ is reached;
we will discuss practical ways to reach this constraint to
a high degree of precision in Sec. 3.6. Then, this training
process is repeated k times (i.e., k is chosen beforehand) to
obtain k samples θ1, θ2, . . . , θk of system parameters such
that every sample satisfies the given constraint. Next, the
system loss L(θi) for each sample θi of system parameters
is evaluated to obtain an estimator of yℓ:

ỹ ≜ min {L(θ1), L(θ2), . . . , L(θk)} .

In particular, ỹ is positively biased but consistent, i.e., ỹ →
yℓ as k increases, as shown in Theorem 3.2. Here, each
training phase (across each ML component and sample) is
independent and can be parallelized (Li et al., 2020) with
sufficient computational budget.

By viewing the process as drawing k random samples from
the set S′

ℓ ≜ {L(θ) | ℓ(θ) = ℓ}, estimator ỹ is simply the
1st order statistic (Arnold et al., 2008) of the random sam-
ples from S′

ℓ. Consequently, we can characterize how well
ỹ estimates yℓ depending on the sampling distribution and
k. Our experiments show that the sampling distribution of
S′
ℓ generally follows the uniform or truncated exponential

distributions, as shown in App. B.4. Hence, the result below
shows the theoretical estimation error of our subroutine’s es-
timator of yℓ based on either of these sampling distributions:

Theorem 3.2. Let L(θ1), L(θ2), . . . , L(θk) be k samples
drawn randomly from the set S′

ℓ = {L(θ) | ℓ(θ) = ℓ}.
Furthermore, let S′

ℓ be lower bounded by yℓ and upper
bounded by yℓ + α for some α > 0. Then, the 1st order
statistic estimator ỹ = min{L(θ1), L(θ2), . . . , L(θk)} fol-
lows a distribution of yℓ + ϵ with a non-negative random
variable ϵ and the following holds:

• If each sample L(θi) ∼ U(yℓ, yℓ+α) for i = 1, 2, . . . , k,
then ϵ = αϵ′ with ϵ′ ∼ B(1, k) where B is the Beta
distribution.

• If each sample L(θi) ∼ yℓ + expt(λ, α) for i =
1, 2, . . . , k where expt(λ, α) is a truncated exponential
distribution governed by rate parameter λ and truncated
at α > 0, then ϵ is a random variable governed by the
probability density function

pdfϵ(u) =
λke−λu

1− e−λα

(
e−λu − e−λα

1− e−λα

)k−1

on u ∈ [0, α] .

Its proof is in App. C.2. Theorem 3.2 tells us that the
estimation error (i.e., a random variable) of our subroutine
depends on (a) the sampling distribution and (b) sampling
size k. If the sampling distribution is concentrated nearer
to the true minimum yℓ (due to smaller α or difference in
distribution type), our estimation error is more likely to be
smaller. The estimation error is also likely to be smaller
with a larger k. While the size of α depends on the problem
setting, it is usually bounded because the system loss is
usually bounded (e.g., misclassification rate) and our insight
(i.e., the system should perform reasonably well when ML
components perform well) from Sec. 3 tells us that α should
be small when each element of ℓ is relatively small. We
have also provided results in App. B.4 to show that α is not
large in empirical settings.

The advantage of the 1st order statistic estimator used in our
subroutine lies in its implementation simplicity and effec-
tiveness even if one does not know the underlying sampling
distribution. In App. B.5, we describe an alternative un-
biased estimator of yℓ and discuss why such alternative
estimators cannot recover better-performing system parame-
ters than the 1st order statistic estimator. Our experiments
(Sec. 6.1) also show that even though A-BAD-BO uses the
subroutine to sample the system loss multiple times, it is
still more sample-efficient than the other baselines.

3.4. Solving the outer optimization problem via
Bayesian optimization

In the previous subsection, we have presented a subroutine
to solve the inner problem. By viewing the inner problem
as a function f : Rn 7→ R which takes in a local loss
configuration ℓ ∈ Rn to produce the minimum of the system
loss at the inner level (that our subroutine estimates), the

5

Towards AutoAI: Optimizing a Machine Learning System with Black-box and Differentiable Components

outer optimization problem can be succinctly written as

minℓ f(ℓ).

We propose using BO (as introduced in Sec. 2.1) to solve
the outer problem for three reasons. Firstly, f is a black-box
function with no analytical form, and BO has become a prin-
cipled and popular framework to optimize black-box func-
tions (Garnett, 2023; Pyzer-Knapp, 2018); unlike original
problem (3), which is high-dimensional, objective function
f is of a much lower dimension and can be handled by BO
effectively. Secondly, f here can be shown to be continuous
(Folkman & Shapiro, 1967) and so it is appropriate for us
to model f as a realization of a GP, allowing us to perform
BO over it. Thirdly, our subroutine incurs estimation er-
rors (Theorem 3.2) so we cannot solve the inner problem
perfectly. Hence, this implies we can only obtain noisy
observations of f(ℓ) for a given ℓ; fortunately, BO handles
noisy function observations gracefully (Srinivas et al., 2010;
Chowdhury & Gopalan, 2017) during the optimization pro-
cess, still allowing us to recover optimal system parameters.
Therefore, we find BO a suitable choice for solving the outer
optimization problem.

3.5. Using A-BAD-BO to optimize complex systems

With the subroutine (local approach) introduced in Sec. 3.3
to solve the inner problem and the use of BO (global ap-
proach) in Sec. 3.4 to solve the outer problem, we now
present A-BAD-BO (Algorithm 1) which simultaneously
uses both approaches to optimize complex ML systems.

Algorithm 1 A-BAD-BO
1: Input: System parameters θ, ML component loss func-

tions ℓ(θ) and system loss function L(θ) over fixed
datasets, initial observations D0 ≜ {(ℓ0, ỹ0)}, SE ker-
nel κ, sampling size k, parameter βt for acquisition step
and total number of BO iterations T .

2: for t = 0, 1, . . . , T do
3: ℓt+1 = argminℓ µt(ℓ)− βtσt(ℓ) (acquisition step)
4: Random sample ∼ {θ | ℓ(θ) = ℓt+1} to obtain

θ1, . . . , θk.
5: θ̂∗ℓt+1

= argminθ∈{θ1,...,θk} L(θ)

6: ỹt+1 = L(θ̂∗ℓt+1
)

7: Dt+1 = Dt ∪ {(ℓt+1, ỹt+1)}
8: Update the GP posterior with Dt+1 and κ (Sec. 2.1).
9: end for

10: θ̂∗ = argminθ∈{θ̂∗ℓ0
,...,θ̂∗ℓT

} L(θ)

At iteration t, A-BAD-BO uses the LCB acquisition func-
tion (Srinivas et al., 2010) on the GP posterior to propose
a candidate local loss configuration ℓt+1 for the system
(line 3); then, we use our subroutine to solve the inner opti-
mization problem w.r.t. ℓt+1, yielding a noisy observation
ỹt+1 = yℓt+1 + ϵt+1 where yℓt+1 is the minimum for the

inner problem and ϵt+1 is the estimation error associated
with our subroutine (line 4,5 & 6). We also keep track of
θ̂∗ℓt+1

, the best system parameter we obtain for this pro-
posed configuration. Next, we include (ℓt+1, ỹt+1) in our
historical observations and update the GP posterior (line 7
and 8). After the process repeats for T iterations, we obtain
an estimate of the optimal system parameter θ̂∗ (line 10).

3.6. Practical considerations

There are several ways to improve the effectiveness of A-
BAD-BO in practice. Firstly, we can reduce the size of the
local loss space by removing regions with obvious bad local
loss configurations. For example, in a healthcare system, we
can remove any configurations where an organ prediction
model has less than 30% predictive accuracy over its local
dataset because the system is unlikely to perform well with
such bad-performing ML components. By doing so, we
can improve the effectiveness of BO in solving the outer
problem by reducing its search space over the local loss
space. Secondly, to ensure our BO procedure does not
propose unattainable local loss configurations (e.g., negative
misclassification rate) for our subroutine, we train each ML
component once w.r.t. its local dataset until convergence
and use the smallest and largest local loss attained by each
ML component (during training) as valid bounds in the local
loss space for BO (Ha et al., 2019). Thirdly, our subroutine
uses gradient descent to attain the constraint ℓ(θ) = ℓ. In
general, it is difficult to use gradient descent (with fixed
learning rate) to reach a loss value precisely (Qian, 1999).
A decaying learning rate (You et al., 2019) and state-of-
the-art optimizers in PyTorch (Imambi et al., 2021) allows
us to reach this constraint with high precision, yielding
empirically good results in our experiments (Sec. 6.1).

4. Theoretical Analysis of A-BAD-BO
A-BAD-BO uses BO to search for optimal local loss configu-
rations in the local loss space. Hence, the classic cumulative
regret given in Sec. 2.1, which does not contain observation
noise, merely indicates the quality of local loss configuration
chosen at each iteration. Equally important is how well we
can recover optimal system parameters from a given local
loss configuration (i.e., solution quality returned by subrou-
tine over a chosen ℓ). Thus, we choose to analyze the growth
of attained cumulative regret R̃T =

∑T
t=1 |ỹt − f(ℓ∗)|

where ỹt = f(ℓt) + ϵt is the output of our subroutine (a
noisy observation of f(ℓt)) for chosen ℓt at each iteration t
and ℓ∗ is the optimal local loss configuration. This regret is
more appropriate in our setting because it indicates both the
quality of local loss configuration found by the BO proce-
dure and the quality of system parameters recovered by our
subroutine. We show that if optimization objective f lies in
a Reproducing Kernel Hilbert Space (RKHS) with bounded
RKHS norm (a standard setting in BO works (Chowdhury

6

Towards AutoAI: Optimizing a Machine Learning System with Black-box and Differentiable Components

& Gopalan, 2017)), A-BAD-BO with sampling scheme of
k = t at each iteration achieves sub-linear attained regret
growth, i.e., R̃T /T → 0 as T → ∞, implying our algorithm
asymptotically converges to the optimal system parameters:

Theorem 4.1. Let S′
ℓ be the set defined in Theorem 3.2

and f be the system optimization objective with bounded
RKHS norm: ||f ||κ =

√
⟨f, f⟩κ ≤ B w.r.t. kernel κ. Then,

running A-BAD-BO over f using the IGP-LCB acquisition
function (Chowdhury & Gopalan, 2017) and sampling size
k = t at BO iteration t = 1, . . . , T with γT as the maxi-
mum information gain after T iterations yields the following
attained cumulative regret with probability at least 1− δ:

• R̃T = O
(√

T (B
√
γT + α2γT

4) + αψ(T+1)√
δ

)
if each

random sample from S′
ℓ is uniformly distributed with

width α > 0. ψ refers to the digamma function.

• R̃T = O

(√
T (B

√
γT + α2γT

4) +
√

(1−e−α)T
δ

)
if

each random sample from S′
ℓ is exponentially dis-

tributed with rate λ = 1 and truncated at α with
0 < α ≤ 1.

The proof is provided in App. C.3 and relies on deriving
the upper bound for |ỹt − f(x∗)| = |f(xt) − f(x∗) + ϵt|
at each BO iteration using standard techniques for BO with
LCB-based acquisition functions (Chowdhury & Gopalan,
2017) and using the expectation of ϵt from Theorem 3.2. For
the SE kernel, γT = O((log T)T+1) ≤ O(

√
T) (Srinivas

et al., 2010). We see that R̃T for both cases is dependent
on α: a larger α implies it is more difficult to estimate the
solution of the inner problem and so increases the attained
cumulative regret. Interestingly, due to differences in the
density of distributions, α has a smaller effect on the growth
of attained cumulative regret in the exponentially distributed
(truncated) case than the uniformly distributed case.

In practice, we may not have the computing budget to use
a sampling scheme of k = t (when BO iterations become
large, we have to train ML components and query for the sys-
tem loss many times per iteration). In an extreme case, ev-
ery system query may be computationally expensive (Snoek
et al., 2012). To mitigate this, we can choose a sampling
scheme which consumes less computing budget (e.g., fixed
k or k =

√
t). In App. C.4, we provide additional analy-

ses on how these sampling schemes would influence our
attained cumulative regret. We also investigate the effect of
varying sampling size k in our experiments (Sec. 6.2).

5. Extension to noisy ML systems
In Sec. 2.2, we have assumed that black-box components
in our system are noiseless and hence the system loss L(θ)
are also noiseless (i.e., deterministic). Some readers may

wonder how a noisy system setting would influence the
results introduced in this paper. In this section, we briefly
elaborate how our paper’s results could be extended for
noisy systems.

Firstly, we need to define the expected system loss as
L(θ)E ≜

∑N
j=1 E(loss(F (xj , θ), zj)) (notice the additional

expectation term). Following which, our reparameteriza-
tion Theorem 3.1 still holds true for the expected system
loss. However, sample i drawn from S′

ℓ in our subroutine
(Sec. 3.3) will now be observed as L(θi)E + λ, where λ
is the random variable associated with the system noise.
Unfortunately, unlike the noiseless case, each sample obser-
vation now may have a complex distribution and we cannot
easily write the estimation error distribution of our subrou-
tine’s estimator (Theorem 3.2) in closed form. For example,
if λ comes from a Gaussian distribution and each sample
L(θi)E (drawn from S′

ℓ) is uniformly distributed, then each
sample observation has a complex Bhattacharjee distribu-
tion (Bhattacharjee et al., 1963); it is not clear to us, at
this time, if our subroutine’s estimation error has a closed
form w.r.t. this sampling distribution. However, by taking
repeated samples for the same set system parameters and
taking their average, we can reduce the system noise to zero
asymptotically and hence our subroutine is still consistent
(i.e., with sufficient samples, we can recover θ∗ℓ for inner
problem (5) by reducing the system noise close to zero).

Despite the weaker theoretical results (no closed form noise
distribution) for noisy systems, we show in our experiments
that A-BAD-BO still outperforms other baselines in opti-
mizing noisy systems, highlighting our algorithm’s effec-
tiveness.

6. Experiments and Discussion
We use A-BAD-BO to optimize various synthetic and
real-world complex systems found in AutoAI problems
to demonstrate its effectiveness. We also compare the
performance of A-BAD-BO with other baselines consist-
ing of local and global approaches. We choose to op-
timize four systems consisting of multiple ML compo-
nents and black-box components arranged in a directed
acyclic graph. In Sec. 2.2, we have assumed a setting with
noiseless systems to ease our theoretical analyses. How-
ever, to make our systems more realistic, we use noisy
black-box components to make each system stochastic in
our experiments. More details on each system can be
found in App. D.1and our code can be found at https:
//github.com/chenzhiliang94/A-BAD-BO.

Our systems are: (a) Synthetic system with 9 ML compo-
nents and 3 black-box components, totaling 26 trainable
parameters. (b) MNIST system with 2 MNIST digit classi-
fiers (neural networks), 10 ML components and 2 black-box

7

https://github.com/chenzhiliang94/A-BAD-BO
https://github.com/chenzhiliang94/A-BAD-BO

Towards AutoAI: Optimizing a Machine Learning System with Black-box and Differentiable Components

(a) Synthetic (b) MNIST (c) Healthcare (d) LLM
Figure 3. Comparison of A-BAD-BO’s convergence with local (Local GD) and global (GP-LCB, TuRBO) approaches (Lower is better).

(a) Synthetic (b) MNIST (c) Healthcare (d) LLM
Figure 4. Ablation study on how sampling size k affects A-BAD-BO’s convergence rate (Lower is better).

components, totaling 1694 trainable parameters. (c) Health-
care system with 4 organ health prediction ML components,
1 aggregation component and 2 black-box components to
imitate doctors’ assessments in evaluating the prediction
from ML components, totaling 198 trainable parameters.
(d) An advanced LLM prompt engineering system (built
with similar principles as Zhou et al. (2022)) which produces
good prompts from noisy examples while incurring lower
LLM query cost. In our setting, 50% of input examples
are corrupted with noise, a commonly seen phenomenon in
real-world text data (Bolding et al., 2023). The LLM system
consists of three sequential components: an example-picker
ML component to select useful examples from an input list
of noisy examples, ChatGPT (OpenAI, 2023), a black-box
component, to generate a list of plausible prompts from the
selected examples (since fewer examples are used, lower
query cost is incurred), and a prompt-filter ML component
which performs prompt valuation and selects the most ap-
propriate prompt (w.r.t. selected examples) as the system
output. Both ML components are DistilBERT (Sanh et al.,
2019) models with 66 trainable million parameters each.

We compare A-BAD-BO with local and global approaches.
For the local approach, we independently optimize each
ML component w.r.t. its local dataset using gradient descent
(labeled Local GD in our plots). For global approaches, we
use vanilla BO with the GP-LCB acquisition function (Srini-
vas et al., 2010) (labeled GP-LCB in our plots) and a more
sophisticated trust region BO (labeled TuRBO in our plots)
introduced by Eriksson et al. (2019) over parameters of all
ML components w.r.t. the system loss. For ML components
which are large neural networks (e.g., DistilBERT in our

LLM system), performing BO over all trainable parameters
is impractical due to their extreme dimensionality; so, we
train the ML component over its local dataset till conver-
gence and perform BO only on smaller subset of trainable
parameters residing in the neural network’s output layer.

6.1. Optimality results

We use a sampling size of k = 5 for optimizing the LLM
system and k = 10 for other systems. For comparison
fairness, we use the same number of system queries in all
approaches and plot the best system loss achieved after each
system query (Fig. 3). We also use a blue dotted line to
indicate the system loss achieved by Local GD after training
each ML component (w.r.t. local datasets) till convergence.

A-BAD-BO outperforms local and global approaches.
Our results (Fig. 3) show that across all four systems, A-
BAD-BO (green line) attains a lower system loss than Local
GD (blue dotted line) within 200 system queries; this cor-
roborates our claim that A-BAD-BO achieves better system
optimality than local approaches because we explicitly incor-
porate the system loss into the optimization process (while
local approaches do not). Furthermore, A-BAD-BO attains
lower system loss than GP-LCB and TuRBO after the same
number of system queries, implying that it is more sample-
efficient as compared to conventional global approaches
(i.e., achieving better or same optimality with fewer system
queries). This occurs because unlike conventional global
approaches, A-BAD-BO uses the system’s local loss con-
figuration as an auxiliary information source to reduce the
optimization problem dimension while conventional global
approaches do not. Furthermore, as mentioned, A-BAD-

8

Towards AutoAI: Optimizing a Machine Learning System with Black-box and Differentiable Components

BO performs BO over a much lower-dimensional problem
as opposed to global approaches in a system setting (due
to problem reparameterization), leading to better optimiza-
tion performance after the same number of system queries.
Therefore, our results indicate that A-BAD-BO is superior
to both local and global approaches in optimizing complex
ML systems.

In addition, we investigated the use of alternative acquisition
functions (Wilson et al., 2018) and other early local opti-
mization termination techniques (more details and results
can be found in App. D.3 and D.4). In general, we found
that LCB acquisition function outperforms the Expected Im-
provement (EI) acquisition function and A-BAD-BO outper-
forms alternative optimization approaches related to early
stopping.

6.2. Ablation study on sampling size k

We also conduct ablation studies w.r.t. sampling size k by
running A-BAD-BO with a fixed number of BO iterations
and varying sampling size k in Fig. 4. Similarly, we compare
the resulting performance with local and global approaches
(GP-LCB omitted for plot clarity reasons because TuRBO
yields similar or better results). For comparison fairness, we
plot the convergence of TuRBO after 200 iterations (since
A-BAD-BO uses more system queries per BO iteration).

Larger k improves convergence rate of A-BAD-BO. Our
result (Fig. 4) shows that increasing k whilst keeping the to-
tal number of BO iterations fixed improves the convergence
of A-BAD-BO. This corroborates Theorem 3.2 where our
estimation error of the inner problem’s minimum decreases
with larger k. This leads to less noisy observations at each
BO iteration, improving convergence rate of A-BAD-BO.

Small sampling size can still be effective. Interestingly,
Fig. 4 also shows that for MNIST, Healthcare and LLM
systems, running A-BAD-BO with small sampling size (e.g.,
k = 1) still outperforms local and global optimization ap-
proaches. This suggests that the system’s local loss con-
figuration is a strong source of information and we do not
have to estimate the minimum of the inner problem too ac-
curately for A-BAD-BO to yield good performance. From a
theoretical perspective, this indicates that in some settings,
α is small and hence the estimation error shown in Theorem
3.2 is small despite the small sampling size. As a result,
A-BAD-BO’s regret bound is lower, allowing it to achieve
better performance than other baselines.

6.3. Varying sampling size and BO iterations together

Since the total number of system queries used in A-BAD-
BO is kT , we also investigate how varying sampling size k
and BO iteration T together affects the convergence rate of
A-BAD-BO in Fig. 5. The results show that increasing k and

(a) Synthetic (b) MNIST

(c) Healthcare (d) LLM

Figure 5. Increasing k and number of BO iterations both improves
the performance of A-BAD-BO. Moreover, for a fixed system
query budget kT , it is better to choose moderate k and T values.

T both improves A-BAD-BO’s performance. Furthermore,
given a fixed system query budget (this occurs if each system
query is considered computationally expensive (Snoek et al.,
2012)), it is better to choose a moderate sampling size and
BO iteration as compared to more extreme values (e.g., for
a system query budget of kT = 60, choosing k, T = (4, 15)
yields better performance than k, T = (2, 30) or (30, 2)).
This observation can be explained theoretically: selecting
larger sampling size k reduces the observation error at each
BO iteration but allows for fewer BO iterations T ; therefore,
a tradeoff (as shown in Fig. 5) exists between the choice of
k and T .

7. Conclusion
Our paper proposes A-BAD-BO, a novel algorithm to tackle
AutoAI problems. A-BAD-BO optimizes complex ML sys-
tems with black-box and differentiable ML components by
using BO (global approach) and exploiting the differentiable
structure of ML components (local approach). We provide
theoretical analysis of A-BAD-BO and show that it attains
superior performance in our experiments. One limitation of
A-BAD-BO is that our problem dimensionality scales with
the number of ML components in the system. Even though
systems with large number of ML components are rare in
reality, we can extend A-BAD-BO to handle systems with
extremely large number of ML components by exploiting
a system’s graphical structure (e.g., decomposing a system
into smaller sub-systems in which A-BAD-BO can be ap-
plied independently). The optimization procedure can also
be extended to federated settings (Lin et al., 2023).

9

Towards AutoAI: Optimizing a Machine Learning System with Black-box and Differentiable Components

Acknowledgements
This research is supported by the National Research Foun-
dation (NRF), Prime Minister’s Office, Singapore under its
Campus for Research Excellence and Technological En-
terprise (CREATE) programme. The Mens, Manus, and
Machina (M3S) is an interdisciplinary research group (IRG)
of the Singapore MIT Alliance for Research and Technology
(SMART) centre. This research/project is supported by the
National Research Foundation Singapore and DSO National
Laboratories under the AI Singapore Programme (AISG
Award No: AISG2-RP-2020-018). Zhiliang Chen is sup-
ported by the Institute for Infocomm Research of Agency
for Science, Technology and Research (A∗STAR).

Impact Statement
Our work presents an algorithm that is used to optimize
the performance of complex real-world systems. With the
prevalent use of complex systems in the real world (e.g.,
robotics, healthcare, finance, LLM pipelines), we find our
work impactful and important. We do not foresee any obvi-
ous negative societal consequences from our work.

References
Andriushchenko, M., D’Angelo, F., Varre, A., and Flammar-

ion, N. Why do we need weight decay in modern deep
learning?, 2023.

Arbel, J., Marchal, O., and Nguyen, H. D. On strict sub-
gaussianity, optimal proxy variance and symmetry for
bounded random variables, 2019.

Arnold, B. C., Balakrishnan, N., and Nagaraja, H. N. A first
course in order statistics. SIAM, 2008.

Astudillo, R. and Frazier, P. Bayesian optimization of func-
tion networks. In Proc. NeurIPS, volume 34, pp. 14463–
14475, 2021.

Bhattacharjee, G., Pandit, S., and Mohan, R. Dimen-
sional chains involving rectangular and normal error-
distributions. Technometrics, 5(3):404–406, 1963.

Bishop, C. M. and Nasrabadi, N. M. Pattern recognition
and machine learning, volume 4. Springer, 2006.

Bolding, Q., Liao, B., Denis, B. J., Luo, J., and Monz, C.
Ask language model to clean your noisy translation data.
arXiv:2310.13469, 2023.

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. Spec-
tral networks and locally connected networks on graphs.
arXiv:1312.6203, 2013.

Bull, A. D. Convergence rates of efficient global optimiza-
tion algorithms. Journal of Machine Learning Research,
12(88):2879–2904, 2011.

Choi, J. and Srivastava, H. Some summation formulas
involving harmonic numbers and generalized harmonic
numbers. Mathematical and computer Modelling, 54
(9-10):2220–2234, 2011.

Chowdhury, S. R. and Gopalan, A. On kernelized multi-
armed bandits. In Proc. ICML, pp. 844–853. PMLR,
2017.

Dai, Z., Lau, G. K. R., Verma, A., Shu, Y., Low, B. K. H.,
and Jaillet, P. Quantum Bayesian Optimization. In Proc.
NeurIPS, 2023a.

Dai, Z., Nguyen, Q. P., Tay, S. S., Urano, D., Leong, R.,
Low, B. K. H., and Jaillet, P. Batch Bayesian optimization
for replicable experimental design. arXiv:2311.01195,
2023b.

de Haan, L. Estimation of the minimum of a function
using order statistics. Journal of the American Statistical
Association, 76(374):467–469, 1981.

Deng, L. The mnist database of handwritten digit images
for machine learning research. IEEE signal processing
magazine, 29(6):141–142, 2012.

Eriksson, D. and Jankowiak, M. High-dimensional Bayesian
optimization with sparse axis-aligned subspaces. In Proc.
UAI, pp. 493–503. PMLR, 2021.

Eriksson, D., Pearce, M., Gardner, J., Turner, R. D., and
Poloczek, M. Scalable global optimization via local
Bayesian optimization. In Proc. NeurIPS, volume 32,
pp. 5496–5507, 2019.

Folkman, J. and Shapiro, N. On the continuity of the mini-
mum set of a continuous function. Journal of Mathemati-
cal Analysis and Applications, 17(3), 1967.

Frazier, P. I. A tutorial on Bayesian optimization.
arXiv:1807.02811, 2018.

Garnett, R. Bayesian Optimization. Cambridge Univ. Press,
2023.

Ha, H., Rana, S., Gupta, S., Nguyen, T., Venkatesh, S., et al.
Bayesian optimization with unknown search space. Proc.
NeurIPS, 32, 2019.

Hase, F., Roch, L. M., Kreisbeck, C., and Aspuru-Guzik,
A. Phoenics: a bayesian optimizer for chemistry. ACS
central science, 4(9):1134–1145, 2018.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In Proc. CVPR, pp. 770–
778, 2016.

10

Towards AutoAI: Optimizing a Machine Learning System with Black-box and Differentiable Components

Helou, B., Dusi, A., Collin, A., Mehdipour, N., Chen, Z.,
Lizarazo, C., Belta, C., Wongpiromsarn, T., Tebbens,
R. D., and Beijbom, O. The reasonable crowd: Towards
evidence-based and interpretable models of driving be-
havior. In International Conference on Intelligent Robots
and Systems (IROS), pp. 6708–6715. IEEE, 2021.

Hepatitis. Hepatitis dataset. UCI Machine Learning Reposi-
tory, 1988. DOI: https://doi.org/10.24432/C5Q59J.

Honovich, O., Shaham, U., Bowman, S. R., and Levy, O.
Instruction induction: From few examples to natural lan-
guage task descriptions. arXiv:2205.10782, 2022.

Imambi, S., Prakash, K. B., and Kanagachidambaresan, G.
Pytorch. Programming with TensorFlow: Solution for
Edge Computing Applications, pp. 87–104, 2021.

Jones, D. R., Schonlau, M., and Welch, W. J. Efficient global
optimization of expensive black-box functions. Journal
of Global Optimization, 13(4):455–492, 1998.

Karkus, P., Ma, X., Hsu, D., Kaelbling, L. P., Lee, W. S.,
and Lozano-Pérez, T. Differentiable algorithm networks
for composable robot learning. arXiv:1905.11602, 2019.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard,
R. E., Hubbard, W., and Jackel, L. D. Backpropaga-
tion applied to handwritten zip code recognition. Neural
computation, 1(4):541–551, 1989.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Lee, A. and Miller, S. J. Generalizing the german tank
problem. arXiv:2210.15339, 2022.

Lengagne, S., Ramdani, N., and Fraisse, P. Guaranteed
computation of constraints for safe path planning. In 2007
7th IEEE-RAS International Conference on Humanoid
Robots, pp. 312–317, 2007.

Li, S., Zhao, Y., Varma, R., Salpekar, O., Noordhuis, P.,
Li, T., Paszke, A., Smith, J., Vaughan, B., Damania, P.,
et al. Pytorch distributed: Experiences on accelerating
data parallel training. arXiv:2006.15704, 2020.

Lin, X., Xu, X., Ng, S.-K., Foo, C.-S., and Low, B. K. H.
Fair yet asymptotically equal collaborative learning. In
Proc. ICML, 2023.

Lin, X., Wu, Z., Dai, Z., Hu, W., Shu, Y., Ng, S.-K., Jaillet,
P., and Low, B. K. H. Use your INSTINCT: Instruction
optimization using neural bandits coupled with transform-
ers. In Proc. ICML, 2024.

Marchal, O. and Arbel, J. On the sub-gaussianity of
the beta and dirichlet distributions. arXiv preprint
arXiv:1705.00048, 2017.

Moriconi, R., Deisenroth, M. P., and Sesh Kumar, K.
High-dimensional bayesian optimization using low-
dimensional feature spaces. Machine Learning, 109:
1925–1943, 2020.

Nesterov, Y. Introductory lectures on convex optimization:
A basic course, volume 87. Springer, 2013.

OpenAI. Gpt-4 technical report, 2023.

Penrose, K. W., Nelson, A. G., and Fisher, A. G. Gener-
alized body composition prediction equations for men
using simple measurement techniques. Medicine and
Science in Sports and Exercise, 17:189, 1985.

Pyzer-Knapp, E. O. Bayesian optimization for accelerated
drug discovery. IBM Journal of Research and Develop-
ment, 62(6):2–1, 2018.

Qian, N. On the momentum term in gradient descent learn-
ing algorithms. Neural networks, 12(1):145–151, 1999.

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. Distilbert,
a distilled version of bert: smaller, faster, cheaper and
lighter. arXiv:1910.01108, 2019.

Siddhartha, M. Heart disease dataset, 2020.

Sinha, A., Malo, P., and Deb, K. A review on bilevel op-
timization: From classical to evolutionary approaches
and applications. IEEE Transactions on Evolutionary
Computation, 22(2):276–295, 2017.

Snoek, J., Larochelle, H., and Adams, R. P. Practical
bayesian optimization of machine learning algorithms.
Proc. NeurIPS, 25, 2012.

Soundarapandian, R. and Eswaran. Chronic kidney dis-
ease. UCI Machine Learning Repository, 2015. DOI:
https://doi.org/10.24432/C5G020.

Spanier, J., Oldham, K. B., and Romer, R. H. An atlas of
functions, 1988.

Srinivas, N., Krause, A., Kakade, S., and Seeger, M. Gaus-
sian process optimization in the bandit setting: No regret
and experimental design. In Proc. ICML, pp. 1015–1022,
Madison, WI, USA, 2010. Omnipress.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: a simple way to prevent
neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

11

Towards AutoAI: Optimizing a Machine Learning System with Black-box and Differentiable Components

Tay, S. S., Foo, C.-S., Urano, D., Leong, R., and Low, B.
K. H. Bayesian optimization with cost-varying variable
subsets. In Proc. NeurIPS, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Attention
is all you need. Proc. NeurIPS, 30, 2017.

Wang, Z., Hutter, F., Zoghi, M., Matheson, D., and
De Feitas, N. Bayesian optimization in a billion dimen-
sions via random embeddings. Journal of Artificial Intel-
ligence Research, 55:361–387, 2016.

Williams, C. K. and Rasmussen, C. E. Gaussian processes
for machine learning, volume 2. MIT press Cambridge,
MA, 2006.

Wilson, J. T., Hutter, F., and Deisenroth, M. P. Maximizing
acquisition functions for bayesian optimization, 2018.

You, K., Long, M., Wang, J., and Jordan, M. I. How
does learning rate decay help modern neural networks?
arXiv:1908.01878, 2019.

Zhang, A., Sheng, L., Chen, Y., Li, H., Deng, Y., Wang, X.,
and Chua, T.-S. On generative agents in recommendation.
arXiv:2310.10108, 2023.

Zhou, Y., Muresanu, A. I., Han, Z., Paster, K., Pitis, S.,
Chan, H., and Ba, J. Large language models are human-
level prompt engineers. arXiv:2211.01910, 2022.

12

Towards AutoAI: Optimizing a Machine Learning System with Black-box and Differentiable Components

A. Notations
Here, we provide a list of important mathematical notations used frequently in our paper. Some of these notations could
contain subscripts in our paper to denote the context where they are used (e.g., in BO iterations). We have defined them
accordingly in places where these notations are introduced throughout the paper and this table can be used for ease of
reference.

Table 1. Important mathematical notations used in this paper.

Notation Definition

θ(i) Trainable parameters in ML component i.
θ Trainable parameters across all ML components (also referred to as system parameters).
li(θ

(i)) Local loss function of ML component i.
ℓ(θ) Local loss vector function representing local loss function of every ML component.
L(θ) System loss w.r.t. θ.
ℓ Local loss configuration (a realization of function vector ℓ(θ)).
Sℓ The set {θ | ℓ(θ) = ℓ}.
S′
ℓ The set {L(θ) | ℓ(θ) = ℓ}.

yℓ minimum for the inner problem.
ỹ Our subroutine’s estimated minimum for the inner problem.
k Sampling size used by our subroutine.
ϵ Estimation error of our subroutine. Also treated as observation noise in A-BAD-BO under the BO framework.
f(ℓ) Function representation (with no analytical form) of outer problem. Modeled as a realization of a GP.
R̃T Attained cumulative regret after T BO iterations (exact definition found in Sec. 4).

B. Additional Discussions
B.1. Why does local component optimality not imply system optimality?

In this subsection, we will investigate why locally optimizing ML components within a system does not guarantee system
optimality. First of all, we provide empirical evidence of this phenomenon in Fig. 7a which shows that beyond a certain
point, the system loss actual increases when we continue to optimize ML components locally. Then, we investigate why this
happens by examining how real-world datasets are generated for complex systems. To begin, consider a two-component
system defined by the composite function: F = g ◦ f(θ, x) where f(θ, x) = θx (a ML component with trainable θ) and
g(x) = x2 (a black-box component) (Fig. 6). Without loss of generalization, let θ∗ = 2.1 be the “true” parameter for the
system (this assumption helps us to reason about the labeling process more concretely).

Figure 6. A simple sequential system represented by composite function F = g ◦ f(θ, x).

B.1.1. OPTIMIZATION PERSPECTIVE

We first examine this phenomenon from an optimization perspective. Consider labels generated via a noisy labeling
process for N datapoints in a system test dataset. For a given input xj with j = 1, . . . , N , the label is g ◦ f(θ∗, xj) + ϵ1
where ϵ1 is a random noise variable involved in the labeling process (e.g., human inconsistency). Now, consider another
labeling process for the local dataset of f : for the same input xj the local label is f(θ∗, xj) + ϵ2 where ϵ2 is another
random noise variable. Assuming the mean-squared error (MSE) is used, local optimization (only training ML component
w.r.t. local dataset) learns θ̂local = argminθ

∑N
j Eϵ2(f(θ∗, xj) − f(θ, xj) + ϵ2)

2. However system optimization yields

θ̂system = argminθ
∑N
j Eϵ1(g ◦ f(θ∗, xj)− g ◦ f(θ, xj) + ϵ1)

2. In general, θ̂local ̸= θ̂system because ϵ1 and ϵ2 may not be
identically distributed (this happens because not the same person may have labeled both datasets, or the system and local
dataset labeling process are not equally challenging). Furthermore, local optimization of a ML component does not account

13

Towards AutoAI: Optimizing a Machine Learning System with Black-box and Differentiable Components

for how its intermediate output is influenced by later components within the system.

Next, we demonstrate this phenomenon using a simple dataset. Let the system dataset be XL, zL = {x1, z1 =
(3, 30.2), x2, z2 = (1, 10.22)} and let the ML component local dataset be Xl, z′l = {x1, z′1 = (3, 5.5), x2, z

′
2 = (1, 3.2)}

(These are generated via noisy label generation process based on ground truth θ∗). From these datasets, local optimiza-
tion (i.e., performing gradient descent on f w.r.t. θ) yields θ̂local ≈ 1.97 while system optimization using XL, yL yields
θ̂system ≈ 1.85. This further demonstrates how local component optimality does not necessarily imply system optimality
(since they produce different optimization results).

B.1.2. COMPONENT PERTURBATION PERSPECTIVE

In reality, we also observe the phenomenon of component perturbation in real-world systems. Roughly speaking, component
perturbation refers to the phenomenon that a black-box component in the system deviates from its intended behavior.
For example, the motion-planning software in a robotic system may be constantly under feature development under the
Agile framework 1 and may not handle all challenging scenarios correctly (e.g., navigating narrow gaps due to difficulty
in computing constraints (Lengagne et al., 2007)). In another example, a human doctor playing the role of a black-box
component in a healthcare system (Fig. 1) may have some unintended bias when analyzing data. Note that such perturbations
only occur as part of the system behavior and not during the labeling process. In such cases, a ML component may need to
perform suboptimally to compensate for errors produced by black-box components.

For example, consider the case where a self-driving car’s motion-planning software (black-box component) receives
bounding boxes of pedestrians from an upstream object detection module (ML component). The motion-planning software
may have purposely enlarged the bounding boxes it receives for safety reasons (the software engineer of the motion-planning
module might have done so while the module is constantly under feature development). This enlargement corresponds
to component perturbation in the motion-planning module. As such, even if the object detection module detects objects’
bounding boxes perfectly, the self-driving car behaves too conservatively (i.e., unable to traverse gaps between pedestrians
even if there is enough space) because the motion-planning module purposely enlarges any pedestrian bounding boxes. So,
if the object detection module purposely produces bounding boxes which are slightly smaller than the actual pedestrian
(i.e., a suboptimal behavior), we actually cancel out the wrongful bounding box enlargement by the black-box component,
hence making the system behave optimally. We would like to emphasize that while this example here can be fixed by
simply correcting the wrong bounding box enlargement (if we know it exists) directly, real-world systems could contain
multiple black-box components with non-obvious perturbations, making direct corrections difficult (we do not know which
components have perturbations or if they even exist). As such, we should allow ML components in the system to correct
these perturbations automatically, eventually producing optimal system performance.

We can demonstrate this phenomenon mathematically as well. Here, we consider a case with only a single noiseless system
datapoint (we remove the index for easier reference): (z, g ◦ f(θ∗, z)) and local datapoint (for f): (z, f(θ∗, z)). These
datasets reflect what an oracle (e.g., the system owner) expects the system to behave. Now, assume black-box component g
is perturbed to g′ such that g′(z) = g(z) + ϵ where ϵ is a fixed positive error term.

Even if one manages to learn θ∗ using local optimization, the system produces a suboptimal output of g′ ◦ f(θ∗, z) =
g ◦ f(θ∗, z) + ϵ, incurring an error deviation of ϵ. This occurs because local optimization does not take into account other
components (and perturbations) within the system. However, if we consider the entire system behavior (and perturbations)
explicitly during optimization, we can learn better parameters that lead to better system performance. For example, if we are
able to find an alternative θ′ such that g ◦ f(θ∗, z)− ϵ < g ◦ f(θ′, z) < g ◦ f(θ∗, z), then we can see that a smaller error
deviation:

|g′ ◦ f(θ′, z)− y| = |g ◦ f ′(z) + ϵ− y|
= |(g ◦ f ′(z)− g ◦ f(z)) + ϵ|
< ϵ

(6)

can be achieved. As such, despite the positive error term introduced in the black-box component g, we are able to rectify
(possibly not perfectly, but better than ignoring it) it by adjusting θ accordingly. In fact, cross-model compensation was
noted informally in Karkus et al. (2019): “... allows the modules to adapt to one another and compensate for imperfect
models and algorithms ...”. Therefore, it is possible that some ML components in real-world complex systems have to

1Agile software development comes under the umbrella framework of incremental software development: https://en.
wikipedia.org/wiki/Iterative_and_incremental_development.

14

https://en.wikipedia.org/wiki/Iterative_and_incremental_development
https://en.wikipedia.org/wiki/Iterative_and_incremental_development

Towards AutoAI: Optimizing a Machine Learning System with Black-box and Differentiable Components

perform suboptimally (purposely) to compensate some errors produced by other components.

B.2. Empirical relationship between ML component local performance and system performance

In our paper, we have used the perspective: If the local performance of each ML component is good, then the system
performance should be good as well (although this relationship is neither monotonic nor has an analytical form). While this
perspective is intuitive, we provide results from our empirical experiments to support this perspective.

In our experiments, we consider systems which are stochastic in nature (caused by noisy black-box components). From
Fig. 7, we see that as we train each ML component w.r.t. its local dataset and reduce its local loss (different colored lines), the
system loss (black line) shows a decreasing trend (fluctuations are caused by system stochasticity). This demonstrates that
good ML component performance tend to lead to better system performance (although this relationship is not monotonic).

More importantly, the results show that we do not attain the optimal system loss even after each ML component has
converged after training (local approach does not guarantee system optimality). In fact, in Synthetic system, the system loss
actually increases as the ML components’ local losses decrease beyond a certain level (validating that the relationship is
non-monotonic).

(a) Synthetic system (b) MNIST system

Figure 7. How system loss changes when each ML component’s local loss is reduced via gradient descent w.r.t. a local dataset. This
demonstrates that when ML components in a system perform well, the system performs well too. However, the increasing system loss at
the end of Synthetic system demonstrates that local optimality does not imply system optimality.

B.3. Special cases of multi-component ML systems

Our problem setting considers a system with n ML components and one or more black-box components (Sec. 2.2). Under
this setting, the system does not have an analytical form and large number of parameters, making optimization difficult (our
work focuses on addressing these challenges). Here, we examine some special systems which fall outside of our problem
setting and discuss their relevancy in real-world problems.

Systems without black-box components. If a system has no black-box components and is composed entirely of ML
components arranged in some specific directed acyclic graphical manner, the entire system has an analytical form (because
each ML component has an analytical form). So, one can simply perform gradient descent over the entire system w.r.t. the
system loss to jointly train parameters residing in all ML components (just like training a neural network). Interestingly, we
note that our algorithm, A-BAD-BO, is still able to work just as fine in this setting. However, we would like to emphasize
that many real-world systems typically do contain black-box components (Zhang et al., 2023).

Systems without ML components. In our setting, we assume system parameters only reside in ML components. Hence, a
system without ML components is not relevant to our work because we do not have to optimize it. However, in our future
work we would like to consider cases where system parameters reside in black-box components as well.

Systems with overwhelming number of black-box components. If a system contains an overwhelming number (e.g.,
much more than number of ML components) of black-box components which are noisy, then the system may be extremely
stochastic. In this case, the positive relationship between each ML component’s local performance and the system’s
performance (as shown in App. 7) may not be strong. However, our algorithm, A-BAD-BO, is still able to work for
stochastic systems. In particular, our experimental results (Sec. 3) show that A-BAD-BO is able to handle stochastic systems

15

Towards AutoAI: Optimizing a Machine Learning System with Black-box and Differentiable Components

well (compared to other baselines).

B.4. Empirical sampling distributions

In this subsection, we will provide some empirical observations of the sampling set S′
ℓ defined in Theorem 3.2 that we

encountered in experiments. More details of these experiments can be found in App. D.1.

In general, we observe most sampling distribution of S′
ℓ in our experiments follows a truncated exponential distribution

(Fig. 8a) or approximately a uniform distribution (Fig. 8b). In addition, we also observe that the sampling set in practice is
small (more formally, this means α defined in Theorem 3.2 is small). This also implies the error involved in estimating
minimum of S′

ℓ is also relatively small (the exact relationship between this error and α is captured in Theorem 3.2), allowing
better convergence rate of A-BAD-BO.

(a) Truncated exponential (b) Uniform (approximately)

Figure 8. Examples of sampling distribution of S′
ℓ encountered during experiments for a particular local loss configuration ℓ recommended

by BO. For each sampled θ which satisfies ℓ(θ) = ℓ, we evaluate the system loss. A large sampling size of is used here so we can
approximately show the true sampling distribution (in real experiments, we use a much smaller sampling size). Left shows a sampling
distribution similar to the truncated exponential distribution. Right shows a sampling distribution similar to a uniform distribution.

B.5. Alternative estimator of yℓ

In Sec. 3.3, we introduced an estimator for the minimum yℓ of inner problem 5 via ỹ = min{L(θ1), L(θ2), . . . , L(θk)}.
This estimator is positively biased but it is effectiveness even without knowledge of the sampling distribution. Here, we
introduce an alternative unbiased estimator for yℓ assuming the underlying sampling distribution is a uniform distribution
with unknown width. Like previous works on estimating distribution extrema (Lee & Miller, 2022), such alternative
estimators will produce an estimate slightly smaller than the observed minimum.

Corollary B.1. Let L(θ1), L(θ2), . . . , L(θk) be k samples drawn randomly from the set S′
ℓ = {L(θ) | ℓ(θ) = ℓ}. Let

ymin be the minimum of these samples and ymax be the maximum of these samples. If sample L(θi) ∼ U(yℓ, yℓ + α) for
i = 1, 2, . . . , k, then ỹ = ymin − α

k+1 is an unbiased estimator of yℓ. Furthermore, if α is unknown, it can be estimated as
α̂ = k+1

k−1 (ymax − ymin) and ymin − α̂
k+1 is still an unbiased estimator of yℓ.

Proof. Since sample L(θi) ∼ U(yℓ, yℓ + α) for i = 1, 2, . . . , k, we have shown in Theorem 3.2 that ymin ∼ yℓ + αB(1, k).
Hence, we can see that

E
(
ymin −

α

k + 1

)
= yℓ + αE(B(1, k))− α

k + 1

= yℓ + α

(
1

k + 1

)
− α

k + 1

= yℓ

(7)

16

Towards AutoAI: Optimizing a Machine Learning System with Black-box and Differentiable Components

where we have used the fact that E(B(1, k)) = 1
1+k . Hence, ỹ = ymin − α

k+1 is an unbiased estimator of yℓ.

Next, it is sufficient to prove that α̂ is an unbiased estimator of α. First, notice that E(ymax) = yℓ+αE(B(k, 1)) = yℓ+
kα
k+1 .

Then, we have that

E(α̂) =
k + 1

k − 1
(E(ymax)− E(ymin))

=
k + 1

k − 1
(yℓ +

kα

k + 1
− yℓ −

α

k + 1
)

= α.

(8)

Hence, α̃ is an unbiased estimator of α. By linearity of expectation and (7), it follows that E(ymin − α̂
k+1) is also an unbiased

estimator of yℓ.

Although this estimator is unbiased, it requires us to know the underlying distribution (in this case, a uniform distribution).
For general distribution families, an unbiased estimator may not have a closed form solution and is difficult to construct (in
fact, these estimators may result in nonsensical minimum loss estimates such as negative accuracies in our problem setting).
Last but not least, such alternative estimators of yℓ are not that useful because they do not recover the system parameters θ∗

which practitioners can actually use for their systems. For example, for our alternative estimator we do not know which
system parameters actually correspond to our estimate ỹ = ymin − α

k+1 . Eventually, we can only use the sample which had
the smallest observed system loss to retrieve usable system parameters (which is actually just the 1st order statistic estimator
used in A-BAD-BO). Hence, we argue that relying on the simple 1st order statistic estimator in Theorem 3.2 as an estimator
is a more practical choice.

C. Proofs
C.1. Proof of Theorem 3.1

Theorem 3.1. Let Sℓ ≜ {θ | ℓ(θ) = ℓ}. Then, θ∗ is a solution of the original system optimization problem, minθ L(θ), iff
ℓ∗ = ℓ(θ∗) is a solution of the reparameterized problem:

minℓ minθ∈Sℓ
L(θ) (4)

where ℓ ∈ Rn is a local loss configuration of the given system with n ML components.

Proof. We prove Theorem 3.1 via two steps. First, we introduce Lemma C.1 to show that we can reparameterize any
optimization problem minx f(x) (while retaining the solution set exactly) under regular assumptions. Second, we show that
our problem setting satisfies these assumptions, allowing us to apply the Lemma C.1 directly.

Lemma C.1. Let x ∈ Rd and y ∈ Rn. Also, consider well-defined functions f over Rd −→ R and g over Rd −→ Rn. Then
x∗ is a solution of argminx f(x) if and only if y∗ = g(x∗) is a solution of the second optimization problem over domain
{y | ∃x, g(x) = y} :

min
y

min
x

f(x)

s.t. g(x) = y

Proof. We prove Lemma C.1 by showing that ⇐⇒ (if and only if implication) holds true w.r.t. both statements. To begin,
let x, y ∈ Rn. Let f and g be well-defined functions over Rn −→ R and Rn −→ Rn respectively (the term ”well-defined”
here implies that ∀a ∈ Rn, f(a) and g(a) both produce unique function values).

(⇒) If x∗ is the solution of minx f(x), then because g is well-defined, there exists a corresponding g(x∗) ∈ Rn. We want
to show that y∗ = g(x∗) is the solution to the following reparameterized optimization problem:

min
y

min
x

f(x)

s.t. g(x) = y,

17

Towards AutoAI: Optimizing a Machine Learning System with Black-box and Differentiable Components

To show this, consider any y′ ̸= g(x∗) such that Sy′ = {x′; g(x′) = y′} ≠ ∅. It is clear that ∀x′ ∈ Sy′ , f(x
′) ≥ f(x∗)

because x∗ is the global minimizer of f . Thus, g(x∗) must be a solution for the reparameterized optimization problem.

(⇐) Conversely, if y∗ is the solution for the reparameterized optimization problem. Then consider the set Sy∗ = {x; g(x) =
y∗} (This set is non-empty by definition, since y∗ is the solution and hence there exists x such that g(x) = y∗). Let x∗ =
argminx∈Sy∗ f(x). By definition that y∗ is the solution of the reparameterized problem, minx∈Sy∗ f(x) ≤ minx∈Sy′ f(x)

for all y′ ̸= y∗. Therefore, x∗ must be a minimizer of f and a solution of minx f(x).

Our reparameterization theorem can be proven fairly straightforwardly by applying the result of Lemma C.1. First, we
observe that ℓ(θ) which represents the local loss function of every ML component in the system (Sec. 2.2) and L(θ) which
represents the system loss are clearly well defined functions (i.e., they are valid functions where for any θ, they produce
unique loss values). Second, we simply replace the functions L with f and ℓ with g and observe that our reparameterized
problem Equation (4) in Theorem 3.1 reduces to the form in Lemma C.1.

C.2. Proof of Theorem 3.2

Theorem 3.2. Let L(θ1), L(θ2), . . . , L(θk) be k samples drawn randomly from the set S′
ℓ = {L(θ) | ℓ(θ) = ℓ}. Further-

more, let S′
ℓ be lower bounded by yℓ and upper bounded by yℓ + α for some α > 0. Then, the 1st order statistic estimator

ỹ = min{L(θ1), L(θ2), . . . , L(θk)} follows a distribution of yℓ+ϵ with a non-negative random variable ϵ and the following
holds:

• If each sample L(θi) ∼ U(yℓ, yℓ +α) for i = 1, 2, . . . , k, then ϵ = αϵ′ with ϵ′ ∼ B(1, k) where B is the Beta distribution.
• If each sample L(θi) ∼ yℓ + expt(λ, α) for i = 1, 2, . . . , k where expt(λ, α) is a truncated exponential distribution

governed by rate parameter λ and truncated at α > 0, then ϵ is a random variable governed by the probability density
function

pdfϵ(u) =
λke−λu

1− e−λα

(
e−λu − e−λα

1− e−λα

)k−1

on u ∈ [0, α] .

Proof. Our proof considers a simple probability scenario: Let X1, X2, . . . , Xk be k samples randomly drawn from a
sampling distribution and Xmin = min{X1, X2, . . . , Xk}. This scenario mirrors the setting in Theorem 3.2. Our goal is to
derive the distribution of Xmin and show that it is exactly the same as the distribution of ỹ shown in the Theorem 3.2.

(a) If Xi ∼ U(yℓ, yℓ + α), then the cumulative density function (CDF) of Xmin is

cdf(Xmin)(u) = 1− P(Xmin ≥ u)

= 1− P(X1 ≥ u,X2 ≥ u, . . . ,Xk ≥ u)

= 1−
(
1− u− yℓ

α

)k
, yℓ ≤ u ≤ yℓ + α.

and the probability density function (PDF) can be computed as

pdf(Xmin)
(u) =

∂

∂u

(
1−

(
1− u− yℓ

α

)k)

=
k

α

(
1− u− yℓ

α

)k−1

which is exactly equals to the PDF of a random variable yℓ + αϵ′ with ϵ′ ∼ B(1, k).

(b) If Xi ∼ expt(λ, α), we first note that the CDF of any truncated distribution on [0, α] is F (u)−F (0)
F (α)−F (0) where F is the CDF

of the original untruncated distribution. Also, we note that for the exponential distribution, F (u) = 1− e−λu. Hence, The
CDF of Xmin is

18

Towards AutoAI: Optimizing a Machine Learning System with Black-box and Differentiable Components

cdf(Xmin)(u) = 1− P(Xmin ≥ u)

= 1− P(X1 ≥ u,X2 ≥ u, . . . ,Xk ≥ u)

= 1−
(
1− 1− e−λu

1− e−λα

)k
, yℓ ≤ u ≤ yℓ + α.

and hence the PDF of Xmin can be computed as

pdf(Xmin)
(u) =

∂

∂u
F(Xmin)(u)

=
λke−λu

1− e−λα

(
e−λu − e−λα

1− e−λα

)k−1

.

C.3. Proof of Theorem 4.1

Theorem 4.1. Let S′
ℓ be the set defined in Theorem 3.2 and f be the system optimization objective with bounded RKHS

norm: ||f ||κ =
√
⟨f, f⟩κ ≤ B w.r.t. kernel κ. Then, running A-BAD-BO over f using the IGP-LCB acquisition function

(Chowdhury & Gopalan, 2017) and sampling size k = t at BO iteration t = 1, . . . , T with γT as the maximum information
gain after T iterations yields the following attained cumulative regret with probability at least 1− δ:

• R̃T = O
(√

T (B
√
γT + α2γT

4) + αψ(T+1)√
δ

)
if each random sample from S′

ℓ is uniformly distributed with width α > 0.
ψ refers to the digamma function.

• R̃T = O

(√
T (B

√
γT + α2γT

4) +
√

(1−e−α)T
δ

)
if each random sample from S′

ℓ is exponentially distributed with rate

λ = 1 and truncated at α with 0 < α ≤ 1.

Proof. We provide the proof of the sub-linear R̃T growth of A-BAD-BO in Theorem 4.1 by establishing upper bounds of
|µt(x)− f(x)| and ϵt separately at each BO iteration t. To do so, we introduce the following two Lemmas.

Our first Lemma is taken from from known literature on Kernelized Bandits (Chowdhury & Gopalan, 2017) and provides
the upper bound on difference between f(xt) and µt(x) at each BO iteration t.

Lemma C.2. Let ||f ||κ =
√
⟨f, f⟩κ ≤ B. Also, assume that the observation noise associated with each BO iteration is

R-sub-Gaussian with R > 0. Then with probability at least 1− δ, the following holds for BO iteration t ≤ T :

|µt(x)− f(x)| ≤
(
B +R

√
2(γt + 1 + ln(1/δ)

)
σt(x) (9)

where γt is the maximum information gain after t observations and µt(x), σ2
t (x) are mean and variance of posteror

distribution of GP defined in Equation 1, with λ = 1 + 2/T .

Our second Lemma attempts to bound the expectation and variance of ϵt, the non-negative observation noise (in our case, it
corresponds to the estimation error involved in solving the inner problem) at each BO iteration t. Similiar to Theorem 3.2,
we assume ϵt belongs to one of two random distribution families.

Lemma C.3. Let S′
ℓ and ϵt be that defined in Theorem 3.2 with k = t. Then

(a) If ϵt ∼ αB(1, t), then E(ϵt) = α
1+t and Var(ϵt) =

α2t
(t+1)2(t+2) .

(b) If ϵt is a random variable governed by probability density function fϵt(u) =
λte−λu

1−e−λα

(
e−λu−e−λα

1−e−λα

)t−1

with 0 < α ≤ 1,

λ = 1 and u ∈ [0, α], then E(ϵt) ≤ 4(1−e−α)
t+1 and Var(ϵt) ≤ E(ϵt).

19

Towards AutoAI: Optimizing a Machine Learning System with Black-box and Differentiable Components

Proof. (a) For the case where ϵt ∼ αB(1, t), its expectation and variance are well known results for Beta distributions.

(b) For fϵt(u) =
λte−λu

1−e−λα

(
e−λu−e−λα

1−e−λα

)t−1

with 0 < α < 1, λ = 1 and u ∈ [0, α], we have

E(ϵt) =
∫ α

0

ufϵt(u) du

=

∫ α

0

ute−u

1− e−α

(
e−u − e−α

1− e−α

)t−1

du

=
t

(1− e−α)t

∫ α

0

ue−u
(
e−u − e−α

)t−1
du

(1)

≤ t

(1− e−α)t

∫ α

0

u
(
e−u − e−α

)t−1
du

(2)

≤ t

(1− e−α)t

∫ α

0

u
(
1− u

2
− e−α

)t−1

du

(3)
=

4t

(1− e−α)t

(
−
u(1− e−α − u

2)

2t
−

(1− e−α − u
2)
t+1

t(t+ 1)

) ∣∣∣∣∣
u=α

u=0

≤ 4(1− e−α)

t+ 1

(10)

where
(1)

≤ makes use of the fact that e−α ≤ 1 for α > 0,
(2)

≤ uses the inequality e−u ≤ 1− u
2 for u ∈ [0, α], and α ≤ 1 and

(3)
= is derived via solving the definite integral by parts.

Next, the upper bound of the variance of ϵt can be derived by observing that

Var(ϵt) =

∫ α

0

u2fϵt(u) du

(1)

≤ α

∫ α

0

ufϵt(u) du

(2)

≤
∫ α

0

ufϵt(u) du

= E(ϵt)

(11)

where
(1)

≤ makes use of the fact that ϵt lies in [0, α] and
(2)

≤ makes use of the fact that 0 < α ≤ 1. This completes the proof
on the bounds on E(ϵt) and Var(ϵt).

We are now ready to prove Theorem 4.1. First, we observe that xt at each BO iteration t is chosen via the IGP-LCB
acquisition function (i.e., xt = argminx µt−1(x) − βtσt−1(x) and βt = B + R

√
2(γt−1 + 1 + ln(1/δ)) where the

observation noise associated with each BO iteration is R-sub Gaussian). Thus, we can see that at each iteration t ≥ 1, we
have −µt−1(xt) + βtσt−1(xt) ≥ −µt−1(x

∗) + βtσt−1(x
∗). It then follows that for all t ≥ 1 and with probability at least

1− δ,

|f(xt)− f(x∗)|
(1)

≤ f(xt)− µt−1(x
∗)− βtσt−1(x

∗)

(2)

≤ f(xt)− µt−1(xt) + βtσt−1(xt)

≤ βtσt−1(xt) + |µt−1(xt)− f(xt)|
≤ 2βtσt−1(xt)

(12)

20

Towards AutoAI: Optimizing a Machine Learning System with Black-box and Differentiable Components

where
(1)

≤ makes use of Lemma C.2,
(2)

≤ holds by the design of the acquisition function where we select xt over x∗ at BO
iteration t.

21

Towards AutoAI: Optimizing a Machine Learning System with Black-box and Differentiable Components

Therefore, it follows that our attained cumulative regret can be bounded as

R̃T =

T∑
t=1

|ỹt − f(x∗)|

=

T∑
t=1

|f(xt)− f(x∗) + ϵt|

(1)
=

T∑
t=1

|f(xt)− f(x∗)|+
T∑
t=1

ϵt

(2)

≤ 2βT

T∑
t=1

σt−1(xt) +

T∑
t=1

ϵt

(3)
= 2

(
B +R

√
2(γT + 1 + ln(1/δ))

) T∑
t=1

σt−1(xt) +

T∑
t=1

ϵt

(4)

≤ 2
(
B +R

√
2(γT + 1 + ln(1/δ))

) T∑
t=1

σt−1(xt) +

T∑
t=1

E(ϵt) +
T∑
t=1

√
Var(ϵt)

δ

(5)
= 2

(
B +R

√
2(γT + 1 + ln(1/δ))

)
O(
√
TγT) +

T∑
t=1

E(ϵt) +
T∑
t=1

√
Var(ϵt)

δ

= O
(√

T (B
√
γT +RγT)

)
+

T∑
t=1

E(ϵt) +
T∑
t=1

√
Var(ϵt)

δ

(6)
= O

(√
T (B

√
γT +

α2γT
4

)

)
+

T∑
t=1

E(ϵt) +
T∑
t=1

√
Var(ϵt)

δ

(13)

where

•
(1)
= uses the fact that ϵt is non-negative in our problem setting (Theorem 3.2).

•
(2)

≤ is derived from Eq. (12).

•
(3)
= uses the definition of βT in IGP-LCB acquisition function (Chowdhury & Gopalan, 2017).

•
(4)

≤ uses Chebyshev’s inequality over ϵt.

•
(5)
= uses the fact that

∑T
t=1 σt−1(xt) ≤ O(

√
TγT) as shown in Lemma 4 by Chowdhury & Gopalan (2017).

•
(6)
= uses the fact that ϵt is bounded on [0, α] and all such bounded random variables are sub-Gaussian with proxy
variance R = α2

4 (Arbel et al., 2019). In fact, this variance proxy can be refined further to α2

4(2+t) for Beta-distributed
ϵt (Marchal & Arbel, 2017).

Next, we will bound
∑T
t=1 E(ϵt) +

∑T
t=1

√
Var(ϵt)

δ using the expectation and variance of ϵt defined in Lemma C.3. This
bound clearly depends on the distribution of ϵt (which is dependent on the distribution of S′

ℓ).

22

Towards AutoAI: Optimizing a Machine Learning System with Black-box and Differentiable Components

(A) If S′
ℓ is uniformly distributed with width α, then with probability 1− δ we have

T∑
t=1

E(ϵt) +
T∑
t=1

√
Var(ϵt)

δ

(1)
=

T∑
t=1

α

1 + t
+

T∑
t=1

√
α2t

δ(1 + t)2(2 + t)

≤
T∑
t=1

α

1 + t
+

T∑
t=1

α√
δ(1 + t)

(2)
= O

(
αψ(T + 1)√

δ

)
(14)

where
(1)
= makes use of Lemma C.3 (for uniform case) directly and

(2)
= makes use of the fact that

∑T
t=1

1
t = ψ(T + 1) + e

(Spanier et al., 1988) for digamma function ψ. With the previous results shown in (13), this completes the proof on the
attained regret bound of A-BAD-BO in Theorem 4.1 for the case of uniformly distributed S′

ℓ.

(B) If S′
ℓ is exponentially distributed and truncated at α > 0 with rate λ = 1, then with probability 1− δ we have

T∑
t=1

E(ϵt) +
T∑
t=1

√
Var(ϵt)

δ

(1)

≤
T∑
t=1

4(1− e−α)

t+ 1
+

T∑
t=1

√
4(1− e−α)

δ(t+ 1)

(2)

≤ 4(1− e−α)(ψ(T + 1) + e) +

T∑
t=1

√
4(1− e−α)

δ(t+ 1)

= 4(1− e−α)(ψ(T + 1) + e) +

√
4(1− e−α)

δ

T∑
t=1

1√
t+ 1

(3)

≤ 4(1− e−α)(ψ(T + 1) + e) +

√
4(1− e−α)

δ
2
√
T

= O (ψ(T + 1)) +O

(√
(1− e−α)T

δ

)

(15)

where
(1)

≤ makes use of Lemma C.3 (for truncated exponential case) directly,
(2)

≤ again uses the fact that
∑T
t=1

1
t =

ψ(T + 1) + e (Spanier et al., 1988) and
(3)

≤ uses the fact that
∑T
t=1

1√
t
≤ 2

√
T . Since the second term is of a larger growth

rate, we can regard the bound as O
(√

(1−e−α)T
δ

)
. With the previous results shown in Equation 13, this completes the

proof on the attained regret bound of A-BAD-BO in Theorem 4.1 for the case of exponential (truncated) distributed S′
ℓ.

C.4. Effect of other sampling schemes on regret bounds

In real life settings, it may be computationally expensive to adopt a linearly increasing sampling scheme (e.g., k = t) for
large BO iterations. In the extreme case, every system query may be computationally expensive and hence, a fixed sampling
size (or a sub-linear sampling scheme) can be chosen prior to the algorithm to reduce computational cost. We provide two
additional analyses with a sampling scheme of fixed k and k =

√
t (for each iteration t). Corollary C.4 and C.5 tell us that

(a) with a fixed sampling size, A-BAD-BO eventually converges to a certain range of the minimum system loss and (b) with
a sampling scheme of k =

√
t, A-BAD-BO still achieves sub-linear regret growth.

Corollary C.4. Following the conditions laid out in Theorem 4.1 but with fixed sampling size k at each BO iteration
t = 1, . . . , T , A-BAD-BO yields with probability at least 1− δ:

• lim
T−→∞

R̃T
T

≤ α

1 + k
+ α

√
k

δ(k + 1)2(k + 2)
if S′

ℓ is uniformly distributed with width α > 0.

• lim
T−→∞

R̃T
T

≤ 4(1− e−α)

k + 1
+ 2

√
1− e−α

δ(k + 1)
if S′

ℓ is exponentially distributed and truncated at 0 < α ≤ 1 and rate

λ = 1.

23

Towards AutoAI: Optimizing a Machine Learning System with Black-box and Differentiable Components

Proof. First, (13) has shown that R̃T ≤ O
(
B
√
TγT +

√
TγT (γT + 1 + ln(1/δ))

)
+
∑T
t=1 E(ϵt) +∑T

t=1

√
Var(ϵt)

δ . Hence, lim
T−→∞

R̃T
T

= lim
T−→∞

1

T

(
T∑
t=1

E(ϵt) +
T∑
t=1

√
Var(ϵt)

δ

)
due to the sub-linear growth of

O
(
B
√
TγT +

√
TγT (γT + 1 + ln(1/δ))

)
. Furthermore, since sampling size k is fixed, it follows from Lemma C.3

that ϵt = ϵk for every BO iteration t (i.e., the error term is identical at each iteration). Hence, we have

lim
T−→∞

R̃T
T

≤ lim
T−→∞

1

T

(
T∑
t=1

E(ϵt) +
T∑
t=1

√
Var(ϵt)

δ

)

= lim
T−→∞

1

T

(
TE(ϵk) + T

√
Var(ϵk)

δ

)

= E(ϵk) +
√

Var(ϵk)

δ
.

(16)

Finally, we again use Lemma C.3 to see that if S′
ℓ is uniformly distributed with width α > 0, then E(ϵk) +

√
Var(ϵk)

δ =

α
1+k + α

√
k

δ(k+1)2(k+2) . If S′
ℓ is truncated exponentially distributed with 0 < α ≤ 1 and rate λ = 1, E(ϵk) +

√
Var(ϵk)

δ =

4(1−e−α)
k+1 + 2

√
1−e−α

δ(k+1) . This concludes the proof of the regret-growth of A-BAD-BO with fixed sampling size k.

Therefore, if a practitioner decides to use a fixed sampling size, they would make a decision on what range they want to be
within the optimal system loss and pick an appropriate k which satisfies this range using Corollary C.4 (e.g., for the uniform
distribution case with α = 1, we can pick k ≈ 10 to get within a 0.1 range of the minimum system loss).

Our next Corollary shows that the attained cumulative regret of A-BAD-BO is still sub-linear w.r.t. a sampling scheme of
k =

√
t at each BO iteration t:

Corollary C.5. Following the conditions laid out in Theorem 4.1 but with sub-linear sampling scheme of k =
√
t at each

BO iteration t = 1, . . . , T , A-BAD-BO yields with probability at least 1− δ:

• R̃T = O
(√

T (B
√
γT + α2γT

4) + α
√
T
δ

)
if S′

ℓ is uniformly distributed with width α > 0.

• R̃T = O

(√
T (B

√
γT + α2γT

4) + 4(1− e−α)(2
√
T) +

√
4(1−e−α)

δ H0.25
T

)
if S′

ℓ is exponentially distributed and

truncated at 0 < α ≤ 1 and rate λ = 1. H0.25
T refers to the generalized Harmonic number (Choi & Srivastava, 2011).

Proof. We again use the same results from (13) that R̃T ≤ O
(
B
√
TγT +

√
TγT (γT + 1 + ln(1/δ))

)
+
∑T
t=1 E(ϵt) +∑T

t=1

√
Var(ϵt)

δ and prove the bounds for sum of the expectation and variance of ϵt until BO iteration T .

(A) If S′
ℓ is uniformly distributed with width α and we have a sampling scheme of k =

√
t, then we have with probability

1− δ that

T∑
t=1

E(ϵt) +
T∑
t=1

√
Var(ϵt)

δ

(1)
=

T∑
t=1

α

1 +
√
t
+

T∑
t=1

√
α2

√
t

δ(1 +
√
t)2(2 +

√
t)

≤
T∑
t=1

α

1 +
√
t
+

T∑
t=1

α√
δ
√
t

(2)

≤ 2α
√
T +

2α
√
T√
δ

= O

(
α
√
T√
δ

)
(17)

24

Towards AutoAI: Optimizing a Machine Learning System with Black-box and Differentiable Components

(1)
= makes use of Lemma C.3 (for uniform case) directly and

(2)

≤ uses the fact that
∑T
t=1

1√
t
≤ 2

√
T .

(B) If S′
ℓ is exponentially distributed and truncated at α > 0 with rate λ = 1, then with probability 1− δ we have

T∑
t=1

E(ϵt) +
T∑
t=1

√
Var(ϵt)

δ

(1)

≤
T∑
t=1

4(1− e−α)√
t+ 1

+

T∑
t=1

√
4(1− e−α)

δ(
√
t+ 1)

(2)

≤ 4(1− e−α)(2
√
T) +

T∑
t=1

√
4(1− e−α)

δ(
√
t+ 1)

(3)

≤ 4(1− e−α)(2
√
T) +

√
4(1− e−α)

δ
H0.25
T

(18)

where H0.25
T is the generalized Harmonic number (Choi & Srivastava, 2011) and is sub-linear w.r.t. T.

(1)

≤ makes use of

Lemma C.3 (for truncated exponential case) directly,
(2)

≤ again uses the fact that
∑T
t=1

1√
t
≤ 2

√
T and

(3)

≤ uses the definition
of the generalized Harmonic number (Choi & Srivastava, 2011).

Corollary C.5 tells us that if we use a sampling scheme of k =
√
t, our attained regret bounds is higher than that for a

sampling scheme of k = t shown in Theorem 4.1 (with a smaller sampling size, our subroutine would incur more noise, thus
introducing larger observation noise in the BO process, increasing cumulative regret growth). However, the advantage is that
we may not need as much computational budget since we do not need to perform as many rounds of gradient descent (in our
subroutine) per iteration. A practitioner would choose the suitable sampling scheme depending on the problem setting.

25

Towards AutoAI: Optimizing a Machine Learning System with Black-box and Differentiable Components

D. Additional Experimental Results and Discussions
D.1. Additional details on experimental setup

Our experiments use a squared exponential kernel to model all GPs whenever possible. Also, we use the GP-LCB (Srinivas
et al., 2010) acquisition function for A-BAD-BO. In our experimental results shown in Fig. 3 and 4, we used the same
data generation seed and repeat our experiments for 5 trials and show the mean system loss achieved after each system
query alongside its standard error. We use negative predictive accuracy as the system loss function for LLM system and
mean-squared error for the rest of the systems.

In general, real-world systems are typically present in commercial settings and are proprietary. Hence, it is difficult to obtain
synchronized datasets for each ML components and the system (e.g., liver data and also diabetes risk data for the same
patient) in our work. To circumvent this challenge, we adopt the following procedure to generate synchronized local and
system datasets in our experiments:

1. We arrange a mixture of ML components and black-box components in topological order. The order dictates how
prediction generated by one ML component is passed to the next component.

2. Depending on the system, we define the black-box components’ behaviors (e.g., weighted sum or some arbitrary
function) but their functional representations are unknown during training time.

3. We generate a local dataset for each ML component. For synthetic ML components, we assume the ground-truth
parameters are known and generate the local dataset from them. For real-world systems, we use an open source dataset
for each ML component (more information is provided next).

4. If needed, we generate a system dataset by passing through input data (generated randomly or taken from open sources)
through the system to generate system-level labels and consequentially a system dataset.

In MNIST system, we use the MNIST dataset (Deng, 2012) to train 2 ML components as binary digit classifiers. The other
ML components consist of differentiable models.

In Healthcare system, we use several healthcare models whose local datasets are open source healthcare related datasets;
they include a body fat prediction model (Penrose et al., 1985), hepatitis risk prediction model (Hepatitis, 1988), kidney
disease prediction model (Soundarapandian & Eswaran, 2015) and health disease prediction model (Siddhartha, 2020). We
also place 2 noisy black-box components to imitate human doctors (labeled Doctor A and Doctor B in Fig. 9c) who make
noisy decisions after looking at the model predictions and a final aggregation component which is a simple linear model. A
system level dataset is generated by passing a portion of data from local datasets through the system, generating system
level labels. This system reflects a possible healthcare system that is used in a real-world setting to provide a diabetes risk
score in a hospital setting, therefore assisting doctors in making better medical judgement for a patient.

In LLM prompt engineering system, we use a principled approach to generate local and system datasets. First, we generate
a single system dataset for prompt engineering by combining available prompt engineering datasets (containing examples
and ground-truth prompts) over 20 tasks (Honovich et al., 2022). Our system aims to generate good prompts for a given list
of examples (over any task). In addition, we contaminate 50% of examples (by replacing examples with random words). The
first ML component is an example filter model whose local dataset contains independent correct example pairs as positively
labeled data and incorrect example pairs (e.g., two nonsensical phrases) as negatively labeled data (these can be generated
in an unsupervised manner from the prompt engineering dataset by artificially adding wrong examples). After the input
examples are filtered (noisy examples are removed), they are passed into ChatGPT (OpenAI, 2023) to generate a list of 5
plausible prompts for these examples 2. Lastly, a prompt filter model with local dataset consisting of good example-prompt
pairs (this can also be generated in an unsupervised manner from the original prompt engineering dataset) is used to evaluate
and identify the best prompts from the prompt list. Note that we carefully ensure none of the evaluation examples is present
in the local datasets or system datasets.

2the ChatGPT model version used in our work is gpt-3.5-turbo-0301 found in https://platform.openai.com/docs/
models

26

https://platform.openai.com/docs/models
https://platform.openai.com/docs/models

Towards AutoAI: Optimizing a Machine Learning System with Black-box and Differentiable Components

D.2. Additional details on system architectures

We also provide more detailed information of the four systems we use in our experiments in Fig. 9. For reproducibility, we
provide the exact model type and mathematical function of each component in Table 3.

(a) Synthetic (b) MNIST

(c) Healthcare (d) LLM Prompt engineering

Figure 9. System architecture of each experimental system. Nodes highlighted in orange are differentiable ML components while nodes
highlighted black are black-box components with no closed, mathematical form. ML components with numerical labels are synthetic
mathematical models which use synthetic datasets; ML components with alphabetical labels (e.g., Liver Model, MNIST 1 etc.) use real
world datasets.

Table 2. Legend for mathematical representation of each ML and black-box com-
ponent.

Legend Function representation
Sin(θ0, θ1) θ0 sin(θ1x+ 0.5)
Poly(θ0, θ1) −θ0x+ θ1x+ eθ2x

Exp(θ0, θ1) θ0e
−θ1x

WeightedSum(θ0, . . . , θm) θ0x0 + · · ·+ θmxm
NoisyWeightedSum(θ0, . . . , θm, µ, σ) θ0x0 + · · ·+ θmxm + ϵ, ϵ ∼ N (µ, σ2)

27

Towards AutoAI: Optimizing a Machine Learning System with Black-box and Differentiable Components

Table 3. Exact component description of every system used in our experiments. The left column shows the ground truth
parameters (wherever possible) for our ML components that we try to learn during optimization. The functions for black-box
components are fixed during runtime (no training involved).

ML components Black-box components

Synthetic

1. Sin(0.1, 0.1)
2: Poly(−0.3, 0.3, 0.2)
3: Sin(−0.2, 0.1)
4: Exp(−0.5, 0.5)
5: Exp(−0.2, 0.2)
6: Sin(0.7,−0.5)
7: Poly(0.7, 0.9,−0.5)
8: Sin(0.3, 0.7)
9: Exp(1.1,−0.5)

Black box 1: NoisyWeightedSum(1.2, 0.8, 0.3, 0.05)
Black box 2: NoisyWeightedSum(0.7,−0.5, 0.3, 0.05)
Black box 3: NoisyWeightedSum(0.7, 1.1, 0.3, 0.05)

MNIST

1: Sin(−0.4, 0.8)
2: WeightedSum(−0.7, 0.9)
3: Poly(−0.4, 0.8, 0.1)
4: Sin(0.7, 0.9)
5: Exp(0.7, 0.9)
6: Poly(−0.4, 0.8, 0.1)
7: Sin(0.5, 0.8)
8: WeightedSum(0.5, 0.7)
9: Exp(0.9,−0.3)
10: Exp(−0.3, 0.5)
MNIST 1: CNN (LeCun et al., 1989)
MNIST 2: CNN (LeCun et al., 1989)

Black box 1: NoisyWeightedSum(1.2, 0.8, 0.3, 0.2)
Black box 2: NoisyWeightedSum(0.8, 0.8, 0.3, 0.2)

Healthcare

Liver model: Logistic Regression
Kidney model: Logistic Regression
Body fat model: Linear Regression
Heart Model: Logistic Regression
Aggregate Model: WeightedSum(0.7, 0.3)

Black box 1: NoisyWeightedSum(0.7, 0.3,−2.5, 0.5)
Black box 2: NoisyWeightedSum(0.4, 0.4, 0.2,−2.5, 0.5)

LLM

Example filter model:
DistilBERT (Sanh et al., 2019)
Prompt filter model:
DistilBERT (Sanh et al., 2019)

gpt-3.5-turbo-0301 (OpenAI, 2023)

28

Towards AutoAI: Optimizing a Machine Learning System with Black-box and Differentiable Components

D.3. Additional experimental results with other acquisition functions

Our main results in Fig.3 showed that A-BAD-BO achieves better system performance (e.g. loss, accuracy) across all
systems with the Lower Confidence Bound (LCB) (Srinivas et al., 2010) acquisition function. In this section, we also
investigated whether using a different acquisition function i.e., Expected Improvement (EI) (Jones et al., 1998), affected the
effectiveness of our algorithm.

As shown in Table 4, EI yields similar (at times worse) results as compared to LCB. We believe this occurs because LCB
encourages A-BAD-BO to explore different local loss configurations for the system, therefore producing better results.
Regardless of the acquisition function, A-BAD-BO is still able to outperform other baselines, further showcasing its
effectiveness.

Table 4. Comparison of best system performance achieved with Lower Confidence Bound (LCB) (Srinivas et al., 2010) acquisition
function used in A-BAD-BO with the Expected Improvement (EI) acquisition function (Jones et al., 1998). 200 system queries were used
across all approaches. The best performing approach is bolded.

SYSTEM A-BAD-BO (LCB) A-BAD-BO (EI) VANILLA BO (EI) TURBO (EI)

SYNTHETIC (LOSS) 0.053±0.081 0.051±0.033 0.112±0.043 0.078±0.058
MNIST (LOSS) 0.143±0.019 0.158± 0.007 0.4874±0.099 0.423±0.06
HEALTHCARE (LOSS) 3.45±0.333 5.35±1.14 7.10±0.64 9.09±0.44
LLM (ACCURACY) 62.0±5.0 60.5±6.0 51.3±3.3 53.0±3.0

D.4. Additional experimental results with early local optimization termination

Instead of training each ML component in a system indepedently to convergence (the local approach) w.r.t. local data, one
might consider training each ML component and terminating the training process early using regularization e.g., weight
decay (Andriushchenko et al., 2023). The set of regularization hyper-parameters (one regularization hyper-parameter for
each ML component) is then used to control the early termination threshold, and BO can be used to determine the best set
of regularization hyper-parameters. In this section, we compare this approach (which we coin as Early-stopping) with
A-BAD-BO given the same number of system queries.

In particular, at every BO iteration of the Early-stopping approach, we train ML components, starting from different
initialized component parameters, with a proposed set of regularization hyper-parameters (inputs to the BO problem) until
convergence k times (yielding k different set of converged system parameters). Then, we retrieve the set of converged
system parameters which yielded the best system loss for that iteration (involving k system queries). The best system loss is
treated as the observed output of that BO iteration, and the BO iteration continues.

Table 5. Comparison of best system performance achieved by A-BAD-BO with Early-stopping after 200 system queries. The best
performing approach is bolded.

SYSTEM A-BAD-BO (k = 10) EARLY-STOPPING (k = 1) EARLY-STOPPING (k = 10)

SYNTHETIC (LOSS) 0.053±0.081 0.185±0.090 0.0855 ± 0.090
MNIST (LOSS) 0.143±0.019 0.33±0.017 0.23±0.020
HEALTHCARE (LOSS) 3.45±0.333 8.45±2.14 6.55±1.88
LLM (ACCURACY) 62.0±5.0 52.4 ±2.0 55.0±1.5

In our experiments, we used the weight decay coefficient (Andriushchenko et al., 2023) as the regularization hyper-parameter
for each ML component. From Table 5, we see that A-BAD-BO outperforms the Early-stopping approach in achieving
better system performance after 200 system queries across all 4 systems in our experimental setup.

29

