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Abstract
We study L2 mean estimation under central differ-
ential privacy and communication constraints, and
address two key challenges: firstly, existing mean
estimation schemes that simultaneously handle
both constraints are usually optimized for L∞ ge-
ometry and rely on random rotation or Kashin’s
representation to adapt to L2 geometry, resulting
in suboptimal leading constants in mean square er-
rors (MSEs); secondly, schemes achieving order-
optimal communication-privacy trade-offs do not
extend seamlessly to streaming differential pri-
vacy (DP) settings (e.g., tree aggregation or ma-
trix factorization), rendering them incompatible
with DP-FTRL type optimizers. In this work, we
tackle these issues by introducing a novel privacy
accounting method for the sparsified Gaussian
mechanism that incorporates the randomness in-
herent in sparsification into the DP noise. Unlike
previous approaches, our accounting algorithm
directly operates in L2 geometry, yielding MSEs
that fast converge to those of the uncompressed
Gaussian mechanism. Additionally, we extend
the sparsification scheme to the matrix factoriza-
tion framework under streaming DP and provide a
precise accountant tailored for DP-FTRL type op-
timizers. Empirically, our method demonstrates
at least a 100x improvement of compression for
DP-SGD across various FL tasks.

1. Introduction
In federated learning (FL) (McMahan et al., 2016; Konečnỳ
et al., 2016; Kairouz et al., 2021c), a server executes a
specific learning task on data that is kept on clients’ de-
vices, avoiding the explicit collection of local raw datasets.
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This process typically involves the server iteratively gather-
ing essential local model updates (such as noisy gradients)
from the client side and subsequently updating the global
model. While FL embodies the principle of data minimiza-
tion by only requesting the minimal information necessary
for model training, these local model updates may still con-
tain sensitive information. As a result, additional privacy
protection is necessary to prevent the trained model from
possibly revealing individual information. Moreover, with
the increase of model size, the exchange of local model
updates becomes both memory and computation-intensive,
leading to substantial latency and impeding the efficiency
of training cycles. Consequently, it is desired to devise
robust privacy protection mechanisms that simultaneously
optimize communication efficiency.

In this paper, we study the L2 mean estimation1, a core
sub-routine in the majority of FL schemes, subject to joint
communication and differential privacy (DP) (Dwork et al.,
2006) constraints. We consider two major types of DP
optimization settings: (1) the classic DP-SGD type ap-
proach (Abadi et al., 2016) where independent DP noise
is injected in each round of training, and (2) the DP-FTRL
type approach (Guha Thakurta & Smith, 2013; Kairouz
et al., 2021b; Denisov et al., 2022) where the DP noise is
correlated across training rounds, the structure of which is
intricately designed based on certain matrix factorization.

There has been a long thread of literature on distributed
mean estimation (DME) under either or both privacy and
communication constraints (Suresh et al., 2017; Konečnỳ
et al., 2016; Agarwal et al., 2018; Chen et al., 2020; 2023;
Shah et al., 2022; Feldman & Talwar, 2021; Isik et al.,
2023a; Asi et al., 2023). Recent work by Chen et al. (2023)
points out that, to achieve order-optimal mean square er-
rors (MSEs) under joint constraints, it becomes imperative
to integrate the inherent randomness utilized in compres-
sion (e.g., in sampling, sketching, or projection) into pri-
vacy analysis. Essentially, the implicit “compression noise”
should be leveraged to amplify the DP guarantees, resulting

1Here, L2 refers to the L2 geometry of the local model updates,
i.e., ∥gi∥2 ≤ ∆2 for all client i. This condition is typically
maintained through the L2 clipping step of the differential privacy
mechanism.
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in a significant reduction of DP noise. However, despite
the coordinate subsampled Gaussian mechanism (CSGM)
introduced by Chen et al. (2023) achieving order-optimal
MSEs, it is crafted within the L∞ geometry (i.e., assuming
∥gi∥∞ ≤ C∞ for any local vector gi) and relies on random
rotation or Kashin’s representation to extend to L2 mean
estimation tasks. It is noteworthy that the bounded L2 norm
assumption is strictly more robust than the bounded L∞
norm assumption (see Section 4.2), inevitably leading to
larger MSEs with CSGM compared to the (uncompressed)
Gaussian mechanism under equivalent DP guarantees.

A further challenge arises in CSGM (or, more broadly, gen-
eral randomized compression schemes based on random
projection, sampling, or sketching) when applied to stream-
ing DP models (Guha Thakurta & Smith, 2013; Denisov
et al., 2022; Jain et al., 2023), particularly in the context of
DP-FTRL type optimization mechanisms based on tree ag-
gregation (Honaker, 2015; Kairouz et al., 2021b) or matrix
factorization (Denisov et al., 2022). In the streaming DP
model, the DP noise injected in each round loses its inde-
pendence. Instead, noise variables Z ∈ RT are correlated
across T training rounds through a linear transform B · Z,
where B ∈ RT×T is obtained from certain matrix factor-
ization of the objective function that aims to minimize the
overall distortions, such as MSEs. When the noise variables
are correlated across rounds, they are no longer “aligned”
with the randomness introduced in the local compression
phase, as compression occurs locally and is thus indepen-
dent across rounds. This complicates the analysis of privacy
amplification, as privacy budgets cannot be accounted for
round-wise, introducing what we term “temporal coupling.”
Moreover, the adaptive nature of DP-FTRL, where local
gradients depend on the outputs of previous rounds, leads to
the coupling of compression seeds that are typically intro-
duced independently across dimensions. When analyzing
the outputs over T rounds, this coupling, referred to as “spa-
tial coupling,” presents a significant challenge. Traditional
privacy amplification tools (Balle et al., 2018; Zhu & Wang,
2019; Wang et al., 2019) fail in the face of such spatial and
temporal coupling, necessitating a novel analysis approach.

Our contribution. In this work, we tackle both aforemen-
tioned challenges. Firstly, we introduce a novel privacy
accounting method for the sparsified Gaussian mechanism.
This method incorporates the inherent randomness from
the sparsification phase into the DP noise. Unlike previous
approaches in Chen et al. (2023), our accounting algorithm
directly operates in L2 geometry, resulting MSEs that con-
verge fast to those of the uncompressed Gaussian mecha-
nism. The key technique is to leverage the convexity of the
Rényi DP profile of 1-dimensional subsampled Gaussian
mechanism and extend it to multi-dimensional scenarios.

Secondly, we extend the application of the sparsified Gaus-

sian mechanism to streaming DP settings, particularly
within the matrix factorization DP-FTRL framework. We
establish a Rényi privacy accounting theorem. While this
theorem bears similarities to its non-streaming counterpart,
the analysis necessitates a fundamentally different approach
due to the spatial and temporal coupling inherent in the
adaptive releases. A crucial step in our analysis involves
decomposing the transcript (i.e., the collection of all re-
leases across T training rounds), effectively transforming
the adaptive releasing model into a non-adaptive one.

Although our analysis primarily revolves around the sparsi-
fied Gaussian mechanism (or coordinate subsampled Gaus-
sian mechanism), it inherently encompasses a broader fam-
ily of random projections, including subsampled random-
ized Hadamard transform (Ailon & Chazelle, 2006; Sarlos,
2006), and randomized Gaussian design (Wainwright, 2019,
Section 6). These dimensionality reduction techniques can
be viewed as a linear transform followed by a subsampling
step. Additionally, by slightly lifting the dimension, these
random designs exhibit deep connections to Kashin’s rep-
resentation, providing a uniform L∞ bound, albeit with a
larger leading constant (Lyubarskii & Vershynin, 2010).

Finally, we present comprehensive empirical results on the
proposed L2 sparsified Gaussian mechanism and sparsified
Gaussian matrix factorization. Our results demonstrate a
100× improvement in compression rates in various FL tasks
(including FMNIST and Stackoverflow datasets). Moreover,
our algorithm reduces the dimensionality of local model
updates and hence can potentially be combined with other
quantization or (scalar) lossless compression techniques (Al-
istarh et al., 2017; Isik et al., 2022; Mitchell et al., 2022).

2. Related Work
FL and DME. Federated learning (Konečnỳ et al., 2016;
McMahan et al., 2016; Kairouz et al., 2019) emerges as a de-
centralized machine learning framework that provides data
confidentiality by retaining clients’ raw data on edge devices.
In FL, communication between clients and the central server
can quickly become a bottleneck (McMahan et al., 2016), so
previous works have focused on compressing local model
updates via gradient quantization (McMahan et al., 2016;
Alistarh et al., 2017; Gandikota et al., 2019; Suresh et al.,
2017; Wen et al., 2017; Wangni et al., 2018; Braverman
et al., 2016), sparsification (Barnes et al., 2020; Hu et al.,
2021; Farokhi, 2021; Isik et al., 2023b; Lin et al., 2018), or
random projection (Rothchild et al., 2020; Vargaftik et al.,
2021). To further enhance user privacy, FL is often com-
bined with differential privacy (Dwork et al., 2006; Abadi
et al., 2016; Agarwal et al., 2018; Hu et al., 2021).

Note that in this work, we consider FL (or more specifi-
cally, DME) under a central-DP setting where the server
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is trusted, which is different from the local DP model (Ka-
siviswanathan et al., 2011)2 and the distributed DP model
with secure aggregation (Bonawitz et al., 2016; Bell et al.,
2020; Kairouz et al., 2021a; Agarwal et al., 2021; Chen
et al., 2022b;a). When the secure aggregation is employed,
local model updates cannot be compressed independently
(Rothchild et al., 2020; Chen et al., 2023), and hence, the
corresponding compression rates must be strictly higher
than those without secure aggregation.

Streaming DP and DP-FTRL. In addition to the classic
DP optimizers such as DP-SGD (Abadi et al., 2016) or DP-
FedAvg (McMahan et al., 2016), we also study the online op-
timization settings such as DP-FTRL (Kairouz et al., 2021b)
where the noise is correlated across rounds. This is moti-
vated by the facts that (1) subsampling is often impractical
in federated learning settings (Kairouz et al., 2021b; 2019),
and (2) the correlated noise probably yields better utility
compared to the independent noise (Choquette-Choo et al.,
2023a;b). DP-FTRL algorithms are widely used in training
production models in the cross-device FL system (Xu et al.,
2023). The key component behind the DP-FTRL relies on
the private releases under continual observation, an old prob-
lem dating back to (Dwork et al., 2010; Chan et al., 2012).
Since then, several works have studied the continual release
model and its applications (Upadhyay & Upadhyay, 2021;
Choquette-Choo et al., 2022; 2023a; Henzinger et al., 2023;
2024). Kairouz et al. (2021b) originally used the efficient
DP binary-tree estimator (Honaker, 2015) for the DP-FTRL
algorithm, but later, a more general approach to cumula-
tive sums based on matrix factorization (Hardt & Talwar,
2010; Li et al., 2015; Yuan et al., 2016; McKenna et al.,
2018; Edmonds et al., 2020) was used. We, however, note
that DP online optimization concerns adaptive inputs, that
is, the future data points depend on previous outputs, and
not all matrix mechanisms extend to the adaptive settings
(Denisov et al., 2022), and it introduces challenges when
incorporating compression into the privacy analysis. Indeed,
to prove the adaptive DP guarantees of our algorithm, we
need to handle the spatial and temporal dependency care-
fully. Finally, while the recent work Choquette-Choo et al.
(2023b) also investigate privacy amplification through sub-
sampling, their subsampling is conducted client-wise rather
than coordinate-wise, as their scheme is not designed for
compression. Consequently, Choquette-Choo et al. (2023b)
do not encounter the spatial coupling issue as we do.

3. Preliminaries and Setups
In this section, we introduce the mathematical formulation
of the problem and the DP models. We begin with DME in

2Another alternative to private DME is via local DP and shuf-
fling. We provide a detailed discussion on this direction in Ap-
pendix B

non-streaming DP, and then transition to the continual sum
(or mean) problem within the streaming DP model.

3.1. DME and (Non-streaming) DP

Consider n clients, each with a local vector (e.g., local
gradient or model update) gi ∈ Rd that satisfies ∥gi∥2 ≤
∆2 for some constant ∆2 > 0 (one can think of gi as a
clipped local gradient). A server aims to learn an estimate
µ̂ of the mean µ(gn) ≜ 1

n

∑
i gi from gn = (g1, . . . , gn)

after communicating with the n clients. Toward this end,
each client locally compresses gi into a b-bit message Yi =
Ei (gi) ∈ Y through a local encoder Ei : Rd 7→ Y (where
|Y| ≤ 2b) and sends it to the central server, which upon
receiving Y n = (Y1, . . . , Yn) computes an estimate µ̂ (Y n)
that satisfies the following differential privacy:

Definition 3.1 (Differential Privacy (Dwork et al., 2006)).
A mechanism (i.e., a randomized mapping) M(gn) is (ε, δ)-
DP if for any neighboring datasets gn ≜ (g1, ..., gi, ..., gn),
hn ≜ (g1, ..., gi−1,hi, gi+1, ..., gn), and measurable S ∈
range (M), it holds that

Pr {M(gn) ∈ S} ≤ eε · Pr {M(hn) ∈ S}+ δ,

where the probability is taken over the randomness of M(·).

Our goal is to design schemes that minimize the MSE:

min
(E1,...,En,µ̂)

max
gn

E
[
∥µ̂ (E1(g1), ..., En(gn))− µ(gn)∥22

]
,

subject to b-bit communication and (ε, δ)-DP constraints.

The above DME task is closely related to FL with batched
SGD (or other similar stochastic optimization methods, such
as FedAvg (McMahan et al., 2016)). In each round, the
server updates the global model using a noisy mean of local
model updates. This estimate is typically derived through a
DME primitive. As demonstrated in (Ghadimi & Lan, 2013),
if the estimate remains unbiased in each round, convergence
rates depend on the L2 estimation error. Note that the DME
procedure is invoked independently in each round, and the
privacy budget is allocated for T rounds of training, differing
from the online DP setting discussed below.

3.2. Streaming Differential Privacy

Next, we introduce the streaming DME problem and ma-
trix mechanisms. To begin with, we first summarize the
streaming DP setting (Denisov et al., 2022). A streaming
mechanism M takes inputs g(1), g(2), ..., g(t) and outputs
o(t) at time t. We denote the stream with T rounds in the
following matrix form:

G ≜

 g(1)

...
g(T )

 ,
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and similarly for H and the adversary’s view O.

An adversary that adaptively defines two input sequences
G = (g(1), ..., g(T )) and H = (h(1), ...,h(T )). The adver-
sary must satisfy the promise that these sequences corre-
spond to neighboring data sets. The privacy game proceeds
in rounds. At round t, the adversary generates g(t) and h(t),
as a function of o(1), ...,o(t−1). The game accepts these if
the input streams defined so far are valid, meaning that there
exist completions G̃ =

(
g(1), ..., g(t), g̃(t+1), ..., g̃(T )

)
and

H̃ =
(
h(1), ...,h(t), h̃(t+1), ..., h̃(T )

)
such that G̃ and H̃

are neighboring, in the following sense:
Definition 3.2 (Neighboring datasets). Two data streams G
and H in RT×d will be considered to be neighboring if they
differ by a single row, with the ℓ2-norm of the difference in
this row at most ∆2.

The game is parameterized by a bit side ∈ {0, 1}, which is
unknown to the adversary but constant throughout the game.
The game hands either G or H to M, depending on side.
We say M is (α, ε(α)) Rényi DP if the adversary’s views O
under side = 0 and side = 1 is ε(α)-indistinguishable under
Rényi divergence at order α: Dα

(
PO|G

∥∥PO|H
)
≤ ε(α).

Theorem 3.3 (Restated from Theorem 2.1 of Denisov et al.
(2022)). Let A ∈ RT×T be a lower-triangular full-rank
query matrix, and let A = BC be any factorization with
the following property: for any two neighboring streams
of vectors G,H ∈ RT×d, we have ∥C (G−H)∥F ≤ κ2.

Let Z ∈ RT×d such that Zi,j
i.i.d.∼ N (0, κ2σ2) with σ large

enough so that MGMF(G) = AG +BZ = B (CG+ Z)
satisfies (α, ε(α))-DP (or ρ-zCDP or (ε, δ)-approximate
DP) in the non-adaptive continual release model. Then, M
satisfies the same DP guarantee (with the same parameters)
even when the rows of the inputs are chosen adaptively.

3.3. DME and Matrix Mechanisms

Finally, we consider DME under the streaming DP model. In
each round t, the server selects a batch of clients Bt ∈ [N ]
and computes the empirical mean of their local vectors
g(t) =

∑
i∈Bt

gi. Note that gi can depend on previ-
ous outputs o(1), ...,o(t−1). Our scheme assumes single-
participation-per-epoch, that is, Bt disjoint with Bt′ .

The goal of matrix mechanisms is to continually release a
differentially private version of AG while minimizing the

overall MSE:
∥∥∥ÂG−AG

∥∥∥2
F

. Here, A ∈ RT×T must be
a lower triangular matrix in order to ensure causality. In
online optimization, the matrix A is determined by update
rules. For instance, in simple SGD with a fixed step size
η > 0, the model is updated as follows:

w(t) = w(t−1) − ηg(t) = w(0) − η

t∑
τ=1

g(τ),

resulting in the corresponding A being the prefix-sum ma-
trix satisfying [A]t,t′ = 1{t≤t′}. In general, one can lever-
age the matrix mechanism within the DP-FTRL framework
(Kairouz et al., 2021b, Algorithm 1) and further incorporate
momentum (Denisov et al., 2022).

To ensure privacy, instead of directly privatizing data matrix
G (which results in a DP-SGD type scheme), we leverage
the factorization A = BC for B,C ∈ RT×T . If (α, ε(α))-
DP is preserved for CG + Z, then the same level of DP
holds for AG + BZ as well. Notbaly, in the online op-
timization setting, local vectors g(t) are adaptively gener-
ated and depend on (o(1), ...,o(t−1)). Denisov et al. (2022,
Theorem 2.1) shows that for Gaussian mechanism (i.e.,
[Z]t,j

i.i.d.∼ N (0, σ2) for some σ2 > 0), the non-adaptive
DP guarantee (meaning that G is independent with the pre-
vious private outputs O) implies the same level of adaptive
DP.

To optimize the error, Li et al. (2015); Yuan et al. (2016);
Denisov et al. (2022) formulate the factorization A = BC
as a convex optimization problem :

min
B:A=BC,∆(C)=1

∥B∥2F , (1)

where ∆(C) ≜ maxt∈[T ]

∥∥C[:,t]

∥∥2
2

is the sensitivity of C.
In this work, while we plug in the optimal factorization in
our scheme (specifically solved via the fixed point method
in Denisov et al. (2022)), our results hold for general factor-
ization.

Our objective is to devise a local compression mechanism
satisfying two criteria:

• ÂG satisfies adaptive streaming DP;

• ÂG is a function of locally compressed vectors Ei (gi)
that can be described in b bits.

Remark 3.4. In the streaming scenario, the cohort size
|Bt| solely impacts the sensitivity of the mean function each
round. For simplicity in privacy analysis, we assume |Bt| =
1 (non-batched SGD). Nevertheless, our results extend to
general batch sizes, as outlined in the main theorems.

Notation. In the non-streaming setting, we employ gi (or
hi) to represent the local (row) vector at client i. In the
streaming scenario, g(t) (or h(t)) denotes the averaged row
vectors of clients at round t. Matrices are denoted by capital
bold-faced symbols; for instance, G ∈ RT×d represents the
matrix form of the stream (g(1), ..., g(T )), where the t-th
row of G is g(t). When the context is clear, we may use
G to refer to the stream itself. Additionally, we use g

(t)
j

or Gt,j interchangeably to indicate the (t, j)-th entry of G,
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with t ∈ [T ] and j ∈ [d]3.

4. Differentially Private L2 Mean Estimation
In this section, we consider the non-streaming DME prob-
lem described in Section 3.1. To reduce communication
costs under central DP, previous work of Chen et al. (2023)
proposes a coordinate-subsampled Gaussian mechanism
(CSGM), which random sparsifies each local vector in a
coordinate-wise fashion, followed by server aggregation and
the addition of Gaussian noise. While aligning with several
gradient compression techniques, CSGM significantly en-
hances privacy guarantees by incorporating the randomness
introduced in the sparsification phase into privacy analysis.

However, a notable drawback in Chen et al. (2023) emerges
within the L∞ geometry assumption that requires ∥gi∥∞ ≤
∆∞. It is crucial to note that, in general, the L∞ assumption
is weaker than the L2 assumption described in Section 3.1.
To extend to the L2 scenario, Chen et al. (2023) employs
random rotation (or Kashin’s representation) and L∞ clip-
ping to pre-process local vectors. This approach, however,
results in larger Mean Squared Errors (MSEs) compared to
the uncompressed Gaussian mechanism under equivalent
Differential Privacy (DP) guarantees.

Algorithm 1 L2-CSGM

Input: users’ data g1, ..., gn, sampling parameters γ ≜
b/d, DP parameters (α, ε(α)).
for user i ∈ [n] do

Draw si
i.i.d.∼ Bern⊗d(γ) via shared randomness.

Compress and send gi ⊙ si to the server (where ⊙
denotes the entry-wise product).

end for
Server computes the noisy mean

µ̂CSGM(g
n; sn, Z) ≜ 1

nγ (
∑n

i=1 gi ⊙ si + Z) , (2)

where Z ∼ N
(
0, σ2Id

)
and σ2 is computed according

to (3) in Theorem 4.1.
Return: µ̂CSGM.

To address the geometry issue in Chen et al. (2023), we intro-
duce a slight modification (see Algorithm 1) to the CSGM
scheme and present an enhanced analysis of its Rényi DP
profile, yielding a significantly improved guarantee. To
differentiate between the two schemes, we term our pro-
posed version as L2-CSGM, while the original one in Chen
et al. (2023) is referred to as L∞-CSGM. Our main result
in this section is the following privacy upper bound for the
L2-CSGM mean estimation scheme.

3In general, we use t ∈ [T ] as the time index, j ∈ [d] as
the coordinate (spatial) index, and i ∈ [n] as the client index for
subscripts and superscripts.

Theorem 4.1. Let g1, ..., gn ∈ Sd−1(∆2) (i.e., ∥gi∥2 ≤
∆2), and ∥gi∥∞ ≤ ∆∞ for all i ∈ [n]. Let µ̂CSGM(g

n)

be defined as in (2) with s1, ..., sn
i.i.d.∼ Bern(γ)⊗d, and

Z ∼ N
(
0, σ2Id

)
. Then µ̂CSGM satisfies (α, ε (α))-Rényi

DP, for all integer α and

ε (α) ≥∆2
2/∆

2
∞

α− 1
log
(
(1− γ)α−1 (γ(α− 1) + 1)+∑α

ℓ=1

(
α
ℓ

)
(1− γ)

α−ℓ
γℓe(ℓ−1)ℓ

∆2
∞

2σ2

)
. (3)

While L2-CSGM also employs L∞ clipping, we do not
account for privacy budgets directly based on the L∞ clip-
ping norm ∆∞ (which is the case in L∞-CSGM). Instead,
we consider both ∆2 and ∆∞, with L∞ serving to “miti-
gate” the regime on which the privacy amplification lemma
operates. In L2-CSGM, the L∞ clipping norm only influ-
ences higher-order terms in the final guarantees, and a slight
increase in ∆∞ does not alter the privacy guarantee asymp-
totically with increasing dimension d. In the subsequent
subsection, we demonstrate that, for any α > 0 and under
the same MSE constraint, the Rényi DP guarantee of L2-
CSGM converges to that of the (uncompressed) Gaussian
mechanism as d → ∞.

4.1. Compared to the Gaussian Mechanism

We begin with the following lemma that computes the MSE
of µ̂CSGM.
Corollary 4.2. Under the hypotheses of Theorem 4.1, let
µ̂CSGM be defined as in Algorithm 1. Then the MSE of
µ̂CSGM is bounded by

MSE(µ̂CSGM) ≜ E
[
∥µ̂CSGM − µ∥22

]
≤ σ2

n2γ2
+

∆2
2

nγ
.

On the other hand, the MSE of the (uncompressed) Gaussian
mechanism µ̂GM is MSE(µ̂GM) = σ2/n2. It can be shown
that under the same MSE constraints, the Renyi DP of L2-
CSGM converges to that of the Gaussian mechanism in the
following sense:
Lemma 4.3. For any fixed sparsification rate γ and Renyi
DP order α, let σ2

GM and σ2
CSGM be chosen such that

MSE(µ̂GM) = MSE(µ̂CSGM), i.e., σ2
GM =

σ2
CSGM

γ2 +
n∆2

2

γ .
Then, it holds that εCSGM(α) → εGM(α) as ∆2

∞/∆2
2 → 0,

where εGM(α) = ∆2
2α/σ

2 is the Rényi DP bound of the
Gaussian mechanism, and εCSGM(α) is defined in (3).

It is worth noting that, in general, the ∆∞/∆2 ratio de-
creases rapidly as d increases, leading to εCSGM(α) →
εGM(α) as d → ∞. For instance, by utilizing random rota-
tion for preprocessing local vectors, with high probability,
∆∞/∆2 = O

(
log d√

d

)
. If further employing Kashin’s repre-

sentation (Lyubarskii & Vershynin, 2010), then ∆∞/∆2 =
O(1/

√
d) with probability 1.
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Figure 1. Noise multipliers (defined as σ/∆2) of CSGM and GM
with ε = 5.0, δ = 10−8 and γ = 0.01. On the left, we fix the
sparsification rate γ = 0.01. The numerical result indicates that as
the ratio decreases, the noise multiplier of CSGM converges to that
of the GM. Equivalently, this implies that εCSGM(α) → εGM(α)
if one fixes the MSEs of both schemes. On the right, we fix the
∆2/∆∞ ratio to be 1000 and plot the noise multipliers.

On the other hand, if we calibrate the noise based on ∆∞
as in L∞-CGSM, the constant in Rényi DP will not match
that of the uncompressed Gaussian mechanism, which we
elaborate on in the next subsection.

4.2. Compared to L∞-CSGM (Chen et al., 2023).

To compare the L2 and L∞-CSGM, first observe that the
Rényi DP bound in (3) can be expressed as

εCGSM,L2(α) = ∆2
2/∆

2
∞ ·Dα (∆∞S + Z∥Z) ,

where Z ∼ N (0, σ2) and S ∼ Bern(γ). On the other hand,
the Rényi DP bound of L∞-CSGM in Chen et al. (2023) is

εCGSM,L∞(α) = d ·Dα (∆∞S + Z∥Z) .

As a result, the ratio between two Rényi DP bounds is
d∆2

∞
∆2

2
> 1 (because ∥g∥∞ ≤ ∆∞ implies ∥g∥22 ≤ d∆2

∞).
When employing random rotation, this ratio is O(log(d))
with high probability; with Kashin’s representation, this
ratio remains constant, but the constant is non-negligible
(for instance, in Chen et al. (2020), the constant is set to
be around 2). The sub-optimality gap between L∞-CSGM
and the (uncompressed) Gaussian mechanism makes it un-
desirable in practical FL tasks, emphasizing the necessity
of L2-CSGM.

5. Matrix Factorization Mechanism with Local
Sparsification under Streaming DP

Moving on, we delve into the streaming DP setting, specif-
ically focusing on the matrix mechanism detailed in Sec-
tion 3.2 and Section 3.3.

In the context of matrix mechanisms, the objective is to
continually release a DP version of AG, where each row
of G may depend on previous outputs o(1), ...,o(t−1). To

minimize the overall MSE,
∥∥∥ÂG−AG

∥∥∥2
F

, we factorize A
into BC and designing DP mechanisms according to CG,
as discussed in Section 3.3. Notably, our scheme adopts the
optimal factorization for the prefix sum matrix, addressing
the optimization problem (1).

We aim to devise a matrix factorization scheme that si-
multaneously compresses local gradients G. In this ap-
proach, instead of transmitting G to the server, clients
send compress (G), with compression applied row-wise
(i.e., client-wise). A tempting strategy is to employ the lo-
cal sparsification technique in CSGM and enhance privacy
using Theorem 4.14: MSGMF (G) ≜ A (S⊙G) + BZ,

where A = BC is a factorization, [Z]t,j
i.i.d.∼ N (0, σ2) and

[S]t,j
i.i.d.∼ Bern(γ) for t ∈ [T ] and j ∈ [d]. However, the

privacy analysis encounters two challenges:

• In matrix mechanisms, a local vector g(t) may persist
across all T rounds. Consequently, the randomness intro-
duced in local sparsification steps at the t-th round might
affect other rounds, resulting in what we term as tem-
poral coupling. Unlike in Denisov et al. (2022), where
the temporal coupling of isotropic Gaussian noise can
be circumvented due to rotational invariance, local spar-
sification or sampling breaks this invariance, rendering
Theorem 2.1 of Denisov et al. (2022) inapplicable.

• In the streaming scenario, the sampling variable s
(t)
j for

the j-th coordinate in the t-round may influence the j′-th
coordinate later due to adaptivity. For instance, g(t+1)

can depend on the t-th output o(t), which, in turn, is a
function of s(t)j′ for all j′ ∈ [d]. This introduces “spatial
correlation,” which does not appear in the non-streaming
setting (e.g., Theorem 4.1).

Algorithm 2 Sparsified Gaussian Matrix Factorization

Input: Local vectors g(1), ..., g(T ), noise scale σ, spar-
sification rate γ, factorization A = B ·C.
//See Alg. 3 for cohort size > 1.
for Each client t at time t do

Generate d independent binary masks s(t) ∈ {0, 1}d:
for any j ∈ [d], s(t)j

i.i.d.∼ Ber(γ);
Compute g̃(t) = g(t)⊙s(t) and sends it to the server;

end for
Server samples Gaussian noise: [Z]t,j

i.i.d.∼ N (0, σ2) for
all t ∈ [T ] and j ∈ [d].
Server computes the noisy outputs: A · G̃+B · Z.

In this section, we demonstrate that despite both temporal
and spatial couplings, we can still achieve the same “am-

4Throughout this section, we assume a cohort size of 1 for
simplicity. Our results naturally extend to general scenarios, and
the full scheme is presented in Algorithm 3 in Appendix A, in
which each client adopts an independent sampling mask.
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plification effect” as in Theorem 4.1. Our primary result
is the Rényi Differential Privacy (DP) bound for the sparsi-
fied Gaussian matrix factorization outlined in Algorithm 2
(which can be seen as a direct extension of L2-CSGM to the
streaming DP setting).

Theorem 5.1. Let A ∈ RT×T be a lower-triangular full-
rank query matrix, and let A = BC be any factorization
for some B,C ∈ RT×T , with ∆(C) = maxt∈[T ]

∥∥c(t)∥∥
2
.

Let G be the data matrix and ∆2 and ∆∞ be the L2 and
L∞ norm bounds of G, i.e.,

∥∥g(t)
∥∥
2
≤ ∆2 and

∥∥g(t)
∥∥
∞ ≤

∆∞ (recall that g(t) denotes the t-th row of G). Then, the
MSGMF in Algorithm 2 satisfies adaptive (α, ε(α))-Rényi
DP for any α ≥ 1 and

ε (α) ≥κ2
2/κ

2
∞

α− 1
log
(
(1− γ)α−1 (γ(α− 1) + 1)+

α∑
ℓ=1

(
α

ℓ

)
(1− γ)

α−ℓ
γℓe(ℓ−1)ℓ

κ2
∞

2σ2

)
. (4)

where κ2 = ∆(C) ·∆2 and κ∞ = ∆(C) ·∆∞ are the L2

and L∞ sensitivities.

A couple of remarks follow. Firstly, the class of matrix
mechanisms encompasses tree-based methods as a special
case, such as online or full-honaker tree aggregation
(Honaker, 2015) used in Kairouz et al. (2021b). Therefore,
Theorem 5.1 also applies to these results. Second, while
Choquette-Choo et al. (2023b) also investigate privacy
amplification through subsampling, their subsampling
is conducted client-wise rather than coordinate-wise, as
their scheme does not aim for compression. Consequently,
Choquette-Choo et al. (2023b) do not encounter the
spatial coupling issue. Finally, our scheme assumes single
participation per epoch, and in practice, this can be done by
shuffling and restarting the mechanism each epoch, similar
to the TreeRestart approach in Kairouz et al. (2021b).

5.1. Proof of Theorem 5.1

Next, we prove Theorem 5.1. The proof begins with the LQ
decomposition trick in Denisov et al. (2022), followed by a
careful decoupling of the joint distribution on o(1), ...,o(t).

Reparameterization. Let B = L · Q be the LQ de-
composition of the matrix B. Consider a different lower-
triangular factorization: M̃ (G) = L (QC (G⊙ S) + Z) ,

where Zij
i.i.d.∼ N (0, σ2), Q is orthonormal, and both L and

QC are lower-triangular. Since QC is lower-triangular,
QC (G⊙ S) + Z can operate in the continuous release
model, as row t of QC(G⊙ S) depends only on the first t
rows of G. Following from the same argument in Denisov
et al. (2022, Theorem 2.1), it suffices to show the desired
DP guarantee (4) on QC (G⊙ S) + Z since we can al-
ways replace Z with QZ due to the rotational invariance of

isotropic Gaussian distribution. For notational convenience,
we denote QC ≜ M in the remaining proof (note that M
is lower triangular).

Joint density of the transcript. Next, we show the mech-
anism M (G⊙ S) + Z is an instance of the standard (sub-
sampled) Gaussian mechanism for computing an adaptive
function in the continuous release model with a guaranteed
bound on the global L2 and L∞ sensitivities. Let G and
H be any two neighboring data streams (defined in Defini-
tion 3.2) that additionally satisfy the following L∞ condi-
tion: maxt∈[T ], j∈[d]

∣∣∣g(t)
j − h

(t)
j

∣∣∣ ≤ ∆∞. Without loss of
generality, we assume that G and H differ at t = 1, and
thus when analyzing the privacy guarantees, we condition
on the realization (s(2), ..., s(T )) = (š(2), ..., š(T )) and all
the potential randomness used in the optimization algorithm,
treating them as deterministic. The only randomness that
will be accounted for in the privacy analysis is s(1) and Z.

Given the data stream G, the output transcript
O ≜

(
o(1),o(2), ...,o(T )

)
∈ Rd×T is computed as follows:

o(1) = M11

(
g(1) ⊙ s(1)

)
+ Z(1)︸ ︷︷ ︸

≜p(1)

;

o(t) = Mt1

(
g(1) ⊙ s(1)

)
+ Z(t)︸ ︷︷ ︸

≜p(t)

+

t∑
τ=2

Mtτ

(
g(τ) ⊙ š(τ)

)
︸ ︷︷ ︸

≜q(t)

,

for all t ≥ 1. Our goal is to control Dα

(
PO|G

∥∥PO|H
)
,

where PO|G denotes the distribution of transcript O under
data stream G and PO|H denotes the distribution of O
under H. Note that the randomness used to compute the
above divergence only includes Z(1), ...,Z(T ) and s(1),
as we have conditioned on all other (irrelevant) external
randomness, including š(2), ..., š(T ).

Decoupling the joint distribution. The main challenge
here, compared to the uncompressed Gaussian mechanism
in Denisov et al. (2022), is the spatial and temporal cou-
pling on the joint distribution PO|G. To see this, observe
that o

(t)
j′ implicitly depends on the j-th sampling vari-

able s
(1)
j through g(2), ..., g(t−1) (which are functions of

o(1), ...,o(t−1)). As a result, the joint distribution of O is a
mixture of product distributions, so the scheme cannot be
reduced into a simple subsampled Gaussian mechanism.

To address this issue, we introduce the following de-
composition trick on the transcript o(t) to decouple the
complicated spatial and temporal correlation. For all t ≥ 1,
write p(t) ≜ Mt1

(
g(1) ⊙ s(1)

)
+ Z(t), q(1) ≜ 0, and

q(t) ≜
t∑

τ=2

Mtτ

(
g(τ) ⊙ š(τ)

)
,
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so that o(t) = p(t) + q(t).

The key observation is that, conditioned on the realization
š(2), ..., š(T ), Q ≜ (q(1), ..., q(T )) is a deterministic
function of P ≜ (p(1), ...,p(T )). To see this, note that

q(t) = f(o(1), ...,o(t−1))

= g
(
(p(1), q(1)), ..., (p(t−1), q(t−1))

)
for some functions f and g. Also notice that q(1) = 0.
Thus, by induction, q(t) is a function of p(1), ...,p(t−1).

As a result, the overall transcript O = P +Q(P) can be
viewed as a post-processing of P, so by data processing
inequality, it holds that

Dα

(
PO|G

∥∥PO|H
)
≤ Dα

(
PP|G

∥∥PP|H
)
. (5)

Since the P = (p(1), ...,p(T )) does not have spatial
coupling, in the sense that p(t)

j is independent of s(1)j′ for all
t ∈ [T ] and j, j′ ∈ [d], j ̸= j′, we can invoke the argument
of Denisov et al. (2022) along with privacy amplification
by subsampling, summarized as in the following lemma.

Lemma 5.2. Let P be defined as above. Then, it holds that

Dα

(
PP|G

∥∥PP|H
)
≤ κ2

2/κ
2
∞

α− 1
log
(
(1− γ)α−1·

(γ(α− 1) + 1) +

α∑
ℓ=1

(
α

ℓ

)
(1− γ)

α−ℓ
γℓe(ℓ−1)ℓ

κ2
∞

2σ2

)
.

We remark that (5) implies that among all possible adaptive
dependencies of g(t)(o(1), ...,o(t−1)), the transcript O
is statistically dominated by the independent one, that
is, g(t) remains constant regardless of previous outputs
(o(1), ...,o(t−1)). □

6. Empirical Evaluation
We provide empirical evaluations on the privacy-utility
trade-offs for both DP-SGD (under a non-streaming set-
ting) and DP-FTRL type (with matrix mechanisms (Denisov
et al., 2022)) algorithms. We mainly compare the L2-CGSM
(Algorithm 2) and sparsified Gaussian matrix factorization
(Algorithm 2) with the uncompressed Gaussian mechanism
(Balle & Wang, 2018). We convert the Rényi DP bounds
to (ε, δ)-DP via the conversion lemma from Canonne et al.
(2020) for a fair comparison.

Datasets and models. We run experiments on the full
Federated EMNIST (Cohen et al., 2017) and Stack
Overflow (Authors., 2019) dataset. F-EMNIST has 62
classes and N = 3400 clients with a total of 671, 585
training samples. Inputs are single-channel (28, 28) images.
The Stack Overflow (SO) dataset is a large-scale text

dataset based on responses to questions asked on the site
Stack Overflow. There are over 108 data samples unevenly
distributed across N = 342, 477 clients. We focus on the
next word prediction (NWP) task: given a sequence of
words, predict the next words in the sequence.

On F-EMNIST, we experiment with a (4 layer) Convo-
lutional Neural Network (CNN) used by Kairouz et al.
(2021a) (with around 1 million parameters). On SONWP,
we experiment with a 4 million parameters (4 layer)
long-short term memory (LSTM) model – the same as prior
work Andrew et al. (2021); Kairouz et al. (2021a). In both
cases, clients train for 1 local epoch using SGD. Only the
server uses momentum.

Additionally, for local model updates, we perform random
rotation and L∞-clipping, with ∆∞ = ∆2

√
2 log(d · n)/d,

where d is the model dimension (i.e., # trainable
parameters) and n is the cohort size in each training round.

L2-CSGM for DP-SGD. In Figure 2, we report the ac-
curacy of L2-CSGM (Algorithm 1) as well as the uncom-
pressed Gaussian mechanism.

Figure 2. Accuracy of GM and CSGM, with δ = 10−5 for F-
EMNIST and δ = 10−6 for SONWP. The resulting ∆∞/∆2

value is 6.4 · 10−3 for F-EMNIST and 3.3 · 10−3 for SONWP.

Sparsified Gaussian Matrix Mechanism for DP-FTRL.
In Figure 3, we report the accuracy of SGMF (Algorithm 1)
and the uncompressed matrix mechanism. We use the
same optimal factorization as in Denisov et al. (2022)
with T = 32 for 16 epochs, and we restart the mechanism
and shuffling clients every epoch as in the TreeRestart
approach in Kairouz et al. (2021b). We observe that for the
matrix mechanism, the compression rates are, in general,
less than DP-FedAvg, and in addition, the performance is
more sensitive to server learning rates and L2 clip norms.
7. Conclusion
Our work addresses challenges in L2 mean estimation under
central DP and communication constraints. We introduce
a novel L2 Rényi DP accounting algorithm for the sparsi-
fied Gaussian mechanism that significantly improves upon
previous ones based on L∞ sensitivity. We also extend the
scheme and accountant to the streaming setting, providing
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Figure 3. Accuracy of MF and SGMF, with δ = 10−5, cohort size
n = 100, clipped norm ∆2 = 1.0, and server learning rate 0.1.

an adaptive DP bound that handles spatial and temporal cou-
plings of privacy loss unique to adaptive settings. Empirical
evaluations on diverse federated learning tasks showcase a
100x enhancement in compression. Notably, our scheme
focuses on reducing the dimensionality of local model up-
dates, and hence it can potentially be combined with other
gradient quantization or compression techniques, thereby
promising heightened compression efficiency.
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This paper introduces a new privacy accounting method
for the sparsified Gaussian mechanism which improves the
communication-privacy-utility trade-offs in federated learn-
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Konečnỳ, J., McMahan, H. B., Yu, F. X., Richtárik, P.,
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A. Sparsified Gaussian Matrix Factorization for General Cohort Size
In this section, we present the full SGMF schemes with a general cohort size. Note that while we allow more than one client
per FL round, each client only participates once.

Algorithm 3 Sparsified Gaussian Matrix Factorization with Full Cohort Size

Input: Local vectors g(1), ..., g(T ), noise scale σ, sparsification rate γ, factorization A = B ·C.
for Each cohort Bt at time t do

for Each client i in cohort Bt do
Generates an independent binary mask s(t,i) ∈ Ber(γ)⊗d; Send g̃(t,i) = g(t,i) ⊙ s(t,i) to the server;

end for
end for
Server computes G̃ ∈ RT×d, where the t-th row is g̃(t) = 1

γ|Bt|
∑

i∈Bt
g̃(t,i);

Server samples Gaussian noise: [Z]t,j
i.i.d.∼ N (0, σ2) for all t ∈ [T ] and j ∈ [d].

Server computes the noisy mean: A · G̃+B · Z.

B. Additional Details on Communication-Efficient DME with Local DP
An alternative method for achieving communication-efficient DME under central DP involves employing local DP mecha-
nisms (Warner, 1965; Kasiviswanathan et al., 2011) with privacy amplification through shuffling (Erlingsson et al., 2019;
Girgis et al., 2021; Feldman et al., 2022; 2023). It is worth noting that, under a εLocal-DP constraint, the optimal local
randomizer is the privUnit mechanism (Bhowmick et al., 2018; Asi et al., 2022). This mechanism can be efficiently
compressed using a pseudo-random generator (PRG) (Feldman & Talwar, 2021) or random projection (Asi et al., 2023)
(without going through quantization or L∞ clipping). Combining these local DP schemes with a multi-message shuffler
has been proven to achieve order-optimal privacy-accuracy-utility trade-offs (Chen et al., 2023; Girgis & Diggavi, 2023),
requiring less trust assumption on the server.

However, as pointed out in Chen et al. (2023), this local DP approach involves privacy amplification by shuffling lemmas
that exhibit large leading constants compared to CGSM. Furthermore, privUnit is designed and optimized under pure DP,
leaving its optimality under approximate or Rényi DP unclear. Additionally, to our best knowledge, there is currently no
privacy amplification lemma known for transforming local Rényi DP into central Rényi DP. Hence, even if one adopts an
optimal local R’enyi DP scheme and combines it with shuffling, it remains uncclear whether the resulting privacy guarantee
is order-optimal. Lastly, Chen et al. (2023) empirically demonstrates a non-negligible gap in Mean Squared Errors (MSEs)
between shuffling-based methods and L∞-CGSM.

C. Additional Details for the Experiments
In this section, we provide additional details of the experiments. We mainly compare the L2-CGSM (Algorithm 2) and
sparsified Gaussian matrix factorization (Algorithm 2) with the uncompressed Gaussian mechanism (Balle & Wang, 2018).
We convert the Rényi DP bounds to (ε, δ)-DP via the conversion lemma from Canonne et al. (2020) for a fair comparison.

Datasets and models. We run experiments on the full Federated EMNIST (Cohen et al., 2017) and Stack Overflow (Authors.,
2019) dataset. F-EMNIST has 62 classes and N = 3400 clients with a total of 671, 585 training samples. Inputs are
single-channel (28, 28) images. The Stack Overflow (SO) dataset is a large-scale text dataset based on responses to questions
asked on the site Stack Overflow. There are over 108 data samples unevenly distributed across N = 342, 477 clients. We
focus on the next word prediction (NWP) task: given a sequence of words, predict the next words in the sequence.

On F-EMNIST, we experiment with a (4 layer) Convolutional Neural Network (CNN), which is used by Kairouz et al.
(2021a). The architecture is slightly smaller and has d ≤ 220 parameters to reduce the zero padding required by the
randomized Hadamard transform used for flattening and L∞ clipping (see Algorithm 1). The requirement can be potentially
removed if one uses a randomized Fourier transform instead. On SONWP, we experiment with a 4 million parameters (4
layer) long-short term memory (LSTM) model – the same architecture as prior work Andrew et al. (2021); Kairouz et al.
(2021a). In both cases, clients train for 1 local epoch using SGD. Only the server uses momentum.
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For each local model update, we perform random rotation (based on randomized Hadamard transform) and L∞ clipping,
with ∆∞ = ∆2

√
2 log(d · n)/d, where d is the model dimension (i.e., # trainable parameters) and n is the cohort size in

each training round.

L2-CSGM for DP-SGD. In Figure 4 and Figure 5, we present the accuracy results of the L2-CSGM algorithm (Algorithm
1) applied to F-EMNIST with varying cohort sizes, juxtaposed with the performance of the uncompressed Gaussian
mechanism. Notably, our findings reveal that, on the whole, we can achieve compression exceeding 100x without a
significant compromise in accuracy. Furthermore, as the cohort size n increases, the impact of compression on utility
diminishes. This implies that greater compression is feasible with larger values of n. Similarly, in Figure 6, we delineate the
accuracy outcomes for the Stack Overflow next-word prediction task across diverse ε values, maintaining a constant cohort
size of 1000.

Figure 4. Accuracy of GM and CSGM, with δ = 10−5 and cohort size 1000. The ∆∞/∆2 ratio is 6.4 · 10−3 for F-EMNIST.

Figure 5. Accuracy of GM and CSGM, with δ = 10−5 and cohort size 100. The ∆∞/∆2 ratio is 6.4 · 10−3 for F-EMNIST.

Sparsified Gaussian Matrix Mechanism for DP-FTRL. In Figure 7 and Figure 8, we report the accuracy of SGMF
(Algorithm 2) and the uncompressed matrix mechanism. We use the same factorization as in Denisov et al. (2022) with
T = 32 for 16 epochs (due to the limited amount of clients), and we restart the mechanism and shuffle clients every epoch
as in the TreeRestart approach in Kairouz et al. (2021b). We observe that for the matrix mechanism, the compression rates
are generally less than DP-FedAvg, and the performance is more sensitive to server learning rates and L2 clip norms.
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Figure 6. Accuracy of GM and CSGM, with δ = 10−5 and cohort size 100. The ∆∞/∆2 ratio is 6.4 · 10−3 for F-EMNIST.

Figure 7. Accuracy of MF and SGMF on EMNIST, with δ = 10−5, clipped norm ∆2 = 1.0, and server learning rate 0.1.

D. Proofs
D.1. Proof of Theorem 4.1

For any g1, g2, ..., gn, it holds that

Dα

(
s1 ⊙ g1 +

n∑
i=2

si ⊙ gi + Z

∥∥∥∥∥
n∑

i=2

si ⊙ gi + Z

)
(a)
≤ Dα (s1 ⊙ g1 + Z∥Z)

(b)
=

d∑
j=1

Dα (s1(j) · g1(j) + Zj∥Zj)

=

d∑
j=1

Dα

(
γN (g1(j), σ

2) + (1− γ)N (0, σ2)
∥∥N (0, σ2)

)
,

where (a) is due to the data processing inequality, and in (b) holds since s1(j) and Zj are independent across j ∈ [d].
Similarly, it holds that

Dα

(
n∑

i=2

si ⊙ gi + Z

∥∥∥∥∥g1 +
n∑

i=2

si ⊙ gi + Z

)
≤

d∑
j=1

Dα

(
N (0, σ2)

∥∥γN (g1(j), σ
2) + (1− γ)N (0, σ2)

)
,
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Figure 8. Accuracy of MF and SGMF on EMNIST, with δ = 10−5, clipped norm ∆2 = 0.03, and server learning rate 0.5.

For notational simplicity, let us define κj ≜ g1(j). Notice that g1 ∈ Sd−1 implies ∥κ∥2 ≤ 1.

Then for each j ∈ [d], by Corollary 7 of Mironov et al. (2019),

max
(
Dα

(
γN (x1j , σ

2) + (1− γ)N (0, σ2)
∥∥N (0, σ2)

)
, Dα

(
N (0, σ2)

∥∥γN (x1j , σ
2) + (1− γ)N (0, σ2)

))
= Dα

(
γN (x1j , σ

2) + (1− γ)N (0, σ2)
∥∥N (0, σ2)

)
=

1

α− 1
log

(
EX∼q

[(
(1− γ) + γ

p

q
(X)

)α])
where p is a density function of N (κj , σ

2) and q is a density function of N (0, σ2).

For any integer α, we have

1

α− 1
log

(
EX∼q

[(
(1− γ) + γ

p

q
(X)

)α])
=

1

α− 1
log

(
α∑

ℓ=0

(
α

ℓ

)
(1− γ)

α−ℓ
γℓEX∼q

[
exp

(
ℓ

(
− 1

2σ2

)
((X − κj)

2 −X2)

)])

=
1

α− 1
log

(
α∑

ℓ=0

(
α

ℓ

)
(1− γ)

α−ℓ
γℓEX∼q

[
exp

(
− ℓ

2σ2
(κ2

j − 2κjX)

)])

=
1

α− 1
log

(
α∑

ℓ=0

(
α

ℓ

)
(1− γ)

α−ℓ
γℓ exp

(
−ℓκ2

j

2σ2

)
EX∼q

[
exp

(
κjℓ

σ2
X

)])
(a)
=

1

α− 1
log

(
α∑

ℓ=0

(
α

ℓ

)
(1− γ)

α−ℓ
γℓ exp

(
−ℓκ2

j

2σ2

)
exp

((
κjℓ

σ2

)2
1

2
σ2

))

=
1

α− 1
log

(
α∑

ℓ=0

(
α

ℓ

)
(1− γ)

α−ℓ
γℓ exp

(
(ℓ2 − ℓ)κ2

j

2σ2

))
where (a) is due to the generating function of normal distribution.

As a result, summing j ∈ [d] yields

ε∗ (α) ≤ max
κ:∥κ∥2≤∆2,∥κ∥∞≤∆∞

∑
j

1

α− 1
log

(
α∑

ℓ=0

(
α

ℓ

)
(1− γ)

α−ℓ
γℓ exp

(
(ℓ2 − ℓ)κ2

j

2σ2

))
︸ ︷︷ ︸

≜f(κ2
j )

First, observe that (1) κ2 7→ f(κ2) is increasing and convex (since it is log-sum-exp), and (2) f(0) = 0. Next, define
κ∗
1 ≥ κ∗

2 ≥ · · · ≥ κ∗
d as the unique sequence such that
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• κ∗
j = ∆∞ for any j ≤ ∆2

2

∆2
∞

;

• κ∗
j = 0 for any j >

∆2
2

∆2
∞

+ 1;

•
∑

j(κ
∗
j )

2 = ∆2
2.

Then, it is obvious that (κ∗
1)

2
, (κ∗

2)
2
, · · · , (κ∗

d)
2 is a majorization5 of any κ2

1 ≥ κ2
2 ≥ · · · ≥ κ2

d such that
∑d

j=1 κ
2
j = ∆2

and maxj∈[d] κ
2
j ≤ ∆2

∞. Applying Karamata’s inequality6 yields

max
κ:∥κ∥2≤∆2,∥κ∥∞≤∆∞

∑
j

1

α− 1
log

(
α∑

ℓ=0

(
α

ℓ

)
(1− γ)

α−ℓ
γℓ exp

(
(ℓ2 − ℓ)κ2

j

2σ2

))

=
∑
j

1

α− 1
log

(
α∑

ℓ=0

(
α

ℓ

)
(1− γ)

α−ℓ
γℓ exp

(
(ℓ2 − ℓ)(κ∗

j )
2

2σ2

))

=
⌊∆2

2/∆
2
∞⌋

α− 1
log

(
α∑

ℓ=0

(
α

ℓ

)
(1− γ)

α−ℓ
γℓ exp

(
(ℓ2 − ℓ)∆2

∞
2σ2

))

+
1

α− 1
log

(
α∑

ℓ=0

(
α

ℓ

)
(1− γ)

α−ℓ
γℓ exp

(
(ℓ2 − ℓ)(∆2

2 −∆2
∞ · ⌊∆2

2/∆
2
∞⌋)

2σ2

))

≤ ∆2
2/∆

2
∞

α− 1
log

(
α∑

ℓ=0

(
α

ℓ

)
(1− γ)

α−ℓ
γℓ exp

(
(ℓ2 − ℓ)∆2

∞
2σ2

))
,

where the last inequality holds due to the convexity and the following Jensen’s inequality:

1

α− 1
log

(
α∑

ℓ=0

(
α

ℓ

)
(1− γ)

α−ℓ
γℓ exp

(
(ℓ2 − ℓ)(∆2

2 −∆2
∞ · ⌊∆2

2/∆
2
∞⌋)

2σ2

))

=
1

α− 1
log

(
α∑

ℓ=0

(
α

ℓ

)
(1− γ)

α−ℓ
γℓ exp

(
(ℓ2 − ℓ)

(
∆2

∞
(
∆2

2/∆
2
∞ − ⌊∆2

2/∆
2
∞⌋
))

2σ2

))

≤
1−

(
∆2

2/∆
2
∞ − ⌊∆2

2/∆
2
∞⌋
)

α− 1
log

(
α∑

ℓ=0

(
α

ℓ

)
(1− γ)

α−ℓ
γℓ exp

(
(ℓ2 − ℓ)∆2

∞ · 0
2σ2

))

+
∆2

2/∆
2
∞ − ⌊∆2

2/∆
2
∞⌋

α− 1
log

(
α∑

ℓ=0

(
α

ℓ

)
(1− γ)

α−ℓ
γℓ exp

(
(ℓ2 − ℓ)∆2

∞ · 1
2σ2

))

=
∆2

2/∆
2
∞ − ⌊∆2

2/∆
2
∞⌋

α− 1
log

(
α∑

ℓ=0

(
α

ℓ

)
(1− γ)

α−ℓ
γℓ exp

(
(ℓ2 − ℓ)∆2

∞
2σ2

))
.

This establishes the theorem. □

D.2. Proof of Lemma 5.2

To upper bound Dα

(
PP|G

∥∥PP|H
)
, observe that for any coordinate i ∈ [d], Pi ≜ (p

(1)
i , ...,p

(T )
i ) depends solely on g

(1)
i ,

s
(1)
i and

(
Z

(1)
i , ...,Z

(T )
i

)
. Therefore,

Dα

(
PP|G

∥∥PP|H
)
=

d∑
i=1

Dα

(
PPi|Gi

∥∥PPi|Hi

)
=

d∑
i=1

Dα

(
P
p

(1)
i ,...,p

(T )
i |Gi

∥∥∥Pp
(1)
i ,...,p

(T )
i |Hi

)
.

5See https://en.wikipedia.org/wiki/Karamata%27s_inequality for a definition of “majorization”.
6https://en.wikipedia.org/wiki/Karamata%27s_inequality
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Then, we claim that releasing
{
p
(t)
i = Mt1

(
g
(1)
i · S(1)

i

)
+Z

(t)
i , t ∈ [T ]

}
is indeed an instance of (non-adaptive) subsam-

pled Gaussian mechanism. By writing it in a vector form
p
(1)
i

p
(2)
i
...

p
(T )
i

 = g
(1)
i · S(1)

i ·


M11

M21

...
MT1

+


Z

(1)
i

Z
(2)
i
...

Z
(T )
i

 , (6)

it becomes clear as a subsampled Gaussian mechanism with sensitivity ξ (M) ·
∣∣∣g(1)

i

∣∣∣. Since M = Q ·C and that Q is

orthonormal, we have ξ (M) = ξ (C). Also, by the geometrical assumption of data matrix G, it holds that
∑d

i=1

∣∣∣g(1)
i

∣∣∣2 ≤

∆2 and
∣∣∣g(1)

i

∣∣∣ ≤ ∆∞ for all i. Summing across i ∈ [d] and applying Theorem 4.1 yield

Dα

(
PP|G

∥∥PP|H
)
≤ κ2

2/κ
2
∞

α− 1
log

(
(1− γ)α−1 (γ(α− 1) + 1) +

α∑
ℓ=1

(
α

ℓ

)
(1− γ)

α−ℓ
γℓe(ℓ−1)α

κ2
∞

2σ2

)
, (7)

establishing the desired result.
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