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Abstract

Regulators and academics are increasingly inter-
ested in the causal effect that algorithmic actions
of a digital platform have on user consumption.
In pursuit of estimating this effect from obser-
vational data, we identify a set of assumptions
that permit causal identifiability without assum-
ing randomized platform actions. Our results
are applicable to platforms that rely on machine-
learning-powered predictions and leverage knowl-
edge from historical data. The key novelty of our
approach is to explicitly model the dynamics of
consumption over time, exploiting the repeated
interaction of digital platforms with their partici-
pants to prove our identifiability results. By view-
ing the platform as a controller acting on a dynam-
ical system, we can show that exogenous variation
in consumption and appropriately responsive algo-
rithmic control actions are sufficient for identify-
ing the causal effect of interest. We complement
our claims with an analysis of ready-to-use finite
sample estimators and empirical investigations.
More broadly, our results deriving identifiability
conditions tailored to digital platform settings il-
lustrate a fruitful interplay of control theory and
causal inference.

1. Introduction
How much do advertisements decrease screen time? Do
algorithmic recommendations increase consumption of in-
flammatory content? Does exposure to diverse news sources
mitigate political polarization? These are just a few ques-
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tions that firms, researchers, and regulators ask about digital
platforms (Barberá et al., 2015; Brown et al., 2022b). These
questions all examine the capacity of a digital platform’s
algorithmic action to influence users, an effect referred to
as performativity (Perdomo et al., 2020).

Estimating performativity is a causal inference problem
where the treatment corresponds to the algorithmic
action taken by the platform and the outcome variable
corresponds to user behavior. We focus on consumption
as the user variable of interest and aim to measure how
much algorithmic actions of platforms impact consumption.
Treatment effect estimation from observational data is
challenging in such algorithmic systems because actions
are typically driven by observations of past consumption.
This feedback loop couples actions and consumption,
introducing confounding. The corresponding causal graph
is illustrated in Figure 1(a) where u corresponds to the
platform action, x to user consumption, and z denotes
the confounding set containing all relevant past platform
actions and consumption data. The presence of confounding
means that we cannot determine whether the correlations
between u and x should be attributed to performativity of
the actions u or to the common cause z.

Injecting independent variation into the platform action u—
for example, via A/B testing—is sufficient to resolve such
confounding. However, randomized experiments may be
ethically fraught (Kramer et al., 2014; PNAS, 2014), techni-
cally challenging to implement, or prohibitively expensive.
Moreover, external investigators often do not have the abil-
ity to experimentally intervene in the practices of a platform.
For these reasons, we focus this work around observational
causal inference and ask: under what conditions can obser-
vational designs lead to valid inferences of performativity?

Typically, observational designs build on the premise that
there is sufficient variation in the treatment in order to re-
solve confounding (Rosenbaum & Rubin, 1983; Imbens,
2004). In the context of Figure 1(a), this means that we
need to assume overlap between u and z—i.e., all strata of
the treatment u have positive probability of selection for any
possible realization of the confounding set z.

At the outset, this assumption seems hard to reconcile with
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Figure 1: The causal inference problem of estimating performativity of algorithmic actions.

practices of digital platforms operating machine learning al-
gorithms. In particular, algorithmic platform actions are typ-
ically generated from machine learning models which have
been trained on historical observations. As a consequence,
past consumption, which is a part of the confounding vari-
able z, typically influences future actions—potentially in a
deterministic way. Thus, we should expect little indepen-
dent variation in u for a fixed z, meaning that overlap for
this choice of u and z is unlikely to hold. Furthermore,
because the interactions users have with digital platforms
often span multiple time steps, the confounding set z is may
be high-dimensional. The high-dimensionality of such a
confounding set makes overlap between u and z even harder
to satisfy (D’Amour et al., 2017). Together, these properties
of algorithmic systems make it challenging to justify valid
inferences about performativity in Figure 1(a) from data
collected under natural interactions between platforms and
participants.

1.1. Our work

We propose a more refined causal model—i.e., a different
way of representing u and z—as a means to bypass the
overlap issues we discuss earlier. Using our model, we artic-
ulate conditions for valid inferences of performativity from
observational data, without assuming explicit randomiza-
tion in the platform actions. Our approach is inspired by a
control-theoretic view on the problem and explicitly mod-
els the repeated interactions between a digital platform and
their users across time. We view the platform as a controller
repeatedly adapting to changes in user consumption. The
structural assumptions on the dynamics translate into struc-
tural assumptions on how the variables in the confounding
set z relate to each other across time. By exposing this struc-
ture, we can trace how variations on consumption propagate
through the system, allowing us to design new conditions for
causal identifiability tailored to the digital platform setting.

More formally, we work with the model visualized in Fig-
ure 1(b). The consumer’s features xt at time t are deter-
mined by their previous value xt−1, exogenous noise ξt, as

well as the performative effect of the previous platform ac-
tion ut−1. The platform’s action ut is updated in each step
based on the most recent observations of xt and the action it
took previously ut−1. We are interested in the performative
effect, represented by the orange arrow, and quantified by
the following treatment effect function:

PEt(u,u′) ∶= E[xt ∣ do(ut−1 = u)] −E[xt ∣ do(ut−1 = u′)],

where do(⋅) is the do-operator used to represent interven-
tions in the causal graph (Pearl, 2009).

Contributions. Our main contribution is to demonstrate
that it is possible to circumvent directly assuming exogenous
variations in platform actions u in order to identify PEt. In
particular, our main theoretical claims are the following:

1. In the non-parametric case, we show that a) sufficient
exogenous variation on the consumer’s consumption
at multiple consecutive time steps and b) the platform
control action being non-degenerate, is necessary and
sufficient for causal identifiability of PEt.

2. In the linear case, we show that the investigator can
take advantage of observations of longer roll-outs
across time to get identifiability of PEt from a sin-
gle consumer-feature perturbation.

To complement our study, we propose a two-stage
regression estimator and an adjustment formula estimator
for estimating PEt from finite samples with theoretical
guarantees. We also simulate a recommendation system to
empirically test the efficacy of our assumptions at reducing
overlap violations. We present more experiments in the
Appendix, including ones using real microeconomic data.
Taken together our results provide a valuable guidance
for the applicability of observational causal inference for
investigating performativity on digital platforms.

1.2. Background and Related Work

The impact digital platforms have on their users is rele-
vant for diverse applications spanning content recommenda-
tion, prediction policy problems, labor markets and social
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science research (c.f., Shmueli & Tafti, 2020; Thai et al.,
2016; Fleder et al., 2010; Adomavicius et al., 2013; Krauth
et al., 2022; Barberá et al., 2015; Brown et al., 2022b; Wag-
ner et al., 2021a). Performative effects influence design
choices on the side of the platform (Bottou et al., 2013;
Perdomo et al., 2020), produce externalities for platform
participants (Wagner et al., 2021b), and offer an important
dimension along which to monitor algorithmic systems. A
recent work by Hardt et al. (2022) proposed performative
power as a formal measure to quantify the extent to which
a platform can steer user behavior, relating it to economic
power. In this context, our identifiability results provide con-
ditions under which a lower bound on performative power
can be assessed from observational data, providing a valu-
able guardrail for digital market investigations.

Performativity in Machine Learning. There is a
growing body of work studying the role of performativity
in machine learning (c.f., Perdomo et al., 2020; Brown
et al., 2022a; Mandal et al., 2023; Eilat & Rosenfeld,
2023; Wang et al., 2023; Hardt & Mendler-Dünner, 2023)
and, more specifically, user dynamics in recommender
systems (Kalimeris et al., 2021; Chaney et al., 2018; Dean
& Morgenstern, 2022). These works typically posit an
interaction model between platforms and participants or
treat the strength of performativity as a free parameter.
Our work complements these investigations by providing
an approach to estimate performativity from data. Most
related to our work is Mendler-Dünner et al. (2022) who
propose ‘predicting-from-predictions’ as an identification
strategy for recovering performative effects under outcome
performativity. The approach relies on incongurences in
modality to establish causal identifiability, whereas our
results exploit interactions across time. Several other works
blend performativity and causal inference in the context of
strategic classification (e.g., Miller et al., 2020; Shavit et al.,
2020; Bechavod et al., 2021; Harris et al., 2022; Horowitz
& Rosenfeld, 2023), while they posit performativity, we
focus on estimating it.

Causal Inference. We build on tools from causal infer-
ence (Pearl, 2009) to understand when observational data is
sufficient to measure performativity, to deal with potential
confounding, and to derive finite-sample estimators. Our
work most closely relates to works that handle overlap vi-
olations (Chen et al., 2007; Sasaki & Ura, 2017; Yang &
Ding, 2018; Petersen et al., 2012a), address adjustment set
selection (de Luna et al., 2011) and model time in causal
graphs (Blackwell, 2013). However, unlike general causal
inference results, our focus lies on measuring the causal
effects of algorithm-driven treatments and providing as-
sumptions and results tailored to this setting. This provides
many interesting connections but leaves a small intersection
with prior work, which we discuss now.

D’Amour et al. (2017) provides an in depth analysis of
the restrictive implications of assuming overlap with high-
dimensional confounders. Petersen et al. (2012b) discuss
how sub-selecting adjustment sets in causal inference can
help alleviate challenges of overlap. We apply similar ideas
to shrink our adjustment set, motivating our selection using
a time-aware interaction model. When studying time-aware
causal graphs, most prior work focuses on experimental
designs (Klasnja et al., 2015; Dwivedi et al., 2022; Zhang
& Bareinboim, 2019). Only a few focus on observational
causal inference; some examples include (Blackwell, 2013;
Kim et al., 2020; Shah et al., 2022). While these works
do not assume control over platform actions, they do pre-
suppose that typical overlap assumptions are satisfied. For
example, Shah et al. (2022) focus on a recommender sys-
tem application and use an exponential family model for
the conditional distribution, implicitly assuming overlap.
Other time-aware causal inference techniques include dif-
ference in difference techniques (Bertrand et al., 2001) and
synthetic control techniques (Abadie & Gardeazabal, 2003;
Abadie et al., 2010) for longitudinal and panel data. These
approaches also implicitly assume overlap—i.e., that treat-
ment and control groups exist or can be synthetically con-
structed. In contrast, our work focuses on how we can use
time-dependent interactions in digital platforms to handle
potentially deterministic platform actions and ultimately
guarantee identifiabilty from observational data. To the best
of our knowledge, the assumptions derived in this work
are novel, and there is no prior work exploiting time and
the resulting structure in confounding variables to establish
identifiability.

Control Theory. From a control theory perspective, es-
timating performativity in our causal model is reminiscent
of a system identification problem (Ljung, 2010). However,
our problem setup differs from standard system identifica-
tion results such as Bruder et al. (2018) because we focus
on purely observational designs, where we do not choose
what platform control actions (i.e., interventions) are taken.
Within the system identification literature, we highlight the
work of Abbasi-Yadkori & Szepesvari (2011) because of
the similarity of their model to the linear model we study
in Section 4. Their results hinge on a finite-sample system
identification result, similar in spirit to the type of identifia-
bility results found in this paper.

2. Model
In our setting, estimating performativity corresponds to
quantifying the causal effect of a platform action u on user
consumption x. The main challenge is that future platform
actions are affected by past actions and observations of user
behavior, introducing confounding.
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Our model—outlined in Figure 1(b)—makes the temporal
component of interactions among the confounding variables
explicit: We let xt ∈ Rd and ut ∈ Rp denote the consump-
tion and platform action at time step t respectively. We
assume for all t ≥ 0 the dynamics follow

xt = f(xt−1) + g(ut−1) + ξt
ut = h(xt) + r(ut−1)

(1)

with ξt ∈ Rd modeling potential exogenous variations
in xt and the functions f ∶ Rd → Rd, g ∶ Rp → Rd,
h ∶ Rd → Rp, and r ∶ Rp → Rp describe how consumption
and platform actions affect one another. We make the
following assumption1 on the exogenous noise:

Assumption 1 (Mutually Independent Exogenous Varia-
tion). For any t ≥ 1, the random variable ξt is mutually inde-
pendent of ξk for all k ≠ t and independent of (x0, u0) ∼ P0.

Given these modeling assumptions, we are interested in es-
timating the treatment effect function PEt. We note that
because our system dynamics (1) are time-invariant and the
structural equations for x are assumed to be separable, we
have PEt = PEt′ for all t, t′. Thus, without loss of gen-
erality, we will focus on identifying PET (u,u′) = E[xT ∣
do(uT−1 = u)] − E[xT ∣ do(uT−1 = u′)], letting T de-
note the index we want to estimate performativity for. We
use RK to denote a rollout of the previous K time indices
leading up to the chosen time index T :

RK ∶= ({xT−t, uT−t}Kt=1, xT ).

We assume access to iid observations of rollouts RK . We
will specify K in each result.

2.1. Running example: Video recommendation system

To provide a concrete instantiation of our model, consider
an auditor who is interested in estimating the impact of the
recommendation algorithm of a video streaming platform—
like Twitch or YouTube—on the consumption patterns of
their users. Let x1t ∈ Rp be some measure of content
consumption (e.g., number of hours streamed) for p video
categories of interest during week t for a given user. Let
x2t ∈ Rdz be comprised of measurements about the platform
such as revenue per category which could be confounders.
We can think of the joint vector [x1t;x2t] ∈ Rd as the state
variable xt for d = p + dz . The platform action ut ∈ Rp

is a measure of how many videos from the p categories of
interest are recommended to a given user during week t. The
platform interfaces using ut with the goal of maximizing
total profits, which is some deterministic function of xt. The
auditor is interested in estimating how the platform action

1We use Assumption 1 for clarity of exposition; for an alterna-
tive and weaker assumption, see Appendix G.

ut−1 impacts the average watch habits x1t of users—i.e.,
the first p coordinates of PE(u,u′).

Our model postulates that user consumption changes over
time based on the recommendations by the algorithm, as
well as external factors (e.g., new trends). Formally, tak-
ing inspiration from Jambor et al. (2012), we model the
dynamics of the system as

x1t = f1(x1t−1, x2t−1) + g1(ut−1) + ξ(1)t

x2t = f2(x1t−1, x2t−1) + g2(ut−1) + ξ(2)t .

The function f1 models how much interest users retain in
each video category from week to week, as well as the ef-
fect of confounders on viewership (e.g., how many hours
of viewing time can a competitor poach). The function f2
models how the performance metrics chosen as a target
variable by the firm evolve over time, while the function g1
models the platform’s ability to control this metric. The
auditor wants to estimate the relationship g1 that governs
how much consumption increases with the number of recom-
mendations. The noise variables ξ(1)t , ξ

(2)
t allow for natural

variation in user preferences, e.g., due to economic develop-
ments, independent of past consumption and the platform’s
recommendations. We can model the platform action as

ut = h(x1t, x2t) + r(ut−1),

where h models the platform’s algorithm of how viewer
statistics and other metrics affect recommendations in the
future. The function r models how it regularizes recommen-
dations to avoid overfitting to recent activity.

Markovian assumption. Our model implicitly assumes
that current platform actions are only affected by the recent
past. This assumption seems reasonable for ML-based algo-
rithmic actions, given that digital platforms are constantly
retraining ML models on fresh data to improve performance
and mitigate distribution shift (Shankar et al., 2022). In
addition, the Markovian view of digital platform actions
is prevalent in the recommendation system literature. For
example, the contextual multi-armed bandit models used to
study recommendation systems are Markovian by construc-
tion (Langford & Zhang, 2007; Bouneffouf & Rish, 2019).
In turn, the Markovian assumption on consumer dynamics
is based on the belief that there are few long range causal
effects that affect consumption, and the ones that exist—say
inherent biases, interests, or habits—can be encoded into all
of the states, without blowing up the dimension. Even if the
system we are modeling is not Markovian, choosing to use
the Markovian assumption as a means to weaken overlap
assumptions and select an adjustment set can still be benefi-
cial as long as the errors caused by model misspecification
are small, outweighed by the benefits of statistical power.
We empirically explore this trade-off in Appendix D.
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3. Identifiability from exogenous variations in
user consumption

A quantity is identifiable if it can be uniquely determined
from the observational data distribution. Conversely, if there
exists multiple values of said quantity which are all consis-
tent with the observational data probability distribution, then
we say it is unidentifiable.

Our goal is to outline necessary and sufficient conditions for
identifiability of PET from observations of u and x across
time. To provide intuition for the merits of exposing time,
let us recall the conditions for identifiability in the general
causal graph in Figure 1(a). Classical results from causal
inference in the presence of observed confounding (Pearl,
2009) tell us that a sufficient condition for identifiability of
the causal effect of u on x is admissibility and overlap.
Definition 3.1 (Admissibility). We say a continuous random
variable Z with density p is admissible for adjustment with
respect to treatment U and outcome X if the adjustment
formula is valid:

E[X ∣ do(U ∶= u)] = ∫ E[X ∣ U = u,Z = z]p(z)dz.

Definition 3.2 (Overlap). For an action U and a confounder
Z with well-defined joint density p, overlap of (u, z) is
satisfied if pU ∣Z(u′ ∣ z′) > 0 for all u′ ∈ Rp and z′ where
pZ(z′) > 0.

Intuitively, overlap guarantees that E[X ∣ U = u,Z = z] is
well defined, and together with admissibility E[X ∣ do(U ∶=
u)] can be uniquely expressed as a function of observational
data distributions, and computed via the adjustment formula.

Naturally, z is admissible with respect to u and x in the
standard three variable graph of Figure 1(a). The corre-
sponding overlap assumption for identifiability, also known
as common support assumption, would require that for any
given z, the variable u takes on any value with non-zero
probability. However, as we argued in the introduction this
is not typically the case in digital platform settings where
values of x and u from previous time steps confound fu-
ture actions. In particular, if the new platform action u is
a deterministic function of these two variables, overlap of
(u, z) is necessarily violated. This holds even if dynamics
are Markovian—namely, when z contains only the values
of u and x from one previous time step.

Now, let us return to our model that treats u and x separately.
The first key observation is that xT−1 is admissible with
respect to uT−1 and xT , see Appendix F.2 for the proof.
Proposition 1 (Admissibility in our model). Given the struc-
tural equations in (1) and let Assumption 1 hold. Then, xT−1
is admissible with respect to uT−1 and xT for any T ≥ 0.

Thus, the main challenge for establishing identifiability of
PET in our model is to argue about overlap of (uT−1, xT−1).

As we will show, this condition can be satisfied, even if h
and r in (1) are deterministic functions. Once overlap is
given, observations of RK=1 are sufficient for identifiability.

We note that although our pathway to showing identifiability
in this section is via showing overlap, unlike past work,
we will not assume at the outset that overlap is satisfied.
Instead, we will design digital-platform-specific sufficient
conditions for satisfying overlap. We make these sufficient
conditions explicit to give us the language to articulate the
circumstances when identifiability is possible in settings
without a randomized platform action.

3.1. Key assumptions

We highlight the two requirements on our dynamical system
that will allow us to establish overlap of (uT−1, xT−1). The
first assumption requires exogenous noise in the system that
leads to sufficient variation in consumption x across time.

Definition 3.3 (Consumption shock). For a given time step
t ≥ 0 we say there is a consumption shock at time t, if the
noise ξt, with density pξt , satisfies pξt(a) > 0 for all a ∈ Rd.

We say the system is exposed to M shocks prior to T if for
all t ∈ {T −M, . . . , T −1}, there is a consumption shock. We
expect such variations in consumption to naturally occur in
the presence of unexpected news events, economic shocks,
or new trends. In order to leverage these shocks for the pur-
pose of identifiability, we rely on a second assumption: the
platform needs to be sufficiently sensitive to the variations
in consumption x, so that the consumption shocks propagate
into the platform action u at consecutive time steps.

Definition 3.4 (Responsive platform action). A platform
action is responsive if for all c ∈ Rp, r(h(y) + c) is a
surjective, continuously differentiable map with respect to
y ∈ Rd, and the Jacobian J ∈ Rp,d of r(h(y) + c) with
respect to y satisfies rank(J) =min(p, d) for all y ∈ Rd.

Intuitively, r(h(y) + c) describes how the current state y
affects the next platform action, given that the previous
platform action was c. This is an assumption which can
be verified with enough knowledge of the design of the
platform. Consider r(u) = αu as a plausible instantiation,
recalling our example from Section 2.1. This corresponds to
a model where the platform uses previous platform actions
as a regularizer for how they select future actions. This
choice of r is surjective. We also expect the number of
metrics and confounders which can be affected by platform
actions to be large compared to the dimensionality of the
platform action—i.e., d ≥ p. Thus, because h maps to a
lower-dimensional space, we can reasonably expect h to
be surjective. Finally, because r(h(y) + c) is the compo-
sition of h and r, surjectivity of r(h(y) + c) follows. The
Jacobian rank condition imposes a form of “monotonicity”
on r(h(y) + c). In the video recommender system setting
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this could correspond to: more views in category i causes
more recommendations in category i—a plausible assump-
tion in a recommendation system. For another example of
a responsive platform action—one based on a paramteric
model taking gradient steps—see Appendix A.

Definition 3.4 is inspired by the notion of reachability in
control theory. Dean et al. (2019) discusses the connec-
tion between reachability and recommender systems; they
suggest that recommendation systems should be designed
such that users have the ability to “reach” any recommen-
dations they want to see indirectly via the actions they take.
This prescription corresponds in spirit to the surjectivity
condition of Definition 3.4.

3.2. General identifiability result

Building on the definitions from the previous section we are
ready to present our main identifiability result. The proof
can be found in Appendix F.3.

Theorem 1. Let the dynamical system in (1) have a respon-
sive platform action. Let Assumption 1 hold. Fix a T ≥ 2
and let the auditor observe RK=1. Then,

a) if the system exhibits M = 2 consumption shocks prior
to T , then the treatment effect function PET (u,u′) is
identifiable for any u,u′ ∈ Rp.

b) There exists a system with M < 2 consumption shocks
prior T , a distribution of (xT−3, uT−3), and an invert-
ible r such that for any f, g, h, such that for all u ≠ u′,
the function PET (u,u′) is unidentifiable.

This result states that consumption shocks on two preceding
state variables are sufficient for the auditor to identify the
performative effect from observations. In general, a single
consumption shock is not enough for identifiability because
h can be a deterministic function. In this case, for any given
combination of xt, ut−1, the auditor is only able to see one
corresponding value of ut. Thus, the second noise spike
is necessary to add another degree of freedom which pro-
vides enough variation for overlap. We emphasize that our
analysis crucially relies on accounting for how the noise
propagates through the system across multiple time steps.
In contrast, even multiple consumption shocks do not suf-
fice for identifiability in the time-agnostic, standard causal
model of Figure 1(a).

4. Identifiability in the linear model
In practice, an auditor may have access to longer rollouts of
observations (K > 1) or the system may exhibit additional
consumption shocks. A natural question is whether this
information makes it easier to estimate PEt(u,u′). We
investigate this question in the linear setting, instantiating

our model (1) as follows:

f(x) ∶= Ax g(u) ∶= Bu

h(x) ∶= Cx r(u) ∶=Du,
(2)

where A ∈ Rd,d,B ∈ Rd,p,C ∈ Rp,d,D ∈ Rp,p. The lin-
ear dynamics admit a clean characterization of the tradeoff
between rollout length and conditions for identifiability.
Linear state dynamics is certainly a strong assumption, but
it has proven to be a useful approximation in control the-
ory (e.g., Bouabdallah et al., 2004). In this linear setting,
identifying the performative effect reduces to identifying
the matrix B because PET (u,u′) = B(u′ − u). We again
consider identifiability under consumption shocks. How-
ever, for the linear case a weaker definition—one implied
by full-support—suffices.

Definition 4.1 (Fully-spanning consumption shock). We
say there is a fully-spanning consumption shock at time t,
if ξt is such that for all vectors a ∈ Rd with a ≠ 0, a⊺ξt is
almost surely not a constant.

We will also replace the responsive platform action assump-
tion (Definition 3.4) with a full rank condition.

Definition 4.2 (Full-row-rank platform action). For M ≥ 2,
the platform has a full-row-rank platform action over a span
of M steps if [DC, . . . ,DM−1C] has full-row-rank.

The condition for a full-row rank platform action is related
the Kalman rank condition in control theory (Zabczyk, 1992;
Gajic). In particular, recall that the Kalman rank condition
is satisfied—i.e., the matrix [B,AB, . . . ,AM−1B] is full
row rank—if and only if the system is controllable, meaning
that given any initial state x0 there exists control actions
u0, . . . , uM−1 which can reach any desired state xM . The
main differences in our condition is 1) we view the plat-
form action as the state and the user consumption as the
control action–this swaps A with D and B with C —and
2) rank condition matrix starts with DC not C. To see the
implications of these differences, consider rolling out uM :

uM =DMu0 +CxM + [DC, . . . ,DM−1C]
⎡⎢⎢⎢⎢⎢⎣

xM−1
⋮
x1

⎤⎥⎥⎥⎥⎥⎦
.

Interpreting this equation through the lens of controllability,
the full-row-rank platform action is satisfied if and only if for
any choice of initial platform action u0 and final consump-
tion xM , there exists a consumption profile x1, . . . , xM−1
that induces any desired final platform action uM .

4.1. Benefit of observing longer rollouts

In the linear setting, a full-row rank platform action which
spans M = 2 time steps is also an expressive platform action
(Definition 3.4), and vice versa. That said, Definition 4.2
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generalizes Definition 3.4 beyond the K = 1 setting. This
generalization allows us to characterize the benefits of ob-
serving longer rollouts, which we formalize in the following
result. We note that unlike the more general result (The-
orem 1), this result in the linear setting does not rely on
showing overlap conditions are satisfied; instead, we reason
about the uniqueness of the data generating process directly.
The proof can be found in Appendix F.4.
Theorem 2. Consider the dynamical system in (1) with
linear functions f, g, h, r defined in (2). Let Assumption 1
hold. Fix a time step T ≥K + 1, let the auditor observe iid
samples of RK . Let there be a fully-spanning consumption
shock at time step T −K. Then,

a) if K = 1, then for any A,B,C,D, there exists a dis-
tribution over (xT−2, uT−2) such that PET (u,u′) is
unidentifiable.

b) if K ≥ 2, then full-row-rank platform action over
the span of K steps is sufficient for identifiability of
PET (u,u′) for any u,u′.

c) if K ≥ 2, xT−K−1 = uT−K−1 = 0, and ξt = 0 for
t ≥ T −K + 1, then full-row-rank platform action over
the span of K steps is necessary for identifiability of
PET (u,u′) for any u,u′.

Theorem 2 characterizes the tradeoff between identifiability,
length of the observed rollout, and rank conditions on the
platform dynamics matrices in the linear setting. We see
that one consumption shock is not enough to identify the
performative effect from only observations of RK=1—just
like in the general setting—but given additional observa-
tions RK≥2 one consumption shock suffices in the linear
case. Moreover, as K gets larger, the rank assumptions
required become easier to satisfy, allowing for more poorly
conditioned dynamical systems to be identifiable.

More broadly, this result implies that an auditor can leverage
longer interaction sequences between consumer and plat-
form to make it easier to identify performativity. We note
that the proof technique we use to show Theorem 2 can be
extended to analyze linear systems where there is more than
one consumption shock; however, unifying this result with
settings where only a subset of a long rollout is observed
is an open question we defer to future work. Preliminary
empirical investigations Appendix E suggest that—similar
to longer rollouts—more consumption shocks also weaken
the required conditions for identifiability. We also defer
the extension of the proof techniques used in proving The-
orem 2—which do not rely on showing overlap conditions
are satisfied—to non-linear settings for future work.

5. Estimation from finite samples
In practice, an auditor will only have access to a finite num-
ber of observations. We discuss two finite-sample estimators

for measuring PET .

5.1. Adjustment formula estimator

The adjustment formula offers a direct way to estimate PET

from observations of RK=1 in a non-parametric way. In
particular, we replace the population conditional expecta-
tions and probabilities with empirical estimates. Letting
Su denote the observations of (ut−1, xt−1) where ut−1 = u
and Ê, P̂ denote empirical estimates of expectations and
probabilities respectively, the adjustment formula estimator
is defined as

∑
x∈Su

Ê[xt∣ut−1 = u,xt−1 = x]P̂ (xt−1 = x) (3)

Finite-sample analysis of the adjustment formula estimator
can be found in Appendix B. This estimator is also applica-
ble to the standard causal model in Figure 1(a), though at the
cost of being ill-defined if overlap conditions are violated—
i.e., when some pairs of (u,x) have no observations.

5.2. Two-stage regression estimator

We also introduce a two-stage regression estimator tailored
to the time-aware structure of our data generation model.
This estimator is applicable if observations of RK=2 are
available, and can always be computed, even if the overlap
conditions needed for theoretical guarantees do not hold.
We will analyze the two-stage regression estimator in the
linear setting from Section 4 and without loss of generality,
we set T = 3. Our results can be generalized to settings
where f, g, h, r are from a non-linear function class (e.g.,
via Rademacher complexity arguments), but we focus on
the simple linear setting for the sake of clarity. Recall that
recovering B is sufficient to estimate PET (u,u′) in the
linear case, as

PET (u,u′) = B(u′ − u).

We let x(k)t , u
(k)
t , ξ(k)t denote the kth observations of xt,

ut, and ξt respectively. Let Xt ∈ Rd,n, Ut ∈ Rp,n, and
Et ∈ Rd,n be matrices that comprise the n samples of xt,
ut, and ξt respectively. The two-stage regression estimator
is defined as B̂, where

Ĉ ∶= argmin
C∈Rp,d

1

2n
∥U1 −CX1∥2Fr

Ĥ ∶= argmin
H∈Rd,d

1

2n
∥X2 −HX1∥2Fr

B̂ ∶= argmin
B∈Rd,p

1

2n
∥X3 − ĤX2 −B(U2 − ĈX2)∥

2

Fr
.

We need the following assumption in order to provide our
convergence guarantees for this estimator.
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Assumption 2 (ρ-Bounded System Dynamics). The linear
dynamical system specified by (1) and (2) has ρ-Bounded
System Dynamics if ∣∣∣A +BC ∣∣∣op ≤ ρσmin (DC).

Intuitively, Assumption 2 ensures that the magnitude of state
and platform actions are of the same scale. We will use the
notation κA ∶= σmax(A)/σmin(A) to denote the condition
number of a matrix A and Σ̂1 ∶= 1

n ∑
n
k=1 ξ

(k)
1 (ξ

(k)
1 )⊺ to

denote the sample covariance of ξ1. Theorem 3 provides a
convergence result for the two-stage regression estimator of
B, assuming ξ3 = 0; the proof can be found in Appendix F.5.

Theorem 3. Consider the dynamical system in (1) with x0 =
u0 = ξ3 = 0, with f, g, h, r defined in (2), and with full-row-
rank platform action over the span of K = 2 steps. Let the
auditor observe n iid samples of RK=2. Let E ∥ξ2∥22 = σ2

2d,
and Assumption 2 hold. Let G be the event where X1X

⊺
1 is

invertable. If E [κ2
Σ̂1

λmin (Σ̂1)−1] ≤ τ1, then

1

pd
E [∥B̂ −B∥

2

Fr
∣ G] ≤

σ2
2ρ

2κ2
DCτ1

n
.

To illustrate this result, consider a simple Gaussian noise
example. Suppose ξ1 and ξ2 are drawn iid from N(0, σ2

1Id)
and p = d. We have E ∥ξ2∥22 = σ2

2d. For n ≥ d, Σ̂1 is almost
surely invertible. (X1X

⊺
1 /σ2

1)−1 has an inverse Wishart
distribution and thus, E[Σ̂−11 ] = n

(n−d−1)σ2
1
Id for n > d + 1.

Theorem 3 gives E ∥B̂ −B∥
2

Fr
≤ d2σ2

2ρ
2

(n−d−1)σ2
1
, scaling like the

linear regression error rate.

6. Empirical investigations
Now we use semi-synthetic recommender system data to
empirically investigate the effectiveness of our modeling
assumptions in alleviating overlap violations. We focus
on the adjustment formula estimator here, deferring
experiments about the two-stage regression estimator to
the Appendix. We simulate an online platform with items,
recommendations, users, and ratings using RecLab (Krauth
et al., 2020) with the goal of estimating the effect the
recommended topic has on user ratings.

RecLab Simulator. In the RecLab Topic environment, we
create 1000 items that the platform can recommend to 2000
users. Each item has a topic attribute w ∈ {0,1,2,3}. The
simulator is such that for any given topic w, user s has a pref-
erence bs,w ∼ Unif(0.5,5.5). When user s is recommended
an item of topic w, they will rate it as bs,w +N (0,0.01)
clipped to be between 1 and 5. If the user has been recom-
mended a item of topic w within its last 3 recommendations,
they are in an “echo chamber” and will rate the item as
bs,w +N (0,0.01) + 1. We simulate N time steps, where a
time step corresponds to recommending each of the 2000
users one item, having them rate the item, and updating the

Recommender Estimated TE1
Fraction of

undefined terms
Probability mass

of undefined terms

K=1 Random 4.58 0 / 3 0.0%
EASE (no update) 4.65 0 / 3 0.0%
EASE 4.68 0 / 3 0.0%

K=2 Random 4.56 0 / 9 0.0%
EASE (no update) 4.66 0 / 9 0.0%
EASE 4.69 0 / 9 0.0%

K=3 Random N/A 4 / 27 4.1%
EASE (no update) N/A 5 / 26 5.2%
EASE N/A 4 / 27 6.6%

Table 1. TE1 estimated using the adjustment formula
estimator with N = 751

model. We will use two different recommender systems
provided by RecLab for choosing the items recommended
to users: the EASE recommender (Steck, 2019) and a ran-
dom recommender. We initiate the EASE recommender by
simulating 100 cycles. In the ‘no-update’ variation, we fix
the EASE recommender weights to their initial value, and
in the other variation, we continue to update the weights
during the following N cycles based on user ratings. We
will vary N in this experiment to explore how the number
of samples affects overlap.

Causal effect of interest. We will focus on one particu-
lar user’s ratings2. Let xt ∈ [1,5] will denote this user’s
rating of the item recommended to them at time step t. Sim-
ilarly, ut ∈ {0,1,2,3} will denote the topic of the item
recommended to our user of interest at time step t. We
aim to estimate TE1 ∶= E[xt ∣ do(ut−1 = 1)] from which
we can construct the performative effect the recommenda-
tion of topic 1 has on the user’s rating. We look at a sliding
window over the data {(xt−K , . . . , xt, ut−K , . . . , ut−1)}Nt=K .
We treat these samples as the iid observations of RK . We
will let zt−1 ∶= (xt−K , . . . , xt−1) be the confounders. We
will vary K to explore how the size of the confounding set
affects estimation. Note that K = 3 is the well-specified
setting as users have a memory length of 3. We will use the
adjustment formula estimator, as the simulated dynamics
are non-separable.

6.1. Coverage

We compute the adjustment formula estimator, described
in (3), for each recommender system simulated for N = 751
time steps.We refer to the pairs of (u, z) for which there
are no observations to calculate the conditional expectation
in (3) as the undefined terms. In Table 1, we report the
number of undefined terms observed for various choices
of K and recommender system. We also report the proba-
bility mass of zt−1 corresponding to these undefined terms.
When K = 3, the dimensionality becomes too large, and
there are not enough samples to get coverage. The esti-

2the user considered has bs,w = [3.244,4.076,3.514,3.224]

8



Estimating Performativity without Treatment Randomization

1 2 3 4
K

4.45

4.50

4.55

4.60

4.65

4.70

4.75

Es
tim

ate
d 

TE
1

Random Recommender
Num Samples (N)

101
251
501
751
oracle

1 2 3 4
K

4.45

4.50

4.55

4.60

4.65

4.70

4.75

Es
tim

ate
d 

TE
1

EASE (no update) Recommender
Num Samples (N)

101
251
501
751
oracle

1 2 3 4
K

4.45

4.50

4.55

4.60

4.65

4.70

4.75

Es
tim

ate
d 

TE
1

EASE Recommender
Num Samples (N)

101
251
501
751
oracle

100 200 300 400 500 600 700
Start time of rolling average window of length 100

0.55

0.60

0.65

0.70

0.75

Fr
ac

tio
n 

in
 ec

ho
 ch

am
be

r

EASE
Random
EASE (no update)

Figure 2. The 3 plots on the left are bootstrapped estimates of TE1 with 95% confidence intervals using the adjustment formula
estimator for different recommenders. Right-most plot is a rolling average of how often the user of interest is in an echo chamber.

mates of TE1 between K = 1 and K = 2 are comparable,
suggesting that the Markovian assumption does not hinder
accuracy. We note that for K = 2, there are often not enough
samples to estimate the treatment effects of the other top-
ics TE0,TE2,TE3. Our findings are consistent with the
combinatorial nature of calculating terms within the adjust-
ment formula estimator: if n samples are needed for overlap
when K = 1, then ≈ nK samples are needed for overlap
when K > 1.

6.2. Identification

We now modify the adjustment formula estimator to silently
fail when overlap does not hold. In particular, we use the
empirical average rating Ê[xt] in place of Ê[xt∣ut−1 =
u,xt−1 = x] for (u, z) with no observed samples in (3). We
bootstrap this estimator with 40 bootstrap samples and plot
our results on estimating TE1 for various choices of K and
N in Figure 2. The random recommender system serves
as a sanity check. Because there are no confounders by
construction, the treatment effect is just the expected rating
4.076 + (1 − (3/4)3) = 4.65, which is close to the 4.61 we
estimate when K = 1. For both variations of the EASE rec-
ommender system, we estimate the ground truth treatment
effect by exploiting our knowledge of user rating dynam-
ics. In particular, we compute the fraction of the total 751
time steps the user is in an echo chamber n/751 and then
compute an estimate of the expected rating 4.076 + n/751.
This baseline computation assume time-invariant dynamics,
which is amenable to the EASE (no update) recommender.
We also plot a sliding window average of the time our user
of interest is stuck in an echo chamber in Figure 2 (right).
We see that this fraction stays fairly constant across time,
providing evidence that a time-invariant assumption is rea-
sonable. The estimated treatment effect of 4.74 reported
with K = 1 for the EASE is close to the ground truth treat-
ment effect of 4.76. There is a gap between the estimated
and ground truth treatment effects for the EASE (no update)
recommender, but the estimate is still relatively higher than
the estimate of the treatment effect of the random recom-
mender. Our results suggest that our method can effectively
capture EASE’s superiority in achieving higher user engage-
ment relative to the random model and also reveals that

EASE learns to take advantage of echo chamber effects to
boost user ratings. The treatment effect dips down for larger
K in all of the plots because coverage is poor, the estimator
silently fails, causing it to underestimate the treatment effect,
corroborating our findings from Table 1. This being said, we
also see that as the number of observations N increases, this
deflation due to coverage mitigates as expected, with the
treatment effect gradually moving up towards the treatment
effect estimated with K = 1.

6.3. Ablations

We report several additional experiments in the Appendix.
In Appendix C we experiment on real time-series data from
a related microeconomic use-case. In Appendix D we in-
vestigate how the Markovian assumption we use performs
in high-dimensional non-Markovian models using synthetic
data. In both of these experiments, we again observe that the
benefits of reducing overlap violations outweigh the costs
arising from potential model misspecification in terms of
minimizing estimation error.

7. Conclusion
In this work, we discuss sufficient conditions for the iden-
tifiability of causal effects from natural interactions of users
with digital platforms. We explain why the standard causal
model does not satisfy the typical overlap assumptions
required for causal inference of performative effects from
observational data. As a solution, we propose a time-aware
causal model, and we demonstrate on this model that valid
inferences of performativity are possible even when algorith-
mic actions are chosen deterministically based on historical
data. We exploit repeated interactions between participants
and the platform as well as natural variations in participant
behavior without assuming randomization in the platform
action. We provide a finite-sample estimator tailored to this
digital platform setting, and we show how observations of
longer interaction sequences can be beneficial for estima-
tion. More broadly, our work demonstrates how connecting
causal inference and control theory helps justify the use of
observational causal inference in digital platforms, provid-
ing an important guardrail for digital market investigations.
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Impact Statement
This paper presents work to assist the measurement of ef-
fects algorithmic systems, such as recommender systems,
have on user behavior. We focus on observational ap-
proaches that can be applied without having control over
the platform. The ability to measure performative effects
from the outside can help regulators monitor digital plat-
forms and potentially lead to broader policy changes that
protect, educate, and empower users interfacing with digital
platforms.
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A. Parametric recommender
To illustrate an example of a responsive platform action, let’s consider a setting where a user is iteratively interacting with a
recommender system parameterized by weights θ ∈ Rd. Let z ∈ Rd be some fixed, time-invariant feature about the user. Let
the state at time t denoted as xt ∈ R be the number of ads the user clicked on at time t. At time t, the recommender system
outputs ut = θTt z, a scalar quantifying the number of ads to serve to the user. The recommender system’s goal is select θ to
minimize ℓ(θ;x) = (γzT θ − x)2/2 for some γ > 0 which is an estimate of the click-through-rate for an ad shown to a given
user. In other words, the recommender system wants to serve ads in proportion to the number ads they click on. Intuitively,
if they serve more, this hurts the user experience; if they serve less, then they are losing ad revenue. The recommender
system will update its weights at each time step with gradient descent: θt = θt−1 −α∇θℓ(θ;xt) = θt−1 −αγz(γzT θt−1 −xt).
Unrolling ut, we have

ut = γzT θt−1 − αγ2 ∥z∥22 (γz
T θt−1 − xt)

= (1 − αγ2 ∥z∥22)ut−1 + αγ2 ∥z∥22 xt

We have that h(x) = αγ2 ∥z∥22 x and r(u) = (1 − αγ2 ∥z∥22)u. As long as αγ2 ∥z∥22 ≠ 0 and αγ2 ∥z∥22 ≠ 1, then h and
r are surjective functions. This implies that r(h(x) + c) is surjective for any choice of x and c, which means that this
recommender system is a responsive platform action.

B. Adjustment formula estimator
Admissibility of the dynamical system we are studying (Proposition 1) makes estimating the adjustment formula (Defi-
nition 3.1) sufficient for estimating the performative effect. Since x and u can take on continuous values we start with
discretizations of Rd and Rp denoted as finite collections of bounded, non-intersecting sets N ∶= {Xα} andM ∶= {Uβ}
indexed by α and β respectively. Suppose that every element of N andM has diameter at most ε/2 and has Lebesgue
measure greater than 0. For a point x ∈ ∪N , define α(x) such that x ∈ Xα(x). Define β(u) respectively. We will assume we
have n samples of the form Dn = {(x(k)1 , u

(k)
1 , x

(k)
2 )}nk=1, where every sample is drawn iid from (1). With these quantities,

we form estimates of the components of the adjustment formula; here without loss of generality, we set T = 2.

Ê[x2 ∣ u1 ∈ U , x1 ∈ X ] ∶=
∑k∈[n] x

(k)
2 1{u(k)1 ∈ U , x(k)1 ∈ X}

∑k∈[n] 1{u
(k)
1 ∈ U , x(k)1 ∈ X}

P̂ (x1 ∈ X ) ∶=
1

n

n

∑
k=1

1{x(k)1 ∈ X} .

After combining, we have an estimate of the performative effect:

x̂2(u) ∶=∑
α

Ê[x2 ∣ u1 ∈ Uβ(u), x1 ∈ Xα]P̂ (x1 ∈ Xα).

We will need some mild assumptions to prove a guarantee on the estimator. Our first assumption controls how much previous
user state and platform actions affect future state actions. The magnitude of the effect must be bounded in proportion to the
inputs.

Assumption 3. The relationship between x2 and x1, u1 is L-Lipschitz continuous in the sense that for any w,w′ ∈ Rd and
u,u′ ∈ Rp, and with v ∶= [u⊺,w⊺]⊺, it holds that

∥E[x2∣u1 = u,x1 = w] −E[x2∣u1 = u′, x1 = w′]∥ ≤ L ∥v − v′∥ .

We also need to control how far the discretized conditional expectation E[x2 ∣ u1 ∈ U , x1 ∈ X ] deviates from E[x2∣u1 =
u,x1 = x]. To do this, we impose a regularity condition on the conditional distribution.

Assumption 4. Let w,w′ ∈ Rd and u,u′ ∈ Rp, and with v ∶= [u⊺,w⊺]⊺ be such that ∥v − v′∥ ≤ ε. Then, for any x ∈ ∪N , the
following condition on the density p holds for some η(ε) ∈ (0,1) such that limε→0 η(ε) = 0:

1 − η(ε) ≤ p(u1 = u,x1 = w∣x2 = x)
p(u1 = u′, x1 = w′∣x2 = x)

≤ 1 + η(ε).
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This assumption ensures that the conditional distribution is “stable” in any ε-neighborhood. Finally, we need one more
assumption which guarantees we obtain enough samples for every slice of data. Assumption 5 is defined with respect to the
variables: cover granularity ε > 0, error tolerances δ ∈ (0,1) and γ > 0, and failure probability tolerance ρ ∈ (0,1).

Assumption 5. Let nU,X ∶= ∑k∈[n] 1{u
(k)
1 ∈ U , x(k)1 ∈ X}. Let nU,X ≥ 2dσ2

γ2 log(4∣N ∣/ρ) for all X ∈ N and U ∈ M.

Further let n ≥maxX ∈N
1

2δ2P (x1∈X)2 log(4∣N ∣/ρ).

We present our convergence result now in Theorem 4.

Theorem 4. Consider the dynamical system in (1) with any arbitrary P−1. Let the auditor observe n iid samples
of (x1, u1, x2). Suppose x2 is σ2-subgaussian conditioned on u1 and x1. Let E[ξ2∣x1 = x,u1 = w] = 0, E[∥ξ2∥ ∣
x1 = x,u1 = w] ≤ c1 for all x ∈ Rd and w ∈ Rp. Let f and g be continuous functions, and define R such that
supx∈∪N ,w∈∪Mmax (∥f(x)∥ , ∥g(w)∥) ≤ R. Let the conditions of Theorem 1 hold, Assumption 3 hold with L, Assumption 4
hold with η, and Assumption 5 hold. For any specified u ∈ ∪M with probability at least 1 − ρ, the following holds

∥x̂2(u) −E[x2∣do(u1 ∶= u)]∥ ≤ δγ + 2δR + γ +
2η(ε)
1 − η(ε)

(2R + c1)

+Lε +E[∥f(x1)∥1{x1 /∈ ∪N}] + (1 − Px1(∪N ))R.

The proof of Theorem 4 can be found in Appendix F.6. Let us go through all the terms in the bound, to verify that they
can all be made arbitrarily small (with sufficient samples). δ and γ can be made smaller, so long as the auditor receives
proportionally enough samples. The auditor can create a finer discretization to make ε smaller and therefore η smaller as
well. If we assume that E[∥f(x1)∥] ≤∞, then the last two terms tend to zero as the auditor’s approximation of Rd—i.e.,
∪N—covers more of the space.

C. Estimating price elasticity of demand from real data
Besides digital platforms, our model also applies to some economic settings. Micro-economists are often interested in
estimating the effect product prices have on demand, termed the price elasticity of demand. If we model product demand
using xt and model product prices using ut, then the price elasticity of demand is precisely the performative effect.
Confounders like product quality can be accounted for in the state variable xt. We use this setting to perform additional
experiments.

C.1. Setup

We apply our model to the task of estimating the price elasticity of demand (PED) from time series data. here, we are
interested in how the price (platform action) affects the demand (consumption). We use an avocado time series dataset
(Kiggins, 2018) that consists of biweekly measurements of the prices of avocados and the amount of avocados purchased by
region in the US from 2015 to 2018. The avocado time series dataset is comprised of several time series spanning different
regions of the United States. To construct the dataset we are operating on, we combine data from two regions—Southeast
and Great Lakes—chosen by pricing and demand similarity. For a week t ∈ [N], ut corresponds to the logged average
avocado price, and xt corresponds the logged number of avocados purchased. We posit the following model:

xt = f̃(zt−1) + g(ut−1).

where zt−1 denotes the set of confounding variable that we adjust for, which we will specify shortly. In this model, the PED
is defined as ∇g. This quantity is a curve if the function g is non-linear; however, in this section, we will assume that g is
linear, which reduces the problem of estimating the PED into one of estimating a scalar. We will analyze three estimators:
adjustment formula estimator, random forest double ML (RF-DML), and linear regression double ML (LR-DML).

C.2. Implementation details of estimators

We outline how our three estimators—the adjustment formula estimator, random forest double ML (RF-DML), and linear
regression double ML (LR-DML)—are implemented. The adjustment formula estimator relies on computing (3) on a
discretized platform action and consumption variables. The discretization is important to ensure overlap over confounder and
treatment variables, as the adjustment formula estimator is not well defined without overlap. In particular, let {Zγ}γ ,{Uβ}β
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Figure 3. (left) Bootstrapped estimates of PED with 95% confidence intervals. (middle) Standard deviation of each estimator.
(right) Bias defined as E[Ψ(Y K

)] −Ψa(y
K
).

denote discretizations of the confounders zt−1 and platform action ut−1, and let β(u) be such that u ∈ Uβ(u). We define the
adjustment formula estimator as:

x̂(u) ∶=∑
γ

⎡⎢⎢⎢⎣

∑t xt+11{zt ∈ Zγ , ut ∈ Uβ(u)}
∑t 1{zt ∈ Zγ , ut ∈ Uβ(u)}

⎤⎥⎥⎥⎦
∑t 1{zt ∈ Zγ}

n
.

Detailed discussion and theoretical guarantees regarding the adjustment formula can be found in Appendix B. We dis-
cretize the logged price into two buckets: (−0.479,0.131], (0.131,0.683] and the logged demand into two buckets
(14.539,15.014], (15.014,15.837]. After using the adjustment formula estimator to estimate the effect price has on
demand, we then use this estimator to assign predicted demands to all of the prices observed in the dataset. We then
use linear regression to estimate the slope of the relationship between predicted demand and price—this is what we refer
to as the adjustment formula estimate of the PED. This approach is motivated by methods suggested by Petersen et al.
(2012a). In our experiments, we let the adjustment formula estimator silently fail when overlap does not hold. This means
for terms in the adjustment formula x̂ defined above where ∑t 1{zt ∈ Zγ} > 0 and ∑t 1{zt ∈ Zγ , ut ∈ Uβ(u)} = 0, we set
∑t xt+11{zt∈Zγ ,ut∈Uβ(u)}
∑t 1{zt∈Zγ ,ut∈Uβ(u)}

equal to 0. This modification could cause the adjustment formula estimator to underestimate the
PED for large K, potentially causing the bias to spike for larger K for LR-DML and RF-DML in Figure 3. We explore this
issue further later.

The double machine learning approach (Chernozhukov et al., 2017) first uses half of the training data to residualize the
confounders out of the treatment and effect. More specifically, let’s split our samples of xt stored in a vector X into two
parts Xa,Xb. Let’s do the same for zt−1 and ut−1 to form Za, Zb and Ua and Ub respectively. DML proceeds by solving

h = argmin
h′∈F

L(h′(Za), Ua)

f = argmin
f ′∈F

L(f ′(Za),Xa)

g = (Ub − h(Zb))⊺Ub(Ub − h(Zb))⊺(Xb − f(Zb)),

where the first two steps are a residualizing procedure; here, for a function h′ the notation h′(Za) denotes applying h′

on each row of Za. For LR-DML, the residualizing procedure uses linear regression; i.e., F corresponds to the class of
linear functions and loss function L is squared loss. For RF-DML, the residualizing procedure uses a random forest model
implemented using sci-kit-learn 1.2.0. Then, in the second step, both RF-DML and LR-DML use the other half of the
training data to perform a slightly modified version linear regression—see Equation (1.5) in Chernozhukov et al. (2017)—on
the residualized treatment and residualized effect. The slope of this estimated line is the estimated PED.

C.3. Empirical findings

Varying the adjustment set to characterize overlap violations. Our focus in this section is to investigate whether the
Markovian assumption on the system dynamics our model posits actually mitigates overlap violations. We will vary the
size of the confounding set to measure the variance and bias of different estimators as a proxy for overlap violations. We
look at a sliding window over the data {(xt−K , . . . , xt, ut−K , . . . , ut−1)}Nt=K . We treat these samples as the iid observations
of RK that the auditor observes. We will use ut−1 as the treatment variable, zt−1 ∶= (xt−K , . . . , xt−1) as the confounders,
xt as the outcome. We will vary K to explore how the size of the confounding set affects estimation.
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Effect of shrinking adjustment set on estimator variance. We bootstrap the adjustment formula estimator and the
two double ML estimators. We find that the number of confounders heavily affects the bootstrapped variance of the PED
estimators, suggesting that the Markovian modeling assumption (i.e., setting K = 1) used by our theory is also useful
in practice. We report the predicted PED for all of the estimators in Figure 3 (left). For each estimator, we bootstrap the
dataset 40 times to form confidence intervals. We report the standard deviation of the bootstrapped estimates in Figure 3
(middle). We see that the variance of the adjustment formula estimator increases as the number of confounders increases.
The RF-DML and LR-DML variance curves are fairly stable with respect to K, suggesting that our Markovian assumption
does not affect the variance of those estimators by much.

Effect of shrinking adjustment set on estimator bias. Stronger assumptions enable identifiability, but they come at
a price of potential modeling errors. We have motivated our Markovian assumption theoretically, and now we want to
understand how well they reflect reality. We use the bootstrapping technique proposed by Petersen et al. (2012a) for testing
the bias of our estimators, which we describe now. Let Ψ be the estimator of the PED we are testing, and Ψa be the
adjustment formula estimator of the PED. Further, let yK denote the avocado dataset for sequences of length K, and let
Y K denote a bootstrapped sample constructed from yK . We plot an empirical estimate of E[Ψ(Y K)] −Ψa(yK) using 40
bootstrap samples with confidence intervals in Figure 3 (right). We see that the adjustment formula and LR-DML estimators
have small bias for small values of K, and all estimators have larger bias for large values of K. Recall that the modification
to the adjustment formula could cause the adjustment formula estimator to underestimate the PED for large K, potentially
causing the bias to spike for larger K for LR-DML and RF-DML. In order to account for this, we also plot the estimated
bias defined as E[Ψ(Y K)] −Ψ(yK)—where we replace Ψa with Ψ—in Figure 4. We see that the bias still increases as K
gets larger, suggesting that more confounders does in fact increases the bias of the estimator.

Importance of shrinking adjustment set for overlap. We report what the adjustment formula estimator estimates
for a discretized treatment u in Table 2. A “Low” price in the treatment column corresponds to the logged price bucket
(−0.479,0.131]. A “High” price corresponds to (0.131,0.683]. In this experiment, we do not use the modified adjustment
formula estimator that silently fails when overlap is not satisfied, which we introduced earlier in this section. Instead, we will
report an explicit “N/A” when overlap fails. The “Fraction of undefined terms” column corresponds to the number of γ values
where∑t 1{zt ∈ Zγ} > 0 and∑t 1{zt ∈ Zγ , ut ∈ Uβ(u)} = 0 over the total number of values of γ where∑t 1{zt ∈ Zγ} > 0.
If “Fraction of undefined terms” is non-zero, then x̂(u) is not well defined. N/A denotes when this occurs. The entries of
“Probability mass of undefined terms” column is equal to ∑γ

∑t 1{zt∈Zγ}
n

1{∑t 1{zt ∈ Zγ , ut ∈ Uβ(u)} = 0}. We can see
that as K gets larger, the number of undefined estimates, the relative fraction of undefined values, and the mass of said
values gets larger. This preliminary analysis already suggests that there are overlap issues as K gets larger.

Conclusion. Our experiments suggest that our Markovian assumption (i.e., K = 1) mitigates overlap issues while still
accurately modeling reality. We believe the increase (with K) in bias and variance of the estimators is caused by overlap
issues; as K gets larger, the dimension of the confounders gets larger, making overlap harder to satisfy.
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Price
(Intervention u)

Estimated Effect
on demand

Fraction of
undefined terms

Probability mass
of undefined terms

K=1 High 14.95 0 / 2 0.0%
Low 15.11 0 / 2 0.0%

K=3 High 14.96 0 / 8 0.0%
Low 15.11 0 / 8 0.0%

K=5 High N/A 5 / 31 4.6%
Low 15.10 0 / 31 0.0%

K=7 High N/A 36 / 89 15.1%
Low N/A 16 / 89 9.0%

K=9 High N/A 73 / 145 25.9%
Low N/A 40 / 145 19.7%

Table 2: Adjustment formula estimated effects on avocado demand for price interventions.

D. Markovian assumption in Non-Markovian models
Although the system we are studying may not be Markovian—even in spite of the qualitative arguments we made in
Section 2—the Markovian assumption may still be preferred over the model-free overlap assumption normally used, if
the misspecification errors are small. In this section, we empirically quantify the trade-off between model-free overlap
assumptions and Markovian assumption in a dynamical system which progressively become less Markovian. In particular,
we compare the two-stage regression estimator from Section 5 against the double ML estimator (Chernozhukov et al.,
2017) which we discuss in Appendix C.2. Because the former estimator makes a Markovian assumption and the latter
estimator makes a blanket overlap assumption, we will use whichever estimator does better as a proxy of which assumption
is preferable.

We let ξt ∈ Rd are drawn iid from N(0, I). In this section, we have 256 samples of (x0, u0, x1, u1, x2) drawn iid from a
dynamical system defined as

x0 ∼ ξ0, u0 = Ax0

x1 = Ax0 +Bu0 + ξ1, u1 = Cx1 +Du0 +Rx0

x2 = Ax1 +Bu1 + Px0 +Qu0 + ξ2.

A,B,C,D,P,Q,R are all in Rd,d and constructed such that the non-zero eigenvalues of A,B,C,D are all roughly around
1 and the non-zero eigenvalues of P,Q,R are all roughly around λ. To generate P , we first generate a random matrix
W in Rd,m with m = 100 and with independent standard Gaussians as its entries, and then we set P = λWWT /m. We
generate Q,R in the same way, and we generate A,B,C,D in the same way, except with λ = 1. Our results look similar for
m = 1000. In this experiment we will vary λ and d. The larger λ is, the further away this system is from the assumption
of a Markovian system we propose in our paper. The larger d is, the more susceptible to overlap violations this system
becomes. As we vary λ and d, we compare the error in estimating the performative effect (B) between the two stage
regression estimator (LR-2SR and RF-2SR) we propose in Section 5—which uses a Markovian assumption—and the double
ML estimator (LR-DML and RF-DML) discussed in Appendix C.2, which instead treats (x0, u0, x0) all as confounders.
LR-2SR stands for Linear Regression-two-stage regression and corresponds exactly to the estimator we develop in Section 5.
RF-2SR stands for Random forest-two-stage regression and also is a version of the two-stage regression we develop in
Section 5, except that it uses the random forest model from sci-kit-learn version 1.2.0 to do the first stage of regression.

We plot our results in Figure 5. For all λ ∈ [0,0.1,1], the Markovian approach (2SR) outperforms the model-free (DML)
approach for d ≥ n/32. For λ ∈ [10,100,1000], the Markovian approach (2SR) outperforms the model-free (DML) approach
for d ≥ 3n/10. In other words, unless there are a lot of samples (n ≥ 10d/3) and the misspecified matrices P,Q,R have
eigenvalues at least 10 times larger than that of A,B,C,D, our Markovian framework outperforms the model-free approach.

E. Benefit of additional consumption shocks
Instead of observing a longer rollout, more consumption shocks is also another way to weaken the conditions required for
identifiability. To explore the benefit of additional consumption shocks, we use an illustrative simulation.
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Figure 5. Mean-squared error plotted against the d/n for various choices of eigenvalue scaling denoted by λ. LR-2SR and
RF-2SR make Markovian assumptions on the dynamical system.
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Figure 6: Histograms of eigenvalues of Σt as defined in Section E.

We instantiate the linear dynamics (2) as follows. We consider the symmetric case where d = p. To generate B, we sample
a random matrix W in Rd,n for n≫ d with independent standard Gaussians as its entries, and we set B =WW ⊺/n. We
repeat this process to generated A and D. This way of generating our dynamics matrices ensures the matrices are well
conditioned. We generate C the same except by instead setting W ∈ Rd,r for r < d, making C rank r instead of rank d. We
set d = 100, n = 2000, and r = 80. We note that in this system, rankDC = 80 = r < d and rankC = 80 = r < d. We let
ξt

d=N(0, I) for all t and starts simulating the dynamics from x0 = u0 = 0.

This system, B is identifiable from observations of triplets Rt+1
K=1 ∶= (xt, ut, xt+1) whenever the covariance matrix of

(xt, ut) has full rank. We can explicitly write down the covariance matrix of (xt, ut) for our linear system as

Σt = JΣt−1J
⊺ +MM⊺ =

t−1
∑
k=0
(Jk)MM⊺(Jk)⊺

J ∶= [ A B
CA CB +D] M ∶= [ I

C
] .

(4)

In the following we simulate Σt for different t and inspect the eigenvalues to determine whether identifiability from triplets
Rt+1

K=1 is achieved. The larger t the more consumption shocks preceed the observed triplet. We illustrate the histogram of
the eigenvalues of Σt for different t in Figure 6. We see that the eigenvalues of get larger as more time passes: e.g., the
eigenvalue mass of Σ6 is further to the right of the eigenvalue mass of Σ3 in Figure 6. This suggests that more noise spikes
over more time steps make the observations better conditioned. As we will see in the next section, this makes estimating the
performative effect provably easier for the auditor in practice.

Theorem 2 says that observing R2
K=1—with only one consumption shock—is not sufficient for identifiability, as rankDC is

not full row rank. This is consistent with the eigenvalue histogram of Σ2 in Figure 6 as there are still 0 eigenvalues. However,
Theorem 2 is not prescriptive for Rt

K=1 for settings where there are several consumption shocks and t > 2. However,
when we inspect the eigenvalues for two consumption shocks, corresponding to observations of R3

K=1. By Theorem 1 two
consumption shocks are sufficient for identifiability in our system. This is also consistent with the eigenvalue histogram of
Σ3 in Figure 6, as all eigenvalues are bounded away from 0 at that time step.

An interesting question for future work is to formally unify the setting where we observe a longer rollout with one
consumption shock and this setting where we observe a short rollout RK=1 with several consumption shocks.
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F. Proofs
F.1. Auxiliary results

Lemma F.1 (Multivariate change of variables). Let X be a random variable with density pX and let Y = g(X) where g is
an invertible mapping with Jacobian Jg , then pY (a) = pX(g−1(a))∣Jg(a)∣−1.

Proof

P (Y ∈ A) = P (X ∈ g−1(A)) = ∫
g−1(A)

pX(x)dx = ∫
A
pX(g−1(x))∣Jg−1(x)∣dx

= ∫
A
pX(g−1(x))∣Jg(x)∣−1dx.

The definition of density gives the result.

Definition F.1 (Lusin’s (N) condition). A function f ∶ Rd → Rp satisfies Lusin’s (N) condition if for every Lebesgue-measure
0 set A ⊂ Rd, f(A) has Lebesgue-measure 0.

Definition F.2 (Non-singular measurable transformation). A function f ∶ Rd → Rp is a non-singular measurable transfor-
mation if for every Lebesgue-measure 0 set A ⊂ Rp, the preimage of A, f−1(A) has Lebesgue-measure 0.

Lemma F.2. For a measurable function h ∶ Rd → Rp, let h−1 denote the preimage. Let h be a non-singular measurable
transformation which satisfies Lusin’s (N) condition. Let X be a Rd-valued random variable with measure PX and density
pX , and let Y ∶= h(X) be a Rp-valued random variable. Then the following is true:

1. PY has a density pY with respect to the Lebesgue measure.

2. if pX(a) > 0 for almost all a ∈ Rd with respect to the Lebesgue measure, then pY (b) > 0 for almost all b ∈ Rp with
respect to the Lebesgue measure.

Proof Recall that a σ-finite measure ν has a density with respect to σ-finite measure µ if and only if ν is absolutely
continuous with respect to µ (denoted as ν ≪ µ).

We prove the first point first. We will show that the measure of Y , PY , is absolutely continuous with respect to the Lebesgue
measure λ. Let A ⊂ Rp be such that λ(A) = 0, then

λ(A) = 0 Ô⇒ λ(h−1(A)) = 0 Ô⇒ PX(h−1(A)) = 0 Ô⇒ PY (A) = 0.

The first implication is because h is a non-singular measurable transformation. The second implication is because Px ≪ λ
as X has a density with respect to λ.

To prove the second point, we first show that pX(a) > 0 for all a ∈ Rd implies PX ≫ λ. To see this, observe that for any
A, λ(A) = ∫A

1
pX(y)pX(y)dyλ = ∫A

1
pX(y)PX(dy). With this we show that PY ≫ λ. Let A ⊂ Rp be such that PY (A) = 0,

then

PY (A) = 0 Ô⇒ PX(h−1(B)) = 0 Ô⇒ λ(h−1(B)) = 0 Ô⇒ λ(B) = 0.

The second implication is because PX ≫ λ and the third implication is because h satisfies Lucin’s condition. We prove that
pY > 0 almost everywhere by contradiction. Because PY and λ are mutually absolutely continuous, there exists q such that
λ = qPY . Then because PY = pY λ, λ = qpY λ. Thus, qpY must equal 1 almost everywhere with resepct to the Lebesgue
measure, pY must be non-zero almost everywhere.
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F.2. Proof of Proposition 1

Without loss of generality we consider T = 2. Recall that the do action alters the data generation model by deleting incoming
edges into u1.

E[x2∣do(u1 ∶= u)] = E[f(x1) + g(u) + ξ2]

= ∫ E[f(z) + g(u) + ξ2 ∣ x1 = z]px1(z)dz

= ∫ E[f(x1) + g(u1) + ξ2 ∣ u1 = u,x1 = z]px1(z)dz

= ∫ E[x2 ∣ u1 = u,x1 = z]px1(z)dz.

The second and third equalities use the fact that ξ2 is independent of x1, u1.

F.3. Proof of Theorem 1

Without loss of generality we will set T = 2 in this proof.

F.3.1. PART 1: IDENTIFIABILITY

Showing overlap We will first show that (x1, u1) has full support, which automatically implies overlap. Let z−1 ∶=
(u−1, x−1). Because

pu1,x1(u,x) = ∫ pu1,x1∣z−1=z(u,x)pz−1(z)dz,

it suffices to show that pu1,x1∣z−1=z has full support for any z ∈ Rp+d. For this reason, in this proof, we fix z−1—i.e., u−1 and
x−1 will be treated like constants—and for notional simplicity, we omit explicitly conditioning on the event z−1 = z. Let
c ∶= r(u−1), d ∶= g(u−1)+ f(x−1), and ξ′0 ∶= ξ0 + d. Observe that (ξ′0, ξ1) still has full support. Using this modified notation,
we have

x0 = ξ′0
u0 = h(ξ′0) + c
x1 = f(ξ′0) + g(h(ξ′0) + c) + ξ1
u1 = h(x1) + r(h(ξ′0) + c)

We first show that x1 has full support. Recall ξ1 has positive density over Rd. Because addition by a constant is an invertible,
differentiable function, Lemma F.1 implies that f(ξ′0)+ g(h(ξ′0) + c) + ξ1∣ξ′0 has positive density over Rd. Since ξ′0 also has
positive density over Rd, integration tells us that x1 = f(ξ′0) + g(h(ξ′0) + c) + ξ1 has positive density over Rd.

Because px1,u1 = pu1∣x1
px1 and x1 has full support, it suffices to show that u1∣x1 has full support over Rp × Rd. Let

qc(y) ∶= r(h(y) + c). It is sufficient to show that pqc(ξ′0)∣x1
is positive everywhere. To see this, observe that u1∣x1 =

h(x1) + qc(ξ′0)∣x1. Because addition by a constant is an invertible, differentiable function, if qc(ξ′0)∣x1 had positive density
everywhere, then Lemma F.1 tells us that u1∣x1 would have positive density everywhere. One can show that the class of
continuously differentiable, surjective functions with either full row-rank or full column rank Jacobian satisfy Definitions F.1
and F.2 (Santos; Lowther). Thus, Definition 3.4 holds, the conditions of Lemma F.2 hold, and thus, it suffices to show ξ′0∣x1

has positive density everywhere. We observe that

pξ′0∣x1
(a, b) =

px1∣ξ′0(b, a)pξ′0(a)
px1(b)

.

Since x1 has full support, the denominator is positive. Since ξ′0 has full support, pξ′0(a) > 0 as well. Finally, we had already
shown earlier in the proof that x1∣ξ′0 (i.e., f(ξ′0) + g(h(ξ′0) + c) + ξ1∣ξ′0) has positive density everywhere as well.

Concluding argument Because pu1,x1 is positive everywhere, E[x2 ∣ u1 = u,x1 = z] is well defined. Additionally,
because x1 has density, ∫z E[x2 ∣ u1 = u,x1 = z]px1(z)dz is well defined as well. Finally because our model is admissible
as stated in Proposition 1, E[x2 ∣ do(u1 ∶= u)] = ∫z E[x2 ∣ u1 = u,x1 = z]px1(z)dz. The right hand side of this relationship
is well defined and can be computed from knowledge of the distribution of (x1, u1, x2); thus, E[x2 ∣ do(u1 ∶= u)] can be
computed from the distribution of observations (x1, u1, x2). Because this quantity identifiable, the performative effect
PE(u,u′) is also identifiable for any u,u′ ∈ Rd.
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F.3.2. PART 2: UNIDENTIFIABILITY

Case 1 ξ0
a.s.= 0: We consider the case where we observe x2, x1, u1 and ξ0

a.s.= 0. Let P0 be the point mass over the 0
vector; i.e., x0 = u0 = 0. Define a measurable function ∆ ∶ Rp → Rd such that ∆ ≠ 0. Let r be the identity function. For any
functions f, g, h, define, f̂(a) ∶= f(a) +∆(h(a)), ĝ(b) ∶= g(b) −∆(b), and ĥ(c) = h(c). For noise variables (ξ1, ξ2), let
(ξ̂1, ξ̂2) an identically distributed copy. Let R2 = (x1, u1, x2) be sampled according to the dynamics specified by (1) using
the functions f, g, h, noise variables (ξ1, ξ2), and with initial conditions x0 = u0 = 0. Let R̂2 = (x̂1, û1, x̂2) be sampled
according to the dynamics specified by (1) using the functions f̂ , ĝ, ĥ in place of f, g, h, noise variables (ξ̂1, ξ̂2) in place of
(ξ1, ξ2), and with initial conditions x̂0 = û0 = 0. We see that

x1
d= ξ1

d= x̂1

u1
d=h(ξ1)

d= ĥ(ξ1)
d= û1

x2
d= f(ξ1) + g(h(ξ1)) + ξ2
d= f(ξ1) +∆(h(ξ1)) + g(h(ξ1)) −∆(h(ξ1)) + ξ2
d= f̂(ξ1) + ĝ(ĥ(ξ1)) + ξ2

d= x̂2.

Case 2 ξ1
a.s.= 0: We consider the case where we observe x2, x1, u1 and ξ1

a.s.= 0. Let P−1 be the point mass over the 0
vector; i.e., x−1 = u−1 = 0. Let r be the identity function. For any functions f, g, h, define, f̂(a) ∶= f(a) +∆(h(a)),
ĝ(b) ∶= g(b) −∆(b), and ĥ(c) = h(c). For noise variables (ξ0, ξ2), let (ξ̂0, ξ̂2) an identically distributed copy.

Let R2 = (x1, u1, x2) be sampled according to the dynamics specified by (1) using the functions f, g, h, r, noise variables
(ξ0, ξ2), and with initial conditions x−1 = u−1 = 0. Let R̂2 = (x̂1, û1, x̂2) be sampled according to the dynamics specified by
(1) using the functions f̂ , ĝ, ĥ, r in place of f, g, h, r, noise variables (ξ̂0, ξ̂2) in place of (ξ0, ξ2), and with initial conditions
x̂−1 = û−1 = 0.

Following the steps from the first case, we know that (x0, u0, x1)
d= x̂0, û0, x̂1. We have the following equalities

u1
d=h(x1) + r(u0)

d= ĥ(x̂1) + r(û0)
d= û1

x2
d= f(x1) + g(h(x1)) + ξ2
d= f(x1) +∆(h(x1)) + g(h(x1)) −∆(h(x1)) + ξ2
d= f̂(x1) + ĝ(ĥ(x1)) + ξ2

d= x̂2.

F.4. Proof of Theorem 2

F.4.1. SUPPORTING LEMMAS

We first outline a series of helpful supporting lemmas. This first lemma draws an equivalence between matrices and the
probability distributions induced by these matrices, allowing us to reason about one by reasoning about the other.

Lemma F.3. Let {ξi}ni=1 be a set of mutually independent random vectors in Rd with full span. Let {Ai}ni=1 be a set of
deterministic matrices in Rd,p. Let v ∈ Rd be a random vector in Rd mutually independent of {ξi}ni=1. Ai = 0 for all i ∈ [n]
and v

a.s.= 0 if and only if v +∑n
i=1Aiξi

a.s.= 0.

Proof The left to right direction is obvious. We now prove the right to left direction by cases. Suppose v is almost
surely a constant vector. Suppose that only one j ∈ [n] such that Aj ≠ 0, then its not possible that Ajξj

a.s.= −v by
definition of full span. Suppose there exists j, k ∈ [n] such that Aj ≠ 0 and Ak ≠ 0. This means that Ajξj is almost
surely not a constant. We also know that conditioned on {Aiξi}i≠j , Ajξj is almost surely a constant. This implies that
PAjξj ≠ PAjξj ∣{Aiξi}i≠j which contradicts the assumption of mutual independence. Suppose v is almost surely not a
constant vector. Then Pv ≠ Pv∣{Aiξi}i∈[n] as v is almost surely a constant vector conditioned on {Aiξi}i∈[n]. This contradicts
mutual independence.
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For our next lemma and for the rest of the proof, we need to define some notation. Consider the following variables:

Θx ∶= [
A⊺

B⊺
] Θu ∶= [

C⊺

D⊺
] ξx ∶=

⎡⎢⎢⎢⎢⎢⎣

ξ⊺1
⋮
0

⎤⎥⎥⎥⎥⎥⎦
ξu ∶= 0.

Let Θ̂x, Θ̂u be defined with respect to Â, B̂, Ĉ, D̂. Let ξ̂x
d= ξx and ξ̂u

d= ξu. Let (A,B,C,D) and ξx, ξu induce PT and let
(Â, B̂, Ĉ, D̂) and ξ̂x, ξ̂u induce P̂T . Let x ∶= [x1, . . . , xT ]⊺ and u ∶= [u1, . . . , uT−1]⊺ be observations from PT and let x̂
and û defined with hat variables be observations from P̂T . Finally let z ∶= (x,u) and ẑ ∶= (x̂, û). Finally, we define matrices
Qx, Qu, Q̂x, and Q̂u such that the following relationships hold

x − ξx
d=QxΘx u − ξu

d=QuΘu

x̂ − ξ̂x
d= Q̂xΘ̂x û − ξ̂u

d= Q̂uΘ̂u.

Our next lemma translates relationships about one set of dynamics matrices into relationships about the other set of dynamics
relationships.

Lemma F.4. If x − ξx
d=QxΘ̂x, then x − ξx

d=QxΘ̂x
d= Q̂xΘ̂x

d= x̂ − ξ̂x. Similarly, if u − ξu
d=QuΘ̂u, then u −

ξu
d=QuΘ̂u

d= Q̂uΘ̂u
d= û − ξ̂u.

Proof Recall that the random variables in the vector z corresponds to nodes in the causal directed acyclic graph shown in
Figure 1(b). Define σ ∶ Z→ Z such that zσ(i) is in sorted DAG order with respect to the DAG in Figure 1(b) (i.e, the parents
of zσ(i) have σ indices smaller than σ(i) and its children have σ indices larger than σ(i)). We proceed inductively to show

that zσ(i)
d= ẑσ(i).

Base case: zσ(1)
d=L(ξ, Θ̂x, Θ̂u), where L is some function, linear in each of its inputs. Since ξ

d= ξ̂, we have that

zσ(1)
d=L(ξ̂, Θ̂x, Θ̂u) = ẑσ(1); the last equality follows from definition.

Inductive step: suppose zσ(j)
d= ẑσ(j) jointly over all j. We know that zσ(j+1)

d=L({zσ(i)}i<j , ξ, Θ̂x, Θ̂u) where L is
linear in {zσ(i)}i<j , linear in ξ, linear with respect to Θ̂x, and linear in Θ̂u. By the inductive hypothesis we know that

zσ(j+1)
d=L({zσ(i)}i<j , ξ, Θ̂x, Θ̂u) which in turn is equal in distribution to L({ẑσ(i)}i<j , ξ̂, Θ̂x, Θ̂u)

d= ẑσ(j+1), as all the
inputs to the function are equal in distribution.

Because the entries of Q (Q̂ respectively) are comprised of entries of z (ẑ respectively), we have that Q̂ d=Q. This proves the
desired result.

F.4.2. PART 1: UNIDENTIFIABILITY WHEN K = 1

Without loss of generality, let T = 2. The proof of this result proceeds exactly as the proof of the unidentifiability result
in Theorem 1 in Appendix F.3.2 except with f, g, h, r defined as in Equation (2) and with ∆ ∶ Rp → Rd set to any linear
function ∆(x) =Wx where W ∈ Rd,p is such that W ≠ 0.

F.4.3. PARTS 2 AND 3: IDENTIFIABILITY WHEN K ≥ 2

Now that we have established our supporting lemmas, we can now prove our desired result. Without loss of generality, we
will set T =K + 1.

Necessity and sufficiency when x0 = u0 = ξt = 0 for t ≥ 2. Let Xt ∈ Rd,d and Ut ∈ Rp,d be defined such that xt =Xtξ1
and ut = Utξ1. Further define the following random matrix:

Qx ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x⊺0 u⊺0
x⊺1 u⊺1
⋮ ⋮

x⊺T−1 u⊺T−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.
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Define hat versions of all variables accordingly. We have that x− ξx
d= x̂− ξ̂x and u− ξu

d= û− ξ̂u. Moreover, Qx is comprised
of entries of x and u, Qx

d= Q̂x (jointly). Thus,

x − ξx
d= x̂ − ξx

d= Q̂xΘ̂x
d=QxΘ̂x

u − ξu
d= û − ξu

d= Q̂uΘ̂u
d=QuΘ̂u.

(5)

Finally, defining the fixed matrices X ∶= [X2, . . . ,XT ]⊺, U ∶= [U2, . . . , UT−1]⊺, and

QX ∶=
⎡⎢⎢⎢⎢⎢⎣

X⊺1 U⊺1
⋮ ⋮

X⊺T−1 U⊺T−1

⎤⎥⎥⎥⎥⎥⎦
,

we can rewrite (5) as

⎡⎢⎢⎢⎢⎢⎣

ξ⊺1
⋮
ξ⊺1

⎤⎥⎥⎥⎥⎥⎦
⊙X =

⎡⎢⎢⎢⎢⎢⎣

ξ⊺1
⋮
ξ⊺1

⎤⎥⎥⎥⎥⎥⎦
⊙QXΘ̂x. (6)

Note, that in this reparameterization, we omit the x1 − ξ1 = Ax0 +Bu0, as these terms are equal to 0. Using Lemma F.3 we
know the above equality holds if and only if the following holds

X = QXΘ̂x. (7)

Lemma F.4 tells us B is identifiable if and only if the entries of Θx corresponding to B is unique (7). Indeed, if there
exists two solutions (Θ̂x, Θ̂u) ≠ (Θx,Θu) such that B ≠ B̂, we can use Lemma F.4 to show that P̂T = PT ; i.e., the system
is not identifiable. The other direction is trivial, as B being identifiable implies that B is unique.

We now give equivalent conditions for when B is unique. Let S ∶= {ej}d+pj=d+1 where ej is the jth standard basis vector

in Rd+p. B is unique (i.e., B̂ = B) if an only if null(QX) ⊥ span(S). Indeed suppose v ∈ (QX) is such that v is not
orthogonal to span(S), then Θ̂x = Θx + v1⊺ is also a solution to (7); moreover, B̂ ≠ B because v is not orthogonal to
span(S). Conversely suppose for all v ∈ (QX), v is orthogonal to span(S). Then, any alternative solution Θ̂x ≠ Θx must
satisfy C(Θ̂x −Θx) ⊥ span(S), where C denotes the column span, which implies that B̂ = B.

Note that if M is a full rank matrix, MQ has the same null space as Q. Further observe that by using elementary row
operations, we know that there exists full rank square matrices M1 and M2 such that

QX =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I C⊺

X⊺2 (CX2 +DU1)⊺
⋮ ⋮

X⊺T−1 (CXT−1 +DUT−2)⊺

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=M1

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I C⊺

0 (DU1)⊺
⋮ ⋮
0 (DUT−2)⊺

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=M2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I C⊺

0 (DC)⊺
⋮ ⋮
0 (DT−2C)⊺

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

M1 and M2 are products of full rank matrices corresponding to elementary row operations. M2 is constructed by repeatedly
applying the fact Ut = CXt +DUt−1. Thus, B is unique if and only if null(Q̃X) ⊥ span(S) where

Q̃X ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I C⊺

0 (DC)⊺
⋮ ⋮
0 (DT−2C)⊺

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

This is equivalent to span(S) ⊂R(Q̃X), whereR denotes row span, which is then equivalent to [DC, . . . ,DT−2C] being
full row rank (recall T =K + 1). Tracing back all the if and only if statements gives the result.

Sufficiency even when x0 ≠ 0 and u0 ≠ 0. In this setting, the proof for Claim 1 holds up to Equation (6). Equation (6)
changes to the following

⎡⎢⎢⎢⎢⎢⎣

ξ⊺1
⋮
ξ⊺1

⎤⎥⎥⎥⎥⎥⎦
⊙X +w1(x0, u0, ξ>1) =

⎡⎢⎢⎢⎢⎢⎣

ξ⊺1
⋮
ξ⊺1

⎤⎥⎥⎥⎥⎥⎦
⊙QXΘ̂x +w2(x0, u0, ξ>1).
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By Lemma F.3, we know that these equalities hold if and only if Equation (7) holds, w1(x0, u0, ξ>1) = w2(x0, u0, ξ>1)
holds. null(QX) ⊥ span(S) suffices (but is no longer necessary as there is one other relationships we are not accounting
for) in showing there is a unique B in any solution of the linear system in Equation (7). The rest of the argument in Claim 1
follows identically.

F.5. Proof of Theorem 3

We first introduce a helpful supporting lemma.

Lemma F.5. Suppose n samples are drawn iid from P2. If X1X
⊺
1 is invertable, then Ĉ = C and Ĥ =

A + BC + E2X
⊺
1 (X1X

⊺
1 )−1. If X1X

⊺
1 is invertable and DCX1X

⊺
1C
⊺D⊺ is invertable, then B̂ = B −

E2X
⊺
1 (X1X

⊺
1 )−1X2(DCX1)⊺(DCX1X

⊺
1C
⊺D⊺)−1.

Proof Substituting U1 = CX1 and X2 = (A +BC)X1 +E2 into the closed form solutions of Ĉ and Ĥ respectively gives
the first result.

To get the second result, we use the fact that Ĉ = C and Ĥ = A+BC +E2X
⊺
1 (X1X

⊺
1 )−1 by the first result. We observe that

U2 = CX2 +DU1 = CX2 +DCX1 to get that B̂ = (X3 − ĤX2)(DCX1)⊺(DCX1X
⊺
1C
⊺D⊺)−1. Then we use the fact that

subtracting BCX2 from both sides of the relationship X3 −AX2 = BU2 gives us that X3 − (A +BC)X2 = B(U2 −CX2).
Using our invertability assumptions, this gives us B̂ = B −E2X

⊺
1 (X1X

⊺
1 )−1X2(DCX1)⊺(DCX1X

⊺
1C
⊺D⊺)−1.

With this, we can analyze the quantities of interest. Let Σ̂1 = 1
n
X1X

⊺
1 . Let Q ∶=DCΣ̂1C

⊺D⊺.

E [∥B̂ −B∥
2

Fr
∣ G] = 1

n2
tr(E[Q−1DCX1X

⊺
2 (X1X

⊺
1 )−1X1E

⊺
2E2X

⊺
1 (X1X

⊺
1 )−1X2X

⊺
1C
⊺D⊺Q−1])

= σ2
2d

n
tr(E[Q−1DCΣ̂1(A +BC)⊺Σ̂−11 (A +BC)Σ̂1C

⊺D⊺Q−1])

≤ σ2
2pd

n
κ2
DC (

∣∣∣A +BC ∣∣∣op
σmin (DC)

)
2

E
⎡⎢⎢⎢⎢⎣

κ2
Σ̂1

λmin (Σ̂1)

⎤⎥⎥⎥⎥⎦
.

Rearranging and using the definition of τ1 gives the result.

If p = d, then DC is a square, invertible matrix,

E [∥B̂ −B∥
2

Fr
∣ G] = σ2

2d

n
tr[(C⊺D⊺)−1(A +BC)⊺E [Σ̂−11 ] (A +BC)(DC)−1]

≤ σ2
2d

2

n
(
∣∣∣A +BC ∣∣∣op
λmin (DC)

)
2

∣∣∣E [Σ̂−11 ]∣∣∣op .

Rearranging and using the definition of τ2 gives the result.

F.6. Proof of Theorem 4

We let Y (U ,X ) ∶= E[x2 ∣ u1 ∈ U , x1 ∈ X ], Z(X ) ∶= Z(Xα), Ŷ (U ,X ) ∶= Ê[x2 ∣ u1 ∈ U , x1 ∈ X ], and Ẑ(X ) ∶= Ẑ(Xα).
The proof proceeds by bounding each of the following terms:

∥∑
α

Ŷ (Uβ(u),Xα)Ẑ(Xα) −E[x2∣do(u1 ∶= u)]∥ ≤ ∥∑
α

Ŷ (Uβ(u),Xα)Ẑ(Xα) −∑
α

Ŷ (Uβ(u),Xα)Z(Xα)∥

+ ∥∑
α

Ŷ (Uβ(u),Xα)Z(Xα) −∑
α

Y (Uβ(u),Xα)Z(Xα)∥

+ ∥∑
α

Y (Uβ(u),Xα)Z(Xα) −∑
α

E[x2∣u1 = u,x1 = x]Z(Xα)∥

+ ∥∑
α

E[x2∣u1 = u,x1 = x]Z(Xα) −E[x2∣do(u1 ∶= u)]∥ .
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F.6.1. SUPPORTING LEMMAS

We begin with a series of supporting lemmas that will aid us in bounding these terms.

Lemma F.6. Let the conditions of Theorem 1 hold and let λ denote the Lebesgue measure for Rd+p. For all A ∈ N and
B ∈M, the following implication is true: λ(A ×B) > 0 Ô⇒ (x1 ∈ A,u1 ∈ B) > 0.

Proof

P (x1 ∈ A,u1 ∈ B) = ∫
B
∫
A
px1,u1(x,u)dxdu > 0

We know the RHS is positive because the function being integrated is positive by Theorem 1 and the set it’s being integrated
over has measure greater than 0.

Lemma F.7. Let f ∶ Rd → Rp be a L-Lipschitz function. If every element of N has diameter at most ε with respect to ∥⋅∥,
then for all X ∈ N , for all x, y ∈ X , ∥f(x) − f(y)∥ ≤ Lε.

Proof Follows directly from definitions of diameter and Lipschitz Continuity.

Lemma F.8. Consider the data generation model of (1). Let Assumption 3 hold. Let x1 have full support. Then,

∥E[x2∣do(u1 ∶= u)] −∑
α

E[x2∣u1 = u,x1 = x]Z(Xα)∥ ≤ Lε + ∥∫
Rd∖∪N

E[x2 ∣ u1 = u,x1 = z]px1(z)dz∥

Proof Let B ∶= Rd ∖ ∪N denote the set of points not covered by ∪N . Then, we have the following inequalities:

∥E[x2∣do(u1 ∶= u)] −∑
α

E[x2∣u1 = u,x1 = x]Z(Xα)∥

≤ ∥∑
α
∫Xα

E[x2 ∣ u1 = u,x1 = z]px1
(z)dz −∑

α

E[x2 ∣ u1 = u,x1 = r]Z(Xα)∥

+ ∥∫
B
E[x2 ∣ u1 = u,x1 = z]px1(z)dz∥

≤∑
α

∥∫Xα

E[x2 ∣ u1 = u,x1 = z]px1(z)dz −E[x2 ∣ u1 = u,x1 = r]Z(Xα)∥

+ ∥∫
B
E[x2 ∣ u1 = u,x1 = z]px1(z)dz∥

≤∑
α
∫Xα

∥E[x2 ∣ u1 = u,x1 = z] −E[x2 ∣ u1 = u,x1 = r]∥px1(z)dz

+ ∥∫
B
E[x2 ∣ u1 = u,x1 = z]px1(z)dz∥

≤ Lε + ∥∫
Rd∖∪N

E[x2 ∣ u1 = u,x1 = z]px1(z)dz∥ .

The first and second inequality is from triangle inequality. The third comes from Jensen’s inequality. The fourth inequality
comes Assumption 3 and Lemma F.7.

Lemma F.8 tells us that it suffices to create an estimator that estimates ∑αE[x2 ∣ u1 = u,x1 = r]Z(Xα)—supposing that
∪N is a good approximation of Rd with respect to x1.

Lemma F.9. Consider the data generating process from (1). Let x1, u1 have full support. Let Assumption 4 hold, then

∥E[Y (Uβ(u),Xα(x))] −E[x2∣u1 = u,x1 = x]∥ ≤
2η(ε)
1 − η(ε)

E[∥x2∥ ∣u1 = u,x1 = x].
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Proof Fix any u ∈ ∪M, x ∈ ∪N . Let Z ∶= (x1, u1), z ∶= (x,u), and A ∶= Xα(x) × Uβ(u). Observe that
E[Y (Uβ(u),Xα(x))] = E[x2 ∣ Z ∈ A]. Note that these conditional expectations exist because Z has full support and
by construction A has positive Lebesgue measure. The following holds

∥E[x2 ∣ Z ∈ A] −E[x2 ∣ Z = z]∥ = ∥∫
Rd

x [P (Z ∈ A∣x2 = x)
P (Z ∈ A)

− p(Z = z∣x2 = x)
p(Z = z)

]px2(x)dx∥

≤ ∫
Rd
∥x∥ ∣P (Z ∈ A∣x2 = x)

P (Z ∈ A)
− p(Z = z∣x2 = x)

p(Z = z)
∣px2(x)dx

≤ 2η(ε)
1 − η(ε) ∫Rd

∥x∥ p(Z = z∣x2 = x)
p(Z = z)

px2(x)dx

= 2η(ε)
1 − η(ε)

E[∥x2∥ ∣Z = z].

The first inequality is an application of Jensen’s inequality. The second inequality is an application of Assumption 4 and the
fact that the diameter of A is no more than ε.

F.6.2. APPLYING LEMMAS TO BOUND TERMS

Armed with these lemmas we can proceed with bounding each of the aforementioned terms.

First term: Recall that the following holds for a τ2-subgaussian random variable X

P (∣X −E[X]∣ > δ∣E[X]∣) ≤ 2 exp(−δ
2E[X]2

2τ2
) .

For any α, Ẑ(Xα) is 1
4n

subgaussian. This means we need n = 1
2δ2Z(Xα)2 log(4∣N ∣/ρ) samples to get Uβ(u)Ẑ(Xα) within

error of δZ(Xα) of Z(Xα) with probability ρ/(2∣N ∣). Using union bound, we have that with probability with at least
1 − ρ/2,

∥∑
α

Ŷ (Uβ(u),Xα)Ẑ(Xα) −∑
α

Ŷ (Uβ(u),Xα)Z(Xα)∥

≤∑
α

∥Ŷ (Uβ(u),Xα)∥ ∣Ẑ(Xα) −Z(Xα)∣

≤ δ∑
α

∥Ŷ (Uβ(u),Xα)∥Z(Xα)

≤ δ∑
α

∥Ŷ (Uβ(u),Xα) − Y (Uβ(u),Xα)∥Z(Xα) + δ∑
α

∥Y (Uβ(u),Xα)∥Z(Xα)

≤ δγ + δ∑
α

∥Y (Uβ(u),Xα)∥Z(Xα)

≤ δγ + δR + δE[∥g(u1)∥ ∣ u1 ∈ Uβ(u), x1 ∈ Xα]
≤ δγ + 2δR

where the first inequality comes from triangle inequality. The second inequality comes from subgaussianity. The third
inequality is from triangle inequality. The fourth inequality is from the bound of the Second term below. The fifth and sixth
inequalities are from triangle inequality, compactness, and from the fact E[ξt] = 0.

Second term: For any α, Ŷ (Uβ(u),Xα) is σ2

nu,x
subgaussian, which means its dσ2

nu,x
norm-subgaussian by Lemma

1 from (Jin et al., 2019). Thus, the following inequality holds

P (∥Ŷ (Uβ(u),Xα) −E[Ŷ (Uβ(u),Xα)]∥ ≥ t) ≤ 2 exp(−
t2nu,x

2dσ2
) .
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This means we need nu,x = 2dσ2

γ2 log(4∣N ∣/ρ) samples to get Ŷ (Uβ(u),Xα) with error γ of E[Ŷ (Uβ(u),Xα)] with
probability ρ/(2∣N ∣). Moreover, because the conditions of Lemma F.6 are met, we know these requirements will hold for
all nu,x for large enough n. Using union bound, we have that with probability with at least 1 − ρ/2,

∥∑
α

Ŷ (Uβ(u),Xα)Z(Xα) −∑
α

Y (Uβ(u),Xα)Z(Xα)∥ ≤∑
α

∥Ŷ (Uβ(u),Xα) − Y (Uβ(u),Xα)∥Z(Xα) ≤ γ

The first inequality comes from Jensen’s inequality. The second comes from subgaussianity.

Third term:

∥∑
α

Y (Uβ(u),Xα)Z(Xα) −∑
α

E[x2∣u1 = u,x1 = x]Z(Xα)∥

≤∑
α

∥Y (Uβ(u),Xα) −E[x2∣u1 = u,x1 = x])∥Z(Xα)

≤ 2η

1 − η∑α
E[∥x2∥ ∣u1 = u,x1 = x]Z(Xα)

≤ 2η

1 − η
(2R + c1)

The first inequality comes from Jensen’s inequality. The second comes from Lemma F.9. The third inequality comes from
triangle inequality.

Fourth term: Recalling that B ∶= Rd ∖ ∪N .

∥∑
α

E[x2∣u1 = u,x1 = x]Z(Xα) −E[x2∣do(u1 ∶= u)]∥

≤ Lε + ∥∫
B
E[x2 ∣ u1 = u,x1 = z]px1(z)dz∥

≤ Lε +E[∥f(x1)∥1{x1 ∈ B}] + Px1(B)R.

The first inequality comes from Lemma F.8. The second inequality comes from Eξ2 = 0, triangle inequality, Jensen’s
inequality, and the definition of R.

Union bounding over the two events and bounding the first and second terms and combining all the inequalities gives the
result.

G. Relaxing Assumption 1
In context of Theorem 1, we can replace Assumption 1 with the following weaker assumption

Assumption 6. Let ξT be such that E[ξT ] = E[ξT ∣ u1 = u,x1 = z] for all u ∈ Rp and z ∈ Rd.

This “no-correlation” type assumption is required for showing admissibility (Proposition 1), and it only needs to apply to
the exogenous variation affecting the time step T we are interested in estimating PET . Having said that, Assumption 1 is
necessary for Theorem 2. Mutual independence is crucial for our proof technique.
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