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Abstract
In this paper, we focus on single-demonstration
imitation learning (IL), a practical approach for
real-world applications where acquiring multi-
ple expert demonstrations is costly or infeasible
and the ground truth reward function is not avail-
able. In contrast to typical IL settings with mul-
tiple demonstrations, single-demonstration IL in-
volves an agent having access to only one expert
trajectory. We highlight the issue of sparse re-
ward signals in this setting and propose to miti-
gate this issue through our proposed Transition
Discriminator-based IL (TDIL) method. TDIL is
an IRL method designed to address reward spar-
sity by introducing a denser surrogate reward func-
tion that considers environmental dynamics. This
surrogate reward function encourages the agent
to navigate towards states that are proximal to
expert states. In practice, TDIL trains a transi-
tion discriminator to differentiate between valid
and non-valid transitions in a given environment
to compute the surrogate rewards. The experi-
ments demonstrate that TDIL outperforms exist-
ing IL approaches and achieves expert-level per-
formance in the single-demonstration IL setting
across five widely adopted MuJoCo benchmarks
as well as the “Adroit Door” robotic environment.

1. Introduction
Single-demonstration imitation learning (or simply “single-
demo IL” hereafter) is characterized by an agent having
access to only one expert demonstration (i.e., a single expert
trajectory). This contrasts with typical IL settings, where
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multiple demonstrations are available (Ho & Ermon, 2016;
Fu et al., 2020). Both settings allow interactions with the en-
vironment during training but lack access to the ground truth
reward function, online human feedback, or prior knowl-
edge acquired from analogous tasks. Single-demo IL is a
practical paradigm for addressing real-world challenges, as
collecting a large number of expert demonstrations is often
expensive and sometimes not even feasible, especially in
applications such as autonomous robots. Consider the train-
ing of a surgical robot (Ou & Tavakoli, 2023). In situations
where certain surgical procedures are extremely rare, it is
possible that only a single expert surgeon’s demonstration is
available. Similarly, in the context of training an agent for
vehicle control (Scheel et al., 2022), unique scenarios such
as stabilizing the vehicle during a tire blowout, navigating
icy roads, or avoiding collisions with objects may have only
one or very few demonstrations available. Another example
is cooking tutorials on YouTube, where YouTubers typically
demonstrate the cooking process only once. As a result, a
robotic agent learning from a single-demonstration setting
encounters similar challenges in these domains. However,
many IL methods, such as behavior cloning (BC) and most
basic inverse reinforcement learning (IRL) methods, face
limitations when only a single demonstration is available.
BC tends to overfit when few expert demonstrations are
provided. For basic IRL methods, the scarcity of expert
demonstrations can typically result in a sparse reward situa-
tion, which may lead to relatively limited training signals
for the agent. This issue of reward sparsity becomes even
more pronounced in high-dimensional, continuous environ-
ments with randomly initialized positions. In light of these,
developing an effective and robust learning mechanism that
operates solely with a single demonstration is of consider-
able importance. Unfortunately, although a few previous
methods (Dadashi et al., 2021; Freund et al., 2023) exist
that can be utilized to address few-demonstration IL, single
demo IL remains relatively unexplored and offers opportu-
nities for further advancing contemporary IL approaches.

To confront the single-demo IL paradigm, this study pro-
poses an IRL method with a denser reward function, termed
Transition Discriminator-based IL (TDIL). TDIL increases
the density of obtainable reward signals in the IRL setting
while accounting for environmental dynamics to ensure rea-
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sonable agent behavior. A motivational example illustrating
this concept is provided in Fig. 1 (a). If an agent finds
itself in a cell that allows for a direct transition to an ex-
pert state (e.g., the green arrows in Fig. 1 (a)), the most
reasonable action is to facilitate this transition. Based on
this concept, TDIL derives a surrogate reward function that
rewards the agent for moving toward states close to expert
states. Although there exist other dense reward IL methods
(e.g., PWIL (Dadashi et al., 2021) and FISH (Haldar et al.,
2023b)) designed to guide the agent to states that are close
to expert states, the distance metrics they employed, such
as the Euclidean (L2) or the cosine distance metrics, are not
theoretically sound. For example, in Fig. 1 (a), if the L2
distance is adopted, two adjacent grid cells would be consid-
ered close to each other even if a barrier exists between them.
This could potentially lead the agent to cells that are either
infeasible or unable to reach expert states in an efficient
manner. In contrast, TDIL takes environmental dynamics
into consideration by leveraging a well-trained transition
discriminator, which adopts a training objective aimed at
distinguishing between valid and non-valid transitions re-
garding two states’ reachability in a given environment. As
a result, TDIL is able to construct a more reasonable and
denser reward function (e.g., Fig. 1 (d)) for guiding the
agent back to expert states in the single-demo IL setting.

To validate the efficacy of TDIL, we perform comprehen-
sive experiments on five widely adopted MuJoCo bench-
marks (Todorov et al., 2012), aligning with most prior IL
research, as well as the “Adroit Door” environment (Ra-
jeswaran et al., 2017) in the Gymnasium-Robotics collec-
tion (de Lazcano et al., 2023). The experimental evidence re-
veals that TDIL delivers exceptional performance, matches
expert-level results on these benchmarks, and outperforms
existing IL approaches. Moreover, another key insight from
our experiments is the significant correlation between the
derived reward signals and the inaccessible ground truth re-
ward signals. This correlation offers a practical solution for
blind model selection by selecting a checkpoint without the
help of the ground truth reward function. This differentiates
TDIL from prior work that relied on environment rewards
at test time for early termination or optimal model selection,
which are assumptions that are impractical in the general IL
context. The main contributions are summarized as follows:

1. We highlight the limitations of previous IL methods
under the challenging single-demo IL setting. These
methods may produce sparse reward signals or some-
times even overlook the dynamics of the environment.

2. We introduce a novel TDIL algorithm, which utilizes a
dense and dynamics-aware surrogate reward function.

3. We validate that our surrogate reward function is ef-
fective for blind model selection scenarios without
requiring access to the ground truth reward function.

2. Preliminary
Reinforcement learning (RL). An MDP is typically for-
malized as a tuple ⟨S,A, P,R, p0⟩, where S represents the
state space, A the action space, P : S × A × S → R the
transition function, R(s, a) : S ×A → R the reward func-
tion, and p0(s0) the distribution of the initial state s0. The
transition function P (st+1|st, at) specifies the probability
of transitioning to state st+1 upon taking action at in state
st. Within this MDP, a trajectory τ is defined as a sequence
of states and actions [s0, a0, s1, a1, . . . , sT , aT ], where s0
is sampled from the distribution p0, and st+1 is the resulting
state after taking action at in state st. The objective of an RL
policy π(a|s, θ) is to learn a set of parameters θ that max-
imizes the expected total return Eτ∼p(τ |θ)

∑T
t=0 R(st, at).

Single-demo IL. During the training of single-demo IL set-
tings, the agent can interact with the environment. However,
it does not have access to the reward function R. Instead, the
agent is given a trajectory τe = [se0, a

e
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e
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e
1, . . . , s

e
T , a

e
T ]

generated by an expert policy πe in the same environment as
a hint of the reward R. As a result, the goal of single-demo
IL is to train a policy that can converge to the expert demon-
stration even when initiated from a different initial state s0,
and faithfully follow the expert actions when within the sup-
port of the demonstration. After training, the performance
of it is evaluated by the ground truth reward function R.

Inverse reinforcement learning (IRL). IRL methods con-
stitute a type of IL that aims to learn or infer the re-
ward function based on provided demonstrations. (Levine,
2018) demonstrated that the objective of IRL is to learn
a Conditional Probability Distribution (CPD) denoted as
p(Ot = 1|st, at). In this expression, the optimal indicator
Ot serves as a binary random variable that indicates whether
the time step t is optimal. Specifically, in the context of IRL,
Ot = 1 if the (st, at) pair is present in an expert trajectory.
Furthermore, the CPD p(Ot = 1|st, at) can be marginalized
to form p(Ot = 1|st) =

∫
A p(at|st)p(Ot = 1|st, at)dat.

By assuming the action prior p(a|s) produces the expert
actions in the expert states, p(Ot = 1|st) = 1 if and only if
st is an expert state. The assumption can be ensured through
BC or GAIL. In the following sections, we slightly abuse
notation (i.e., dropping = 1) as in Levine (2018) for the
sake of conciseness by expressing p(O = 1) as p(O).

3. Analysis on the Sparse Reward Issue
To examine the sparse reward issue in single-demo IL sce-
narios, we design a 2D grid-world environment and compare
the reward functions, learned optimal policies, and training
curves across different IL methods. Fig. 1 (a) illustrates the
grid-world environment, where the circled triangle symbol
denotes the initial state of the expert, while the red lines rep-
resent barriers that obstruct certain paths. The blue arrows
trace the path of the expert’s demonstration as it progresses
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Figure 1. A motivational grid-world example for comparing different IL methods trained with the single-demo IL setting. (a) depicts the
expert’s demonstration, denoted by blue arrows, while red lines represent impassable barriers, reflecting environmental dynamics. The
green arrows symbolize the state-action pairs that are one step directed toward the expert states. Subfigures (b)-(d) present reward signals
calculated through various methods: (b) using the basic IRL method (i.e., GAIL (Ho & Ermon, 2016)), (c) based on the L2 distance
between the agent’s and the expert’s state-action pairs, and (d) through our proposed TDIL. Finally, subfigures (e)-(h) illustrate the actions
calculated by averaging the directions represented by the logits for the discrete actions from the learned policy at distinct grid locations.
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Figure 2. The total steps per episode required for each agent to
reach the goal in the grid-world, with a fixed limit of 50 steps.
Lower values for “Steps per episode” indicate better efficiency.

toward the goal state, which is marked by a yellow flag.

We investigate three distinct approaches for defining the
reward functions: (1) the basic IRL reward (i.e., Ho & Er-
mon (2016)), (2) the L2 distance reward, and (3) the TDIL
reward. The basic IRL reward only provides rewards to
the agent when it performs expert demonstrations (i.e., the
blue arrows). The L2 distance reward provides rewards ac-
cording to the L2 distance between the current state-action
of the agent and that of the expert. This reward represents
methods that use geometric distance to measure the spa-
tial disparity between the two (e.g, PWIL (Dadashi et al.,
2021), FISH (Haldar et al., 2023b), and ROT (Haldar et al.,
2023a)). Finally, our TDIL reward considers the transi-
tions to expert state reasonable (i.e., the green arrows) and
provides rewards to them. The corresponding reward func-
tions of these three cases are visualized in Figs. 1 (b)-(d).

Subsequently, we train Soft Actor-Critic (SAC) (Haarnoja
et al., 2018) agents under a uniform initial state distribution
p0(s0), using each of these reward functions. The critic in
SAC facilitates the propagation of reward signals to cells
that do not provide any rewards. In Figs. 1 (f)-(h), the agents
all start at the bottom-left corner, with the learned policy
at each state indicated by an arrow and the trajectories of
the agents highlighted with a grey background. The policy
learned through BC is included in Fig. 1 (e) for comparison.
The training curves are presented in Fig. 2, indicating the
steps required to reach the goal from the bottom-left corner.

According to the above setup, it can be observed that in this
single-demo IL scenario, the basic IRL method results in
a sparse reward function (i.e., Fig. 1 (b)), and necessitates
more training steps to converge, as illustrated by the or-
ange curve in Fig. 2. This issue becomes more pronounced
in high-dimensional environments with a continuous state
space, where the expert trajectory may represent a low-
dimensional manifold with measure zero. In such scenarios,
basic IRL methods that aimed to minimize the f-divergences
between the agent and expert state distributions often en-
counter convergence challenges. These challenges stem
from the difficulties of matching two manifolds with signifi-
cantly different dimensions (Arjovsky & Bottou, 2017).

For the L2 distance reward, although it leads to a more
densely defined reward function as illustrated in Fig. 1 (c),
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the learned policy tends to become trapped in the states
above the goal state, which are obstructed by red barriers, as
depicted in Fig. 1 (g). This can be attributed to the reliance
on distance measures that do not adequately reflect the state
transition dynamics inherent in the underlying MDP. Despite
the proximity to the expert support based on the L2 distance,
these states are actually far separated when the influence of
state transition dynamics is taken into account. Although
this issue can be alleviated by a better state representation,
tailoring such representations for different environments can
be a challenging task. This process may require domain-
specific knowledge and may not be generalized well to un-
seen environments. Moreover, even with a perfect represen-
tation, geometric distances such as L2 and cosine similarity
may not adequately capture the dynamics of certain environ-
ments. Consider the example of driving a car on a highway.
Geometric distances treat moving forward and backward as
equally valid options, which is reflected in the symmetry
property (L2(f(si), f(sj)) = L2(f(sj), f(si)), where f is
the representation function). However, in reality, car move-
ment on a highway is asymmetric. While it is possible to
move forward freely, attempting to move backward at high
speeds is dangerous or even impossible. As a result, using
geometric distance to define a dense reward function may
not suit environments with complex transition functions.

Finally, the proposed TDIL method results in a denser surro-
gate reward function, while considering the state transition
dynamics of the MDP, as shown in Fig. 1 (d). TDIL achieves
this by providing rewards to the state-action pairs that re-
turn to expert proximity states (including states highlighted
by yellow in Fig. A1). While these state-action pairs may
not necessarily correspond to the shortest path to the goal
state, we posit that returning to the expert support first is the
most conservative decision for out-of-distribution states (i.e.,
Fig. 1 (h)), given the absence of the ground truth reward
function. Moreover, introducing incentives for the agent
to navigate to the expert support can lead to an accelerated
convergence speed, as indicated by the green curve in Fig. 2.

By employing TDIL to define a denser surrogate reward
function, the sparse reward issue is mitigated when com-
pared to using the basic IRL methods. In high-dimensional
environments, even when provided with an expert trajec-
tory within a low-dimensional manifold with measure zero,
TDIL can offer the potential to define a manifold with a
higher dimension and a non-zero measure, thereby improv-
ing the stability of IRL methods in matching the agent and
expert state distributions. On the other hand, in comparison
to the methods that use geometry distance, TDIL exhibits
the ability to assign more reasonable rewards due to its
awareness of state transition dynamics, as evidenced by the
states above the goal state in Figs. 1 (c)-(d). This feature
prevents the agent from being trapped in states with high
L2 distance rewards that are distant from the expert support.

As a result, TDIL holds the potential to enhance training
efficiency by adopting a dense and dynamics-aware surro-
gate reward function, which enables the agent to propagate
reward signals back across the states in the environment.

4. Methodology
Section 4.1 introduces the expert reachability indicator to
establish the concept of expert proximity. Subsequently, a
denser, dynamics-aware surrogate reward function is for-
mally defined. However, the computation of surrogate re-
wards is intractable. To address this challenge, Section 4.2
presents an approximation for the surrogate reward function.
Section 4.3 describes the steps to realize this approxima-
tion through the use of a transition discriminator. Building
upon these concepts, Section 4.4, introduces a practical
algorithm named TDIL, which is designed to facilitate con-
current training of the transition discriminator and the agent.
Moreover, Section 4.4 discusses the advantage of using state
based transition discriminator over state-action based one.
Finally, Section 4.6 explores the capability of using TDIL
for blind model selection, which enables the selection of a
proper checkpoint without relying on ground truth rewards.

4.1. Expert Proximity and Surrogate Rewards

Based on the optimal indicator Ot described in Section 2,
we define the expert reachability indicator Õt, which identi-
fies the state-action pairs capable of returning to an expert
state (i.e., green arrows in Fig. 1 (a)). For a given state-
action pair (st, at), we define p(Õt|st, at) based on Ot,
with p(Õt|st, at) indicating the probability of reaching an
expert state by selecting action at in state st. Taking Fig. 1
(a) as an example, if (st, at) is one of the green or blue ar-
rows, p(Õt|st, at) = 1 as the agent can reach an expert state
from state st. Formally, we define p(Õt|st, at) as follows:

p(Õt|st, at)
def
=

∫
S
P (st+1|st, at)p(Ot+1|st+1)dst+1,

(1)
where P is the state transition function of the MDP and
p(Ot+1|st+1) is the probability of st+1 being an expert
state. Given the action prior p(a|s) described in Section 2,
p(Õt|st) can be derived by marginalizing p(Õt|st, at) as:

p(Õt|st) =
∫
A
p(at|st)p(Õt|st, at)dat

=

∫
A
p(at|st)

∫
S
P (st+1|st, at)p(Ot+1|st+1)dst+1dat

=

∫
S
p(Ot+1|st+1)

∫
A
p(at|st)P (st+1|st, at)datdst+1.

(2)
Based on p(Õt|st), we define expert proximity as the set of
states capable of transitioning to expert states within a single
action. In other words, a state st is in expert proximity if
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and only if Õt = 1. Nevertheless, calculating p(Ot+1|st+1)
requires access to the ground truth expert support, which
is unavailable in general. Fortunately, in the context of
single-demonstration IL settings, it is possible to derive the
probability p̂(Õt|st) of reaching expert states as follows:

p̂(Õt|st) =
N∑
i=0

p(Ot+1|sei )
∫
A
p(at|st)P (sei |st, at)dat

=

N∑
i=0

∫
A
p(at|st)P (sei |st, at)dat,

(3)
where sei denotes the i-th state in the expert demonstration,
and N represents the total number of expert states. Finally,
we define our surrogate reward function RTDIL(st, at) as:

RTDIL(st, at)
def
= Est+1∼P (st+1|st,at)

[
p̂(Õt+1|st+1)

]
,

(4)
which assigns positive surrogate rewards when transitioning
to states in expert proximity. This denser reward function
also facilitates the propagation of rewards to earlier states in
the agent’s trajectory and, therefore, can potentially improve
its training speed and efficiency as discussed in Section 3.

4.2. Approximating the Surrogate Reward

The computation of RTDIL involves an intractable integration
term

∫
A p(at|st)P (sei |st, at)dat as specified in Eq. (3). To

circumvent the complexity introduced by this intractable
term, we assume that the action prior p(at|st) is optimal and
deterministic in the states that are in expert proximity. This
enables us to reformulate the intractable term as follows:∫

A
p(at|st)P (sei |st, at)dat = max

a
P (sei |st, a). (5)

Eq. (5) determines an agent’s capability to transition from
st to sei , which cannot be computed directly due to the in-
accessibility of state transition dynamics. As a result, we
train a transition discriminator Dϕ(si, sj) to approximate
the state transition dynamics, which determines whether
a given state si can reach another state sj within a single
timestep. For example, for any tuple (st, at, st+1) in the
replay buffer, Dϕ(st, st+1) should return 1 since the tuple
evidences the reachability. The optimal transition discrimi-
nator Dϕ∗(si, sj) can be formally defined as follows:

Dϕ∗(si, sj)
def
= max

ai

1[P (sj |si, ai) > 0]. (6)

The surrogate rewards RTDIL can then be approximated as:

RTDIL(si, sj) ≈ Est+1∼p(st+1|st,at)

[ N∑
i=0

Dϕ(st+1, s
e
i )
]
,

(7)
where the workflow of approximating RTDIL through the use
of a given transition discriminator Dϕ is depicted in Fig. 3.

4.3. Training the Transition Discriminator

To train Dϕ, we optimize it using maximum likelihood
training, with the binary cross-entropy loss LD defined as:

LD =−
(
αE(si,sj)∼B+

[
log (Dϕ(si, sj))

]
+

(1− α)E(si,sj)∼B−
[
log (1−Dϕ(si, sj))

])
,

(8)

where α ∈ (0, 1) is a balancing coefficient, B+ is the set of
positive samples, and B− is the set of negative samples. In
practice, we choose the set of positive samples B+ as:

B+ = {(s, s′) | (s, a, s′) ∈ B}, (9)

where B is the replay buffer. For negative samples B−,
we choose the union of the set of contrastive samples (i.e.,
easy negative samples) B−

contrastive and the set of reversed
transition samples (i.e., hard negative samples) B−

reversed as:

B− = B−
contrastive ∪B−

reversed,where

B−
contrastive = {(si, sj) | (si, ai, si+1), (sj , aj , sj+1) ∈ B},

B−
reversed = {(s′, s) | (s, a, s′) ∈ B}.

(10)
The positive samples are taken from valid transitions col-
lected by the agent. For the negative samples, we assume
that two randomly sampled states seldom represent a valid
transition and that the majority of reversed transitions are
likely to be invalid. Based on this assumption, the transition
discriminator is trained with millions of positive and nega-
tive state transitions gathered through the agent’s interaction
with the environment during training. This method miti-
gates the likelihood of overfitting compared to the previous
work (Ho & Ermon, 2016), which uses only expert demon-
strations as positive examples for training the discriminator.

4.4. The TDIL Algorithm

Fig. 4 presents an overview of the proposed TDIL algorithm,
which involves repeating the following four steps. First, the
agent interacts with the environment and stores the collected
transitions in the replay buffer. These transitions are then
utilized to update the transition discriminator according to
Eq. (8) in the second step. In the third step, a batch of
transitions is sampled from the replay buffer to calculate the
aggregated reward Ragg, which is defined as the following:

Ragg(st, at)
def
= βRIRL(st, at) + (1− β)RTDIL(st, at),

(11)
where β is a hyperparameter for balancing between the two
rewards. The aggregated rewards Ragg combine the basic
IRL rewards RIRL, which ensures optimality on the expert
and expert proximity states, and the proposed RTDIL, which
incentivizes the agent to navigate towards states that are
in expert proximity. In the fourth step, the sampled tran-
sitions and the aggregated rewards are utilized to train a
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Transition Discriminator

Figure 3. The approximation of RTDIL through the
use of a pretrained transition discriminator D.

Step 1
Replay
Buffer

SAC agent

Repeat: Step1       Step2       Step3       Step4

Step 3

Replay
Buffer

Expert
Data

Reward
Generation SAC

Training

Step 4

Step 2

Negative Samples

Positive Samples

Training

Figure 4. An overview of the TDIL method. Step 1: Agent-environment interac-
tion. Step 2: Transition discriminator updates. Step 3: Generation of aggregated
rewards. Step 4: Training an RL agent based on the generated reward signals.

.

SAC agent. This iterative process facilitates the concur-
rent training of the transition discriminator and the agent.
For the pseudocode and additional details of the proposed
TDIL algorithm, please refer to Section A.2. In practice,
the basic IRL rewards RIRL are calculated using GAIL. In
addition, an ablation study that explores different choices of
β is presented in Section A.4.9. Furthermore, we explore
another variant where RIRL (i.e., β = 0) is removed, and an
additional BC loss is employed to train the policy to ensure
the optimality on expert states, as described in Section 2.

4.5. Distinctions of State and State-Action based TDs

While a state-action discriminator could potentially increase
the density of reward signals, our TDIL reward is designed
based on a state discriminator for the following two rea-
sons. First, the state-based discriminator provides rewards
on a larger number of state-action pairs, which can result in
denser rewards compared to a state-action based discrimi-
nator. For a transition (st, at, st+1), the state discriminator
provides rewards as long as st+1 is in the expert proxim-
ity. In contrast, a state-action based discriminator would
provide rewards only when st is in the expert proximity. Fur-
thermore, training a state-action discriminator D′(si, ai, sj)
can be more challenging since it not only requires ensuring
that st can transition to sj but also necessitates validating
whether ai is the permissible action for such a transition.

4.6. Relative Rewards for Blind Model Selection

In practice, we find that the normalized surrogate re-
wards can effectively select a decent model from a col-
lection of training checkpoints, without the need for di-
rect access to ground truth rewards R. This attribute is
noteworthy in the context of IL applications, where the
best model may not be the one trained for the longest,
as detailed in Appendix A.4.6. This capability is real-
ized through the computation of relative total rewards∑T

t=0 RTDIL(st, at)/
∑N

i=0 RTDIL(s
e
i , a

e
i ), instead of using

the raw return
∑T

t=0 RTDIL(st, at). These relative total re-

wards serve as a decent indicator for selecting the best-
performing model. Note that the implementation details of
the relative returns are provided in Appendix A.4.5.

5. Experimental Results
This section presents our experimental results conducted in
two distinct environments: MuJoCo (Todorov et al., 2012)
and Adroit Hand (Rajeswaran et al., 2017). We also include
ablation studies to provide deeper insights into our method.

5.1. Baselines

We have selected BC (Bain & Sammut, 1995), GAIL (Ho
& Ermon, 2016), f-IRL (Ni et al., 2020), PWIL (Dadashi
et al., 2021), and CFIL (Freund et al., 2023) as our base-
line methods. GAIL is a widely recognized and extensively
adopted IL method. CFIL and f-IRL both represent the state-
of-the-art (SOTA) adversarial-based methods, while PWIL
serves as a representative of non-adversarial approaches. IQ-
Learn (Garg et al., 2021) is excluded from our comparison
due to its subpar performance (Zeng et al., 2022; Sikchi
et al., 2022). The original f-IRL study did not include eval-
uations on Humanoid-v3. Our assessments revealed that
its performance on Humanoid-v3 was considerably below
acceptable levels. LS-IQ (Al-Hafez et al., 2023) is also
excluded due to the unavailability of its complete code. We
do not include AIRL (Fu et al., 2017) since the previous
study (Ni et al., 2020) has demonstrated that AIRL exhibits
inferior performance compared to f-IRL (Ni et al., 2020),
particularly under settings with few expert demonstrations.

5.2. Single-Demo IL Evaluation Results and Insights

In this section, we compare two variants of TDIL described
in Section 4.4, with baseline methods under the single-demo
IL setting. The first variant, denoted as Ours (RTDIL + BC),
replaces RIRL with BC loss. In this variant, we set β = 0 in
Ragg to assess whether our surrogate reward RTDIL alone can
effectively guide the agent back to expert states. Given that
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Figure 5. Normalized performance evaluation of different methodologies using the Oracle model selection under the single-demo setting.
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Figure 6. Comparison of normalized ground truth, raw, and relative return for blind model selection.

RIRL is not utilized in this variant, BC is applied to ensure
that the policy learns the expert demonstration. The second
variant, denoted as Ours (Ragg), explores the potential of
training SAC agents by Ragg, without the help of BC loss.

We first conduct experiments in five MuJoCo environments,
including HalfCheetah-v3, Hopper-v3, Ant-v3, Humanoid-
v3, and Walker2d-v3. All algorithms are trained over
3M timesteps, each employing five random seeds. The
expert demonstrations are generated by a well-trained
SAC (Haarnoja et al., 2018) agent using the default pa-
rameters. Note that the expert demonstrations we collected
have higher total returns than those used by some of the
baseline papers, which might lead to different results. For
the aggregate reward Ragg version, we select β = 0.9 based
on our grid search, with the results presented in Table A7.

Fig. 5 presents the evaluation results on MuJoCo, with the
bars representing the normalized performance of each al-
gorithm compared to the expert’s performance. Table A2
presents the detailed testing results. Both versions of our
method, i.e., Ours (RTDIL + BC) and Ours (Ragg), achieve
expert-level performance across all tested MuJoCo environ-
ments. The performance of Ours (RTDIL + BC) indicates that
RTDIL can effectively guide agents back to the expert states,
even without the use of RIRL. Meanwhile, Ours (Ragg)
demonstrates that our proposed reward function, Ragg, effec-
tively serves as a reward mechanism for training SAC agents.
In addition to our methods, we evaluated and compared our
variants with the baselines. BC does not achieve expert-level
performance in any environment, due to overfitting and its
inability to generalize to out-of-distribution states. GAIL
does not reach expert-level performance either, potentially

due to adversarial training instability, sparse rewards in the
Maximum Entropy IRL framework in single-demo IL set-
tings, and the algorithm’s low sampling efficiency. f-IRL
underperforms across various tasks and is particularly inef-
fective on Humanoid-v3. PWIL does not reach expert-level
performance, possibly because its reliance on Euclidean
distance fails to capture the environmental dynamics cor-
rectly. This issue arises especially when two state-action
pairs are close in Euclidean distance but unreachable in the
MDP, which leads to inaccuracies in the computation of
primal Wasserstein cost, as discussed in Section 3. Lastly,
CFIL achieves expert-level performance only on Hopper-v3;
nevertheless, it shows limited adaptability on Walker2d-v3.

Figure 7. The Adroit Hand
Door environment illustration.

Besides MuJoCo, we also
evaluate TDIL in the Adroit
Hand Door environment, as
depicted in Fig. 7. The
experimental settings and
the complete results are de-
tailed in Appendix A.4.4.
According to the results,
while two of the top base-
lines f-IRL and CFIL show
success rates within 40%
(mostly 0%), both versions of TDIL (i.e., Ours (RTDIL +
BC) and Ours (Ragg)) achieve 100% success rates. This
demonstrates the generalizability and robustness of TDIL.

5.3. Blind Model Selection

To validate the concept discussed in Section 4.6 that rela-
tive return can be used in blind model selection, we graph
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the ground truth return, raw return, as well as relative re-
turn obtained by the agent in an episode during training in
Fig. 6. These rewards are all normalized by their respective
maximum values over 3M timesteps. From these plots, a
clear positive correlation between the relative return and the
ground truth return can be observed across all environments,
whereas the trends of the raw return obtained by the agents
do not consistently align with the ground truth return. In
particular, in Hopper-v3, Ant-v3, and Walker2d-v3, the raw
return exhibit a trend that initially rises and then falls over
3M timesteps, a pattern that does not mirror the ground
truth rewards. This fluctuation suggests that the accuracy
of the transition discriminator grows during training, as it
is trained on more data near the expert support collected by
the increasingly proficient RL agent. Additional results on
blind model selection are available in Appendix A.4.6.

5.4. Ablation Studies

This section examines the effect or performance of several
components within TDIL in the Mujoco environments.

Different β in Ragg. β represents the weight of RIRL in
Ragg. The detailed results are reported in Table A7, which
reveals that by setting β within the range of [0.1, 0.9], the
agent consistently achieves expert-level performance with-
out the use of BC loss. This highlights the adaptability and
robustness of TDIL, even when certain components, such
as β, are not fine-tuned for specific experimental contexts.

Training with Pure RTDIL. To evaluate the performance of
using RTDIL solely, we present the experimental results on
MuJoCo in the “w/o BC” column in Table 1. This version
exhibits performance inferior to both TDIL variants: Ours
(RTDIL + BC) and Ours (Ragg). The decrease in performance
highlights the significance of learning expert actions on ex-
pert states, which can be realized through the use of RIRL or
BC loss. However, it still achieves comparable performance
against all the baselines. For instance, it attains expert-level
performance in Walker2d-v3, where all the baselines fail.

The accuracy of the transition discriminator. To ensure
the transition discriminators employed are well-trained, we
report their accuracy in Table 2. The experimental results
indicate that the transition discriminators can achieve an
accuracy of 0.988 or higher across all environments, regard-
less of the dataset type (B+, B−

contrastive, or B−
reversed). This

demonstrates that our rewards are derived from well-trained
transition discriminators, which can serve as trustworthy
approximations employed in Eq. (7). Moreover, we evaluate
the accuracy of the transition discriminators when trained
with different α values in Eq. (8). The results in Table A6
reveal that the accuracy of a transition discriminator is not
sensitive to the selection of hyperparameter α. This demon-
strates the robustness of our proposed methodology.

Table 1. TDIL w/ and w/o the BC loss and hard negative samples.

RTDIL + BC w/o BC w/o B−
reversed

HalfCheetah-v3 15,666 ± 85 12,630 ± 6,854 15,718 ± 179
Hopper-v3 4,115 ± 14 3,890 ± 562 4,143 ± 6
Ant-v3 6,434 ± 66 3,995 ± 2,408 6,571 ± 116
Humanoid-v3 5,758 ± 173 5,575±196 4,868±2,443
Walker2d-v3 6,312 ± 47 6,281 ± 76 6,268 ± 53

Table 2. Accuracy of the transition discriminators.

B+ B−
contrastive B−

reversed

HalfCheetah-v3 1.0 0.992 0.996
Hopper-v3 1.0 0.996 0.996
Ant-v3 1.0 0.992 0.992
Humanoid-v3 1.0 0.99 0.988
Walker2d-v3 1.0 0.992 0.988

Training without B−
reversed. The column labeled “w/o

B−
reversed” in Table 1 illustrates the impact of excluding

B−
reversed during training. This configuration yields compara-

ble performance across all environments, with the exception
of Humanoid-v3. This finding implies that in less complex
environments, the information contained in hard negative
samples may not be crucial. However, in the Humanoid-v3
environment, the absence of hard negative samples adversely
affects performance. This discrepancy may be attributed
to the vast state space of Humanoid-v3, which diminishes
the likelihood that easy negative samples encapsulate the
essential information contained in hard negative ones. Fur-
thermore, as Humanoid-v3 is a more complicated environ-
ment, the agent might be sensitive to inaccurately estimated
rewards resulting from the absence of hard negative samples.

Multiple expert demonstrations. Our methodology is
not limited to a single demonstration setting. To validate this,
we conduct additional experiments with multiple demon-
strations and present the results in Table A3. These exper-
imental results demonstrate that our method can achieve
expert-level performance with additional demonstrations.

6. Related Work
IL with adversarial training. Distribution matching meth-
ods with a min-max formulation (Ho & Ermon, 2016; Fu
et al., 2018; Ke et al., 2021; Ghasemipour et al., 2020; Ni
et al., 2020; Swamy et al., 2021; Kostrikov et al., 2020;
Camacho et al., 2021; Freund et al., 2023; K. et al., 2019;
Han et al., 2022; Zeng et al., 2022; Viano et al., 2022) might
induce potential instability and sub-optimality in situations
with sparse demonstration data, which could compromise
the effectiveness and reliability of these methodologies.

IL with support estimation. Methods that rely on expert
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support estimation (Wang et al., 2019; Brantley et al., 2020;
Liu et al., 2020; Kim et al., 2020) often face difficulties when
expert data are limited. This is attributable to their reliance
on the availability and quality of expert demonstrations,
leaving them ill-suited for scenarios with scarce expert data.

IL with optimal transport. IL approaches that utilize
optimal transport technique (Dadashi et al., 2021; Xiao
et al.), on the other hand, are also less suitable for the
single-demonstration IL setting, as they tend to overlook
environmental dynamics. Specifically, these approaches
might identify certain states as being close or similar based
on their geometric distances of the state space or some state
representations (Haldar et al., 2023a), even though these
states may not be permissible for transition in a Markov De-
cision Process (MDP). This limitation impairs their capacity
to capture the complexity and variability of environments.

IL with meta-demonstrations. In one-shot IL (Duan et al.,
2017; Finn et al., 2017; Yu et al., 2018b; Dasari & Gupta,
2021; Yu et al., 2018a; Mandi et al., 2022; Huang et al.,
2019; Netanyahu et al., 2022; Valassakis et al., 2022; Hu
et al., 2020), researchers have explored the use of meta-
demonstrations, which are demonstrations associated with
other tasks, as a tool for pre-training before proceeding to
one-shot adaptation. However, gathering a substantial vol-
ume of meta-demonstrations, which are necessary for train-
ing meta parameters prior to their one-shot utilization, can
be infeasible due to the expensive nature of expert demon-
strations. Note that these studies are orthogonal to our work.

IL with Ground Truth Reward Function. Some previous
studies (Aytar et al., 2018; Wu et al., 2021; Peng et al., 2018)
focus on improving the RL agent with the help of a single
demonstration. However, they still allow their RL agent to
access the ground truth reward function of the environment.

The majority of the aforementioned methods either struggle
to achieve expert-level performance in high-dimensional en-
vironments or are less adept at achieving robust generaliza-
tion (Ni et al., 2020; Freund et al., 2023; Dadashi et al., 2021;
Al-Hafez et al., 2023). These constraints highlight the ne-
cessity for enhanced strategies in the single-demonstration
IL setting. The key objectives include accommodating lim-
ited expert data while taking into account environmental
dynamics. Please refer to Appendix A.1 for more details.

7. Conclusions and Future Works
In this paper, we proposed TDIL as a robust approach to
address the challenges inherent in single-demo IL settings.
By considering the transitions towards expert states as rea-
sonable, we defined a dense surrogate reward function that
can be approximated by a transition discriminator. Our ex-
periments on the MuJoCo benchmarks and the Adroit Hand
Door task revealed that our method consistently achieves

expert-level performance and outperforms all the baseline al-
gorithms, including BC, GAIL, f-IRL, PWIL, and CFIL. To
further validate our surrogate reward function, we compared
the ground truth return, raw return, and relative return, and
revealed a strong correlation among them. This correlation
substantiates the efficacy of our surrogate reward function
for blind model selection. Furthermore, we conducted a
series of ablation studies to validate the design choices be-
hind TDIL. This work not only provides valuable insights
but also lays a solid groundwork for future exploration in
single-demo IL settings.

To accommodate more complex or higher-dimensional envi-
ronments, a promising future direction involves extending
our surrogate rewards from one-step to multi-step transi-
tions, as briefly described in Appendix A.5. This would
enable the surrogate reward function to provide rewards for
a broader range of transitions and guide the agent back to
the expert state more efficiently.
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A. Appendix
In this appendix, we provide review of related works, detailed training configurations, additional experimental results, and
discussions on the proposed TDIL method. In Section A.1, a detailed review of previous works is provided. In Section A.2,
we provide the training detail of the proposed TDIL algorithm. In Section A.3, we elaborate on the experimental setups as
well as the model architecture adopted in our method. In Section A.4, we present additional experimental results to validate
the effectiveness of our method. In Section A.5, we extend the expert reachability indicator Õt to multiple timesteps.

A.1. Extended Review of Related Work

The single-demonstration IL setting presents a unique and challenging problem domain. Earlier online IL research commonly
treats this setting as a component of their ablation studies, and often overlooks its significance. This section engages in a
discussion about several well-known online IL algorithms, which can be broadly grouped into two categories: adversarial-
based and non-adversarial-based methods. This discussion allows us to highlight our differences from these prior methods,
and delve into the priminary reasons behind their limited effectiveness in the single-demonstration IL context.

Adversarial-based methods: Adversarial-based approaches aim to align the agent’s state, state-action, or state-next-state
distributions with those of the expert by employing various divergence or distance measures. For instance, GAIL (Ho &
Ermon, 2016) adopts the GAN-like framework (Goodfellow et al., 2020) to train a discriminator and minimize Jensen-
Shannon divergence. AIRL (Fu et al., 2018), on the other hand, utilizes forward KL-divergence to derive stationary rewards
and enhance transfer learning. Building upon these approaches, the authors of (Ke et al., 2021) and f-MAX (Ghasemipour
et al., 2020) unify GAIL and AIRL under the umbrella of f-divergence. To further extend these methods, f-IRL (Ni
et al., 2020) uses gradient descent to recover a stationary reward function from the expert density. In addition, recent
research by the authors of (Swamy et al., 2021) suggest that various forms of IL can be understood as moment matching
under different assumptions. Another line of work is based on the DICE (Nachum et al., 2019) framework. For example,
ValueDICE (Kostrikov et al., 2020) utilizes the Donsker-Varadhan formulation of KL-divergence to develop an off-policy
method, while SparseDICE (Camacho et al., 2021) introduces a regularizer to enable training with sparse expert data.
Inspired by ValueDICE, CFIL (Freund et al., 2023) trains a pair of normalizing flows to optimize the Donsker-Varadhan
representation of KL-divergence. Moreover, a variety of research efforts (K. et al., 2019; Han et al., 2022; Zeng et al.,
2022; Viano et al., 2022) have been directed towards addressing specific challenges within the field. For instance, DAC (K.
et al., 2019) modifies GAIL to facilitate off-policy training and concurrently tackles reward bias issues. MD-AIRL (Han
et al., 2022) enhances robustness by incorporating mirror-descent into AIRL. In a further effort to improve efficiency,
both ML-IRL (Zeng et al., 2022) and P2IL (Viano et al., 2022) have been designed to relax the nested policy evaluation
and cost optimization loop. Most of the above methods, while being successful in online IL, do not perform well in the
single-demonstration IL setting. The reason behind this can be attributed to two primary factors. The first factor is that the
majority of their objectives typically align with a min-max formulation, which could lead to unstable training, especially in
situations with limited data. The second factor is inherent to their distribution-matching nature, which necessitates taking
expectations over the expert distribution. Nevertheless, this process could become unreliable when dealing with sparse
expert data. In contrast to these previous approaches, our methodology does not seek to match the distribution of the agent
with that of the expert. This different approach avoids the issues of inaccurate expectations and unstable adversarial training.

Non-adversarial based method: Non-adversarial based methods often aim to circumvent unstable training by designating
stationary rewards to guide the agent toward expert behavior. Examples include SQIL (Reddy et al., 2019), D2-Imitation (Sun
et al., 2022), and ILR (Ciosek, 2022), which implement a binary reward scheme that assigns a value of 1 to expert data
and 0 to agent data. These methods typically require a substantial amount of expert data to achieve optimal performance in
practice. Another line of research explores a two-stage training approach, wherein a reward surrogate is first trained offline
and then utilized during interaction with the environment. For instance, RED (Wang et al., 2019) estimates expert support by
leveraging Random Network Distillation (Burda et al., 2019), while DRIL (Brantley et al., 2020) pretrains an ensemble of
Behavior Cloning (BC) (Pomerleau, 1991) models and employs their variance as a cost function. EBIL (Liu et al., 2020) and
NDI (Kim et al., 2020) employ density models, such as Energy-Based Models (EBM) (Song & Kingma, 2021) and Masked
Autoencoder Density Estimation (MADE) (Germain et al., 2015), to estimate expert support density. Nevertheless, these
methods necessitate a significant amount of expert data for training the offline reward surrogate, which poses challenges
when applied to the single-demonstration setting. Another non-adversarial approach, PWIL (Dadashi et al., 2021), attempts
to minimize discrepancy between an agent’s and an expert’s distributions by employing the primal form of Wasserstein
distance. This method requires the computation of the Euclidean distance between every state-action pair and those of the
expert, a measure that may not precisely align with the distance as defined by the Markov Decision Process (MDP). In
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contrast, our method takes the properties of the underlying MDP into account. Furthermore, recent advancements such
as IQ-Learn (Garg et al., 2021) and LS-IQ (Al-Hafez et al., 2023) offer a unique perspective, as they implicitly represent
policy and reward using a single Q-function. Nevertheless, according to our experiments, these methods could suffer from
instability during training and may not consistently perform well across various IL tasks.

A.2. Algorithm and Training Details

A.2.1. PRACTICAL ALGORITHM

The training process concurrently updates the transition discriminator and the SAC agent. Both the agent and expert transition
data are utilized to train the SAC agent, with the agent’s reward calculated using the transition discriminator. The reward
calculation method involves the computation of the reward of both agent data and expert data. The agent reward is calculated
by pairing the next state st+1 of a transition (st, at, st+1) with “every” expert state from the demonstration, as illustrated in
Fig. 3, and using the transition discriminator to calculate the reachability probability of each pair. These probabilities are
then summed to yield a reward rt =

∑T
i=0 Dϕ(s

a
t+1, s

e
i ). The expert rewards are computed in a similar manner by pairing

each next state of an expert transition with every other expert state, and summing the resulting probabilities.

A.2.2. TRAINING STABILIZATION

To ensure stable training, a target transition discriminator, denoted as D̂, is employed in our training process to compute
the reward. D̂ is soft-updated using the formula D̂ = (1 − λ)D + λD̂, where λ is a hyperparameter set to 0.0001 in
practice. The target transition discriminator helps mitigate the instability caused by SGD training, providing a more stable
and consistent target for the SAC agent to learn from. This reduces overfitting and other potential sources of instability,
making the training process less susceptible to fluctuations and ensuring a consistent trajectory towards convergence.

A.2.3. ALGORITHM DETAIL

Algorithm 1 presents a practical training methodology of the proposed method, refering to TDIL. It takes as input the policy
π of an imitator agent, an environment E , a replay buffer B, a Transition Discriminator D, a Target Transition Discriminator
D̂, and an expert trajectory τe. The output is a trained optimal agent π∗. The training process is iterative, continuing until a
convergence criterion is met. During each iteration, the policy π interacts with E , and the states and actions (st, at, st+1)
are stored in B. Next, D is updated based on Eq. (8) based on the stored transitions. Following this, D̂ is soft-updated by D,
which help stabilizing training. The algorithm then samples a batch of transitions from both B and the expert trajectory τe,
and calculates the reward using D̂. This reward is then used to update π by comparing the agent’s transitions with those of
the expert. Finally, π is updated using a BC loss, denoted as LBC = MSE(a ∼ π(sei ), a

e
i ), which aims to minimize the

discrepancy between the agent’s actions and the expert actions. Through the repetition of these steps, the TDIL algorithm
trains the imitator agent π to match the expert’s performance in the given environment. To satisfy the policy assumption in
Section 2, the BC loss LBC is included to ensure p(Ot = 1|st) = maxa p(Ot = 1|st, a).

Algorithm 1 TDIL: IL via Transition Discriminator
Input :Imitator Agent π, Environment E , Replay Buffer B, Transition Discriminator D, Target Transition Discriminator

D̂, Expert Trajectory τe

Output :Trained optimal agent π∗

1 while not converge do
2 π interacts with E , storing st, at, st+1 in B
3 Update D with Eq. (8)
4 Soft-update D̂ with D

5 Sample one batch of transition from B and τe, and calculate the reward with D̂
6 Update π using sampled agent transitions and expert transitions with calculated reward
7 Update π with LBC

8 end
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Figure A1. Visualization of the relationship between expert demonstration and expert proximity in the grid-world

A.3. Experimental Setups

A.3.1. MODEL ARCHITECTURE OF TDIL

In this section, we provide the implementation details of TDIL. The backbone of TDIL is built upon the Soft Actor-Critic
(SAC) framework. The actor and critic networks in SAC are implemented as neural networks with three hidden layers and
rectified linear unit (ReLU) activation functions. Each of these hidden layers consists of 256 nodes. The actor’s output
is first projected to [−1, 1] using a hyperbolic tangent (tanh) function, and then scaled to the value range required by the
environments.

A.3.2. IMPLEMENTATION OF RIRL

The implementation of RIRL leverages the discriminator in GAIL. This demonstrates that, even when paired with a basic
IRL reward function, the proposed RTDIL can effectively guides the agent toward expert proximity and learn the expert
behavior, leading to expert-level performance.

A.3.3. CODE IMPLEMENTATION AND HARDWARE CONFIGURATION

The code implementation and expert data used in this work are available on this GitHub repository. The computational
requirements for the experiments presented in Section 5 is elaborated in Table A1.

Table A1. The hardware specification used to perform our experiments.

Hardware Specification

RAM 128GB

CPU AMD Ryzen Threadripper 3990X 64-Core Processor

GPU NVIDIA GeForce RTX 3090

A.4. Additional Experiments

In this section, we provide additional experimental results and discussions. In Section A.4.1, we present the training
curves of the proposed and the baseline methods to demonstrate the performance and stability of different algorithms. In
Section A.4.3, we compare TDIL with baselines trained with additional BC loss. In Section A.4.4 we present the success
rate curve of the proposed and the baseline method in Adroit Hand environment. In Section A.4.5, we give detailed analysis
on the relative rewards for blind model selection. In Section A.4.6, we offer the evaluation results the models selected
according to different blind selection metrics during training for demonstrating the effectiveness of the proposed blind
selection method. In Section A.4.7, we examine the influences of the hard negative samples on the performance of the
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Table A2. Performance evaluation of different methodologies using the oracle model selection.

BC GAIL f-IRL PWIL CFIL Ours (RTDIL+ BC) Ours (Ragg) Expert

HalfCheetah-v3 211 ± 49 693 ± 158 14,560 ± 823 11,460 ± 4,774 13,636 ± 1,695 15,666 ± 85 15,624 ± 119 15,251

Hopper-v3 507 ± 161 3,209 ± 372 3,693 ± 162 3,849 ± 209 4,131 ± 34 4,115 ± 14 4,115 ± 14 4,114

Ant-v3 990 ± 6 966 ± 22 5,597 ± 194 5,579 ± 314 5,812 ± 2,692 6,434 ± 66 6,837 ± 19 6,561

Humanoid-v3 429 ± 20 582 ± 52 N/A 5,499 ± 94 5,354 ± 337 5,758 ± 173 6,302 ± 136 5,855

Walker2d-v3 299 ± 75 554 ± 217 4,746 ± 316 3,391 ± 1,873 2,402 ± 949 6312 ± 47 6334 ± 10 6,123

Table A3. TDIL when using multiple expert demonstrations

1 Demo 2 Demo 3 Demo
HalfCheetah-v3 15,624 ± 119 (Expert: 15,251) 15,711 ± 124 (Expert: 15,200) 15,554 ± 293 (Expert: 15,197)
Hopper-v3 4,115 ± 14 (Expert: 4,114) 4,057 ± 65 (Expert: 4,194) 4,068 ± 57 (Expert: 4,188)
Ant-v3 6,837 ± 19 (Expert: 6,561) 6,486 ± 308 (Expert: 6,417) 6,341 ± 249 (Expert: 6,445)
Humanoid-v3 6,302 ± 136 (Expert: 5,855) 5,887 ± 308 (Expert: 5,926) 6,035 ± 134 (Expert: 5,920)
Walker2d-v3 6,334 ± 10 (Expert: 6,123) 6,308 ± 52 (Expert: 6,095) 6,252 ± 104 (Expert: 6,074)

transition discriminators under various scenarios. Finally in Section A.4.8 and Section A.4.9, we investigate the influence of
different choices of the hyper-parameter α and β respectively.

A.4.1. TRAINING CURVES

Fig. A2 presents the training curves of TDIL as well as the other baseline methods, including BC, GAIL, f-IRL, PWIL,
and CFIL. It is worth noting that the optimization of CFIL in the HalfCheetah-v3 environment is numerically unstable
as its output values sometimes become NaN during the training process. As a result, the training curve of CFIL in the
HalfCheetah-v3 environment can only be plotted partially. Fig. A2 demonstrates that TDIL is capable of reaching the expert
level and exhibits a consistently stable training process across different environments compared to the other baselines.

A.4.2. EXPERIMENTS ON USING MULTIPLE EXPERT DEMONSTRATIONS

The TDIL method is designed to address the challenging limitations of the single-demo IL setting. TDIL can be regarded as
an approach that leverages all available information from the expert data under the constrained condition of limited expert
demonstration. However, it is not restricted to single-demo IL. Although providing more expert demonstrations might be
beneficial, it does not significantly affect the performance. This is because TDIL can achieve expert-level performance with
only a single expert demonstration, as shown in Table A3. Furthermore, if more expert demonstrations are available, it
may not be necessary to learn a transition discriminator, and other state-of-the-art IL techniques can be employed. These
techniques, however, may not adequately address the single-demo problem that TDIL is specifically designed to tackle.

A.4.3. PERFORMANCE COMPARISON BETWEEN TDIL AND BASELINES WITH BC LOSS

We have conducted additional experiments to provide a more comprehensive analysis on adding BC loss into the training
process of baselines. Table A4 presents the performance of CFIL, PWIL, and TDIL with BC loss, directly compared with
training the agent with RTDIL and BC loss. Notably, some baselines demonstrate improved performance with BC loss, yet

Table A4. Performance of baselines with BC loss.

CFIL w/ BC PWIL w/ BC f-IRL w/ BC TDIL w/ BC
HalfCheetah-v3 14,853 4,679 13,638 15,666
Ant-v3 4,683 5,925 5,337 6,434
Humanoid-v3 5,343 5,294 N/A 5,758
Walker2d-v3 6,286 5,489 4,403 6,312
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TDIL consistently outperforms all baselines. It is noteworthy that CFIL exhibited a substantial performance boost with
BC loss in the Walker2d-v3 environment. However, it is crucial to acknowledge that CFIL encountered numerical issues,
specifically the occurrence of actor output becoming NaN in the middle of training across all environments. This highlights
potential instability in CFIL algorithm.

A.4.4. EXPERIMENTS IN ADROIT HAND ENVIRONMENT

In Fig. A3, we present the experiment in the AdroitHandDoor environment. The AdroitHandDoor environment is a
component of the Adroit manipulation platform, featuring a Shadow Dexterous Hand attached to a free arm with up to 30
actuated degrees of freedom (Rajeswaran et al., 2017). We do not evaluate TDIL on the other adroit tasks since the agent
is required to achieve different goals encapsulated within the state feature. In such environments, agents cannot learn the
meaning of different goals if only one expert demonstration is offered. This limitation arises because all expert states in
the provided single demonstration inherently possess the same goal, which restricts the agent’s comprehension of the goal
feature. As a result, the agent might not learn the goal feature adequately, and this can result in a policy that fails to condition
on the goal effectively. For instance, the agent could mimic an expert trajectory without adapting to changes in the goal.

In the AdroitHandDoor-v1 scenario, the task involves undoing a latch and swinging open a door with a biased torque that
keeps it closed. The environment, based on a 28-degree-of-freedom system, includes a 24-degree-of-freedom ShadowHand
and a 4-degree-of-freedom arm. The action space is represented as a Box(-1.0, 1.0, (28,), float32), with control actions
specifying absolute angular positions of the hand joints. The observation space is a Box(-inf, inf, (39,), float64), containing
information on finger joint angles, palm pose, and the state of the latch and door, Fig. 7 illustrates the task.

The episode’s time step limit is set at 200. During the testing phase, the agent undergoes perturbation through five time-steps
of random actions in the beginning of the episode to enhance difficulty and introduce stochasticity. In comparison to BC and
two of the top-performing baselines from the main experiment, the results demonstrate that TDIL attains an expert-level
performance within 1 million steps, surpassing the performance of BC, PWIL, and CFIL.

A.4.5. EXPLORING RELATIVE REWARDS FOR BLIND MODEL SELECTION

Blind model selection refers to the process of choosing the optimal model checkpoint throughout the training phase, holds
significant importance in the field of IL. In IL, it is generally assumed that obtaining the ground truth reward from the
environment is unfeasible, even during testing. This issue, often neglected in prior research, warrants considerable attention.
Although the reward signals proposed in this work, denoted as RTDIL, can effectively train the agent, they may not be ideally
suited for blind model selection. As training progresses, a potential decrease in the agent’s raw rewards is observed. The
reduction in raw agent reward may not necessarily signify a decrease in agent’s performance; rather, it mirrors the enhanced
accuracy of the transition discriminator. As a result, it becomes imperative to establish an indicator that is strongly correlated
with the ground truth reward. Such an indicator would facilitate reliable model selection in IL. To meet this requirement, we
introduce the concept of ‘relative reward,’ which is denoted as rrelative and is defined as follows:

rrelative = rraw agent/rraw expert, (A1)

where rraw agent =
∑T̃

t=0 RTDIL(st, at) and rraw expert =
∑T

t=0 RTDIL(s
e
t , a

e
t ) are the total rewards along the agent’s and

expert’s trajectories, and T̃ is the length of the agent’s trajectory. As the transition discriminator may improve its accuracy
during training, our aim is to mitigate the influence of its accuracy on reflecting the true extent of reward signals. In an ideal
scenario, the reward for expert actions should be higher, while those outside the expert support should be lower. With this in
mind, the essence of Eq. (A1) is to calculate the relative reward by dividing the raw agent reward, derived from the transition
discriminator, by the raw expert reward, also derived from the transition discriminator. This process aids in neutralizing the
impact of potential inaccuracies of the transition discriminator. The rationale behind this approach is the presumption that
the inaccuracies in the transition discriminator would affect both the raw agent reward and the raw expert reward in a similar
fashion. Hence, when the raw agent reward is divided by the raw expert reward, any inaccuracies that potentially exist in the
transition discriminator should theoretically cancel out. This is because these inaccuracies are likely to proportionally affect
the numerator (i.e., the raw agent reward) and the denominator (i.e., the raw expert reward) of the division. For example, if
the transition discriminator is consistently underestimating or overestimating the rewards, both the raw agent reward and the
raw expert reward would be underestimated or overestimated to a comparable extent. As a result, their ratio (i.e., the relative
reward) should still provide a reliable comparison of agent performance relative to the expert, even if the absolute reward
values are incorrect. This approach, therefore, helps to render the reward calculation more robust to the inaccuracies of the
transition discriminator, and enhances the reliability of the model selection process in the single-demonstration IL context.
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Table A5. Performance decrease ratios of different methods in the blind model selection scenario.

BC (Pomerleau, 1991) f-IRL (Ni et al., 2020) PWIL (Dadashi et al., 2021) CFIL (Freund et al., 2023) Ours

HalfCheetah-v3 -0.75 ± 0.34 -0.27 ± 0.27 -0.17 ± 0.15 -0.07 ± 0.00 -0.02 ± 0.01

Hopper-v3 -0.27 ± 0.23 -0.32 ± 0.26 -0.31 ± 0.29 -0.04 ± 0.02 -0.04 ± 0.05

Ant-v3 -0.73 ± 0.03 -0.18 ± 0.16 -0.13 ± 0.18 -0.03 ± 0.01 -0.03 ± 0.01

Humanoid-v3 -0.18 ± 0.16 N/A -0.18 ± 0.16 -0.03 ± 0.03 -0.04 ± 0.03

Walker2d-v3 -0.45 ± 0.07 -0.92 ± 0.08 -0.45 ± 0.26 -0.50 ± 0.31 -0.03 ± 0.04

A.4.6. BLIND MODEL SELECTION EXPERIMENTS

To further substantiate the efficacy of utilizing relative rewards in blind model selection, we performed a MuJoCo experiment
in which the optimal testing model was selected without any access to the environmental ground truth rewards. In this
experiment, our method used relative rewards as an indicator. In contrast, PWIL employed the Wasserstein distance,
following the methodology of the original paper. For the remaining methods, which did not provide an indicator for model
selection in their original manuscripts, we chose the model with the lowest policy loss. Table A5 presents the ratio of
performance decrease of each method, which is calculated according to blind result − oracle result

oracle result . The results reveal that
our proposed method outperforms both policy loss-based model selection and Wasserstein distance-based model selection
schemes. This outcome suggests that relative rewards can effectively guide the selection of the best model, and provides a
valuable insight that can be applied in future single-demonstration IL research to develop similar indicators for practical use.

To demonstrate the effectiveness of the blind model selection strategy over the model selection methods adopted by the
baselines, we compare the returns obtained using the proposed strategy and the baseline methods along with the highest
testing return achieved by each agent during its training process. Fig. A4 presents the results of the above setting. In the
figure, the blue and red curves represent the total return obtained by each agent and the model selection strategy metric
employed by each baseline, respectively. In addition, the solid and the dashed lines depict the highest testing return achieved
by each agent during its training process and the return determined by the blind selection strategy, respectively. It is observed
that our method is effective in selecting a model with high performance, as the distance between the solid and the dashed
lines shown in Fig. A4 (d) is the closest as compared to those depicted in Figs. A4 (a), (b), and (c). Please note that the
returns of the baseline methods can be derived using either the returns of the agent in the last step or the returns selected
according to their respective blind selection metrics. In Table A5 of the main manuscript, we report the higher returns
achieved by the baseline methods.

A.4.7. AN ANALYSIS OF THE ACCURACY OF THE TRANSITION DISCRIMINATOR

Fig. A5 illustrates the accuracy of the transition discriminator evaluated on positive samples, easy negative samples, and
hard negative samples. Of particular interest is the accuracy of the hard negative samples. In HalfCheetah-v3 and Ant-v3
(i.e., Figs. A5(a) and (b), respectively), the transition discriminator trained without the use of hard negative samples
demonstrates similar accuracy to the one trained with hard negative samples. However, in Humanoid-v3 (Fig. A5(c)),
the transition discriminator trained without hard negative samples exhibits significantly lower accuracy compared to the
one trained with hard negative samples. These findings substantiate the assumption presented in Section 5.4, which
suggests that the set of hard negative samples falls within the subset of easy negative samples. In relatively less complex
environments, the agent can extract the information embodied in hard negative samples even when training exclusively with
easy negative samples. However, this scenario is less probable in the more demanding Humanoid-v3 environment, leading to
the observed discrepancy in accuracy between the two training settings. These experimental results highlight the importance
of incorporating hard negative samples, particularly in complex environments, to improve the accuracy and effectiveness of
the proposed transition discriminator.

A.4.8. SENSITIVITY ANALYSIS ON THE HYPER-PARAMETER α

We have addressed the sensitivity of the proposed TDIL algorithm to different values of the hyper-parameter α by presenting
the corresponding training curves in Fig. A6. The introduction of the balancing factor α for positive and negative samples
aims to mitigate the impact of false negative samples within the pool of easy negative samples. These easy negative samples
are composed of pairs of individually randomly sampled states from the replay buffer, and there exists a chance that these
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Table A6. Accuracy of the transition discriminator when trained with different α. “p” stands for positive data’s accuracy; “en” stands for
easy negative data’s accuracy; “hn” stands for hard negative data’s accuracy;

0.5(p) 0.5(en) 0.5(hn) 0.67(p) 0.67(en) 0.67(hn) 0.9(p) 0.9(en) 0.9(hn) 0.99(p) 0.99(en) 0.99(hn)

HalfCheetah-v3 1.0 0.997 0.998 1.0 0.996 1.0 1.0 0.997 0.996 1.0 0.992 0.996

Hopper-v3 0.996 0.996 0.992 0.996 0.996 0.996 0.996 0.996 0.992 1.0 0.996 0.996

Ant-v3 0.996 1.0 1.0 1.0 1.0 1.0 1.0 0.996 1.0 1.0 0.992 0.992

Humanoid-v3 1.0 1.0 1.0 1.0 0.996 0.996 0.996 0.996 0.996 1.0 0.99 0.988

Walker2d-v3 0.996 0.996 0.996 0.992 0.996 0.996 0.996 0.992 0.99 1.0 0.992 0.988

Table A7. Performance of TDIL under different β value selection.

0+BC 0 0.1 0.2 0.5 0.8 0.9 0.95 0.99 1.0 Expert

HalfCheetah-v3 15,666 12,630 15,100 15,541 15,479 15,612 15,624 15,462 15,529 9,791 15,251

Hopper-v3 4,115 3,890 4,124 4,126 4,162 4,128 4,115 1,887 3,232 1,950 4,114

Ant-v3 6,434 3,995 6,358 6,513 6,467 6,611 6,837 6,560 6,506 4,216 6,561

Humanoid-v3 5,758 5,575 6,288 6,352 6,312 6,325 6,302 5,703 5,235 1,826 5,855

Walker2d-v3 6,312 6,281 6,251 6,204 6,266 6,346 6,334 6,296 6,098 1,769 6,123

pairs may form valid transitions under the Markov Decision Process (MDP), effectively becoming positive samples.

To safeguard the training of the transition discriminator against the adverse effects of false negatives, we assign a smaller
weight to negative samples compared to positive samples. Experimental results demonstrate that when α is set to small
values (e.g., 0.5, 0.67), the agent takes longer to reach optimal performance in certain environments. Conversely, when the
value of α is set to 0.99, the algorithm consistently performs well across various environments. This observation underscores
the importance of choosing the hyper-parameter α to ensure optimal and robust performance of the TDIL algorithm.

A.4.9. EXPERIMENTAL RESULT ON DIFFERENT CHOICES OF HYPER-PARAMETER β

The ablation study on the hyper-parameter β is comprehensively presented in Table A7, shedding light on its impact within
the overall reward function. By aggregating RTDIL and RIRL with a judicious selection of β, the agent consistently attains
expert-level performance guided by this composite reward. Experimental findings suggest that values of β within the range
of [0.1, 0.9] yield favorable results across various MuJoCo environments. This observation underscores the intrinsic ability
and efficacy of the reward function Ragg.

Importantly, these results indicate that setting β to zero, as done in the main experiments, can still produce effective
outcomes, particularly when approximating the effect of RIRL through BC loss. This pragmatic approach not only maintains
computational efficiency but also highlights the adaptability and robustness of the proposed TDIL method, even when
certain components, such as β, are tuned or simplified for specific experimental contexts.

A.5. Multi-Step Expert Proximity

In the main manuscript, the expert reachability indicator Õt is only defined to consider the transition to expert states within
a single timestep. We could generalize the reachability indicator to multiple timesteps by defining Õ(k)

t , where it determines
whether the state st can reach an expert state by selecting a series of k actions. Formally, we define the following:

p(Õ(k)
t |st, at)

def
=

{∫
S p(st+1|st, at)p(Ot+1|st+1)dst+1 if k = 1,∫
S p(st+1|st, at)p(Õ(k−1)

t+1 |st+1)dst+1 if k ∈ {2, . . . , T},
(A2)
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The value of p(Õ(k)
t |st) can be calculated as in the main manuscript. The surrogate reward functions corresponding to the

indicators are defined as follows:

R
(k)
TDIL(st, at)

def
= Est+1∼p(st+1|st,at)

[
p(Õ(k)

t+1|st+1)
]
. (A3)

Each surrogate reward functions can be approximated by D
(k)
ϕ∗ (si, sj) defined as:

D
(k)
ϕ∗ (si, sj)

def
= max

ai,...,ai+k−1

1

i+k−1∏
j=i

P (sj |si, aj) > 0

 . (A4)

The total reward function Ragg can then be re-defined based on the weighted sum of the surroagte reward functions R(k)
TDIL

across all k.
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Figure A2. The training curves of BC, GAIL, f-IRL, PWIL, CFIL, and TDIL. These curves represent the means and the standard deviations
of five independent runs conducted with different random seeds
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Figure A3. Comparing the success rates of TDIL, BC, f-IRL and CFIL in the AdroitHandDoor-v1 environment.
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(a) f-IRL
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(b) PWIL
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(c) CFIL
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Figure A4. The training curves and the blind selection results of f-IRL, PWIL, CFIL, and TDIL (ours). The oracle line represents the
highest evaluation return achieved during training. The Blind last line depicts the evaluation return achieved by the agent at the end of
the training phase. The Blind {rkl loss, wdist, policy loss, relative} lines correspond to the evaluation returns determined based on the
reverse KL loss, W-distance, policy-loss, and our proposed relative reward, respectively.
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Figure A5. An analysis of the accuracy of the transition discriminator in different environments
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Figure A6. Performance of different α selection
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