
MS-TIP: Imputation Aware Pedestrian Trajectory Prediction

Pranav Singh Chib * 1 Achintya Nath * 1 Paritosh Kabra * 1 Ishu Gupta * 1 Pravendra Singh * 1

Abstract
Pedestrian trajectory prediction aims to predict
future trajectories based on observed trajectories.
Current state-of-the-art methods often assume that
the observed sequences of agents are complete,
which is a strong assumption that overlooks in-
herent uncertainties. Understanding pedestrian
behavior when dealing with missing values in
the observed sequence is crucial for enhancing
the performance of predictive models. In this
work, we propose the MultiScale hypergraph for
Trajectory Imputation and Prediction (MS-TIP),
a novel approach that simultaneously addresses
the imputation of missing observations and the
prediction of future trajectories. Specifically, we
leverage transformers with diagonal masked self-
attention to impute incomplete observations. Fur-
ther, our approach promotes complex interaction
modeling through multi-scale hypergraphs, opti-
mizing our trajectory prediction module to cap-
ture different types of interactions. With the in-
clusion of scenic attention, we learn contextual
scene information, instead of sole reliance on co-
ordinates. Additionally, our approach utilizes an
intermediate control point and refinement mod-
ule to infer future trajectories accurately. Ex-
tensive experiments validate the efficacy of MS-
TIP in precisely predicting pedestrian future tra-
jectories. Code is publicly available at https:
//github.com/Pranav-chib/MS-TIP.

1. Introduction
Predicting future trajectories of agents based on their previ-
ous motions is the primary objective of multi-agent trajec-
tory prediction. This is not only crucial for various applica-
tions, including self-driving cars and understanding human

*Equal contribution 1Department of Computer Science and
Engineering, Indian Institute of Technology, Roorkee, India. Cor-
respondence to: Pranav Singh Chib <pranavs chib@cs.iitr.ac.in>,
Pravendra Singh <pravendra.singh@cs.iitr.ac.in>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

motion patterns, but it also serves as a representation learn-
ing, bridging historical knowledge and future behaviors.
Given the observed past trajectories, trajectory prediction
requires modeling and predicting future trajectories. Cap-
turing the social interaction among pedestrians is a critical
task, and several efforts have been made to model these in-
teractions. However, existing methods (Shi et al., 2021; Xu
et al., 2022b;a) exhibit significant inaccuracies in predicting
final goals due to the accumulation of errors from recursive
predictions. To prevent the accumulation of errors caused
by recursive trajectory prediction, endpoint prediction ap-
proaches have emerged in which the potential endpoints of
trajectories are determined first (Wang et al., 2023; Man-
galam et al., 2021; Chiara et al., 2022; Bae & Jeon, 2023),
followed by interpolation. Although these solutions showed
promising performance increases, difficulties still persisted.
These methods are unable to handle missing values in past
observed sequences. Additionally, these approaches often
assume that the observed sequences of agents are complete,
which is too stringent a condition for real-world scenarios.
Sensor malfunctions, occlusion, and other issues frequently
result in missing data in real-world observed trajectories
(Xu et al., 2023). Predicting future trajectories with missing
values in the observed sequence undoubtedly impacts pre-
diction accuracy significantly. Trajectory prediction models
must simultaneously handle trajectory imputation (filling
missing values) and prediction with an accurate understand-
ing of pedestrian interactions.

In prior time-series imputation methods, consideration is
given to the following methods: the RNN-based methods
(Yoon et al., 2019), which imputes missing values using
an RNN graph, gated recurrent unit (GRU) variant, and
bidirectional RNN. These methods are time-consuming and
memory-constrained, making it challenging to address long-
term dependence in time series. GAN-based (Liu et al.,
2019) imputation methods utilize a generative adversarial
network (GAN) structure to model temporal information of
incomplete time series. However, due to their loss formula-
tion, GANs are prone to non-convergence and collapse. On
the other hand, VAE-based methods (Ramchandran et al.,
2021) employ latent variables in sampling and imputation,
which may not align with data distributions, making imputa-
tion challenging. Additionally, many of the aforementioned
methods are autoregressive, leading to compounding errors.

1

https://github.com/Pranav-chib/MS-TIP
https://github.com/Pranav-chib/MS-TIP

MS-TIP: Imputation Aware Pedestrian Trajectory Prediction

Figure 1. Visualization of the Three Core Modules of MS-TIP: the Imputation Module (indicated by a purple dotted line rectangle),
Multiscale Hypergraph Module (teal dotted line rectangle), and Trajectory Prediction and Refinement Module (blue dotted line rectangle).
Initially, given the observed sequences, the Imputation Module identifies the missing values in the past temporal sequences based on NaN
values. A corresponding missing mask (0,1 values) is generated for the observed sequences. This ‘missing mask’ is then input into the
Imputation Module during the imputation process. Once the estimated observed sequences are generated, the Multiscale Hypergraph
Module produces hyperedges e1, e2, e3, corresponding to the imputed sequence and interaction strengths at different scales (pairwise
interaction denoted by S = 2 or group interaction by S ≥ 3). The initial node embeddings from the scenic attention module, the incident
matrix (H), and the diagonal weight matrix (W) from the hypergraph are input into the hypergraph convolution neural network (HGCNN),
where hypergraph convolution is computed. The resultant embeddings are utilized for the prediction of control points. Incorporating the
intermediate control points, we determine the endpoint, and subsequently, the Refinement Module refines the trajectory, resulting in the
final plausible future trajectory predictions.

Self-attention (Shan & Oliva, 2021) emerges as a promis-
ing technique for imputation tasks. Its non-autoregressive
nature overcomes RNNs’ slow speed and memory limits
and can reduce compounding errors, thereby improving im-
putation. While these approaches have demonstrated good
imputation performance, they do not predict trajectories.

In this paper, we propose a novel approach, MultiScale
hypergraph for Trajectory Imputation and Prediction (MS-
TIP), as shown in Fig. 1. MS-TIP is an endpoint prediction
approach that mitigates the accumulation of errors caused
by recursive trajectory prediction. Our proposed approach is
an end-to-end process that is capable of simultaneously han-
dling trajectory imputation (finding missing values) and tra-
jectory forecasting. Specifically, we leverage self-attention
to learn missing values. We artificially introduce missing
values in the observed coordinates using missing masks.
Subsequently, we train the transformer-based model with
diagonal masked self-attention to impute the missing values
based on the missing mask. The Imputation module aims
to impart knowledge about missing patterns in partial obser-
vations. For trajectory prediction, we propose a multiscale
hypergraph with scenic attention. The multi-scale hyper-
graph captures group-wise interactions with varied group
sizes. Furthermore, for incorporating physical scene infor-
mation, we utilize scene attention, calculating the influence
of a scene on social interactions among pedestrians. Our
trajectory prediction model initially predicts the endpoint

based on intermediate control points and then refines the
interpolated trajectory. Extensive experimentation on pedes-
trian benchmarks consistently validates the efficacy of our
proposed approach (MS-TIP).

2. Related Work
2.1. Trajectory Prediction

As predicting the future trajectory of an agent involves in-
herent uncertainty and often results in multiple possible
outcomes, recent advancements have adopted the utiliza-
tion of deep generative models (Mao et al., 2023; Xu et al.,
2022a; Gu et al., 2022; Maeda & Ukita, 2023). These mod-
els encompass various techniques, including conditional
variational autoencoders (CVAEs) (Xu et al., 2022a; Lee
et al., 2022; Mangalam et al., 2020), generative adversar-
ial networks (GANs) (Sadeghian et al., 2019; Hu et al.,
2020; Gupta et al., 2018; Sadeghian et al., 2019), and diffu-
sion models (Mao et al., 2023). Although notable progress,
these stochastic prediction approaches have inherent draw-
backs, such as unsteady training or the production of abnor-
mal trajectories. Recently transformer-based (Girgis et al.,
2022; Yuan et al., 2021; Yu et al., 2020; Sekhon & Fleming,
2021) models excel at capturing long-term dependencies.
They also capture temporal and social elements simultane-
ously via the attention mechanism. Our primary focus is
on endpoint-conditioned trajectory prediction (Bae & Jeon,

2

MS-TIP: Imputation Aware Pedestrian Trajectory Prediction

2023; Wang et al., 2023; Mangalam et al., 2020), which
aims to forecast the final destination of an agent. Specif-
ically, our approach emphasizes predicting the endpoint
while conditioning on the intermediate points.

2.2. Graph-based Trajectory Prediction

Graph-based methods (Xu et al., 2022a; Yuan et al., 2021;
Hu et al., 2020) have been specifically employed to model
social interactions among agents in a scene through rela-
tional reasoning. Attention-based graph models (Chen et al.,
2023; Huang et al., 2019; Kosaraju et al., 2019; Sekhon &
Fleming, 2021) simulate agent-to-agent interactions during
trajectory prediction. NMMP (Hu et al., 2020) explores mes-
sage passing within the fully connected graph, calculating
interaction weights for enhanced weighted social interaction
modeling. SGCN (Shi et al., 2021) leverages self-attention
to create a sparse graph for interaction learning. Graph
convolution is another prominent approach in graph neural
networks, as shown by Social-STGCNN (Mohamed et al.,
2020). This method predicts paths using a Graph Convolu-
tional Network (GCN) (Mendieta & Tabkhi, 2021), group-
ing spatial information of agents and incorporating physical
constraints based on distances between pedestrians. How-
ever, its reliance on distance-related connections limits its
effectiveness. The aforementioned methods only focus on
the single interaction with the agent, ignoring the group and
multiple interactions; we focus on modeling the different
scales of interaction using the multiscale hypergraph.

2.3. Trajectory Imputation

Imputation is a nontrivial task because of the challenge
to determine the missing values. For time-series imputa-
tion, Recurrent Neural Networks (RNNs) have been ex-
tensively utilized, as evidenced in works like BRITS (Cao
et al., 2018) and M-RNN (Yoon et al., 2019), which employ
bidirectional RNNs for missing value imputation. Despite
their effectiveness, the recurrent network structure of RNNs
leads to significant time and memory consumption, making
them less suitable for long-term dependencies. Alterna-
tively, GAN-based (Liu et al., 2019) approaches leverage
both a generator and a discriminator to address missing
values. Variational Auto-Encoder (VAE) models, such as
GP-VAE (Fortuin et al., 2020), utilize a Gaussian Process
(GP) prior in the latent space in conjunction with a varia-
tional auto-encoder for imputation. Although both VAE and
GAN methodologies mitigate the compounding error issue
inherent in RNNs, they are challenging to train and often
suffer from non-convergence. Self-Attention-based (Shan
& Oliva, 2021) approaches have emerged as a promising
solution. The non-autoregressive nature and faster inference
capabilities of self-attention make them particularly suitable
for trajectory imputation tasks. However, only a few works,
such as NAOMI (Liu et al., 2019) and GMAT (Zhan et al.,

2018), have explored the trajectory imputation problem.
These studies focus exclusively on trajectory imputation,
neglecting the prediction task. INAM (Qi et al., 2020) and
GC-VRNN (Xu et al., 2023) have addressed this limita-
tion. INAM conducts imputation and prediction in an asyn-
chronous manner, whereas GC-VRNN facilitates end-to-end
imputation. Our approach employs a non-autoregressive
transformer for imputing missing values across the temporal
domain.

3. Methodology
3.1. Problem Formulation

For the problem formulation, we consider the trajectory
sequence as a set of past and future sequences. Here,
X≤tob

i = {Xt1
i , X

t2
i , ..., X

tob
i } represents the past observed

trajectory of agent i, ranging from t1 to tob. The Xtob
i ∈ R2

denotes the 2D coordinates of agent i at time step tob. Sim-
ilarly, the future trajectory sequence (ground truth) can be
represented as Y tob+1≤t≤tpred

i over the duration from tob+1

to tpred. The problem of trajectory prediction aims to fore-
cast the future trajectory Ŷ tob+1≤t≤tpred

i based on observed
past trajectory X≤tob

i .

3.2. Trajectory Imputation and Prediction

We use Self Attention (Du et al., 2023) for the trajectory
imputation to increase the model robustness by imputing
missing coordinates. The inputs to the imputation model are
the input coordinates and the mask, as depicted in Fig. 2.

3.2.1. TRAJECTORIES MASKING

Imputation is the process whereby the model fills in missing
coordinates in the given input. These missing coordinates
are introduced as null values (NaNs) in the original in-
put coordinates X≤tob

i to simulate missing coordinates in
our dataset. The resulting sequence of coordinates after
introducing null values is denoted by X ′≤tob

i .

We getX
′′

i

≤tob by artificially masking (making those values

as NaNs) some % of the observed coordinates in X
′

i

≤tob .

X
′′

i

≤tob is a result of both, original missing values and
artificially masked values. I≤tob

i denotes the indicating
mask, expressed as {It1i , ..., I

tob
i }.

Iti =

{
1 if X

′t
i is observed & X

′′

i

t
is artificially masked

0 otherwise
(1)

We then obtain missing mask M
′′

i

≤tob , which takes both
originally missing values and artificially masked values into

3

MS-TIP: Imputation Aware Pedestrian Trajectory Prediction

Figure 2. Illustration of the imputation model, comprising three main blocks, each dedicated to a distinct operation. The ‘encode block’
predicts the imputed data, which is then passed to the ‘decoder block.’ Concurrently, the ‘η block’ processes the attention weights and
the mask. A weighted combination (X̃c) of representations from the encoder and decoder blocks (X̃e and X̃d) is combined by the
‘combination block.’

account.

M
′′

i

t
=

{
1 if X

′′

i

t
is observed

0 if X
′′

i

t
is missing

(2)

The imputation model Θimp does its imputation using the

missing observed sequence (X
′′

i

≤tob) and missing mask

(M
′′

i

≤tob), defined above. Indicating mask I≤tob
i is used

for the Masked Imputation Task (MIT), while the Observed
Reconstruction Task (ORT) uses M

′′

i

≤tob for ensuring that
the distribution of the predicted values is close to the actual
observed values (see Eqs. 6, 7).

3.2.2. TRAJECTORIES IMPUTATION

We employ a transformer architecture comprising an en-
coder block, a decoder block, and a linear combination of
both for imputing missing values, as illustrated in Fig. 2.
Our approach includes a modification of the self-attention
mechanism into a diagonal-masked self-attention format,
where the diagonal entities of the attention map are masked
(set to infinity). This modification aims to enhance feature
correlation across different timestamp values and improve
the learning of temporal representations.

The input coordinates (missing observed sequence) and the
missing mask are concatenated to form the input to the
encoder block, after which the missing values are replaced
with X̃e as shown in Fig. 2. The decoder block processes
the output from the encoder block, concatenated with the
missing mask. The η block, as defined in Eq. 3, utilizes the
attention weight (A) and missing mask (M

′′

i

≤tob) to produce
combining weights η. The combination of X̃e and X̃d with

η yields X̃c, as depicted in Eq. 4. The corresponding
values of X̃c are then utilized to replace those in the missing
observed sequence.

η = Sigmoid
(
Concat

(
A,M

′′

i

≤tob
)
Wη + bη

)
(3)

X̃c = (1− η)⊙ X̃e + η ⊙ X̃d (4)

X̃≤tob
i =M

′′

i

≤tob ⊙X
′′

i

≤tob
+
(
1−M

′′

i

≤tob
)
⊙ X̃c (5)

Here, X̃e denotes the representation learned from the en-
coder block, X̃d is the representation learned from the de-
coder block, and X̃c is a linear combination of both, as
defined by Eq. 4. The learnable parameters Wη and bη are
used in this computation. The symbol ⊙ denotes an element-
wise product. The estimated observed sequence X̃≤tob

i is

obtained via Eq. 5, in which the missing values in X
′′

i

≤tob

are replaced with the corresponding values from X̃c. This
estimated observed sequence for each agent is then fed into
the multiscale hypergraph module for capturing interactions,
as depicted in Fig. 1.

LORT =MAE((||X̃≤tob
i −X

′≤tob
i ||)⊙ (M

′′≤tob
i)) (6)

LMIT =MAE((||X̃≤tob
i −X

′≤tob
i ||)⊙ (I≤tob

i)) (7)

X̃≤tob
i = Θimp(X

′′≤tob
i) (8)

Θ⋆
imp = arg min

Θimp

(LORT + LMIT) (9)

Where MAE refers to Mean Absolute Error, LORT calcu-
lates loss between the estimated observed sequence and

4

MS-TIP: Imputation Aware Pedestrian Trajectory Prediction

the original observed sequence using the missing mask and
LMIT calculates the loss using the indicating mask.

We pre-train the imputation model Θimp using Eq. 9. The
pre-trained imputation model obtained thereafter is fine-
tuned during the end-to-end training.

3.3. HyperGraph Topology and Generation

In our proposed approach, we train our model using both
the original observed sequence X≤tob

i and the estimated
observed sequence X̃≤tob

i . The initial step involves gen-
erating a hypergraph from X≤tob

i and subsequently train-
ing the model end-to-end on this input. We then repeat
the process by passing the estimated observed sequence,
X̃≤tob

i , and again training the model end-to-end. This is
performed for every batch of the given dataset to effec-
tively capture the impact of imputation on the predicted
final coordinates. Throughout the remainder of the paper,
we exclusively present formulations using X≤tob

i for the
sake of simplicity. However, it is important to note that the
same formulation is applicable to X̃≤tob

i . We construct a
multi-scale hypergraph to effectively capture interactions
among various agents.

3.3.1. HYPER GRAPH TOPOLOGY

Our objective is to create a multi-scale hypergraph that
shows how different groups of agents interact in various
ways. Each scale of the hypergraph will represent a different
kind of interaction with different numbers of agents/nodes
involved. Formally, our aim is to generate a set of hyper-
graphs G(t) = {G(t,S1),G(t,S2), . . . ,G(t,S|S|) | t ∈ N, 1 ≤
t ≤ tob, Sj ∈ S, 1 ≤ j ≤ |S|}, where S is a set of pre-
defined scales, illustrating the connections between different
nodes (agents). Let G(t,Sj) = (V,E(Sj)) denote the hyper-
graph generated at time t and scale Sj , with the hyperedge
set E(t,Sj) = {e(t,Sj)

1 , e
(t,Sj)
2 , . . . , e

(t,Sj)
Ms

} and the vertex
set V = {v1, v2, . . . , vN}. The scale parameter Sj indicates
the number of agents involved in the interactions, with a
larger Sj value representing a larger group of agents. As the
number of agents (and consequently, the number of nodes)
in the hypergraph is variable, a flexible scaling mechanism
is implemented. This involves using a predefined set of
scales S = { 2, 3, 5, 7, 9 }. However, if the number of
agents exceeds the largest scale in this set, the scaling stops.
For instance, if there are 6 agents, the scales used would be
2, 3, and 5; whereas, if there are 10 agents, the scales would
be 2, 3, 5, 7, and 9.

3.3.2. HYPER GRAPH GENERATION

To infer a multiscale hypergraph, we utilize the K-Nearest
Neighbors (KNN) algorithm to generate the hypergraph,
employing the Euclidean distance as the metric. In the given

trajectory, each agent is represented as a node within the
hypergraph. The number of edges in the hypergraph G(t,Sj)

isN , leading to a total of |S|×N hyperedges in G(t), where
|S| is the total number of scales. In the hypergraph G(t,Sj)

, the ith hyperedge encompasses Sj nodes, including the
ith node and the Sj − 1 nearest neighbors to the ith node.
For instance, in a hypergraph generated at scale = 3, i.e.,
G(t,3), there will be N hyperedges; the ith hyperedge will
consist of the ith node and the two nearest nodes among
the remaining N − 1 nodes. Subsequently, we obtain an
incidence matrix H(t,Sj) ∈ R|V|×|N | of G(t,Sj) . The inci-
dence matrix H(t) ∈ R|V|×|SN | of G(t) can be calculated
by H(t) =

[
H(t,S1)

∣∣H(t,S2)
∣∣ . . . | H(t,S|S|)

]
, where | de-

notes the horizontal concatenation operation. Two distinct
approaches are used for assigning weights to the hyperedges.
The first approach assigns a uniform weight of 1 to every
hyperedge, ensuring equal weightage in the convolution pro-
cess. The second approach, in contrast, involves assigning
varying weights to the hyperedges given by Eq. 10.

w(e
(t,s)
i) =

∑
u,v∈e

(t,s)
i

exp

(
−d(X

t
u, X

t
v)

2

σ2

)
(10)

Where u and v are any two vertices in the hyperedge e(t,s)i .
d(Xt

u, X
t
v) represents the Euclidean distance between ver-

tices u and v, with σ denoting the mean value of dis-
tances between all vertex pairs. Subsequently, w(t) =[
w(t,S1)

∣∣w(t,S2)
∣∣ . . . | w(t,S|S|)

]
, where | denotes the hori-

zontal concatenation operation. The ablation study for these
two methods of weight assignment is detailed in the ablation
study Section 4.4.3. Utilizing the hypergraph, we obtain
the incidence matrix Ht and weight wt, which is passed to
HGCNN along with the initial node embeddings (refer to
Section 3.4), as shown in Fig. 1.

3.4. Scenic Attention

In order to effectively capture the physical scene informa-
tion, we employ a pre-trained convolutions neural network.
This is done to extract features from scene images. The cho-
sen backbone network is the ImageNet pre-trained VGG-19
model, and the resultant features are denoted as Vk

Vk = V GG19 (Imagescene ;WV GG19)

St
i = SceneAttention

(
Vk, X

t
i ;Watt

) (11)

Here, WV GG19 and Watt represent the weights of the VGG-
19 model and trainable attention weights, Imagescene is the
image from the dataset, Xt

i is the position of the agent i at
time step t. Then we concatenate scene embedding St

i with
the coordinate of the agents (nodes) to form initial node
embeddings z(t,0)i .

zt,0i = Concate
(
Xt

i , S
t
i

)
(12)

5

MS-TIP: Imputation Aware Pedestrian Trajectory Prediction

Zt,0 = {zt,01 , zt,02 , . . . , zt,0N } (13)

Here, the term zt,0i denotes the initial node embeddings of
the ith node obtained after concatenating them with the
scene embeddings at time t, where the superscript 0 repre-
sents the initial node embeddings and Zt,0 represents the
initial node embeddings of all the nodes. When these ini-
tial embeddings are fed as input to the HGCNN module,
denoted by Eq. 14, we get the final node embeddings. The
inclusion of scene information significantly impacts the ac-
curacy of pedestrian prediction. The motivation behind this
inclusion is to ensure that the model doesn’t solely depend
on coordinates but also considers the contextual information
provided by the scene.

3.5. HyperGraph Convolution Neural Network

Node embeddings corresponding to the convolution opera-
tor are obtained by passing the incidence matrix Ht, initial
node embedding Zt,0, and edge weight W t to the HGCNN
module. The hypergraph convolution operation is repre-
sented in Eq. 14.

z
t,(l+1)
i = σ

 N∑
j=1

M∑
e=1

Ht
ieH

t
jeW

t
eez

(t,l)
j P

 (14)

Here, N is the total number of nodes, M = |S| × N is
the total number of hyperedges, {z(t,l+1)

i | 1 ≤ i ≤ N}
denotes the node embeddings of the ith node at tth time
after (l+1) convolution operations, Ht is the incidence ma-
trix (analogous to the adjacency matrix in a normal graph),
W t ∈ RM×M = diag(wt) is a diagonal matrix where
wt ∈ R1×M , and P is the trainable weight matrix. σ(·)
represents a nonlinear activation function. In simple terms,
the equation calculates the new embedding for the ith node
by considering all edges connected to it. For each edge, if
both ith and jth{1 ≤ j ≤ N} is present, it multiplies
the edge weight and the current embedding of the con-
nected jth node. The sigmoid activation is then applied
to the sum of these products. The resulting embeddings
Z =

[
Z1,l+1, Z2,l+1, . . . , Ztob,l+1

]
are then passed to the

trajectory prediction and refinement module for future trajec-
tory predictions. Here, Zt,l+1 denotes the node embeddings
of all agents at tth time and after (l + 1)th convolution op-
eration. Z represents the node embeddings of all agents at
all time stamps after the final convolution layer.

3.6. End Point Prediction and Refinement

Our model adopts an endpoint-conditioned approach (Bae
& Jeon, 2023; Mangalam et al., 2020; 2021) for predicting
future pedestrian trajectories. Initially, we segment a pedes-
trian’s trajectory into intermediate control points. These
points outline the path a pedestrian is likely to take a route

to their final destination. The locations of these control
points are inferred as probability densities using mixture
density networks (MDNs). Subsequently, the final endpoint,
representing the pedestrian’s destination, is determined by
linking these control points, as illustrated in Eq. 17.

Ci =
{
cki = Y tob+τ×k

i − Y
tob+τ×(k−1)
i

}
ei = Xtob

i +

K∑
k=1

cki

for ∀k ∈ {1, . . . ,K},

for ∀i ∈ {1, . . . , N}, τ =
tpred − tob

K

(15)

Where K represents the total number of control points. We
can obtain the ground truth control points Ci for the training
dataset, since we know the tpred coordinates for every pedes-
trian, and we denote them as Xtob+τ×k

i as the pedestrian
coordinates for K control points between tob to tpred. We
now have to predict the control points. Following the pre-
vious study (Gupta et al., 2018), we sample Ω = 20 times
to obtain Ĉω , where 1 ≤ ω ≤ Ω. We sample Ĉω

i = {ĉk,ωi }
from the Gaussian Mixture Models (GMM) parameters pre-
dicted from the endpoint prediction module as shown below.

Ĉω ∼ GMM(Z) (16)

êωi = Xtob
i +

K∑
k=1

ĉk,ωi (17)

Here, êωi denotes the final endpoint of the ith agent, and ĉk,ωi

represents the kth intermediate control point of ith agent
in the ωth sample time. Êi = {êωi | i, ω ∈ N, 1 ≤ ω ≤
Ω, 1 ≤ i ≤ N}. We divide the predicted endpoints into two
sets: a positive set Υ+and a negative set Υ− given below:

Υ+
i = {êωi | ∥êωi − ei∥ ≤ Γ}

Υ−
i = {êωi | ∥êωi − ei∥ > Γ}

for ∀ω ∈ {1, . . . ,Ω},Γ =

∥∥Xtob
i −Xt1

i

∥∥
tob × γi

,

(18)

where γi is a scale indicator that adaptively adjusts the
averaged displacement of the ith agent. We calculate the
loss and backpropagate gradients for only the positive sets
of endpoints using the valid mask given below:

ψω
i =

{
1 if êωi ∈ Υ+

i

0 otherwise
(19)

In early training, we will have very few accurate predictions
and, hence, very few positive endpoints. We address this by
additionally sampling a set of Ω positive endpoints, called
“guided endpoints,” within a specified range Γ around the

6

MS-TIP: Imputation Aware Pedestrian Trajectory Prediction

Table 1. Details of the ETH, HOTEL, UNIV, ZARA1, and ZARA2
datasets. ‘Obs frames’, ‘Pred frames’, ‘Obs time’, and ‘Pred time’
denote observed frames, predicted frames, observed time horizon,
and predicted time horizon, respectively.

Datasets Pedestrians Obs frames Pre frames Obs time Pred time
ETH 750 8 12 3.2 sec 4.8 sec

HOTEL 8 12 3.2 sec 4.8 sec
UNIV

786
8 12 3.2 sec 4.8 sec

ZARA1 8 12 3.2 sec 4.8 sec
ZARA2 8 12 3.2 sec 4.8 sec

actual values. Hence total number of control points is 2Ω.
This supplements the limited number of positive examples
during the initial phases. Unlike existing methodologies,
our approach integrates a multiscale hypergraph to enhance
the prediction of both endpoints and control points, effec-
tively capturing dynamic interactions among pedestrians.
After predicting control points and generating endpoints,
our trajectory refinement module introduces correction vec-
tor fields f t,ωi for the initial trajectory, which is added to the
trajectory obtained from linear interpolation. This integra-
tion enables our model to predict accurate future trajectories.

Ŷ t,ω
i = Xtob

i +
êωi −Xtob

i

tpred − tob
× (t− tob)

∀t ∈ {tobs + 1, . . . , tpred } ,
∀n ∈ {1, . . . , N},
∀ω ∈ {1, . . . ,Ω}

(20)

f t,ωi = Θtr(Concat(Ŷ
t,ω
i , St

i))

Ŷ t,ω
i = Ŷ t,ω

i + f t,ωi

∀t ∈ {tob + 1, . . . , tpred } ,
∀n ∈ {1, . . . , N}
∀ω ∈ {1, . . . ,Ω}

(21)

where Θtr is trajectory refinement model, St
i is the scenic

attention (refer 3.4).

Our approach incorporates the control point prediction and,
lastly, the refinement loss. For the control point loss (Eq.
22), we optimize an expectation to train the control point
prediction module. We sum the probability density functions
for all predicted control point distributions and pedestrians.
Furthermore, we minimize the trajectory refinement loss as
shown in Eq. 23. The loss is based on the mean square error
(MSE) of the average displacement between a refined and

Figure 3. Visualization of Predicted Trajectories in the images of
UNIV (top-left), ETH (bottom-left), and ZARA (both on the right)
datasets. Predicted pedestrian trajectories are depicted in yellow.
The observed trajectories are shown in orange, while the ground
truth trajectories are represented in green. Our approach accurately
predicts future trajectories, closely aligning with the ground truth.

ground truth trajectory.

Lc =

N∑
i=1

K∑
k=1

− log

#M∑
m=1

π̂m,k
i

exp

(
− (cki −µ̂m,k

i)
2

2(σ̂m,k
i)

2

)
√
2πσ̂m,k

i

(22)

Here, µ̂m,k
i is the mean, σ̂m,k

i is the standard deviation, and
π̂m,k
i is a mixing coefficient obtained from the multivariate

GMM (Bae & Jeon, 2023), N is the number of agents, and
K is the number of control points. cki is the ground truth
control point. #M is the number of selected mixture models,
which are used to sample the predicted control point ĉki .

Lr =

N∑
i=1

2Ω∑
ω=1

tpred∑
t=tob+1

ψω
i

∣∣∣∣∣∣Y t,ω
i − Ŷ t,ω

i

∣∣∣∣∣∣2
2

(23)

Here, ψω
i is the mask used while backpropagating gradients.

Y t,ω
i are the coordinates of the ground truth trajectory and
Ŷ t,ω
i are the predicted coordinates (calculated from Eq. 21).

Finally, the trajectory prediction loss function is given by
Ltotal = Lc+Lr, where Lc is control point prediction loss
and Lr is the trajectory refinement loss.

4. Experiments
In this section, we present the quantitative and qualitative re-
sults of our approach. Details regarding the implementation
are provided in the Appendix.

4.1. Dataset and Metrics

We evaluated our method on the widely used publicly avail-
able human trajectory prediction benchmarks ETH, HOTEL,

7

MS-TIP: Imputation Aware Pedestrian Trajectory Prediction

Table 2. Comparison of MS-TIP (Our) with other approaches on ETH, HOTEL, UNIV, ZARA1, and ZARA2 datasets in terms of
ADE/FDE (lower values are better). All approaches use the observed 8-time steps and produce the future 12-time steps. The top
performance is highlighted in bold, and the second-best performance is indicated with underline.
Model STGAT CARPE SGCN GroupNet STT S-Implicit MemoNet BCDiff G-Tern FlowChain Our
Venue AAAI-21 AAAI-21 CVPR-21 CVPR-22 CVPR-22 ECCV-22 CVPR-22 NIPS-23 AAAI-23 ICCV-23 -
ETH 0.56/1.10 0.80/1.40 0.52/1.03 0.46/0.73 0.54/1.10 0.66/1.44 1.00/2.08 0.53/0.91 0.42/0.58 0.55/0.99 0.39/0.57

HOTEL 0.27/0.50 0.52/1.00 0.32/0.55 0.15/0.25 0.24/0.46 0.20/0.36 0.35/0.67 0.17/0.27 0.14/0.23 0.20/0.35 0.13/0.22
UNIV 0.32/0.66 0.61/1.23 0.37/0.70 0.26/0.49 0.57/1.15 0.31/0.60 0.55/1.19 0.24/0.40 0.26/0.45 0.29/0.54 0.24/0.40

ZARA1 0.21/0.42 0.42/0.84 0.29/0.53 0.21/0.39 0.45/0.94 0.25/0.50 0.46/1.00 0.21/0.37 0.21/0.37 0.22/0.40 0.20/0.34
ZARA2 0.20/0.40 0.34/0.74 0.25/0.45 0.17/0.33 0.36/0.77 0.22/0.43 0.32/0.71 0.16/0.26 0.17/0.29 0.20/0.34 0.17/0.29

AVG 0.31/0.62 0.46/0.89 0.37/0.65 0.25/0.44 0.43/0.88 0.33/0.67 0.55/1.15 0.26/0.44 0.24/0.38 0.29/0.52 0.22/0.36

Table 3. Ablation experiments using different missing mask values
on ETH, HOTEL, UNIV, ZARA1, and ZARA2 datasets. The best
results were achieved when missing coordinates were generated by
introducing 5% and 15% null values (NaNs) in the total observed
trajectories. Bold represents the best, and underline represents the
second-best ADE/FDE values.

Imputation
% 5 % 10 % 15 % 20 %

ETH 0.43/0.60 0.40/0.61 0.39/0.57 0.46/0.65
HOTEL 0.13/0.22 0.14/0.24 0.14/0.23 0.15/0.24
UNIV 0.24/0.40 0.24/0.40 0.24/0.41 0.25/0.40

ZARA1 0.20/0.34 0.21/0.35 0.21/0.35 0.21/0.34
ZARA2 0.18/0.30 0.17/0.29 0.17/0.29 0.20/0.35

AVG 0.23/0.37 0.23/0.38 0.23/0.37 0.25/0.39

UNIV, ZARA1, and ZARA2. More details are provided in
Table 1. We use popular assessment measures for trajectory
prediction, such as Average Displacement Error (ADE) and
Final Displacement Error (FDE). ADE denotes the average
L2 distance between anticipated and ground truth trajec-
tories over all time steps, whereas FDE measures the L2
distance at the final time step or endpoint.

4.2. Quantitative Results

The quantitative results on ETH, HOTEL, UNIV, ZARA1,
and ZARA2 are presented in Table 2. We have compared
our approach with STGAT (Sekhon & Fleming, 2021),
CARPE (Mendieta & Tabkhi, 2021), SGCN (Shi et al.,
2021), GroupNet (Xu et al., 2022a), STT (Monti et al.,
2022), S-Implicit (Mohamed et al., 2022), MemoNet (Xu
et al., 2022b), BCDiff (Li et al., 2023), G-Tern (Bae & Jeon,
2023), and FlowChain (Maeda & Ukita, 2023). In all five
datasets, our approach has demonstrated the best perfor-
mance over ETH, HOTEL, UNIV, and ZARA1 datasets
and the second-best result over ZARA2. Our approach out-
performs the state-of-the-art endpoint prediction method
Graph-TERN (Bae & Jeon, 2023), achieving an average
ADE of 0.22 and an average FDE of 0.36. The results
presented in Table 2 include training MS-TIP on missing
coordinates set at 15% for the ETH and ZARA2 datasets,

Figure 4. Visualization of predicted control points. The control
points are represented by areas of varying color density, indicating
the probability density of each intermediate step a pedestrian is
likely to take toward the endpoint. The control points are connected
by a blue line, depicting the intermediate straight curve.

Table 4. Ablation experiments evaluating the contributions of im-
putation (IMP), scenic attention (SCA), and the multiscale hyper-
graph (MHG) in our approach (MS-TIP). Empirical evaluation
shows that all three components (combined) are necessary for the
effectiveness of MS-TIP.

Components Baseline IMP IMP+SCA IMP+SCA+MHG
ETH 0.47/0.88 0.43/0.69 0.40/0.61 0.39/0.57

HOTEL 0.15/0.26 0.15/0.24 0.14/0.24 0.13/0.22
UNIV 0.25/0.41 0.24/0.40 0.24/0.40 0.24/0.40

ZARA1 0.21/0.35 0.21/0.34 0.20/0.34 0.20/0.34
ZARA2 0.18/0.30 0.18/0.31 0.18/0.30 0.17/0.29

AVG 0.25/0.44 0.24/0.39 0.23/0.37 0.22/0.36

and 5% for the HOTEL, UNIV, and ZARA1 datasets.

4.3. Qualitative Results

As demonstrated in Fig. 3, our method accurately predicts
future trajectories close to the ground truth trajectories. The
model effectively learns various patterns in the scene, cap-
turing the interactions and movement of pedestrians. Ad-
ditionally, we have illustrated the predicted control points
enhancing goal prediction. The inference of intermediate
control points of various sizes (2, 3, 4) is depicted in Fig. 4.

4.4. Ablation Study

4.4.1. DIFFERENT VALUES OF IMPUTATION

Table 3 shows the different variations of missing values
(indicating how many values are to be masked). Missing co-

8

MS-TIP: Imputation Aware Pedestrian Trajectory Prediction

Table 5. Ablation experiments involving different hyperedge weights. We investigate the result using Eq. 10, which assigns varying
weights (VAR) to the hyperedges. Results illustrate that prediction accuracy is highest when a uniform weight of 1 is assigned to every
hyperedge (UNI). Bold represents the best, and underline represents the second-best ADE/FDE values.

Impuation/
Weights

5% 10% 15% 20%
VAR UNI VAR UNI VAR UNI VAR UNI

ETH 0.44/0.61 0.43/0.60 0.43/0.60 0.41/0.61 0.44/0.62 0.39/0.57 0.43/0.60 0.46/0.65
HOTEL 0.14/0.24 0.14/0.23 0.14/0.24 0.15/0.25 0.14/0.24 0.13/0.22 0.14/0.24 0.15/0.24
UNIV 0.24/0.44 0.25/0.40 0.24/0.41 0.25/0.46 0.24/0.41 0.24/0.40 0.25/0.40 0.25/0.40

ZARA1 0.20/0.33 0.21/0.35 0.20/0.33 0.21/0.35 0.20/0.34 0.20/0.34 0.21/0.35 0.21/0.40
ZARA2 0.17/0.29 0.18/0.30 0.17/0.30 0.18/0.29 0.17/0.29 0.17/0.29 0.17/0.29 0.21/0.35

AVG 0.24/0.38 0.24/0.38 0.23/0.38 0.24/0.39 0.24/0.38 0.22/0.36 0.24/0.38 0.25/0.39

Table 6. Ablation experiments to investigate the impact of different
intermediate predicted control points on the final trajectory predic-
tion in terms of ADE/FDE. The optimal result is obtained when
predicting three intermediate control points. Bold represents the
best, and underline represents the second-best ADE/FDE values.

Control points K=1 K=2 K=3 K=4 K=6

ETH 0.44/0.76 0.47/0.70 0.39/0.57 0.42/0.69 0.47/0.85
HOTEL 0.19/0.32 0.15/.025 0.13/0.22 0.14/0.24 0.13/0.23
UNIV 0.25/0.43 0.25/0.42 0.24/0.40 0.25/0.43 0.25/0.44

ZARA1 0.24/0.41 0.21/0.36 0.20/0.34 0.21/0.35 0.21/0.36
ZARA2 0.21/0.37 0.19/0.33 0.17/0.29 0.19/0.33 0.18/0.32

AVG 0.26/0.46 0.21/0.41 0.22/0.36 0.24/0.411 0.25/0.44

Table 7. The variation of ADE/FDE with the scale parameter for
MS-TIP on the ETH dataset.

Dataset Scale ADE FDE
2,3 0.41 0.65

2,3,5 0.40 0.59
2,3,5,7,9 0.39 0.57ETH

2,3,4,5,6,7,8,9 0.40 0.57

ordinates are generated by introducing null values (NaNs)
in the total observed trajectories. The results demonstrate
that the best performance in the trajectory prediction task
is achieved by training the imputation model to reconstruct
and impute 5% and 15% NaNs values.

4.4.2. CONTRIBUTION OF DIFFERENT COMPONENTS

Table 4 presents the contributions of imputation (IMP),
scenic attention (SCA), and the multiscale hypergraph
(MHG) in our approach (MS-TIP) compared to the base-
line that uses a simple GCN (graph convolutional network).
Imputation enhances model robustness to incomplete se-
quences, while the hypergraph and scenic attention facil-
itate interaction learning in dynamic scenarios. Notably,
the incorporation of a hypergraph yields a more substantial
relative improvement in model performance.

4.4.3. HYPEREDGE WEIGHT

Table 5 presents an investigation of various ADE/FDE val-
ues when the hyperedges weights are assigned using Eq. 10

under different values of the imputation. It is evident from
the table that the highest prediction accuracy is achieved
when the weight of every hyperedge is set to 1.

4.4.4. VARIATION IN CONTROL POINTS

We evaluate the model’s performance using different num-
bers of intermediate control points, and our findings are
presented in Table 6. The optimal results are achieved when
the value of K is set to 3, indicating the prediction of three
intermediate control points.

4.4.5. VARIATION IN SCALE PARAMETER

Based on the results presented in Table 7, we observe that
when the scale is small (scale = [2, 3]), the ADE/FDE met-
rics tend to be relatively higher. However, as the scale
increases, MS-TIP demonstrates improved capture of social
interactions, resulting in a decrease in both ADE/FDE. Inter-
estingly, the ADE/FDE values for scales (2, 3, 5, 7, 9) and (2,
3, 4, 5, 6, 7, 8, 9) appear to be nearly identical. It’s important
to note that each scale generates a hypergraph, and employ-
ing more scales introduces a greater number of hyper-edges.
Increasing the number of scales further does not signifi-
cantly enhance the ADE/FDE metrics. Moreover, a large
number of scales incurs greater convolutional complexity
and raises concerns about capturing false interactions.

5. Conclusion
In this paper, we present a novel approach capable of simul-
taneously addressing trajectory sequence imputation and
future trajectory prediction tasks. Our proposed framework
utilizes a non-autoregressive transformer model to impute
missing coordinates, employing a dual approach of missing
value reconstruction and prediction. By integrating a multi-
scale hypergraph, our model efficiently captures complex
interactions at different scales. Furthermore, the introduc-
tion of scenic attention facilitates contextual learning among
pedestrians in various environments. Extensive experiments
demonstrate the effectiveness of our approach.

9

MS-TIP: Imputation Aware Pedestrian Trajectory Prediction

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Bae, I. and Jeon, H.-G. A set of control points conditioned

pedestrian trajectory prediction. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37,
pp. 6155–6165, 2023.

Cao, W., Wang, D., Li, J., Zhou, H., Li, L., and Li, Y.
Brits: Bidirectional recurrent imputation for time series.
Advances in neural information processing systems, 31,
2018.

Chen, X., Zhang, H., Hu, Y., Liang, J., and Wang, H. Vnagt:
Variational non-autoregressive graph transformer network
for multi-agent trajectory prediction. IEEE Transactions
on Vehicular Technology, 2023.

Chiara, L. F., Coscia, P., Das, S., Calderara, S., Cucchiara,
R., and Ballan, L. Goal-driven self-attentive recurrent
networks for trajectory prediction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 2518–2527, 2022.

Du, W., Côté, D., and Liu, Y. Saits: Self-attention-based
imputation for time series. Expert Systems with Applica-
tions, 219:119619, 2023.

Fortuin, V., Baranchuk, D., Raetsch, G., and Mandt, S.
GP-VAE: Deep probabilistic time series imputation. In
Proceedings of the Twenty Third International Conference
on Artificial Intelligence and Statistics, volume 108 of
Proceedings of Machine Learning Research, pp. 1651–
1661. PMLR, 26–28 Aug 2020.

Girgis, R., Golemo, F., Codevilla, F., Weiss, M., D’Souza,
J. A., Kahou, S. E., Heide, F., and Pal, C. Latent variable
sequential set transformers for joint multi-agent motion
prediction. In International Conference on Learning
Representations, 2022. URL https://openreview.
net/forum?id=Dup_dDqkZC5.

Gu, T., Chen, G., Li, J., Lin, C., Rao, Y., Zhou, J., and Lu, J.
Stochastic trajectory prediction via motion indeterminacy
diffusion. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 17113–
17122, 2022.

Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., and Alahi,
A. Social gan: Socially acceptable trajectories with gen-
erative adversarial networks. In Proceedings of the IEEE

conference on computer vision and pattern recognition,
pp. 2255–2264, 2018.

Hu, Y., Chen, S., Zhang, Y., and Gu, X. Collaborative
motion prediction via neural motion message passing. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 6319–6328, 2020.

Huang, Y., Bi, H., Li, Z., Mao, T., and Wang, Z. Stgat: Mod-
eling spatial-temporal interactions for human trajectory
prediction. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 6272–6281, 2019.

Kosaraju, V., Sadeghian, A., Martı́n-Martı́n, R., Reid, I.,
Rezatofighi, H., and Savarese, S. Social-bigat: Multi-
modal trajectory forecasting using bicycle-gan and graph
attention networks. Advances in Neural Information Pro-
cessing Systems, 32, 2019.

Lee, M., Sohn, S. S., Moon, S., Yoon, S., Kapadia, M., and
Pavlovic, V. Muse-vae: multi-scale vae for environment-
aware long term trajectory prediction. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 2221–2230, 2022.

Li, R., Li, C., Ren, D., Chen, G., Yuan, Y., and Wang, G.
Bcdiff: Bidirectional consistent diffusion for instanta-
neous trajectory prediction. In Thirty-seventh Conference
on Neural Information Processing Systems, 2023.

Liu, Y., Yu, R., Zheng, S., Zhan, E., and Yue, Y. NAOMI:
Non-autoregressive multiresolution sequence imputation.
In Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019.

Maeda, T. and Ukita, N. Fast inference and update of prob-
abilistic density estimation on trajectory prediction. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 9795–9805, 2023.

Mangalam, K., Girase, H., Agarwal, S., Lee, K.-H., Adeli,
E., Malik, J., and Gaidon, A. It is not the journey but the
destination: Endpoint conditioned trajectory prediction.
In Computer Vision–ECCV 2020: 16th European Con-
ference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part II 16, pp. 759–776. Springer, 2020.

Mangalam, K., An, Y., Girase, H., and Malik, J. From goals,
waypoints & paths to long term human trajectory fore-
casting. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 15233–15242, 2021.

Mao, W., Xu, C., Zhu, Q., Chen, S., and Wang, Y. Leapfrog
diffusion model for stochastic trajectory prediction. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 5517–5526, 2023.

10

https://openreview.net/forum?id=Dup_dDqkZC5
https://openreview.net/forum?id=Dup_dDqkZC5

MS-TIP: Imputation Aware Pedestrian Trajectory Prediction

Mendieta, M. and Tabkhi, H. Carpe posterum: A convolu-
tional approach for real-time pedestrian path prediction.
In Proceedings of the AAAI Conference on Artificial In-
telligence, volume 35, pp. 2346–2354, 2021.

Mohamed, A., Qian, K., Elhoseiny, M., and Claudel, C.
Social-stgcnn: A social spatio-temporal graph convolu-
tional neural network for human trajectory prediction. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 14424–14432, 2020.

Mohamed, A., Zhu, D., Vu, W., Elhoseiny, M., and Claudel,
C. Social-implicit: Rethinking trajectory prediction eval-
uation and the effectiveness of implicit maximum likeli-
hood estimation. In European Conference on Computer
Vision, pp. 463–479. Springer, 2022.

Monti, A., Porrello, A., Calderara, S., Coscia, P., Ballan, L.,
and Cucchiara, R. How many observations are enough?
knowledge distillation for trajectory forecasting. In 2022
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 6543–6552, 2022. doi: 10.1109/
CVPR52688.2022.00644.

Qi, M., Qin, J., Wu, Y., and Yang, Y. Imitative non-
autoregressive modeling for trajectory forecasting and
imputation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp.
12736–12745, 2020.

Ramchandran, S., Tikhonov, G., Kujanpää, K., Koskinen,
M., and Lähdesmäki, H. Longitudinal variational autoen-
coder. In Banerjee, A. and Fukumizu, K. (eds.), Proceed-
ings of The 24th International Conference on Artificial
Intelligence and Statistics, volume 130 of Proceedings
of Machine Learning Research, pp. 3898–3906. PMLR,
13–15 Apr 2021.

Sadeghian, A., Kosaraju, V., Sadeghian, A., Hirose, N.,
Rezatofighi, H., and Savarese, S. Sophie: An attentive
gan for predicting paths compliant to social and physical
constraints. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), number CONF, 2019.

Sekhon, J. and Fleming, C. Scan: A spatial context atten-
tive network for joint multi-agent intent prediction. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 35, pp. 6119–6127, 2021.

Shan, S. and Oliva, J. B. NRTSI: Non-recurrent time series
imputation. ArXiv, abs/2102.03340, 2021.

Shi, L., Wang, L., Long, C., Zhou, S., Zhou, M., Niu, Z.,
and Hua, G. Sgcn: Sparse graph convolution network for
pedestrian trajectory prediction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 8994–9003, 2021.

Wang, M., Zhu, X., Yu, C., Li, W., Ma, Y., Jin, R., Ren,
X., Ren, D., Wang, M., and Yang, W. Ganet: Goal area
network for motion forecasting. In 2023 IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
pp. 1609–1615. IEEE, 2023.

Xu, C., Li, M., Ni, Z., Zhang, Y., and Chen, S. Groupnet:
Multiscale hypergraph neural networks for trajectory pre-
diction with relational reasoning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 6498–6507, June 2022a.

Xu, C., Mao, W., Zhang, W., and Chen, S. Remember inten-
tions: Retrospective-memory-based trajectory prediction.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 6488–6497,
2022b.

Xu, Y., Bazarjani, A., Chi, H.-g., Choi, C., and Fu, Y. Un-
covering the missing pattern: Unified framework towards
trajectory imputation and prediction. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pp. 9632–9643, 2023.

Yoon, J., Zame, W. R., and van der Schaar, M. Estimat-
ing missing data in temporal data streams using multi-
directional recurrent neural networks. IEEE Transactions
on Biomedical Engineering, 66(5):1477–1490, 2019. doi:
10.1109/TBME.2018.2874712.

Yu, C., Ma, X., Ren, J., Zhao, H., and Yi, S. Spatio-temporal
graph transformer networks for pedestrian trajectory pre-
diction. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceed-
ings, Part XII 16, pp. 507–523. Springer, 2020.

Yuan, Y., Weng, X., Ou, Y., and Kitani, K. M. Agentformer:
Agent-aware transformers for socio-temporal multi-agent
forecasting. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 9813–9823,
2021.

Zhan, E., Zheng, S., Yue, Y., Sha, L., and Lucey, P. Gener-
ating multi-agent trajectories using programmatic weak
supervision. arXiv preprint arXiv:1803.07612, 2018.

11

MS-TIP: Imputation Aware Pedestrian Trajectory Prediction

A. Implementation Details
A.1. Imputation Module

We first pretrain the imputation model over the entire dataset for making a reasonable initial imputation. We use n steps=8,
the number of steps after which the features of the next pedestrian begin. We use n features=4, the number of features of
each pedestrian (x, y, vx, vy). We use Adam optimizer with a learning rate of 1× 10−4 and weight decay of

(
1× 10−5

)
/2

for this pretraining.

A.2. HyperGraph Convolution Neural Network

The initial node embeddings are fed as input to hypergraph convolution. The initial embeddings for a particular agent
comprise a 6-dimensional vector resulting from the concatenation of coordinate features (2 dimensions) and scenic
embeddings of dimension 4. Hence, the number of input channels of hypergraph convolution is 6. The output channel of the
hypergraph convolution is 16 (which corresponds to the dimensionality of hidden features of a node). The output of the
hypergraph convolution is (batch, obs len, num of peds, out channels).

A.3. Scenic Attention Module

The model takes the position and scenic features, Vk, obtained using a pre-trained VGG-19 on ImageNet. It ensure that
trajectory predictions consider not only pedestrian coordinates but also the contextual scene. Given that dataset images are
captured by fixed cameras, we perform a one-time calculation for each dataset as follows:

Vk = V GG19 (Imagescene ;WV GG19) (24)

The calculation for producing Vk remains consistent regardless of historical time steps. It’s worth noting that St
i is influenced

by historical time frames, as it incorporates both Vk and Xt
i as inputs.

St
i = SceneAttention

(
Vk, X

t
i ;Watt

)
(25)

It calculates attention weights using scenic features and coordinates. It first processes the input positions and spatially
embeds them. The VGG features are projected using a multi-layer perceptron (MLP). The resulting features are concatenated
with the spatial embeddings and processed by another MLP to obtain attention weights. These weights are normalized
using softmax, multiplied with the spatial embeddings to produce the final sequential scene attention embeddings (St

i), for
individual agents at a specific time. These scenic embeddings of a particular node are of dimension 4.

A.4. Trajectory Refinement Module

Trajectory refinement model Θtr comprises of two parts:

• The initial phase consists of a combination of a Graph Convolution Network (GCN) and a Temporal Convolution
Network (TCN). The entire trajectory is formed by concatenating both the observed and linearly predicted trajectories.
A multi-relational graph, denoted as G = (V,R,E), is employed. Here, R represents a set of relations, specifically
R = {Distance,Displacement, 1

Distance ,
1

Displacement}. Furthermore, V encompasses the set of pedestrians, and E signifies
the edges connecting these pedestrians. The scenic embeddings, generated through the Scenic Attention Module
(refer A.3), are concatenated with the coordinates to produce the initial node embeddings (of a node at a particular
time-stamp) with a dimensionality of 6. The initial node embeddings and the adjacency matrix of the multi-relational
graph are passed into the GCN to get the final node embeddings of dimension 16. These final node embeddings are
then passed into a Temporal Convolution Network (TCN), a CNN layer within channels = 16, out channel = 16, and
kernel size = (3,1). The output of this model is the form of (batch, total len, num of peds, out channels).

• The second part contains two different CNNs. The first CNN is dedicated to time-wise convolution, with an input
channel of 16 (ttotal = tob + tpred) and an output channel of 12 (tpred) and kernel size = 3. The second CNN is used
for channel-wise convolution, where the input channel is set to 16, and the output channel is set to 2. The kernel size is
set to 3. The output of this model gives the correction vector field. This is added to the linearly interpolated trajectory
to get the final trajectory.

12

MS-TIP: Imputation Aware Pedestrian Trajectory Prediction

Figure 5. Visual comparison of predicted trajectories in images from ETH (top-left), UNIV (bottom-left), HOTEL (bottom-right), and
ZARA (top-right) datasets. Predicted pedestrian trajectories from our approach are depicted in yellow, observed trajectories in orange, and
ground truth trajectories in green. Graph-TERN predictions are represented in purple. Our approach accurately predicts future trajectories,
closely aligning with the ground truth compared to Graph-TERN in most cases.

Calculation details for γ:

It is calculated by averaging the set of coordinates of each pedestrian for a given timestamp and then calculating the L2

norm of the average X and Y coordinate thus obtained. This is normalized with the obs seq len by dividing the result
with the same.

A.5. Overall Implementation detail

Following the standard evaluation strategy (Gupta et al., 2018), the observation frames, denoted as tob, consist of 8 frames,
equivalent to 3.2 seconds, while the prediction frames are determined as tpred − tob, amounting to 12 frames or 4.8 seconds.
The number of control points K (refer 3.6) is set to 3. The number of endpoints sampled from the GMM, Ω is set to 20.
We employ a batch size of 128 during the training process, with the number of training epochs set to 512. The learning
rate for the entire model is specified as 1× 10−4. The optimiser used is SGD. We use Python 3.8.13 and PyTorch version
1.13.1+cu117.

Initially, we pretrain the imputation model on the complete dataset to establish a sensible initial imputation. The parameters
used in pre-training are described in section A.1. We apply the pre-trained imputation model to fill in the randomly occurring
NaNs in the input, as discussed in Section 3.2. Subsequently, we fine-tune the imputation model using a learning rate of
1× 10−5.

The imputed coordinates are fed as input to the hypergraph generation module (refer 3.3) to generate the incidence matrix
H and hyperedge weights w. The scenic embeddings, generated through the Scenic Attention Module (refer A.3), are
concatenated with the coordinates to produce the initial node embeddings (of a node at a particular time-stamp) with a
dimensionality of 6. The initial node embeddings are passed into the HGCNN module (refer A.2) to get the final node
embeddings of dimension 16. These final node embeddings are then passed into Temporal Convolution Network (TCN),
a CNN layer with in channels = 16, out channel = 16, and kernel size = (3,1). The output of this model is the form of
(batch, obs len, num of peds, out channels).

To calculate the mean (µx, µy), standard deviation (σx, σy), and the mixing coefficient (π) for the Gaussian Mixture
Model (GMM), we employ two distinct Convolutional Neural Networks (CNNs). The first CNN is dedicated to time-wise

13

MS-TIP: Imputation Aware Pedestrian Trajectory Prediction

convolution, with an input channel of 8 (tob) and an output channel of 8 (representing the number of GMMs used, denoted
as #M) and kernel size = 3. The second CNN is used for channel-wise convolution, where the input channel is set to 16,
and the output channel is calculated as outputfeatures(µx, µy, σx, σy, π)×K, where K represents the number of control
points. In this case, it results in 5× 3 equal to 15. The kernel size is set to 3.

The output features generated are used to generate a GMM, which is used for sampling K = 3 control points. These control
points are added to get the final predicted end point. We sample Ω = 20 such endpoints. Next, we sample 20 additional
guided end-points (refer 3.6).

The endpoint and the coordinates at time tob are combined in a linear manner to create a linearly interpolated trajectory. This
linear trajectory is then passed to the trajectory refinement module (refer A.4) to get the correction vector. The correction
vector is added to a linear interpolated trajectory to get the final trajectory. The losses Lr and Lc are calculated and
back-propagated.

B. Additional Visualization
In ETH and HOTEL, our model effectively predicts pedestrian trajectories compared to Graph-TERN in most cases. Our
multi-scale hypergraph GCN, considering social interactions, performs better in predicting trajectories for densely populated
scenes in the UNIV dataset. Similarly, in ZARA, our model accurately predicts future movements, as depicted in Figure 5.

14

