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Abstract

Informally, a model is calibrated if its predictions
are correct with a probability that matches the
confidence of the prediction. By far the most
common method in the literature for measuring
calibration is the expected calibration error (ECE).
Recent work, however, has pointed out drawbacks
of ECE, such as the fact that it is discontinuous in
the space of predictors. In this work, we ask: how
fundamental are these issues, and what are their
impacts on existing results? Towards this end,
we completely characterize the discontinuities of
ECE with respect to general probability measures
on Polish spaces. We then use the nature of these
discontinuities to motivate a novel continuous,
easily estimated miscalibration metric, which we
term Logit-Smoothed ECE (LS-ECE). By compar-
ing the ECE and LS-ECE of pre-trained image
classification models, we show in initial experi-
ments that binned ECE closely tracks LS-ECE,
indicating that the theoretical pathologies of ECE
may be avoidable in practice.

1. Introduction

The prevalence of machine learning across domains has
increased drastically over the past few years, spurred by sig-
nificant breakthroughs in deep learning for computer vision
(Ramesh et al., 2022) and language modeling (Brown et al.,
2020; OpenAl, 2023; Touvron et al., 2023). Consequently,
the underlying deep learning models are increasingly being
evaluated for critical use cases such as predicting medical
diagnoses (Elmarakeby et al., 2021; Nogales et al., 2021)
and self-driving (Hu et al., 2023). In these latter cases, due
to the risk associated with incorrect decision-making, it is
crucial not only that the models be accurate, but also that
they have proper predictive uncertainty.
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This desideratum is formalized via the notion of calibration
(Dawid, 1982; DeGroot & Fienberg, 1983), which codifies
how well the model-predicted probabilities for events reflect
their true frequencies conditional on the predictions. For ex-
ample, in a medical context, a model that yields the correct
diagnosis for a patient 95% of the time when it predicts a
probability of ~ 0.95 for that diagnosis can be considered
to be calibrated.

The analysis of whether modern deep learning models are
calibrated can be traced back to the influential work of Guo
et al. (2017), which showed that recent models exhibit cal-
ibration issues not present in earlier models; in particular,
they are overconfident when they are incorrect. These find-
ings have been corroborated by a large body of subsequent
work in which several training and post-training modifica-
tions have been proposed in order to improve calibration
(Lakshminarayanan et al., 2017; Kumar et al., 2018; Thu-
lasidasan et al., 2019; Miiller et al., 2020; Wang et al., 2021;
Wang & Golebiowski, 2023).

However, the validity of these results depends on having an
appropriate measure of calibration. The canonical measure
of calibration in the machine learning literature has been the
Expected Calibration Error (ECE) and its binned variants
(Naeini et al., 2014; Nixon et al., 2019), and indeed all of
the aforementioned works report ECE in some capacity.

Unfortunately, several works have pointed out (seemingly)
significant drawbacks of ECE. First, it is discontinuous as
a function of the model being considered. In other words,
small changes to model predictions can cause large jumps
in the ECE (Kakade & Foster, 2008; Foster & Hart, 2018;
Btasiok et al., 2023; Btasiok & Nakkiran, 2023). Second, it
is not possible to efficiently estimate from samples (Arrieta-
Ibarra et al., 2022; Lee et al., 2022), and binned variants can
be sensitive to the choice of bin width (Nixon et al., 2019;
Kumar et al., 2019; Minderer et al., 2021).

As a result of these drawbacks, a number of authors have
recently proposed alternatives to ECE that enjoy better the-
oretical properties (Arrieta-Ibarra et al., 2022; Lee et al.,
2022; Btasiok & Nakkiran, 2023; Btasiok et al., 2023). De-
spite these proposals, as noted in Blasiok & Nakkiran (2023),
ECE continues to be the main metric reported in very recent
studies. Btasiok & Nakkiran (2023) hypothesize that the
reason for this fact is that ECE can be easily visualized and



How Flawed Is ECE?

interpreted via reliability diagrams.

In this work, we propose an alternative explanation that
may serve to justify the continued predominance of ECE:
besides the fact that ECE is historically established and well
supported by standard codebases, the pathologies of ECE
are not encountered in practice due to noise inherent to the
data and model training process. This paper formalizes one
simple variant of such a noise model. In this model, we
show that the addition of noise makes ECE continuous and
leads to an effective estimation scheme, which moreover
does not appreciably differ from direct estimates of ECE
performed via binning.

Informed by this perspective, we aim to answer the follow-
ing questions in this work:

* Can we characterize the points of discontinuity of
ECE?

» Can these discontinuities be eliminated by a simple
modification of the miscalibration metric?

* Does the discontinuous behavior of ECE actually pose
a problem for estimating the calibration of real-world
deep learning models?

1.1. Summary of Main Contributions

Our main contributions towards answering the above ques-
tions are as follows.

1. In Section 3, we completely characterize the disconti-
nuities of ECE in a very general setting. We illustrate
in detail how these considerations apply in the case of
discrete data distributions with finite support, and we
show that in this case the discontinuities are a measure
zero set. The case of continuous distributions is more
subtle, and intuitions from the discrete setting do not
always carry over; however, we nevertheless provide a
necessary and sufficient condition for discontinuity in
the case of arbitrary distributions of data taking values
in a Polish space, and we show that in this setting the
ECE is always a lower semicontinuous functional.

2. Building on the ideas of Section 3, we derive a modi-
fied ECE measure in Section 4 which we term Logit-
Smoothed ECE (LS-ECE). We show that the LS-ECE
is continuous in the space of predictors, for any data
distribution. Our results rely on establishing strong con-
nections between convergence of the underlying joint
probability measures in total variation on one hand, and
continuity of the ECE functional on the other, which
may be of independent interest.

3. We further propose a consistent estimator of the LS-
ECE in Section 5, and show that our estimator can

both be efficiently estimated and implemented. As an
additional consequence of our estimation result, we
show that LS-ECE can be used to produce a consistent
estimator of the true ECE when the predictive distri-
bution satisfies mild regularity conditions, which to
the best of our knowledge is a stronger result than any
pre-existing consistency results for ECE.

4. Lastly, in Section 6, we verify empirically that LS-ECE
is continuous even when ECE is not, and also show that
for the standard image classification benchmarks of
CIFAR-10, CIFAR-100, and ImageNet, both ECE and
LS-ECE produce near identical results across various
models — indicating that the theoretical pathologies
of ECE may not pose an issue in practice.

We note that, in the process of analyzing ECE, we have
proposed yet another competing notion in the form of LS-
ECE. We wish to stress that we are not trying to claim that
LS-ECE is a “better” measure of calibration than recently
proposed alternatives, and in fact it shares much in com-
mon with the SmoothECE proposal of Btasiok & Nakkiran
(2023). Rather, we view LS-ECE as a useful theoretical and
empirical tool for sanity-checking ECE in a given setting —
our experiments in Section 6.2 use it to suggest that reported
ECE results may not be particularly brittle. Furthermore,
we hope that the theoretical framework under which we
formulate LS-ECE will prove useful in future analyses of
calibration.

1.2. Related Work

Estimation of ECE. Perhaps the most common way to es-
timate ECE in the literature is by binning predictions into
uniformly sized bins (Naeini et al., 2014). A similarly pop-
ular approach is to bin predictions using equal mass bins,
which leads to Adaptive Calibration Error (Nixon et al.,
2019). These binning approaches are, however, known not
to be consistent (Vaicenavicius et al., 2019), and follow-up
works have modified them further via debiasing schemes
(Kumar et al., 2019; Roelofs et al., 2022). An alternative to
binning is estimating ECE via kernel density/regression es-
timators (Brocker, 2008; Zhang et al., 2020; Popordanoska
et al., 2022), which trade off bin selection with bandwidth
selection.

Alternatives to ECE. Recent work has pursued several dif-
ferent directions for developing alternatives to ECE. These
include, but are not limited to, proper scoring rules (Gneiting
et al., 2007; Gneiting & Raftery, 2007), estimating miscali-
bration using splines (Gupta et al., 2021), isotonic regression
(Dimitriadis et al., 2021), hypothesis tests for miscalibra-
tion (Lee et al., 2022), and cumulative plots comparing
labels to predicted probabilities (Arrieta-Ibarra et al., 2022).
Btasiok et al. (2023) detail several more alternatives to ECE,



How Flawed Is ECE?

along with a theoretical framework based on distance to the
nearest calibrated predictor that justifies the use of these
alternatives in practice. Very recently, Btasiok & Nakkiran
(2023) have proposed a kernel-smoothed ECE that satisfies
the constraints of the framework of Btasiok et al. (2023)
but still maintains the interpretability of ECE. The approach
we take in this paper was developed independently and in
parallel, and shares similarities with the approach of Btasiok
et al. (2023) that we point out in Section 5.

2. Background

Notation. Given n € N, we use [n] to denote the set
{1,2,...,n}. For a function g : R™ — R™ we use ¢*(z) to
denote the i coordinate function of g. For a probability
distribution 7 we use supp(w) to denote its support. Ad-
ditionally, if 7 corresponds to the joint distribution of two
random variables X and Y (e.g. data and label), we use
mx and 7y to denote the respective marginals, and 7 X|Y=y
and Ty | x =, to denote the conditional distributions. For a
random variable X that has a density with respect to the
Lebesgue measure, we use px (z) to denote its density. For
a general random variable X, we use dPx to denote its
associated probability measure, and use dPx /dP to de-
note the Radon—-Nikodym derivative when X < Z (i.e. X
is absolutely continuous with respect to Z). We use drv
to denote the total variation distance between probability
measures. Lastly, we use Uni([a, b]) to denote the uniform
distribution on [a, b] and N (u, 0?) to denote the Gaussian

distribution with mean p and variance o2.

We first consider calibration in the context of binary clas-
sification and then discuss generalizations to multi-class
classifications. For a data distribution 7 on R? x {0, 1},
we say that a predictor ¢ : R? — [0,1] is calibrated
if it satisfies the regular conditional probability condition
E(x,y)~=[Y | 9(X) = p] = p. This condition corresponds
to the idea that for all instances on which our model g pre-
dicts probability p, the correct label of those instances is
actually 1 with probability p.

The Expected Calibration Error (ECE) with respect to the
distribution 7 is then defined to be the expected absolute
deviation from this condition:

ECEx(9) £ E(x,y)~r [E[Y [ g(X)] —g(X)]].  2.1)

Although there are several ways to generalize ECE to the
multi-class setting, perhaps the most reported generalization
in the literature is top-class (or confidence calibration) ECE.
Namely, for a k-class classification problem in which we
have a predictor g : R? — Ay, where A}, denotes the
simplex of probability measures on a set with k elements,
the top-class ECE simply corresponds to computing the

ECE with respect to the highest probability prediction:

EHE[Y € argmaxgi(X)| max g'(X)] — maxgi(X)H .
(2.2)

This definition is equivalent to considering the binary ECE
with respect to a modified predictor f and a distribution
(X', Y') ~ 7' defined such that Y’ = Ty cargmax, gi(x)
and f(X') = max; g'(X). As such, any modifications
made to the binary version of ECE can be lifted to the multi-
class setting via the top-class formulation of (2.2), so we
will henceforth just work with the binary version as defined
in (2.1).

In practice, ECE,(g) is estimated via binning. Given a
set of data points {(z1,¥1), .-, (n,¥yn)}, One specifies a
partition By, B, ..., B, of [0, 1] and then computes

BOBm,«(9) 2 Y 20 5(8)) — 9(8,)],

2.3)

j=1

where g(B;) corresponds to the average of all g(x;) such
that g(x;) € B;, and §(B;) denotes the average over corre-
sponding labels. In the multi-class case, one simply replaces
§(Bj) with average accuracy and g(B,) with average top-
class probability.

3. Continuity Properties of ECE

Having provided the necessary background regarding ECE,
we now analyze its continuity properties. We begin first
with the case where |supp(7mx)| = n < oo, i.e. discrete
data distributions with finite support. In this case, we can
provide a necessary and sufficient condition for ECE to
be discontinuous at g, which implies that g can only be a
point of discontinuity if it predicts the same probability at
multiple points that each have positive measure under 7y .
We subsequently show, however, that this intuition does not
extend to the case where 7x is supported on a more general
(infinite) set. Nevertheless, with careful analysis, we can
still extend the necessary and sufficient condition from the
discrete case to a much more general setting.

3.1. Discrete Distributions

To get a sense of the continuity issues that arise with ECE,
we introduce an example adapted from (Blasiok et al., 2023)
that we will refer to multiple times throughout the rest of
the paper.

Definition 3.1. [2-Point Distribution] Let 7 be the distribu-
tion on {—1/2,1/2} x {0, 1} such that 7y (0) = 7y (1) =
1/2and mx|y—y(x) = L,—y_1/2 (ie. X | Y = yisapoint
mass ony — 1/2).
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It is straightforward to see that the predictor g(z) = 1/2
satisfies ECE (g) = 0 for 7 as in Definition 3.1. However,
perturbing g such that g(—1/2) = 1/2 — ¢ and ¢(1/2) =
1/2 + ¢ yields ECE,(g) = 1/2 — ¢ (for £ € (0,1/2)).
The important idea here is that we split the level sets of g
by making an arbitrarily small perturbation, which causes
E[Y | g(X)] to jump from 1/2 to 1.!

In fact, we can show that all discontinuities of ECE
for finitely supported 7 occur at predictors that have non-
singleton level sets with positive measure under 7x . This
is part of the following full characterization of the disconti-
nuities of ECE,; for discrete 7. (When we refer to discrete
data distributions below, we always mean distributions with
finite support.)

Theorem 3.2. [Discontinuities for Discrete ECE] Let T be
any distribution such that supp(wx ) = [n] for an arbitrary
positive integer n, and let g*(x) = P(Y = 1| X = x)
denote the ground truth conditional distribution. Then the
set of discontinuities of ECE,; (in the space of predictors
g : [n] — [0,1] endowed with the {>° norm) is exactly the
set of g such that there exists m € [n] with P(X =m) #0
and

|97 (m) — g(m)| # [E[Y [ 9(X) = g(m)] — g(m)|. B.1)

Note that the choice of norm on the space of predictors
makes no difference in this case, since when supp(7x) is
finite g is just an n-dimensional vector, and all norms on R"
are equivalent. As promised, the proof of Theorem 3.2 relies
on the following lemma, which shows that a discontinuity
can only occur if g predicts identical probabilities for at
least two distinct points in supp(7x).

Lemma 3.3. Let S(g,p) = {j € [n] g(j) =
pand P(X = j) # 0}. If P(X = m) # 0and (3.1)
holds, then |S(g,g(m))| > 1.

Proof. Clearly |S(g,g(m))| > 1 since m € S(g,g(m)),
so it suffices to show that (3.1) fails if we assume
|S(g,9(m))| = 1. Under this assumption, we have

ZjeS(g g(m)) m(7)g* ()
E[Y |g(X) = = : -
Y g(X) = g(m)] S sto 0t 70
_ ”(”;)(fn )(m) = g*(m), (3.2
so (3.1) indeed fails. O]

A consequence of Lemma 3.3 is the following corollary,
which shows that the set of discontinuities for ECE; in the
discrete case is negligible.

"How the level sets of a predictor impact different loss functions
applied to that predictor has also been studied more generally in
the literature on scoring rules, in particular in the work of Kull &
Flach (2015) which discusses the notion of a grouping loss.

Corollary 3.4. If |supp(m)| = n, then the set of predictors
g (identified with vectors in R™) at which ECE,, is discontin-
uous has measure zero with respect to the Lebesgue measure
on R".

Proof. By Lemma 3.3, the set of discontinuities is a subset
of the union of all sets S; ; = {g : g(¢) = g(j)}, where
i, € [n] and i # j. Since each S; ; has measure zero and
we are considering a finite union of such sets, the set of
discontinuities has measure zero. O

3.2. General Probability Measures

Unfortunately, a key piece of intuition from the discrete set-
ting fails to extend to the continuous case, as the following
proposition shows.

Proposition 3.5. Take 7 with supp(mx ) = [0, 1)? such that
TX, = UIIi([O, 1])’

7TX2\X1:1'1 = I’lUHl([O5, 1}) + (1 - I’l)UHI([0,0E))),

and P(Y = 1| Xo = x2) = 13,505 Then ECE; is
discontinuous at the predictor g(x) = x1, despite the fact
that g has no level sets of positive measure.

The proof of Proposition 3.5, as well as the tricky aspect of
the continuous case, rests on the fact that we can make a
small perturbation to g at every x that greatly changes the
behavior of g despite each point x being measure zero. In
order to tackle the additional subtleties that arise when deal-
ing with continuously distributed data, we take a completely
general perspective. For the remainder of this section, we al-
low the data variable X to take values in an arbitrary Polish
space () x, endowed with its Borel o-algebra B(Qx ). Recall
that a Polish space is, by definition, a separable completely
metrizable topological space, so that this setting subsumes
the case of finite discrete distributions treated above and
also includes the case of continuously distributed vector-
valued data (corresponding to Qx = R?). In this general
setting, we show that ECE,; is always lower semicontinu-
ouson LP(Qx;mx) for 1 < p < oo, and we give a precise
characterization of its points of discontinuity.

We start with two lemmas. The first is a straightforward and
well-known result. The second lemma is, to our knowledge,
new. The proof relies on a construction due to Kudo (1974).

Lemma 3.6. Let (2,3, P) be a probability space, and let
F C G C X be sub-c-algebras. Then for any f € L*(Q;P),
[ELf[F]Il < IE[£IG]]1-

Lemma 3.7. Let (Q,3,P) be a probability space, let
f € LY P), and let g,91, 9z, ... be real-valued ran-
dom variables such that g, — g in probability. Then

lim infy o0 [[E[f|gn]|lx = [[E[f]g]l]-
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With these two lemmas we can now can prove the first main
result of this section.

Theorem 3.8. The functional ECE, is lower semicontinu-
ouson LP(Qx;7mx) for 1 < p < oo

Proof. Letg, 91,92, ... € LP(Qx;mx) and suppose g, —
g. We will show that lim inf,, _,.c ECE.(g,) > ECE,(g).

Since g, — g in LP(Qx;7x), we have the convergence
9n(X) — g(X) of LP random variables on the background
probability space, and in particular, g, (X) — ¢(X) in
probability. Then, by Lemma 3.7 and LP-continuity of
conditional expectation, we have

liminf ECEr(g,) = liminf [[E[Y — g, (X)lgn(X)]||,

n— oo

= liminf [E[Y" — (X)|gn(X)]

+E[g(X) — gn(X)]gn (X)),
= lim inf |[E[Y — g(X)lga (X)]]|,

> ||E[Y - g(X)|g(X)]||, = ECEx(g),

which is the desired result. O

Below we use Theorem 3.8 to prove the necessity direc-
tion of our general condition for ECE, to be continuous
at a point in LP. To prove that this same condition is also
sufficient, we will need the following lemma.

Recall that a standard Borel space is a Polish space equipped
with its Borel o-algebra. A measurable bijection between
standard Borel spaces is always an isomorphism (i.e., its in-
verse is also measurable). The Kuratowski isomorphism the-
orem states that two standard Borel spaces are isomorphic
if and only if they have the same cardinality; in particular,
every standard Borel space is isomorphic to one of R, Z, or
a finite discrete space.

Lemma 3.9. Let (2, B(Q2), P) be a probability space, where
O is a Polish space and B(Y) is its Borel o-algebra. For
1 < p < o define

LY (9 P) = { f € LP(;P) | [ is almost surely equal

to a bijection onto a standard Borel space }

Then L?

inj

(4 P) is dense in LP (S P).

Putting everything together, we prove the second main result
of this section, which gives a full characterization of the
points of continuity of ECE;.

Theorem 3.10. Let 1 < p < oo, let g € LP(Qx;7x), and
set g*(x) = E[Y | X = z] for v € Qx. Then ECE; is
continuous at g in the topology of LP if and only if

ECEx(g) = [lg" - g||L1(Qx;7Tx)~ (3.3)

Proof. We first show that if (3.3) holds, then ECE;; is con-
tinuous at g. Suppose that ECE.(g) = [|9™ — gl| 1 (07 x)»
and let ¢g1,¢92,... € LP(Qx;7x) be any sequence con-
verging to g. By Theorem 3.8, lim inf,, o, ECE,(g,) >
ECE,(g). Since 0(g,(X)) C o(X), by Lemma 3.6 we
have

limsup ECE,(g,) = lirrisup HE[Y - gn|gn(X)]H1

n—oo

< limsup ||[E[Y — g,|X]]|,
n—oo

= liririsotip 19" = 9nll 11 0 im)

=|lg" 79||L1(QX;7TX) = ECEx(9).
Therefore ECE,(g,) — ECE:(g), which shows that
ECE; is continuous at g.

For the opposite direction of implication, we show that
if (3.3) does not hold, then ECE; is discontinuous at g.
Suppose that ECE(g) # [|9" — gllz1 (0x;mx)- By Lemma
3.9, we can choose a sequence g, — ¢ in LP(Qx; 7wx ) such
that each g, is a bijection onto a standard Borel space. Since
a measurable bijection between standard Borel spaces has
a measurable inverse, this implies that g,; 1 is a measurable
bijection from the image of g, onto {1x, which in turn
implies that o (g, (X)) = o(X). Thus

E[Y | gn(X) = gn(2)] = E[Y | X = 2] = g% (2),
so that

ECEﬂ(gn) = Hg* - gnHLl(Qx;ﬂ'X)‘

The right-hand side above is a continuous functional of g,
in LP(Qx;7x), so that

nh—>néo ECEﬂ'(gn) = ”g* - g||L1(QX;7rX) # ECEW(Q)?

implying that ECE; is discontinuous at g. O

We leave it as an exercise to verify that if Qx = [n] with
the discrete topology, then the condition in Theorem 3.10 is
equivalent to the condition in Theorem 3.2.

4. Logit Smoothed Calibration

We proved in Corollary 3.4 above that for finitely supported
distributions, the discontinuities of ECE have measure zero.
Although this statement only holds as written for discrete
data, it nonetheless provides helpful intuition that we can
use to mitigate the discontinuities of ECE in a more general
setting: namely, we expect that predictors at which ECE is
discontinuous should be, in some sense, rare. Therefore, if
we add some independent continuously distributed random
noise ¢ to g(X) before taking the conditional expectation
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in (2.1), we can hope that the resulting functional of g will
be continuous. We show below that indeed this is the case.

However, in order to preserve the interpretation of ECE,,
we need to ensure that g(X) 4+ £ € [0,1]. To do so, we
assume that g can be decomposed as poh where h : R — R
and p : R — [0, 1] is a strictly increasing function (e.g., p
can be the sigmoid function), observing that this is virtually
always the case in practice.”> We can then add the noise &
to h(X) rather than g(X), which allows us to define the
Logit-Smoothed ECE (LS-ECE) as follows:

LS-ECE,¢(h) 2 Ex¢[|E[Y | p(h(X) +€)]

—p((X)+9)|]. @D
Henceforth, we will always use h(X) to denote the logit
associated with g(X'), and p : R — [0, 1] to denote a strictly
increasing function with inverse p~! differentiable every-
where on (0, 1).

Comparison to Blasiok & Nakkiran (2023). While the
main proposal of SMECE in Blasiok & Nakkiran (2023)
does not exactly match our notion of LS-ECE (as it corre-
sponds to smoothing residuals of the predictions), we note

that their notion of SMECE shares more similarity to what

—_—~—

we propose. Namely, SMECE corresponds to smoothing
the predictor g and then projecting back to [0, 1]. However,
smoothing the logit function % directly avoids issues related
to thresholding/projecting and leads to a cleaner develop-
ment of the theory in this section, allowing us to prove
continuity, consistency, and convergence to the true ECE
under reasonable assumptions.

4.1. Continuity of LS-ECE

We now verify that unlike ECE,, LS-ECE ¢(h) is contin-
uous as a function of the logit & in the topology of L*° for
any choice of 7 so long as £ has a density with respect to the
Lebesgue measure and satisfies very basic regularity con-
ditions. The crux of our argument relies on analyzing how
perturbations to the joint distribution of (Y, p(h(X) + &))
behave with respect to total variation, and then “pulling
back” to continuity in the space of logit functions h.

We begin by showing in the next two propositions that the
smoothed logits h(X) + ¢ are continuous in total variation
with respect to the L” norm on h.

Proposition 4.1. Let Z,, denote a sequence of random
variables converging to a random variable Z in LP for
p € [1,00], and let £ be an independent, real-valued ran-
dom variable with density p¢ that is continuous Lebesgue

>We only run into issues if g takes the values 0 or 1 exactly,
since then p~* can be —oo and co respectively. This is easily
avoided in practice by adding/subtracting a small tolerance value
to the predicted probabilities, if necessary.

almost everywhere. Suppose Z,,, Z are X -measurable for
a random variable X. Then (X, Z, + &) — (X, Z+ &) in
total variation.

Remark 4.2. An example of a density that is not continuous
Lebesgue almost everywhere is an indicator on a fat Cantor
set, which is discontinuous on a set of positive Lebesgue
measure. By the Lebesgue differentiation theorem, any
equivalent density must agree almost everywhere, and hence
still be discontinuous on a set of positive measure.

Proposition 4.3. Let £ be as in Proposition 4.1 and let
(X,Y) ~ m. Suppose that h,,(X) — h(X) in L? for some

p € [1, 00). Then (Y, p(hn(X) +€)) = (Y, p(h(X) +€)).

The final ingredient necessary for our proof of continuity
is the connection between convergence in total variation of
joint distributions and convergence of the associated ECEs.
We provide this via the following general result, which may
be of independent interest for future analysis of ECE.

Lemma 4.4. Suppose that (Y, T,) — (Y, T) in total vari-
ation, where T,,, T are random variables taking values in
[0, 1]. Define

A = [Ex, [EY | T =) ]~ Er [E[Y | T =1 ]|
“4.2)

Then lim,, .o A,, = 0.

We can now prove the main result of this section.

Theorem 4.5. Let £ satisfy the conditions of Proposition
4.1. Then LS-ECE, ¢(h) is a continuous functional of h in
the topology of L*°.

Proof of Theorem 4.5. Let h,, denote a sequence of func-
tions converging to h in L™, Let Z,, = h,(X), Z = h(X)
and T, = p(Z, + &), T = p(Z + &). By Lemma 4.3,
we have that (Y,7,) — (Y,T) in total variation. By
Lemma 4.4, |LS-ECE ¢(hy,) — LS-ECE, ¢(h)| = A,, —
0asn — oo. O

5. Estimation of LS-ECE

Having established the continuity of LS-ECE, ¢, we turn
to its estimation in practice. Let {(21,¥1), ..., (Tn,yn)} de-
note n points sampled from the data distribution 7, and let
7 denote the empirical measure of the pairs (x;, y;). Then
we can naturally approximate LS-ECE, ¢ by LS-ECE; ¢,
and then estimate LS-ECEj; ¢ by estimating the outer ex-
pectation in the definition of LS-ECE; ¢ via sampling.

We first explicitly derive the form of E[Y | p(h(X) + £)]
in the population case of (X,Y) ~ m, as this will make
clear the form of LS-ECEj; ¢. This requires the following
elementary proposition.
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Proposition 5.1. Let Z be an arbitrary real-valued random
variable and let £ be a real-valued random variable with
density pe. Then Z+¢& has the following density with respect
to the Lebesgue measure:

pZJrg(t):EZ[pE(t_Z)]. (51)
For brevity we now let T' = p(h(X) + &) with (X,Y) ~ 7.
Then we have from Proposition 5.1 that E[Y | T = ¢] =
pr.y=1(t)/pr(t), where the densities pr y =1 and pr are:

pry-1(t) = my(1)(p ) (OE[pe(p~" (t) — M(X)) | Y =1],

(5.2)

pr(t) = (0" Y OE [pelp () — h(X))] . (53)

Now if we let 7" be analogous to T except with (X,Y) ~ 7,
| =

then we can similarly obtain the expression E[Y" | T = ¢]
Pf y—1(t)/pz(t), with the densities:
1 n
Pry=1(t) =~ D (7 Opelp™ (t) = h(w)) Ly, -1,
i=1
54
I, _
pe(t) == (p7) B)pe(p™" (1) = h(w:)). (5.5)

From here, it is straightforward to estimate LS-ECE ¢(h)
by averaging over samples from 7', so long as we take p;¢
to be easy to sample from. We also see that E[Y | T' = ¢|
is just the Nadaraya—Watson kernel regression estimator
(Nadaraya, 1964; Watson, 1964) evaluated at ¢ using h and
a kernel corresponding to the density of £, as we would
expect. The form of E[Y | T' = t] also makes it trivial to
implement estimation of LS-ECE ¢(h) in practice, as we
illustrate in Figure 1.
def gaussian_kernel(x, sigma):
return 1/(sigma * np.sqrt(2 * np.pi)) * torch.exp(-torch.square(x) / (2 * sigma #* 2))
def kernel_reg(logits, labels, ts, sigma):
total = gaussian_kernel(ts - logits, sigma)
return (total x labels).sum(dim=0) / total.sum(dim=0)
def logit_smoothed_ece(logits, labels, n_t, sigma):
# Expects logits to be shape (n, 1) and labels to be shape (n, 1).
emp_sample = torch.randint(len(logits), (n_t,))
ts = logits[emp_sample].squeeze(dim=1) + sigma * torch.randn(n_t,)

ests = kernel_reg(logits, labels, ts, sigma)
return torch.abs((ests - torch.nn.functional.sigmoid(ts))).mean()

Figure 1. Implementation of LS-ECEx ¢(h) in 10 lines of Py-
Torch (Paszke et al., 2019) using broadcast semantics.

We need only now prove that LS-ECE;¢(h) con-
verges in probability to LS-ECE, ¢(h), i.e. that esti-
mating LS-ECE; ¢ allows us to consistently estimate
LS-ECE; ¢(h). We note that here LS-ECE, ¢(h) is a non-
random scalar quantity depending on the logit function h
while LS-ECEj ¢ (h) is a random variable depending on the
pairs (z;,y;) ~ .

It turns out that the only additional stipulation on £ necessary
to achieve consistency is that ¢ be of the form £ = o R for
a random variable R with bounded density (for example,
€ ~ N(0,0?)). So long as £ is of this type, we can prove
that pj — pr and pjy_; — pry=1in L', which is all we
need for consistency. This is encapsulated in the following
lemma, which once again may be of independent interest.

Lemma 5.2. If ¢ = oR for a random variable R with
bounded density, then:

E, {/01 ‘pT,Y=1(t) *pf,y=1(t)’ dt} =0 <\/%> ’
(5.6)

E, {/01 [pr(t) — ps(1)| dt} =0 (\/%> '
(5.7)

With Lemma 5.2, we can prove our main estimation result.

Theorem 5.3. If ¢ = oR for a random variable R with
bounded density, we have that

Ex[|LS-ECE, ¢(h) — LS-ECE; ¢(h)|] = O(1/v/no),
(5.8)

which implies LS-ECE; ¢(h) — LS-ECE ¢(h) in proba-
bility.
Proof. Let T be as in Lemma 5.2, i.e. the population form

of T. Then we have by triangle inequality:

E, [[LS-ECE, ¢(h) — LS-ECE; ¢ (h)]]

_ /01 ‘E[y | T =1t — t’pT(t) dtH

1
/0 E[Y | T =] — tlpr(t) dt

<E, [ / pryer() - pry (6] e

+/0 t|pT(t)pT(t)|dt} (5.9)

Noting that ¢ < 1 and applying Lemma 5.2 shows that
Equation (5.9) is O(1/y/no), which is the desired result.
O

The quantitative bound in Theorem 5.3 shows that choos-
ing o in practice is — as intuition would suggest from the
discussion of kernel regression — similar to choosing the
kernel bandwidth. In general, o can be thought of as a hy-
perparameter, but we will see in Section 6 that experiments
are relatively insensitive to the choice of o.
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5.1. Consequences for Estimation of ECE

Nevertheless, for theoretical purposes, the scaling of o is
important. Theorem 5.3 suggests that o should be at least
w(1/n) to prevent the estimation error from exploding.

It is then natural to ask what happens if we take o = w(1/n)
but o0 — 0 as n — co. By doing so — analogously, once
again, to existing results in the kernel density estimation lit-
erature — we obtain that LS-ECE; ¢ (h) actually becomes
a consistent estimator of the true ECE, under appropriate
conditions on the logit distribution h(X). This is a non-
trivial estimation result that we effectively get for free as a
result of our framework, as shown in the short proof below.

Theorem 5.4. Suppose & = o R for a random variable R
with bounded, almost-everywhere continuous density, and
let &, = 0,& with o, satisfying lim,,_,, 0, = 0 and o, =
w(1/n). If the distribution of h(X) conditioned on Y =y
has an almost-everywhere continuous density fory € {0,1},
then LS-ECE; ¢, (h) — ECE(p o h) in probability.

Proof. First we claim that if Z has an a.e. continuous den-
sity pz, then Z +¢&,, — Z in total variation. This follows by
noting that py¢ (z) = %pg (£) is a sequence of good kernels
(i.e. an approximation to the identity) (Stein & Shakarchi,
2011), so that

pzye, () = (pz * pe, ) () — pz(2)
. . TV
at any continuity point of pz. Then Z + £, — Z by
Scheffé’s Lemma.

Now for y € {0,1}, by assumption and the above claim,
conditioned on Y = y, we have h(X) + &, oy h(X).
Hence (Y, h(X) + &) = (Y, h(X)).

By Lemma 4.4, |LS-ECE, ¢, (h) — ECEx(po h)| = 0 as
n — co. The result then follows from the triangle inequality
and Theorem 5.3. O

Comparison to existing estimation results. To our knowl-
edge, the only existing consistency results for ECE (or,
more specifically, the L' ECE) are the works of Zhang et al.
(2020) and Popordanoska et al. (2022) that show consis-
tency via adapting corresponding results for kernel density
estimation. These results thus require assumptions such
as Holder-smooth and bounded or Lipschitz continuity of
the density® of h(X) conditioned on Y = y, whereas we
require only a.e. continuity.

3Technically these assumptions were stated in terms of the
conditional density of the predictor value g(X) given Y = y, but
they imply similar constraints on h when considering g = po h
with p being the sigmoid function.

6. Experiments

We now empirically verify that LS-ECE, ¢ behaves nicely
even when ECE,; does not. We revisit the simple 2-point
data distribution of Definition 3.1 in Section 6.1, and show
that the discontinuity at g(x) = 1/2 leads to oscillatory
behavior in ECEgn, (defined above in (2.3)) as we change
the number of bins, whereas LS-ECE; ¢ remains effectively
constant irrespective of the choice of variance for £. On the
other hand, we also show that for image classification using
a wide range of models, ECEgyn, changes smoothly as we
vary the number of bins, and the resulting estimates match
up closely with both LS-ECE; ¢ as well as the smECE
of Blasiok & Nakkiran (2023). For all experiments in this
section, we take £ ~ N (0, 0?). We consider using uniform
noise in Appendix D; the choice of £ does not impact our
conclusions. All of the code used to generate the plots in
this section can be found at: https://github.com/
201l4mchidamb/how-flawed-is-ece.

6.1. Synthetic Data

We consider data drawn from a distribution 7 as in Defi-
nition 3.1, and the predictor g(z) = p(ax) where p is the
sigmoid function and o = 10~3. We construct g in this way
so that g(—0.5) = 1/2 — e and g(0.5) = 1/2 + ¢, ie. g
matches our discussion in Section 3.1.

As we already know, ECE; is discontinuous at the predic-
tor which always predicts 1/2. This immediately presents a
problem for the estimation of ECE(g) via ECEpn »(9);
indeed, one can readily compute (as done in (Btasiok et al.,
2023)) that ECEgin,~(g) jumps between ~ 0 and ~ 1/2
depending on the parity of the number of bins used. We visu-
alize this behavior in Figure 2, where we plot ECEpn ~(g)
evaluated on 1000 samples from 7 with the number of bins

ranging from 1 to 100.
A
i

LS-ECE

I
L
BUII I

* 4Bom Size (1/;‘"’;
Figure 2. Comparison of ECEgin,~ (blue) and LS-ECE, ¢ (or-
ange) over bins (and correspondingly, inverse scalings for &) rang-
ing from 1 to 100 on the model and data setup of Section 6.1.
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Alongside ECEgin,~(g), we also plot LS-ECE; ¢(h),
where h(z) = az and & ~ N(0,0%). We let o be the
inverse of the number of bins used for ECEgin ~(g). The
motivation for this choice of o comes from considering a
uniform kernel (i.e. £ ~ ocUni([—1/2,1/2])), since in this
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case o corresponds to the bin size centered at each point.
We estimate LS-ECE ¢(h) via 10000 independent samples
drawn from the distribution of 2 (X )+£, as discussed in Sec-
tion 5. We see that, outside the case of large o (i.e. o 2 1),
LS-ECEj ¢ (h) remains effectively constant near zero and
entirely avoids the oscillatory behavior of ECERyN -

6.2. Image Classification

More importantly, we now check whether this dispar-
ity between ECEpin ~(g) and LS-ECE# ¢(h) appears in
settings of practical interest. We consider CIFAR-10,
CIFAR-100 (Krizhevsky, 2009), and ImageNet (Deng et al.,
2009) and compare ECEpin ~(g) using the bin numbers
{1,10, 20, ..., 100} to both LS-ECEj; ¢(h) with inversely
proportional o and SmMECE. We point out that SmECE
uses a particular choice of kernel bandwidth which we do
not vary, so the SMECE results are constant with respect to
o for each model. As before, we estimate LS-ECE; ¢(h)
using 10000 independent samples drawn from the distribu-
tion of h(X) + &.

Since all of the experiments in this section deal with multi-
class classification, we use the top-class (or confidence cali-
bration) formulations of ECE, LS-ECE, and SmECE (see
(2.2)). For LS-ECE, we construct the logit function h(x) as
h(z) = p~1(max; g*(z)), i.e. we apply the inverse sigmoid
function to the maximum predicted probability.

50| — ResNet-32 (Bin) 5o, — ResNet-32 (Bin)

t-3: - et-32
VGG-16 (LS) VGG-16 (LS)
- MobileNet V2 (LS) 6° - MobileNet V2 (LS)

\
ECE Value (%)
y
q
IN
™

ECE Value (%)

@ &
Bin Size (1/0)

(b) CIFAR-100

W &
Bin Size (1/0)

(a) CIFAR-10

Figure 3. Comparison of ECEg1n,» and LS-ECE ¢ for different
models on CIFAR datasets over bins/variance scalings ranging
from 1 to 100. Solid lines correspond to ECEgin,» and dashed
lines correspond to LS-ECE ¢.

6.2.1. CIFAR EXPERIMENTS

For our CIFAR experiments, we use pretrained versions (due
to Yaofo Chen) of ResNet-32 (He et al., 2015), VGG-16
(Simonyan & Zisserman, 2015), and MobileNetV2 (Sandler
et al., 2019) available on TorchHub. Results for evaluating
these models on the CIFAR-10 and CIFAR-100 test data are
shown in Figure 3.

As can be seen, ECEpin - (g) stays nearly the same as we
change the number of bins, and LS-ECE, ¢(h) tracks it

quite closely. (Although LS-ECE ¢ (h) visually appears to
exhibit more variance, the scale of this variance is small.)
Furthermore, we note that the conclusions drawn from both
ECE and LS-ECE about which model is best calibrated stay
consistent across the choice of bin number/variance scaling.

6.2.2. IMAGENET EXPERIMENTS

—— LS-ECE/ECE Difference
SMECE/ECE Difference

g
2
52

Mean Absolute Dife
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40 60
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Figure 4. Mean absolute difference between ECE and LS-ECE, as
well as ECE and smECE, on ImageNet-1K-val over all models
considered in Section 6.2.2, with one standard deviation error
bounds marked using the shaded region.

We repeat our CIFAR experimental setup for ImageNet,
and consider a gamut of pretrained architectures: ResNet-
18 and ResNet-50 (He et al., 2015; Wightman et al., 2021),
EfficientNet (Tan & Le, 2019), MobileNetV3 (Howard et al.,
2019), Vision Transformer (Dosovitskiy et al., 2021), and
RegNet (Radosavovic et al., 2020). All of our models are
obtained from the t imm (Wightman, 2019) library and were
pretrained using the techniques described by Wightman
et al. (2021). We evaluate all models on the ImageNet-1K
validation data, and in Figure 4 we report the mean absolute
difference (over all models) between ECE and LS-ECE, as
well as ECE and SmECE, across bin numbers and choices
of o respectively.

The ImageNet results further corroborate our CIFAR find-
ings: ECE, LS-ECE, and smECE take near-identical values
for all models considered, across the range of possible bin
numbers and variances. Although this is by no means a com-
prehensive evaluation, the fact that the continuous LS-ECE
so closely tracks ECE in these experiments suggests that the
theoretical pathologies of ECE may not pose a problem for
assessing the calibration of real-world models in practice.

7. Conclusion

In summary, we have entirely characterized the discontinu-
ities of ECE in a very general setting. We further used these
continuity results to motivate the construction of LS-ECE,
a continuous analogue of ECE that tracks it closely, and
which in fact can be used to obtain a consistent estimator
of ECE. As the results in this work are largely theoretical,
a natural direction for future work would be a large-scale
empirical validation of ECE results in the literature.
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How Flawed Is ECE?

A. Proofs for Section 3
A.1. Proofs in the Discrete Setting

Theorem 3.2. [Discontinuities for Discrete ECE] Let T be any distribution such that supp(wx ) = [n] for an arbitrary
positive integer n, and let g* () = P(Y = 1 | X = z) denote the ground truth conditional distribution. Then the set of
discontinuities of ECE (in the space of predictors g : [n] — [0, 1] endowed with the {>° norm) is exactly the set of g such
that there exists m € [n] with P(X =m) # 0 and

|97 (m) — g(m)| # [E[Y | 9(X) = g(m)] — g(m)]. (3.1

Proof of Theorem 3.2. Write p* : [n] — [0, 1] for the probability mass function of mx. Then we have:

n

ECE.(9) = Y 1}

=1

2 jes(g.00) Pi97 ()
2 jeS(g.00) P

—g(i)]- (A.D)

Suppose now that there exists an m € [n] such that P(X = m) # 0 and (3.1) holds. Consider a new predictor § such
that §(¢) = g(4) for i # m, and §g(m) = g(m) + ¢ for |4| small enough that g(m) € [0,1] and |S(g, g(m))| = 1. Then it
follows that

. .12 o P59 (9) o .

ECE, (§) = ECE,(g) — p,| =2=300tm) 797 222 _ g (m)| + pl,|g” (m) — §(m)], (A.2)
2 jes(ga(m) )
which implies:
5 2, N ) i N
[ECE(g) — ECEA(3)| = pl, Jg‘g’“ D37 22— g(m)| — lg* (m) — g(m)|
7€5(g.9(m)) Pj

=P ||EY [9(X) = g(m)] — g(m)| — |g"(m) — §(m)|" (A3)

Thus we have lim;s_,¢ ||g — §||cc = 0, whereas

)

lim [ECE,(g) — ECEA(7)| = p},
6—0

E[Y |9(X) = g(m)] = g(m)| = |g"(m) — g(m))]

which is positive by (3.1). Therefore ECE,; is discontinuous at g.

For the other direction, we show that if (3.1) does not hold for any m € [n] with P(X = m) # 0, then ECE, is continuous
at g. For any such g and 7, we have:

ECE.(g) = > _p}lg* (i) — g(d)l. (A4)
=1

Now set § = min |g(¢) — g(j)|/2, where the minimum runs over pairs of distincti # j € [n] with P(X = i), P(z = j) > 0.
By Lemma 3.3 we must have |S(g, g(7))| = |S(g,9(5))| = 1 for any such i, j, so that § > 0. Then any g satisfying
lg — gl < 6 must also satisfy the property g(i) # g(j) for any i # j € [n] with P(X = i), P(x = j) > 0. Therefore,
again by Lemma 3.3, (3.1) cannot hold with g in the place of g for any m € [n] with P(X = m) # 0, so that ECE.(g) has
the same form as A.4. We thus find

[ECEx(9) — ECEx(9)| = Y pf|l9"(&) — 9(i)| — lg7 (1) — §(D)I| < 113 — gl
i=1

which shows that ECE,; is continuous at g. O
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A.2. Proofs in the General Setting

Proposition 3.5. Take m with supp(mx) = [0, 1]? such that wx, = Uni([0, 1]),
T Xs—ey = 21Uni([0.5,1]) + (1 — 21)Uni([0, 0.5)),

and P(Y = 1| Xo = x2) = 1y,>0.5. Then ECE, is discontinuous at the predictor g(x) = x1, despite the fact that g has
no level sets of positive measure.

Proof. First, observe that the second assumption on 7 implies

1
P(Yzl‘Xl ZIl):/ IP(Y=1|X2:$27X1 le)P(X2=$2|X1:QS1)d132
0

1
= / 2371 d.’[?z =T, (AS)
0.5

from which it follows that E[Y | g(X)] = g(X) and therefore ECE(g) = 0. Now the idea is to apply an L> perturbation
of size § to g such that we can separate the points for which z; is the same but x5 > 0.5 or 23 < 0.5, and in doing so obtain
that the conditional probability (given 1) of the label being 1 is either O or 1.

Taking 6 = 1/n for n € N sufficiently large, we define the following two functions gs o and gs1:

%ﬂ@%=<BJ+1—i>& (A6)

gs1(2) = Q;J + j) 5. (A7)

Clearly we have that g5 (z) # gs.1(2) for z € [0, 1] and that both |gs(2) — 2| < ¢ and |gs,1(2) — 2| < J. Additionally,
1> gs,0 > gsa for z € [0,1). Now we can define a perturbation of g(z) = x; by:

if 0.5
gs(x) = gso(@1) . = (A.8)
gs1(x1) ifze >0.5.
We can then compute ECE(gs) as follows:
BCEA(gs) = [ [BLY | 95(0)] - gs(c)| drx (o)
— [ 1B 1 95(a)) - 95(0) Luscns dmx (@) + [ IBLY | 9a(0)] = 93(0)| L0 drx ()
> /xl]]-x2<0.5 d’iTx((E) + /(1 — 1'1)]].1;220‘5 dwx(x) — 20
1 05 1,1
= / / 2171(17!171) dSCQ dI1+/ / 2581(17581) dl’g d.fCl
0o Jo 0o Jos
_ Lo (A.9)
=3 i .
Therefore ECE, (g5) / 0 as § — 0, and thus ECE,; is discontinuous at g. O

Lemma 3.6. Let (2,3, P) be a probability space, and let F C G C X be sub-o-algebras. Then for any f € L*(Q;P),
IELfIFII < IE[£IG]]]1-

Proof. By the conditional Jensen’s inequality and the tower property of conditional expectation,
[ELF17]], = /Q [E(f|F]| dP = /Q [E[E[£|6]| F]| dP < /QJE[ [EL£19]] | F] dP = [[E[f1G]]],- =
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Lemma 3.7. Let (Q, 3, P) be a probability space, let f € L*(Q2;P), and let g, g1, g2, - . . be real-valued random variables
such that g,, — g in probability. Then liminf,,_, o ||E[f|gn]|l1 > ||E[f]9g]|]1-

Proof of Lemma 3.7. We write o(g) for the o-algebra generated by preimages of Borel sets under g. The lower limit of the
sequence of o-algebras o(g1),0(gz2), . . ., defined by (Kudd, 1974), is the o-algebra

gz{AeE

lim inf IP’(AAB):O},

n—00 BEo(gn)

where A indicates the symmetric difference of sets. The lower limit satisfies the property that

liminf/ |E[h|gn]yd]P>z/ |E[R|G]| dP (A.10)
Q Q

n—oo

for any bounded ¥-measurable function &, and if F is any o-algebra such that (A.10) holds with F in the place of G, then
FcCg.

By (A.10) and Lemma 3.6, to prove the desired result it suffices to show that o(g) C G, and thus it suffices to show that
some generating set of o(g) is contained in G. Let C' be the set of atoms of the pushforward distribution g.[P of g on R.
Then C' is at most countable, and thus sets of the form

A={weQ|gw) <z}, (A.11)

for z € R\ C, generate o(g). We will show that lim,, , inf ge (4, ) P(AAB) = 0, so that A € G.
Fix a set A of the form (A.11) and e > 0, and let B,, . = {w € Q| g, (w) < = + £}. We then have

P(|lgn, — g| > €) > P(AAB,, ) —P(x < g < z + 2¢),

so that

B in(f )IP’(AAB) <P(lgn —g|>¢e) + Pz < g < x4+ 2),
€0(gn

and since g,, — ¢ in probability, we obtain

lim inf P(AAB) <P(x <g<z+2e).
n—oo Beg‘(gn)

Since z is not an atom of g¢,P, the right-hand side above can be made arbitrarily small. Therefore
lim,, s o inf peg(y, ) P(AAB) = 0, which completes the proof. O

Lemma 3.9. Ler (2, B(Q2),P) be a probability space, where ) is a Polish space and B(Y) is its Borel o-algebra. For
1 < p < o define
LY (9 P) = { f € LP(;P) | f is almost surely equal

to a bijection onto a standard Borel space }

Then L?

inj

(4 P) is dense in LP (; P).

Proof of Lemma 3.9. Although the lemma holds for the full LP space of complex-valued functions, it is sufficient to show
the result for the subspace of real-valued functions in L?, and we will only need to use this case below. Moreover, by the
Kuratowski isomorphism theorem, it is sufficient to consider the cases @ = R, Z, or [n]. We take 2 = R; the cases Q2 = Z
or [n] can be treated by a simpler version of the same argument.

Given a real-valued f € LP();P), we can choose simple functions

n

_ (n)
b= S

j=1
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where Ag"), cee Al c Qare pairwise disjoint open or half-open intervals and a'? > agn) € R, such that f,, — f

in LP. Again by the Kuratowski isomorphism theorem, there exist measurable bijections <p(”) : A;n) — (0,1). Fore > 0,

J
define

fn,e = Z [agn) + 5(@571) + 2] — 1)] ]].A§7L).

j=1

Observe that f,, . maps each set Ag-") bijectively to the interval (agn) + (25 — 1)e, ag»") + 2j¢), and for ¢ sufficiently small,
these latter intervals have pairwise disjoint closures for different values of j. Therefore, for all small enough €,, > 0, f, ¢,
is injective, and thus a measurable bijection onto its image. This image is a union of finitely many open intervals with
pairwise disjoint closures, which is a Polish space, and thus f,, ., is an isomorphism from (2 to a standard Borel space.
Moreover || fr, — fn.ellp < 2ne, so that additionally taking e,, small enough that ne,, — 0, we have that f,, . is a sequence
in L? .(Q; P) that converges to f in LP. O

inj

B. Proofs for Section 4

Proposition 4.1. Let Z,, denote a sequence of random variables converging to a random variable Z in LP for p € [1, 00,
and let § be an independent, real-valued random variable with density p¢ that is continuous Lebesgue almost everywhere.
Suppose Z,,, Z are X -measurable for a random variable X. Then (X, Z,, + &) — (X, Z + &) in total variation.

Proof. By assumption, pe(z — €) — pe(x) as e — 0, almost everywhere. By Scheffé’s Lemma, drv(€,€ +¢€) — 0 as
e — 0. Hence, for all € > 0, there exists ¢ > 0 such that dpv (§,£ + ¢') < e forall [§'| < 0.

Note we may assume p = 1. Choosing d based on ¢, we have

drv (X, Zn + €), (X, Z +€)) < / / Ay (on + €2 + €) dPy, %oz, 2) dPx ()
< / drv (&2 — 20 + &) dPz, z1x=2(2n, 2) dPx (z)

< / / dry (€2 — zn + €) APy, 71x—o (20, 2) dPx () + P(|Z,, — Z| > 6)
|zn—2]<8

< e+P(|Zy — 7| > 6)
ElZ, — 2]

<
e+ 5

(B.1)

where the last step follows from Markov’s inequality. Choose N such that for n > N, E|Z,, — Z| < de. Then for n > 2N,
we have drv (X, Z, +£), (X, Z 4+ ¢€)) < 2e. O

Proposition 4.3. Let £ be as in Proposition 4.1 and let (X,Y) ~ m. Suppose that h,(X) — h(X) in L for some
TV
p € [1,00]. Then (Y, p(hn(X) +€)) = (Y, p(h(X) +€)).

Proof. Let Z, = h,(X) and Z = h(X). By Proposition 4.1, (X, Z, +¢) [y (X, Z+¢&). By the data processing inequality,

applying the kernel 7y|x to the first argument and p to the second argument, (Y, p(Z,, + §)) i (Y, p(Z +¢)). O

Lemma 4.4. Suppose that (Y, T,,) — (Y, T) in total variation, where T,,, T are random variables taking values in [0, 1].
Define

An = |Er, [EY | T = 1] - t]] - Er [[E[Y | T =] - ¢[]|. (4.2)

Then lim,, oo A, = 0.

Proof of Lemma 4.4. Let €1 > 0 be arbitrary. As a first step, we will apply a change of measure to write both expectations
in (4.2) in terms of a single random variable. Let S;, denote a random variable that is distributed as 7}, with probability
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% and 7" with probability % Note that Pg is mutually absolutely continuous with both P, and Pr. Then by Markov’s
inequality, for U € {T,,, T},

dP
dPy Es, | gper — 1‘ dry(T,, T)
ZU _ql>q)< - .
" dﬂpsn €1 €1

By Lemma 4.3, for any 6; > 0, we can choose n sufficiently large so that dpvy (7},,T) < €101, so that

dP
Ps, (‘dpjn —1‘ > el) < 4. (B.2)

We change the measure using Pz, , Pr < Pg, :

A, <

dPr,
Eg EY |T,=t -1t
| w17 = -] |- e

{ dPr

B BT =1 - t|] ‘ (B.3)

We compare each term to Eg, [|[E[Y|U = t] — t|] for U = T,,, T, respectively. By the triangle inequality,

dPy H dPy

dPg,

dPg

Es, { EWY U= t|” Es, [EY | U =1 — 1] < |Es

1‘|EY|Ut]t”

P
<P dU—l >e )| +e <o +e (B.4)
dPs.

where we split the expectation depending on whether Z&" — d%PST

and use Lemma B.2. From (B.3) and (B.4),

> €1, note that £ < 2and [E[Y|U =] — ] <1,

An < 2er +01) +Es, [EY | T = 1] — ] - Es, [[E[Y | T = 1] — ¢]
< 26y +61) +Es, [E[Y | T, = ] ~E[Y | T =]}, B.5)

where we used the triangle inequality. To simplify notation moving forward, we will use dIP;  to denote the density of
(Y =1,U). Finally,

dPy 1, dPir
dPr, dPp

_p. [|dBLr, dBs, _ dPirdPs,
S || dPs, dPy,  dPs, dPr

Es, [

EY | T, =] ~E[Y |T = f]]] = Es, H

} (B.6)

For U € {T,,T}, we know dd]i;s; € [1 — O(e1),1 4 O(eq)] with probability > 1 — 6 by (B.2). For the first factors, we

dPru . dP1s, : .
have Pe, Py, from the same logic as (B.2):

Eg HdIP’LU_d]P’LSn} p VYT
>o) < el ~ Al () (1T
€1 €1

(\dm v dPis,

<4
dPg,  dPg, =

where we now use (Y, 7, ) (Y T) and choose n sufficiently large so that drv ((Y,T3), (Y,T)) < €101. By comparing
both terms in (B.6) to dPl S" , we then get that (B.6) is O(e; + 61). Together with (B.5), we have A,, = O(d1 + €1), and
since 01, €] were arbltrary we have that lim,, o0 A, = 0, as desired. O]

C. Proofs for Section 5

Proposition 5.1. Let Z be an arbitrary real-valued random variable and let € be a real-valued random variable with density
pe. Then Z + § has the following density with respect to the Lebesgue measure:
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Proof. We have that:

IP’(Z+§§t):/_OO P(E < t—z) dPy()

_ /7 O:o 1 t:pg(u) du dPy(2)

t 0
- / / pe(u— 2) dP(2) du (C.1)

from Fubini’s theorem and translation invariance of the Lebesgue measure. O

Lemma 5.2. If ¢ = o R for a random variable R with bounded density, then:

E, { /0 1 \pT,Yzl(t) - piyzl(t)] dt} -0 ( ) : (5.6)

E. Uol lpr(t) — ps(t)] dt} = O( ) : (5.7

Proof of Lemma 5.2. We recall that pr y —1 (t) has the following form, which is a result of Proposition 5.1:

33l
Q Q

pry=1(t) = (0 () my (D E [pe(p™" (1) = h(X)) | Y =1]. (C2)

Now from Cauchy—Schwarz, Jensen’s inequality, Fubini’s theorem, and a change of variable (in that order), we obtain:

‘ 2

o {/01 ‘pT’Yzl(t) - p:ﬁ,y:1(t)‘ dt} <Er \//01 ‘pT,Yzl(t) —Piy=1(t)

5 1/2
:| du) . (C.3)

For simplicity, let us make the following definitions before moving forward:

() = 7y (1 E pelu — h(X)) | Y = 1] 4
Fl) = > pel = b)) 1y, )
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We observe that E[f(u)] = f(u) for every u, since the (x;,y;) are i.i.d. according to . Now we can continue from (C.3):

[ [ vt -] ] [ e s o]
- \/ /_ Z Varn(f(u)) du
R[S (S i

—0 (\/%) (C.6)

where M = sup pg. The result for |pr(t) — p;(t)| follows identically. O

D. Impact of Noise Distribution on LS-ECE

Here we examine the effect of changing the noise distribution of £ on LS-ECE; ¢. In particular, we contrast the choice of
Gaussian noise to compactly supported noise, and consider instead £ ~ oUni([—1/2,1/2]). Figure 5 shows the results of
redoing the experiments of Section 6.2.2 with this choice of £. As can be seen, the results are essentially the same as Figure
4.
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Figure 5. Mean absolute difference between ECE and LS-ECE (using uniform noise instead of Gaussian), as well as ECE and smECE, on
ImageNet-1K-val over all models considered in Section 6.2.2, with one standard deviation error bounds marked using the shaded region.
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