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Abstract

Research into optimisation for deep learning is

characterised by a tension between the compu-

tational efficiency of first-order, gradient-based

methods (such as SGD and Adam) and the theo-

retical efficiency of second-order, curvature-based

methods (such as quasi-Newton methods and K-

FAC). Noting that second-order methods often

only function effectively with the addition of sta-

bilising heuristics (such as Levenberg-Marquardt

damping), we ask how much these (as opposed to

the second-order curvature model) contribute to

second-order algorithms’ performance. We thus

study AdamQLR: an optimiser combining damp-

ing and learning rate selection techniques from

K-FAC (Martens & Grosse, 2015) with the up-

date directions proposed by Adam, inspired by

considering Adam through a second-order lens.

We evaluate AdamQLR on a range of regression

and classification tasks at various scales and hy-

perparameter tuning methodologies, concluding

K-FAC’s adaptive heuristics are of variable stan-

dalone general effectiveness, and finding an un-

tuned AdamQLR setting can achieve comparable

performance vs runtime to tuned benchmarks.

1. Introduction

At the heart of any machine learning model is an optimi-

sation problem, and at the heart of any training procedure

is an optimisation algorithm. Most frequently seen in the

literature are first-order optimisers such as SGD, Adam

(Kingma & Ba, 2015) and their variants, but exploratory

studies have also been performed on second-order algo-

rithms such as quasi-Newton methods and K-FAC (Martens

& Grosse, 2015). Broadly speaking, second-order algo-

rithms aim to secure more rapid convergence to an optimal

value of the objective function by making more principled

1University of Cambridge. Correspondence to: Ross M. Clarke
<rmc78@cam.ac.uk>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

individual updates, which in turn are more computationally

costly than those employed by first-order methods. Com-

bined with a generally more complicated implementation,

first-order methods are still preferable to second-order ap-

proaches for most practitioners (Anil et al., 2021).

In part, this is a stability issue — by virtue of taking larger

individual steps, second-order optimisers carry an increased

risk of significantly worsening the objective value if their

approximate understanding of curvature in objective space

is a poor representation of the true space. Most second-

order approaches thus depend on additional heuristics (such

as curvature damping) for their viability. Heuristics com-

monly seen in first-order methods, such as weight decay or

momentum applied to SGD, improve an already effective

optimiser; by contrast, second-order methods’ heuristics are

essential components, without which the optimiser will per-

form unstably or ineffectively — a point we demonstrate in

Appendix B.3.4. It is then natural to ask to what extent these

heuristics are responsible for the documented benefits of

second-order optimisers, and whether they might similarly

improve first-order techniques.

In this paper, we study a damped automatic learning rate

strategy, derived by applying K-FAC’s damping and learning

rate selection techniques to Adam. The resulting algorithm

— an optimiser whose default hyperparameters compare

favourably with tuned baselines — allows us to investigate

the impact of K-FAC’s heuristics. After reviewing related

work in Section 2, we present our study algorithm in Sec-

tion 3. We then justify our claims by experiment in Section 4

before Section 5 concludes. Our main contributions are as

follows:

• We argue K-FAC’s adaptive heuristics are of variable

general empirical effectiveness

• We present a novel use of damped, second-order ap-

proximate learning rate selection in Adam

• We show our untuned study method often performs

similarly to methods using tuned hyperparameters, ex-

hibiting robustness to hyperparameters
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2. Related Work

First-order methods form the bread and butter of modern ma-

chine learning, with SGD and Adam (Kingma & Ba, 2015)

being most frequently seen. Adam belongs to a class of

adaptive first-order methods, which apply some kind of nor-

malisation transformation to the observed gradients; other

examples include Adagrad (McMahan & Streeter, 2010;

Duchi et al., 2011) and RMSprop (Tieleman & Hinton,

2012). Balles & Hennig (2018) demonstrate that Adam

essentially scales gradient signs by their variance. Zhang

et al. (2018) show that Adam can be seen as a form of

natural gradient mean field variational inference, whose

mode-fitting behaviour is known to underestimate variance,

corresponding to overestimating curvature in an optimisa-

tion task (see e.g. Figure 1.3 in Turner & Sahani (2011)).

Zhang et al. (2019) use a noisy quadratic model to argue

for the benefits of exponential moving averages and other

components found in Adam. These methods achieve com-

putational efficiency by using diagonal approximations or

heuristics to understand curvature in the space, so ignore

useful information which second-order methods incorpo-

rate.

Optimisers employing second-order derivative information

are seen more often in the optimisation literature than in

practical machine learning projects. The family of quasi-

Newton methods (Nocedal & Wright, 2006) is inspired by

the appearance of the Hessian matrix in a Taylor series trun-

cated at quadratic order; this matrix characterises curvature

in the model parameters. Martens (2010) use the Hessian-

vector product trick (Pearlmutter, 1994) to work implicitly

with the exact Hessian. Other work modifies the Hessian to

avoid degeneracies — a particular concern in saddle point-

dense high-dimensional spaces (Pascanu & Bengio, 2014;

Dauphin et al., 2014) — or introduces spatial and temporal

averaging of a diagonal approximation to the Hessian (Yao

et al., 2021). Although not explicitly using second deriva-

tives, SHAMPOO (Gupta et al., 2018) learns a factorised

set of preconditioned matrices. However, in the non-convex,

non-quadratic spaces of ML, the unaltered Hessian may be

badly misleading, leading to diverging losses.

Where the system is viewed as a probabilistic model, an al-

ternative curvature characterisation is the Fisher information

matrix, which gives rise to the natural gradient family of

methods (Amari, 1998). Unlike the Hessian, the Fisher ma-

trix characterises curvature in KL-divergence space between

the predicted and ground truth probability distributions. Fac-

torized Natural Gradient (Grosse & Salakhudinov, 2015)

approximates the Fisher using a Gaussian graphical model,

while the Kronecker-Factored Approximate Curvature (K-

FAC) method (Martens & Grosse (2015) after an idea by

Heskes (2000)) imposes a block-diagonal approximation

to the Fisher and represents each block by a Kronecker

product. Extensions to K-FAC include EKFAC (George

et al., 2018), which learns the approximate Fisher in an

eigenvalue-aligned basis, and a mini-block Fisher variant

Bahamou et al. (2023) targets the empirical Fisher by assert-

ing that every diagonal block is itself block-diagonal. TNT

(Ren & Goldfarb, 2021) exploits the Kronecker-factored

covariance of the assumed tensor normal-distributed sam-

ple gradients to approximate the exact probabilistic Fisher

matrix, while K-BFGS (Goldfarb et al., 2020) applies a sim-

ilar factorisation strategy to the Hessian matrix, retaining

theoretical guarantees from the classical BFGS optimiser

(Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno,

1970). Although K-FAC can be applied in distributed set-

tings, this is somewhat complex (Osawa et al., 2019), and

Fisher curvature expressions must be calculated anew for

each different network architecture block.

Another line of work aims to accelerate first-order meth-

ods by dynamically adapting the learning rate to match

the local optimisation dynamics. Originally this was pre-

dominantly done by imposing fixed learning rate schedules

(Darken & Moody, 1990; Li & Arora, 2019; Xu et al., 2019;

Loshchilov & Hutter, 2017; Smith et al., 2018), but recent

developments involve more dynamic adaptations by hyper-

gradients (Franceschi et al., 2017; Micaelli & Storkey, 2020;

Donini et al., 2020; Lorraine et al., 2020; Clarke et al., 2022),

online Bayesian optimisation (Jin et al., 2023), or explicitly

constructing an optimisation framework around the unique

characteristics of deep neural networks (Bernstein et al.,

2023). Zhang et al. (2019) and Kwatra et al. (2023) adopt

a similar quadratic model methodology to our work, but

the latter compute a finite-difference approximation to this

model rather than using the exact curvature information as

we do, and introduces additional hyperparameters control-

ling an exploration/exploitation trade-off. Niu et al. (2023)

uses a parallel approach to ours to incorporate momentum

into L-BFGS (Liu & Nocedal, 1989). These methods gener-

ally suffer an increased cost over simpler strategies, whether

to discover a schedule, compute hypergradients or perform

de-facto inline hyperparameter optimisation, in turn requir-

ing a substantial validation dataset to be held aside.

3. AdamQLR

We consider the minimisation of f(θ), representing the loss

function of some network parameterised by θ.

3.1. First- and Second-Order Methods

Many optimisation algorithms in ML take the form θt ←
θt−1−³u(gt), where ³ is a learning rate and u some update

function. This u may depend on an internal state and the

current gradient gt, but not on any higher derivative. As is

conventional, we call such algorithms first-order optimisers.

By contrast, second-order optimisers take the form θt ←
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θt−1−C−1u(gt), where C is some curvature matrix (often

a damped Hessian, Fisher or Gauss-Newton matrix).

First-order methods broadly provide computational effi-

ciency at the inconvenience of manually selecting ³, while

second-order methods suffer a large computational cost to

dynamically select an implicit ³ and improved update direc-

tion d using their more powerful objective models. However,

a slew of ‘adaptive’ first-order optimisers (such as Adam

(Kingma & Ba, 2015) and relations) blur this distinction

by constructing stateful models of the objective, which can

often be interpreted as approximating the curvature of f(θ).

Moreover, practical second-order methods for ML are nec-

essarily approximate, as the curvature C is otherwise in-

tractably large. Further engineering is then required to miti-

gate the impact of approximate curvature and the inevitable

non-convexity of f . For example, in K-FAC, Martens &

Grosse (2015) convincingly argue for a particular Kronecker

factorisation of a block-diagonal C, but then augment it

with a raft of corrections and adaptive heuristics (including

multiple periodically-updated damping/factorised Tikhonov

regularisation terms, momentum, weight decay, exponential

moving averages of curvature statistics and approximate

exchange of expectations and Kronecker products). Fur-

ther, these additions are seemingly essential ingredients of

a working K-FAC implementation.

A natural question is then whether curvature information or

engineering heuristics contribute more to K-FAC’s success.

In particular, we might ask if accepting first-order methods’

inaccurate curvature models and applying second-order sta-

bility techniques would blend computational efficiency with

optimisation accuracy. We propose to study this possibility

by adapting Adam using techniques from K-FAC.

3.2. Adam Revisited

Algorithm 1 restates the Adam optimisation algorithm from

Kingma & Ba (2015) applied to f , with some minor nota-

tional changes. Our proposed algorithm derives from our

anecdotal observation that Adam often makes good choices

of update direction, which we notate by dt =
m̂t√
v̂t+ϵ

.

As we detail in Appendix C, Adam is known to carry a

diagonal approximation to the empirical Fisher matrix in v̂t.

Then, the 1√
v̂t+ϵ

term in Algorithm 1 effectively performs

a curvature transformation on the averaged gradient m̂t be-

fore computing a more traditional gradient-based update for

θ. There are widely-known limitations to using the empir-

ical Fisher in place of the true Fisher information matrix

(Kunstner et al., 2019), and the square root is motivated

only by a desire to be “conservative” (Kingma & Ba, 2015).

Indeed, Zhang et al. (2018) show Adam is very similar to

one construction of natural gradient mean-field variational

inference, a technique which is known to prioritise locally

fitting modes of the target probability distribution (Turner &

Sahani, 2011). The consequent underestimation of global

variance corresponds to overestimating local curvature in

optimisation, justifying Kingma & Ba (2015)’s preference

for a conservative estimate. Nonetheless, this formulation

invites us to view Adam through a second-order optimisa-

tion lens, and ask whether common second-order optimiser

heuristics might bring similar benefits to Adam.

3.3. Adopting Heuristics from K-FAC

After defining its Kronecker-factored block diagonal ap-

proximation to the curvature matrix, K-FAC (Martens &

Grosse, 2015) includes three important stabilising heuristics:

Levenberg-Marquardt damping, and learning rate and mo-

mentum selection according to a local second-order model.

Since Adam already implements a momentum correction in

m̂t, we consider only the first two techniques.

Levenberg-Marquardt damping (Levenberg, 1944; Mar-

quardt, 1963; Roweis, 1996) replaces the curvature matrix C

with the damped version C+ ¼I. Its interpretations include

approximating a trust region, enforcing positive definiteness

of C, preventing large updates in low-curvature directions

and interpolating between gradient descent and full Newton

updates. In effect, it imposes a ‘minimum curvature’ on the

objective to avoid near-zero eigenvalues in C.

Let M(θ) be an approximate second-order model around

θt−1, defined by a truncated Taylor series:

M(θ) = f(θt−1) + (θ − θt−1)
Tgt

+
1

2
(θ − θt−1)

T(C+ ¼I)(θ − θt−1). (1)

The damping parameter ¼ is adapted by comparing the

change in objective value predicted by the model (M(θt)−
M(θt−1)) to the actual observed change (f(θt)−f(θt−1)).
This adjustment quantifies the model’s reliability by a re-

duction ratio Ä, incorporating stepping factors1 Édec, Éinc:

Ä =
f(θt)− f(θt−1)

M(θt)−M(θt−1)
;¼←





Édec¼ if Ä > 3
4

¼ if 1
4 f Ä f 3

4

Éinc¼ if Ä < 1
4

.

(2)

We discuss this formulation further in Appendix A.3.

After choosing an update direction dt, a learning rate ³
is selected according to the second-order model M . We

minimise M(θt−1 − ³dt) with respect to ³, which yields

³ =
gT

t dt

dT
t (C+ ¼I)dt

. (3)

1In the most general form we allow separate decrease and
increase factors, but in practice we will often choose ωdec =

1

ωinc

for simplicity. We also require 0 < ωdec < 1 < ωinc.
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Algorithm 1 Adam (Kingma & Ba, 2015)

m0,v0 ← 0

for t = 1, 2, · · · until θ converged do

gt ← ∇θf(θt−1)
mt ← ´1mt−1 + (1− ´1)gt

vt ← ´2vt−1 + (1− ´2)(gt » gt)
m̂t ←

mt

1−´t

1

v̂t ←
vt

1−´t

2

dt ←
m̂t√
v̂t+ϵ

θt ← θt−1 − ³dt

end for

Algorithm 2 AdamQLR

m0,v0 ← 0

for t = 1, 2, · · · until θ converged do

gt ← ∇θf(θt−1)
mt ← ´1mt−1 + (1− ´1)gt

vt ← ´2vt−1 + (1− ´2)(gt » gt)
m̂t ←

mt

1−´t

1

v̂t ←
vt

1−´t

2

dt ←
m̂t√
v̂t+ϵ

Update learning rate ³ according to (3)

Update damping ¼ according to (2)

θt ← θt−1 − ³dt

end for

A minor rearrangement shows the large matrix C only ap-

pears in products with vectors. The Jacobian-vector product

trick (Pearlmutter, 1994), efficient Fisher decompositions

(Martens & Grosse, 2015) and similar techniques compute

these quantities using only one additional backward pass

per product with C. In practice, the information value of

these calculations outweighs this cost.

3.4. Extending Adam

Incorporating K-FAC’s damping and learning rate selection

strategies into Adam yields Algorithm 2, which is easily

implementable as a wrapper around vanilla Adam. We name

this family of algorithms AdamQLR, where QLR indicates

an optimiser-agnostic quadratic-model learning rate selec-

tion logic, which could be broadly applied (e.g. to SGD).

Appendix A.4 gives a sketch of a convergence argument for

this algorithm.

One remaining consideration is the choice of a curvature ma-

trix C. We use the (true) Fisher matrix throughout, inspired

by its connection with Adam’s v̂t buffer (see Appendix C.4),

its use at the heart of K-FAC and its positive semi-definite

guarantee. In short, we tune the damping parameter ¼ to

create a trust region in which our quadratic approximation —

specified by the Fisher — is accurate. Then, given the Adam

descent direction and the selected ¼, we choose the optimal

step size within this trust region. We exploit Jacobian-vector

products and the efficient Fisher decomposition described

in Martens & Grosse (2015, Appendix C), which computes

exact products without explicitly storing C.

Finally, our experiments found AdamQLR’s training sta-

bility to be most threatened by selecting an unreasonably

large ³ for a particular iteration, causing a divergent param-

eter update. The problem worsens in larger models with

more prevalent low-curvature regions of the space to in-

duce very large update sizes. We found that larger batch

sizes improved our curvature estimates, leading to better

performance despite the higher cost of each forward pass.

Now, the only remaining hyperparameters are ´1, ´2 and ϵ
(from Adam) and an initial damping value ¼0. As Adam’s

hyperparameters are commonly fixed at the default values

suggested by Kingma & Ba (2015), and we show ¼0 to be

sufficiently insensitive that a default value can be recom-

mended (Section 4.7), we claim that AdamQLR is robust,

even without explicit hyperparameter tuning. In particular,

we have encapsulated the learning rate ³ — arguably the

most important hyperparameter to select in many optimisa-

tion algorithms. We justify this claim in Section 4.

Compared to Adam, we suffer additional forward and back-

ward passes to compute M(θt) and (C+¼I)dt. These turn

out not to impede empirical performance, though we note a

careful implementation would amortise the former cost. Our

only significant additional memory cost is storing the vector

(C+¼I)dt, making our approximate memory footprint four

times that of SGD (where Adam’s is three times SGD).

4. Experiments

We examine the training and test performance of AdamQLR

against Adam and K-FAC in a variety of settings:

Rosenbrock (1960) Function Let a = 1 and b = 100,

then f(x, y) = (a− x)2 + b(y − x2)2

UCI Energy (Tsanas & Xifara, 2012) on an MLP with one

hidden layer of 50 units

UCI Protein (Rana, 2013) on an MLP with one hidden

layer of 100 units

Fashion-MNIST (Xiao et al., 2017) on an MLP with one

hidden layer of 50 units

SVHN (Netzer et al., 2011) on a ResNet-18 (He et al.,

2016)

CIFAR-10 (Krizhevsky, 2009) on a ResNet-18 (He et al.,

2016)
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We also perform a study on Penn Treebank in Ap-

pendix B.1.2. On UCI datasets we generate random splits

using the same sizes as Gal & Ghahramani (2016) and

use MSE loss; otherwise, we separate the standard test

set, randomly choose 1/6 (Fashion-MNIST and SVHN)

or 1/10 (CIFAR-10) of the remaining data to form a val-

idation set, and use cross-entropy loss. Code for all

our experiments is available at https://github.com/
rmclarke/AdamThroughASecondOrderLens. We

compare (see Appendix A.5 for further notes):

SGD Minimal Classical mini-batched stochastic gradient

descent, with tuned learning rate

SGD Full SGD Minimal with additional tuned momentum

and weight decay

Adam (Kingma & Ba, 2015) with tuned learning rate and

fixed defaults for other hyperparameters

Adam (Untuned) Adam (Kingma & Ba, 2015), fixing

batch sizes2 and learning rate of 0.001

K-FAC (Martens & Grosse, 2015; Botev & Martens, 2022)

with tuned initial damping

K-FAC (Untuned) K-FAC (Martens & Grosse, 2015;

Botev & Martens, 2022) with initial damping set to

a default 1.0 and fixed batch size 3200

AdamQLR (Tuned) Algorithm 2, using Fisher curvature

for C. We tune initial damping and damping adjust-

ment factors Édec, Éinc

AdamQLR (Untuned) AdamQLR with fixed batch size

3 200, initial damping 0.001 and Édec = 1
Éinc

= 0.5
(justified by Section 4.7 and Appendix B.2)

Except for the Rosenbrock Function and (Un-

tuned) variants, we also tune a batch size over

{50, 100, 200, 400, 800, 1 600, 3 200}. All hyperpa-

rameter tuning uses ASHA (Li et al., 2020) over 200

random initialisations, targeting a fixed number of training

epochs, subject to a maximum runtime of 15 minutes (only

reached for CIFAR-10; see Appendix B.1.4 for experiments

using runtime as the primary constraint). We then perform

50 runs using each of the best hyperparameters found

(measured by final validation loss), then plot the mean

and standard deviation of the median trends of each of

50 bootstrap samples of the results. Following Botev &

Martens (2022), any damping is clipped to ¼ g 10−8.

Except for the Rosenbrock Function, we give a numerical

comparison of the end-of-training statistics in Table 5.

In Appendix B.1.4, we present analogous results where the

hyperparameters are tuned to minimise training or valida-

tion losses after a fixed runtime, with no epoch constraint.

2We use a ‘typical’ batch size for each setting: full-batch for
UCI Energy, 100 for UCI Protein, 50 for Fashion-MNIST, 256 for
SVHN and 128 for CIFAR-10.

Figure 1: Optimisation trajectories over 200 steps from a

fixed initial point on the Rosenbrock Function. Hyperparam-

eter tuning used 200 standard-normal random initial points.

Appendix B.3 details additional ablation studies on Adam,

AdamQLR and K-FAC.

4.1. Rosenbrock Function

The Rosenbrock Function (Rosenbrock, 1960) provides a

visualisable test bed for optimisation algorithms, containing

non-linear correlations between its inputs and anisotropic

curvature. We consider 200 optimisation steps, using

N (0, I)-sampled initial (x, y) values during hyperparame-

ter tuning, and evaluate trajectories from the fixed starting

point (1,−1) in Figure 1. As there is no probabilistic model,

we apply K-FAC to a least-squares formulation (Brunet,

2010, page 38), and we use Hessian curvature in AdamQLR

for this experiment only. Additionally, we use gradient

descent (GD) in place of SGD. Since there is no separate

validation set, we tune hyperparameters on the objective

function directly.

Here, GD Minimal makes good initial progress into the

central ‘valley’, but its learning rate is too small to con-

tinue along the valley floor — without regularisation, GD

must select conservative step sizes to avoid diverging from

poor initialisations. GD Full’s hyperparameters cause it

to bounce unstably around the optimisation space — the

algorithm is unable to recover from their overly aggressive

settings. Adam’s adaptive buffers allow it to target the val-

ley more directly, eventually making slow progress along

the valley floor, but it takes time to learn the new dynam-

ics in the latter regime, initially ‘overshooting’ the valley.

K-FAC demonstrates an impressive understanding of the

optimisation space, making direct, rapid progress towards

the optimum in spite of the challenging Euclidean curvature.

AdamQLR (Tuned) demonstrates a combination of all these

phenomena. It begins by updating in the same direction as
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Adam, but with more aggressive step sizes, permitting faster

initial progress. This confidence subsequently causes signif-

icant steps away from the central valley, but K-FAC’s adap-

tive heuristics allow the algorithm to recover from these er-

rors and return to the valley. Compared to Adam, AdamQLR

(Tuned) performs much more exploration of the central val-

ley, indicating the latter exploits its ability to recover from

poor steps by accepting more aggressive updates. AdamQLR

(Untuned) follows a similar approach, though again with

ill-suited hyperparameters for this toy problem. These initial

results suggest K-FAC’s heuristics do carry potential in their

own right for first-order approaches.

4.2. UCI Energy

UCI Energy provides a low-dimensional regression task

on a small dataset, which is amenable to hosting long ex-

periments to explore convergence behaviour. We consider

4 000 epochs of training and plot bootstrap-sampled median

training and test loss trends in Figure 2a.

Our principal benchmarks fall much as we would expect:

SGD Minimal makes respectable, if sluggish, progress dur-

ing optimisation, but is outclassed by the more rapid ini-

tial convergence of SGD Full and Adam. Both these latter

methods achieve strong test performance, with SGD Full

achieving the best final test loss of all methods. Despite

its rapid initial progress, K-FAC quickly begins overfitting,

reaching a final test loss similar to the AdamQLR methods.

Generally, AdamQLR (Tuned) performs comparably with

the tuned Adam baseline. The QLR computed learning rates

accelerate initial progress, while the addition of damping

provides some defence against overfitting, at the cost of a

higher final training loss. However, on this trial, AdamQLR

(Untuned) diverged rapidly beyond the limits of Figure 2a.

Since this phenomenon is not apparent with our other trials,

and K-FAC performs fine, we suppose the latter’s curvature

matrix smoothing must be important when using second-

order information in this problem. Under full hyperparam-

eter tuning, AdamQLR (Tuned) does not convincingly im-

prove over Adam — potentially the small-scale, full-batch

nature of this setting responds poorly to this algorithm.

4.3. UCI Protein

UCI Protein is another low-dimensional regression task, but

with far more data points, allowing for a computationally-

efficient study of a larger dataset. We show 200 epochs of

training in Figure 2b.

Here we see distinct generalisation trends for each algorithm.

SGD Full improves slightly over SGD Minimal, but still lags

behind the other methods. K-FAC is now clearly the best-

performing algorithm, as might perhaps be expected since it

computes the most granular curvature approximation when

choosing an update direction. However, we see meaningful

gains from AdamQLR, with the (Tuned) variant comfortably

outperforming Adam. We observe AdamQLR’s automatic

learning rate selection is capable of outperforming methods

which require a sensitive explicit choice of learning rate —

the Untuned variant is clearly superior to tuned SGD on this

task and is only slightly worse than tuned Adam. The clear

ranking here indicates meaningful value is added to Adam

by including some heuristics from K-FAC, but that K-FAC

offers further advantage even beyond this.

4.4. Fashion-MNIST

Fashion-MNIST provides a first foray into higher-

dimensional data, but at a scale still approachable by MLP

models. Using a 10-epoch training window, we plot boot-

strapped accuracy evolutions in Figure 2c and loss evolu-

tions in Figure 5a.

While K-FAC achieves the best final training loss, its loss

evolution plots reveal a significant tendency to overfit.

While this is a recognised issue with K-FAC (Martens et al.,

2018), and the fundamental idea of minimising a test loss

by optimising a training loss frustrates the application of

naïvely-powerful optimisers, the impact is to question K-

FAC’s desirability in this application. SGD Full, Adam and

AdamQLR all perform very similarly, showing less over-

fitting but being essentially indistinguishable. Adam (Un-

tuned)’s underperformance of AdamQLR (Untuned) thus

demonstrates that the additional heuristics of the latter im-

prove robustness more than outright performance. Surpris-

ingly, adding further complexity in the form of K-FAC seems

to worsen the overfitting problem.

4.5. SVHN

With SVHN, we progress to a full-colour image dataset and

a substantially larger ResNet-18 model, which we tune for

10 epochs and present in Figures 2d (accuracies) and 5b

(losses). The periodicity in these evolutions corresponds to

individual epochs, and is simply a training artefact.

On this problem, both AdamQLR variants achieve accu-

racy checkpoints slightly faster than Adam. SGD Minimal

again forms a mediocre baseline, but SGD Full performs

admirably in this setting, only slightly trailing the other al-

gorithms’ initial loss convergence. Every method overfits

losses in this setting. K-FAC generalises less well than its

impressive training performance might lead us to hope.

AdamQLR’s tuned and untuned generalisation performances

are rivalled only by SGD Full and Adam (Untuned), the

latter over a significantly longer timescale. Interestingly,

this selection of heuristics from K-FAC again seems to bring

benefits which are nullified by the full K-FAC setting, raising

further questions about the latter’s underlying dynamics.

6



Studying K-FAC Heuristics by Viewing Adam through a Second-Order Lens

(a
)

U
C

I
E

n
er

g
y

(b
)

U
C

I
P

ro
te

in
(c

)
F

as
h

io
n

-M
N

IS
T

(d
)

S
V

H
N

(e
)

C
IF

A
R

-1
0

Figure 2: Median training (left) and test (right) performance trajectories, bootstrap-sampled over 50 repetitions per algorithm.

Hyperparameters chosen by ASHA over 200 initialisations. Note changes of scale on the time axes. See also results on loss

metrics and learning rate evolutions in Figures 5 and 4, and numerical comparison in Table 5.
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4.6. CIFAR-10

Finally, in a simulation of larger-scale learning, we train a

ResNet-18 on CIFAR-10 over 72 epochs. Here we include

conventional data augmentation of 4-pixel padding, ran-

dom cropping and random left-right flipping, displaying our

accuracy results in Figure 2e and loss results in Figure 5c.

Adam is now slower to converge in both training and test

accuracy, suggesting this could be an ill-suited setting in

which Adam can be expected to underperform (Balles &

Hennig, 2018). However, it achieves the highest test ac-

curacy of any method by the end of training, with Adam

(Untuned) curiously outperforming the tuned variant. This

suggests our hyperparameter selection strategy may have

been particularly noisy in this setting, in which case much

of the difference between algorithms here is negligible. In

this trial, AdamQLR seems to close most of the performance

gap between Adam and K-FAC, suggesting this problem ben-

efits more from adaptive heuristics than from second-order

curvature information.

4.7. Sensitivity Studies

In Appendix B.2 we analyse the sensitivity of AdamQLR

on Fashion-MNIST by repeating the experiments of Sec-

tion 4.4 with a range of batch sizes, initial damping val-

ues and damping adjustment factors, and by replacing the

approximately-optimal learning rate ³ from (3) with the

rescaled k³, for various k ∈ [0.5, 2.0]. Figure 3 summarises

our bootstrapped results for each intervention.

Our results inspire further confidence in AdamQLR as a

correctly-configured adaptive method. Generalisation per-

formance is optimised by choosing k ≈ 1: constant rescal-

ing of our proposed learning rates does not reduce test error,

suggesting we adapt well to the local space and select perfor-

mant update magnitudes for each direction dt proposed by

Adam. By contrast, AdamQLR is insensitive to the choice

of initial damping ¼0 on this dataset, so while our ablation

studies in Section B.3.1 indicate damping is an important

stabilising feature of our method, it appears the adaptive

strategy of (2) selects an appropriate damping magnitude

regardless of its starting point. Finally, larger batch sizes

increase generalisation performance. Since we depend im-

plicitly on highly-parameterised curvature matrices, larger

batch sizes would be expected to give a more performant

average, but this also substantially decreases training time,

owing to efficient GPU computation. All these results justify

our AdamQLR (Untuned) hyperparameter choices.

4.8. Learning Rate Evolution

In Figure 4, we plot the trajectories of average learning rates

selected by AdamQLR and K-FAC against the fixed values

used in SGD and Adam.

(a) Learning Rate Rescaling (α← kα)

(b) Batch Size

(c) Initial Damping λ0

Figure 3: Sensitivity studies for AdamQLR on Fashion-

MNIST over (a) learning rate rescaling, (b) batch size and

(c) initial damping, showing test losses.
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Figure 4: Median learning rate trajectories, bootstrap-

sampled over 50 repetitions per algorithm. Hyperparameters

chosen by ASHA over 200 initialisations. Note changes of

scale on the time axes. See also our numerical presentation

in Table 5.

Learning rate schedules are widely known to be important

in certain training problems, particularly at larger scales,

so it is unsurprising that various algorithms’ sense of the

‘optimal’ learning rate varies over time. For the most part,

the chosen schedules give an approximately exponential

decay in learning rate, interestingly sometimes excluding

the warm-up behaviour commonly specified in manually-

designed schedules.

Broadly speaking, AdamQLR and K-FAC seem to adopt

more aggressive learning rates than SGD or Adam. It is in-

teresting to note that AdamQLR (Untuned) chooses growing

learning rates on SVHN and CIFAR-10 which differ dra-

matically from those of other methods, yet achieves similar

results in loss and accuracy space. In summation, these re-

sults suggest we might do well to explore other approaches

to improving machine learning optimisers, beyond focussing

on learning rates.

5. Conclusion

In this paper we consider some of the heuristics of K-FAC

by studying AdamQLR, an extension to Adam which bor-

rows learning rate selection and adaptive damping strategies

from second-order methods. Empirically, the effect of these

heuristics seems to vary, being null or negative in some tri-

als while outperforming both Adam and unablated K-FAC

in others. This indicates the approach of K-FAC might be

less generally applicable than that of common first-order

optimisers, perhaps explaining its rare use in practice, and

we think there could be great value in future work studying

this phenomenon. Of tangential interest, we find an untuned

version of AdamQLR, motivated by our sensitivity results,

compares broadly favourably with tuned implementations

of popular algorithms, while only rarely causing significant

detriment to tuned-SGD or Adam baselines. Curiously, this

occurs despite its use of large batch sizes conventionally

understood to worsen generalisation performance.

We note challenging training-test dynamics from the CIFAR-

10 results which merit further investigation, though we leave

this to future work. Ultimately, we would like to better un-

derstand the workings of second-order methods like K-FAC,

such that we can unify the benefits of first- and second-order

optimisation to better serve the needs of the ML community,

since these significantly differ from those of other optimi-

sation practitioners. In future work, we hope to advance

this line of research and better address this fundamental

component of ML systems.
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A. Notes

A.1. Reproducibility Statement

We describe our algorithm fully in Section 3, provide full

source code to the reviewers and will publish this code to

the community after deanonymisation. The descriptions

in this paper describe all the modifications we make to

Adam and provide a complete intuitive summary of our

contribution, while the source code allows any fine detail of

our implementation or experiments to be inspected.

A.2. Limitations

While we have evaluated our algorithm on a range of

datasets and models, we have necessarily left many im-

portant settings untested. Thus, even though we hope our

evaluation approach generalises well to other settings, we

should recognise that it has not yet been tested in those

settings. In particular, the learning rate selection strategy

used by K-FAC and AdamQLR assumes the optimisation

space is approximately convex and quadratic, which will

not generally be true of machine learning problems — this

motivates our use of damping to defend against particularly

ill-posed updates. With sufficient damping, we effectively

define a ‘trust region’ beyond which the surface can be non-

quadratic without harming our method. Further, since Adam

is known not to perform well in certain (poorly-understood)

circumstances (Balles & Hennig, 2018), we might expect

AdamQLR to have difficulty with the same class of prob-

lems.

A.3. Reduction Ratio

Here, we give a more verbose commentary on the damping

adjustment mechanism described in (2).

The definition of the reduction ratio Ä is intuitive. When

we update the model parameters from θt−1 to θt, we will

observe some change in the loss metric f(θt) − f(θt−1).
Similarly, our quadratic model M will have proposed

this parameter update predicting the loss will change by

M(θt)−M(θt−1). Ideally, we would like our model to be

a good fit for the true optimisation surface, in which case

the observed and predicted changes will be similar, and we

will find Ä ≈ 1. Conversely, if the fit is poor, the observation

and prediction will be very different, giving Ä < 1 if the ob-

served change is much smaller than the model predicted, or

Ä > 1 if the change is much larger than the model predicted.

If we find the fit of M to be poor, we would like to adjust the

damping to help rectify the situation, since a larger damping

will generally bias the model towards expecting larger loss

changes, thus proposing smaller parameter updates. Broadly

speaking, Ä > 1 suggests the model is being too conserva-

tive, and we would benefit from decreasing damping to

better reflect the underlying surface. Conversely, Ä < 1 sug-

gests the model expects much more dramatic changes than

we actually see, so we should increase damping to ‘reign in’

the predictive behaviour.

As Martens & Grosse (2015) note in the original presenta-

tion of K-FAC, the optimisation dynamics will change dur-

ing training. In particular, as we approach a local minimum,

the loss surface becomes more and more quadratic-like. Un-

der these circumstances, damping slows down convergence

by reducing parameter update sizes, without achieving any

appreciable benefit. Even away from local minima, damping

tends to trade convergence speed for stability. In both cases,

there is a natural incentive to be biased towards decreasing

damping if at all possible.

In this work, we retain Martens & Grosse (2015)’s damping

adjustment thresholds of Ä > 3/4 and Ä < 1/4, since these

choices led to desirable performance from K-FAC. Martens

& Grosse articulate their preference for reducing ¼ if possi-

ble, and we can understand their chosen thresholds in that

light. It is for this reason that the thresholds are not centred

about Ä = 1, as might have been our intuitive expectation.

A.4. Convergence of AdamQLR

While we have not studied the convergence of AdamQLR

analytically, we believe it will converge under appropriate

conditions by the following intuitive argument.

Let the update direction dt proposed by Adam be arbitrary.

By construction, AdamQLR selects the (possibly negative)

learning rate ³ which minimises the value of some quadratic

model M(θ) at the new parameters θt−1 − ³dt, so we

certainly have M(θt−1 − ³dt) fM(θt−1). Whether this

translates to non-increase of the objective function f(θ)
depends on the quality of the approximation M(θ). For

any given ³, some Lipschitz smoothness condition exists

which guarantees f(θt−1 − ³dt) f f(θt−1), so we should

be able to guarantee convergence for a sufficiently smooth

f(θ) if ³ is clipped to some maximum value. This intuition

transfers to the unclipped case if we argue that, in practice,

³ will generally take values within some finite range.

Shi et al. (2020) prove the convergence of full-batch RM-

Sprop for a diminishing learning rate schedule. While the

more arbitrary adaptivity of AdamQLR’s learning rate pre-

vents a direct application of this proof, it does lend confi-

dence that AdamQLR should behave as expected in common

practical circumstances.

A.5. Choice of Baselines

We now give some explanatory notes justifying our choice

of baseline algorithms in Section 4.

Weight decay was only included in SGD Full, despite being
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theoretically applicable to any algorithm. To clarify the

comparison, we studied vanilla versions of SGD, Adam

and K-FAC as the most natural baselines for AdamQLR.

Since SGD is very commonly used with momentum and

weight decay, we include it in Minimal and Full forms,

where the latter includes these additional components. SGD

Full is included primarily for background context, so its

unique use of weight decay does not affect the comparability

of the other algorithms. Moreover, since SGD typically

underperformed other algorithms in our experiments, any

advantage due to weight decay does not affect our results.

Similarly, the use of momentum in SGD Full is primarily

to provide background context from a common algorithm.

Adam contains momentum-like behaviour by construction,

with the corresponding hyperparameters not usually tuned

in practice (a convention we follow), and K-FAC uses an

adaptive momentum coefficient by default. AdamQLR does

not incorporate the adaptive momentum of K-FAC, so mo-

mentum is only used by the inner Adam procedure to select

the unscaled update direction, with the magnitude of each

update computed independently at each iteration. Thus, any

effect from the absence of momentum in AdamQLR is dis-

advantageous for this algorithm, so our conclusions are not

invalidated.

A.6. Hyperparameter Search Space

We use similar hyperparameter search spaces (with unused

hyperparameters removed) for each dataset and algorithm

combination. These are detailed in Table 1.

A.7. Chosen Hyperparameters

The best hyperparameters selected by ASHA for each setting

considered in this work are indicated in Table 2.

A.8. Compute Used

Our experiments were performed on one of the two sets

of hardware shown in Table 3. All runtime comparisons

were performed on like-for-like hardware. We make use of

GPU acceleration throughout, with the JAX (Bradbury et al.,

2018), Haiku (Hennigan et al., 2020) and KFAC-JAX (Botev

& Martens, 2022) libraries, along with various related com-

ponents of the DeepMind JAX Ecosystem (Babuschkin et al.,

2020).

A.9. Datasets

The datasets we use are all standard in the ML literature; we

outline their usage conditions in Table 4.

B. Additional Experiments

B.1. Algorithm Comparisons

In this Section, we provide some additional viewpoints into

our main results of Section 4.

B.1.1. FASHION-MNIST, SVHN AND CIFAR-10

LOSSES

In Figure 2, we plotted experimental results in terms of

the loss metric used during training. For Fashion-MNIST,

SVHN and CIFAR-10, we also present classification accu-

racy in metrics in Figure 5 and Table 5. These illustrate

broadly the same patterns as we discussed in the main body

of the paper.

B.1.2. PENN TREEBANK

As an additional baseline, we consider training the stan-

dard Penn Treebank subset (Marcus, Mitchell P. et al., 1999;

Marcus et al., 1999) on the GPT-2 model (Radford et al.,

2019), as implemented by Hugging Face. We interpret the

batch size as the number of token subsequences consid-

ered in parallel, chosen over {5, 10, 20, 35, 50, 100, 200},
and also choose the length of subsequences considered

from {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}, and we set the

HPO runtime limit to 1 hour. Otherwise, our hyperparam-

eter optimisation is identical to that of Section 4. For time

efficiency, we perform 10 repetitions of training with the

best hyperparameters found, rather than 50 as in Section 4,

with each repetition comprising 100 epochs of training, and

show our results in Figure 6 and Table 5. Our AdamQLR

(Untuned) setting uses a batch size of 30 and subsequence

length of 70, chosen based on the largest values which fit on

our GPUs.

Interestingly, our results reflect the observation that trans-

former training dynamics are quite different from other NN

model classes. The addition of momentum and weight de-

cay to SGD Full seems to hinder it in comparison to SGD

Minimal, with the latter exhibiting superior training and

generalisation performance. Both are ultimately beaten by

Adam on training performance, but the latter shows a greater

tendency to overfit, with a gradually increasing test loss

after around 1000 s which neither SGD algorithm exhibits.

AdamQLR (Tuned) performs very similarly to SGD Minimal

on this setting, albeit now with a slight tendency to overfit

towards the end of training. Further, it achieves similar fi-

nal training losses to Adam, though the latter reaches these

losses much faster. On the other hand, AdamQLR (Untuned)

shows a much greater distinction from AdamQLR (Tuned)

here than in our other experiments, suggesting the default

hyperparameters we propose are not as immediately appli-

cable to transformer models. However, it is reassuring that

this algorithm achieves monotonically decreasing training
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Table 1: Hyperparameter search spaces for Section 4

Hyperparameter Search Range

Batch Size Uniform in {50, 100, 200, 400, 800, 1 600, 3 200}

Learning Rate ³
SGD: Logarithmic in [10−6, 10−1]
Adam: Logarithmic in [10−6, 1]

Momentum Logarithmic in [10−4, 0.3], subtracted from 1

Weight Decay Logarithmic in [10−10, 1]
Initial Damping ¼0 Logarithmic in [10−8, 1]

Damping Decrease Factor Édec Logarithmic in [0.5, 1.0]
Damping Increase Factor Éinc Logarithmic in [1.0, 4.0]
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Figure 5: Median training (left) and test (right) loss trajectories, bootstrap-sampled over 50 repetitions per algorithm.

Hyperparameters chosen by ASHA over 200 initialisations. Note changes of scale on the time axes. See also our numerical

comparison in Table 5.
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Table 2: Optimal hyperparameters used to produce the results of Section 4, Appendix B.1.2 and Appendix B.3

Dataset Algorithm
Batch

Size

Learning

Rate
Momentum

Weight

Decay

Initial

Damping

Damping

Decrease

Factor

Damping

Increase

Factor

Rosenbrock

GD Minimal — — — — — — —

GD Full — — — — — — —

Adam — 9.88 × 10−2 — — — — —

Adam (Untuned) — — — — — — —

K-FAC — — — — 2.70 × 10−7 — —

AdamQLR (Hessian) — — — — 4.14 × 10−1 0.7 1.1
AdamQLR (Untuned, Hessian) — — — — 1.00 0.9 1.1

UCI Energy

SGD Minimal 100 9.88 × 10−2 — — — — —

SGD Full 400 6.92 × 10−2 0.996 1.29 × 10−4 — — —

Adam 800 2.99 × 10−2 — — — — —

Adam (Untuned) 588 — — — — — —

Adam (Tuned ϵ) 1600 — — — — — —

K-FAC 50 — — — 1.00 × 10−2 — —

K-FAC (Untuned) 3200 — — — — — —

K-FAC (Unadaptive) 1600 — — — — — —

AdamQLR 800 — — — 5.39 × 10−3 0.6 1.3
AdamQLR (Untuned) 3200 — — — — 0.5 2.0

Baydin SGD 50 — — — — — —

UCI Protein

SGD Minimal 400 7.00 × 10−2 — — — — —

SGD Full 100 2.17 × 10−4 0.997 1.54 × 10−8 — — —

Adam 800 5.42 × 10−3 — — — — —

Adam (Untuned) 1000 — — — — — —

Adam (Tuned ϵ) 800 — — — — — —

K-FAC 3200 — — — 2.11 × 10−1 — —

K-FAC (Untuned) 3200 — — — — — —

K-FAC (Unadaptive) 1600 — — — — — —

AdamQLR 400 — — — 1.49 × 10−4 0.6 1.7
AdamQLR (Untuned) 3200 — — — — 0.5 2.0

Baydin SGD 400 — — — — — —

Fashion-MNIST

SGD Minimal 100 8.01 × 10−2 — — — — —

SGD Full 800 5.81 × 10−2 0.929 1.65 × 10−8 — — —

Adam 400 2.56 × 10−3 — — — — —

Adam (Untuned) 50 — — — — — —

Adam (Tuned ϵ) 800 — — — — — —

K-FAC 3200 — — — 1.92 × 10−1 — —

K-FAC (Untuned) 3200 — — — — — —

K-FAC (Unadaptive) 400 — — — — — —

AdamQLR (Hessian) 3200 — — — 3.04 × 10−2 0.8 1.9
AdamQLR (Undamped) 3200 — — — — — —

AdamQLR 3200 — — — 1.17 × 10−5 0.7 1.8
AdamQLR (Untuned) 3200 — — — — 0.5 2.0

Baydin SGD 50 — — — — — —

SVHN

SGD Minimal 1600 3.86 × 10−2 — — — — —

SGD Full 1600 6.10 × 10−3 0.986 8.61 × 10−7 — — —

Adam 800 4.10 × 10−4 — — — — —

Adam (Untuned) 256 — — — — — —

Adam (Tuned ϵ) 400 — — — — — —

K-FAC 800 — — — 6.40 × 10−1 — —

K-FAC (Untuned) 3200 — — — — — —

K-FAC (Unadaptive) 1600 — — — — — —

AdamQLR 3200 — — — 4.73 × 10−1 0.6 1.1
AdamQLR (Untuned) 3200 — — — — 0.5 2.0

Baydin SGD 800 — — — — — —

CIFAR-10

SGD Minimal 200 3.47 × 10−2 — — — — —

SGD Full 400 3.83 × 10−2 0.920 8.74 × 10−4 — — —

Adam 100 2.04 × 10−4 — — — — —

Adam (Untuned) 128 — — — — — —

K-FAC 1600 — — — 9.03 × 10−1 — —

K-FAC (Untuned) 3200 — — — — — —

AdamQLR (Hessian) 3200 — — — 6.00 × 10−1 0.9 3.7
AdamQLR (Undamped) 1600 — — — — — —

AdamQLR 3200 — — — 2.99 × 10−5 0.7 1.3
AdamQLR (Untuned) 3200 — — — — 0.5 2.0

Penn Treebank

SGD Minimal 20 4.61 × 10−2 — — — — —

SGD Full 35 5.01 × 10−2 0.891 1.24 × 10−3 — — —

Adam 50 2.54 × 10−4 — — — — —

Adam (Untuned) 30 — — — — — —

AdamQLR (Untuned) 30 — — — 1.00 × 10−3 0.5 2.0
AdamQLR (Tuned) 20 — — — 7.54 × 10−1 0.7 2.2

AdamQLR 35 — — — 3.53 × 10−2 0.9 2.9
AdamQLR (Untuned) 30 — — — — 0.5 2.0
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Table 3: System configurations used to run our experiments.

Type CPU GPU (NVIDIA) Python JAX CUDA cuDNN

Consumer Desktop Intel Core i7-3930K RTX 2080GTX 3.10.11 0.3.25 11.4 8.05

Local Cluster Intel Core i9-10900X RTX 2080GTX 3.10.11 0.3.25 11.8 8.05

Table 4: Licences under which we use datasets in this work

Dataset Licence Source Input Output Total Size

UCI Energy
Creative Commons Attribution 4.0

International (CC BY 4.0)

Tsanas & Xifara (2012);

Gal & Ghahramani (2016)
8-Vector Scalar 692

UCI Protein None specified
Rana (2013);

Gal & Ghahramani (2016)
9-Vector Scalar 45 730

Fashion-MNIST MIT Xiao et al. (2017) 28× 28 Image Class (from 10) 60 000
CIFAR-10 None specified Krizhevsky (2009) 32× 32 Image Class (from 10) 60 000

SVHN None specified Netzer et al. (2011) 32× 32 Image Class (from 10) 99 289

and test losses — combined with AdamQLR (Untuned)’s

robustness on other experiments, this leads us to suspect

that a transformer-specific choice of default hyperparame-

ters would provide similar robustness in this setting. We

leave an investigation of these alternative defaults to future

work.

B.1.3. NUMERICAL RESULTS

In Table 5, we give a numerical presentation of the results in

Figures 2, their corresponding loss plots from Figure 5 (Ap-

pendix B.1.1) and our additional Penn Treebank study from

Figure 6 (Appendix B.1.2). We use a similar bootstrapping

technique to Section 4 to give estimates for typical runtimes

and numbers of steps completed.

B.1.4. FIXED-RUNTIME COMPARISONS

Our main results in Section 4 impose a primary constraint

of a fixed number of epochs, with a secondary constraint

of a runtime limit. Further, since our hyperparameter op-

timisation sought a minimal validation loss, the training

loss evolutions display an early-stopping-like behaviour in

which they do not fully converge. To develop additional

context on AdamQLR’s performance, we repeat these ex-

periments without the primary number-of-epochs constraint,

such that our hyperparameter tuning directly optimises for

the best loss attained after the 15 minute runtime limit, and

the algorithms are evaluated on the same metric. Figure 7

and Table 6 show results where we optimised for final vali-

dation loss, while Figure 8 and Table 7 show results where

the hyperparameters were optimised to minimise final train-

ing loss. This latter setting allows us to compare the naïve

power of each optimiser to optimise the given objective in

isolation.

These results display an interesting tendency for K-FAC to

wildly diverge in the later phases of training on Fashion-

MNIST, an effect which AdamQLR is largely able to avoid.

Broadly speaking, AdamQLR gives competitive general-

isation performance on UCI Energy and UCI Protein in

Figure 7, with a more pronounced overfitting behaviour on

larger datasets. However, on CIFAR-10 AdamQLR (Tuned)

diverges severely. We additionally see an effective demon-

stration of AdamQLR’s optimisation power in Figure 8 —

although training performance on Fashion-MNIST again

lags behind Adam in this setting, larger datasets achieve par-

ticularly strong training loss evolutions, though CIFAR-10

remains unstable.

B.2. Sensitivity Studies

To justify our configurations and further demonstrate the

utility of our algorithm, we conduct a range of sensitivity ex-

periments for AdamQLR (Tuned) trained on Fashion-MNIST

under the same conditions as in Section 4.4. All hyperpa-

rameters except for the one under investigation are fixed

at the best values found for ASHA in those experiments.

Again, our plots show the averages of median trends of

bootstrap-sampled sets of 50 repetitions for each configura-

tion considered.

B.2.1. LEARNING RATE RESCALING

Firstly, we analyse the accuracy of our learning rate selec-

tion strategy by executing our algorithm as normal, but set-

ting ³← k³ for each k in {2−1.0, 2−0.8, 2−0.6, · · · , 21.0}.
In effect, we investigate the potential for systemic bias in

our learning rate selection by asking if our results would

improve with a constant scaling factor on those learning

rates.

Our results in Figure 9 show the k = 21.0 case exhibiting

large variance due to unstable runs, while the best training
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Figure 6: Median training (left) and test (right) loss trajectories for Penn Treebank on GPT-2, bootstrap-sampled over 10

repetitions per algorithm. Hyperparameters chosen by ASHA over 200 initialisations. Note changes of scale on the time

axes. See also our numerical presentation in Table 5.

Table 5: Numerical study of the results shown in Figures 2, 5 and 6: final statistics after epoch-constrained training on our

benchmark tasks.

Dataset Algorithm Training Loss Training Accuracy Test Loss Test Accuracy Generalisation Gap Total Steps Total Time (s)

UCI Energy

SGD Minimal 0.000 674 ± 0.000 031 — 0.001 245 ± 0.000 049 — 0.000 571 ± 0.000 081 24 000 ± 0 276.79 ± 0.30

SGD Full 0.000 431 ± 0.000 019 — 0.000 657 ± 0.000 016 — 0.000 226 ± 0.000 035 8000 ± 0 134.37 ± 0.34

Adam 0.000 282 ± 0.000 026 — 0.000 768 ± 0.000 029 — 0.000 486 ± 0.000 054 4000 ± 0 94.05 ± 0.11

Adam (Untuned) 0.000 596 ± 0.000 021 — 0.001 147 ± 0.000 058 — 0.000 550 ± 0.000 079 4000 ± 0 77.92 ± 0.49

K-FAC 0.000 134 9± 0.000 005 6 — 0.000 843 ± 0.000 027 — 0.000 708 ± 0.000 032 48 000 ± 0 580.38 ± 0.46

K-FAC (Untuned) 0.000 295 3± 0.000 009 4 — 0.001 069 ± 0.000 039 — 0.000 774 ± 0.000 048 1027 ± 20 64.7 ± 1.1

AdamQLR 0.000 333 0± 0.000 008 7 — 0.000 873 ± 0.000 021 — 0.000 540 ± 0.000 030 4000 ± 0 92.49 ± 0.10

AdamQLR (Untuned) 1.6× 1029 ± 5.3 × 1028 — 1.3× 1029 ± 4.2 × 1028 — −3.6× 1028 ± 9.5 × 1028 175.0± 2.6 10.82 ± 0.32

UCI Protein

SGD Minimal 0.2583 ± 0.0041 — 0.2714 ± 0.0019 — 0.0132 ± 0.0060 17 600 ± 0 249.16 ± 0.75

SGD Full 0.2401 ± 0.0088 — 0.2497 ± 0.0016 — 0.010 ± 0.010 70 000 ± 0 648.69 ± 0.52

Adam 0.2370 ± 0.0029 — 0.2475 ± 0.0011 — 0.0105 ± 0.0040 8800 ± 0 185.62 ± 0.56

Adam (Untuned) 0.2511 ± 0.0014 — 0.262 49 ± 0.000 52 — 0.0114 ± 0.0019 7000 ± 0 182.31 ± 0.75

K-FAC 0.2015 ± 0.0010 — 0.230 18 ± 0.000 77 — 0.0287 ± 0.0018 2200 ± 0 146.89 ± 0.60

K-FAC (Untuned) 0.2010 ± 0.0010 — 0.229 89 ± 0.000 90 — 0.0289 ± 0.0020 2200 ± 0 148.47 ± 0.66

AdamQLR 0.2241 ± 0.0048 — 0.237 33 ± 0.000 76 — 0.0132 ± 0.0056 17 600 ± 0 284.14 ± 0.30

AdamQLR (Untuned) 0.2451 ± 0.0017 — 0.257 32 ± 0.000 56 — 0.0122 ± 0.0022 2200 ± 0 138.13 ± 0.45

Fashion-MNIST

SGD Minimal 0.244 ± 0.011 0.9070 ± 0.0066 0.3678 ± 0.0013 0.872 22± 0.000 42 0.124 ± 0.013 5000 ± 0 79.671± 0.064

SGD Full 0.2530 ± 0.0042 0.9088 ± 0.0023 0.3738 ± 0.0016 0.871 15± 0.000 56 0.1209 ± 0.0058 630 ± 0 15.16 ± 0.37

Adam 0.2292 ± 0.0052 0.9142 ± 0.0020 0.3822 ± 0.0015 0.873 20± 0.000 72 0.1530 ± 0.0067 1250 ± 0 26.286± 0.057

Adam (Untuned) 0.214 ± 0.011 0.9214 ± 0.0045 0.3899 ± 0.0011 0.874 37± 0.000 74 0.176 ± 0.012 10 000 ± 0 140.47 ± 0.26

K-FAC 0.0904 ± 0.0016 0.976 12± 0.000 89 0.4572 ± 0.0028 0.868 92± 0.000 64 0.3668 ± 0.0044 160 ± 0 13.378± 0.082

K-FAC (Untuned) 0.1054 ± 0.0023 0.970 58± 0.000 72 0.4416 ± 0.0033 0.870 70± 0.000 47 0.3361 ± 0.0056 160 ± 0 9.66 ± 0.35

AdamQLR 0.2664 ± 0.0023 0.9076 ± 0.0012 0.371 00 ± 0.000 78 0.870 40± 0.000 21 0.1046 ± 0.0030 160 ± 0 10.53 ± 0.20

AdamQLR (Untuned) 0.2692 ± 0.0029 0.9050 ± 0.0010 0.370 28 ± 0.000 60 0.871 00± 0.000 28 0.1011 ± 0.0035 160 ± 0 10.656± 0.075

SVHN

SGD Minimal 0.1544 ± 0.0019 0.9337 ± 0.0013 0.5344 ± 0.0042 0.842 87± 0.000 81 0.3800 ± 0.0061 390 ± 0 110.28 ± 0.22

SGD Full 0.0871 ± 0.0021 0.952 25± 0.000 58 0.3939 ± 0.0024 0.898 83± 0.000 56 0.3068 ± 0.0044 390 ± 0 110.52 ± 0.15

Adam 0.0776 ± 0.0033 0.966 36± 0.000 86 0.4827 ± 0.0038 0.8842 ± 0.0010 0.4051 ± 0.0071 770 ± 0 198.50 ± 0.13

Adam (Untuned) 0.1109 ± 0.0097 0.9696 ± 0.0031 0.3275 ± 0.0037 0.914 72± 0.000 60 0.217 ± 0.013 2390 ± 0 570.6 ± 3.8

K-FAC 0.0480 ± 0.0038 0.9828 ± 0.0011 0.4638 ± 0.0034 0.862 70± 0.000 67 0.4158 ± 0.0072 770 ± 0 500.8 ± 1.2

K-FAC (Untuned) 0.016 84 ± 0.000 78 0.997 62± 0.000 24 0.4425 ± 0.0023 0.879 26± 0.000 46 0.4256 ± 0.0031 200 ± 0 221.72 ± 0.17

AdamQLR 0.0892 ± 0.0027 0.974 46± 0.000 80 0.4034 ± 0.0054 0.895 95± 0.000 80 0.3142 ± 0.0081 200 ± 0 77.03 ± 0.71

AdamQLR (Untuned) 0.0876 ± 0.0029 0.975 05± 0.000 69 0.3952 ± 0.0060 0.897 60± 0.001 00 0.3076 ± 0.0089 200 ± 0 78.04 ± 0.39

CIFAR-10

SGD Minimal 0.2005 ± 0.0064 0.9261 ± 0.0035 0.8074 ± 0.0035 0.800 03± 0.000 83 0.6069 ± 0.0099 16 200 ± 0 1846 ± 11

SGD Full 0.3683 ± 0.0087 0.8633 ± 0.0027 0.5975 ± 0.0082 0.8065 ± 0.0024 0.229 ± 0.017 8136 ± 0 1058.6 ± 2.7

Adam 0.173 ± 0.010 0.9344 ± 0.0065 0.7095 ± 0.0031 0.823 64± 0.000 55 0.536 ± 0.013 32 400 ± 0 3480.1 ± 4.0

Adam (Untuned) 0.140 ± 0.015 0.9475 ± 0.0044 0.6322 ± 0.0039 0.842 42± 0.000 70 0.493 ± 0.019 25 344 ± 0 3310 ± 180

K-FAC 0.0856 ± 0.0017 0.943 01± 0.000 91 0.8087 ± 0.0024 0.795 93± 0.000 52 0.7231 ± 0.0041 2088 ± 0 1601 ± 16

K-FAC (Untuned) 0.0589 ± 0.0014 0.982 77± 0.000 61 0.8068 ± 0.0020 0.806 61± 0.000 71 0.7479 ± 0.0034 1080 ± 0 1227.0 ± 1.9

AdamQLR 0.3202 ± 0.0040 0.8934 ± 0.0012 0.733 ± 0.011 0.7931 ± 0.0027 0.412 ± 0.015 1080 ± 0 463.73 ± 0.66

AdamQLR (Untuned) 0.3213 ± 0.0035 0.895 07± 0.000 98 0.706 ± 0.015 0.7986 ± 0.0032 0.385 ± 0.018 1080 ± 0 461.80 ± 0.42

Penn Treebank

SGD Minimal 4.413 ± 0.028 — 5.394 ± 0.098 — 0.98 ± 0.13 51 600 ± 0 10 090 ± 190

SGD Full 5.177 ± 0.045 — 5.330 ± 0.063 — 0.15 ± 0.11 53 100 ± 0 10 030 ± 140

Adam 4.310 ± 0.026 — 5.52 ± 0.11 — 1.21 ± 0.13 37 100 ± 0 9001 ± 14

Adam (Untuned) 4.322 ± 0.029 — 5.64 ± 0.17 — 1.31 ± 0.20 44 200 ± 0 21 130 ± 110

AdamQLR 4.418 ± 0.029 — 5.56 ± 0.13 — 1.15 ± 0.16 29 500 ± 0 13 930 ± 190

AdamQLR (Untuned) 5.13 ± 0.33 — 5.46 ± 0.12 — 0.33 ± 0.46 44 200 ± 0 19 200 ± 3000
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Figure 7: Median training (left) and test (right) loss trajectories, bootstrap-sampled over 50 repetitions per algorithm.

Hyperparameters chosen by ASHA over 200 initialisations to minimise validation loss after a fixed runtime of 15 minutes.

Note changes of scale on the time axes. See also our numerical comparison in Table 6.
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Table 6: Numerical study of the results shown in Figure 7: final statistics after runtime-constrained training on our benchmark

tasks, with hyperparameters optimised to minimise validation loss.

Dataset Algorithm Training Loss Training Accuracy Test Loss Test Accuracy Generalisation Gap Total Steps Total Time (s)

UCI Energy

SGD Minimal 0.000 559 ± 0.000 017 — 0.001 133 ± 0.000 033 — 0.000 574 ± 0.000 049 67 771 ± 33 891.225± 0.023

SGD Full 0.000 384 ± 0.000 028 — 0.001 000 ± 0.000 051 — 0.000 616 ± 0.000 079 79 380 ± 67 889.581± 0.054

Adam 0.000 190 3± 0.000 005 2 — 0.001 004 ± 0.000 043 — 0.000 814 ± 0.000 049 38 460 ± 110 889.118± 0.070

Adam (Untuned) 0.000 184 9± 0.000 006 0 — 0.001 053 ± 0.000 051 — 0.000 868 ± 0.000 057 45 570 ± 220 889.297± 0.053

K-FAC 0.000 103 4± 0.000 006 9 — 0.000 895 ± 0.000 040 — 0.000 791 ± 0.000 047 67 983 ± 70 887.048± 0.057

K-FAC (Untuned) 0.000 311 ± 0.000 014 — 0.001 071 ± 0.000 044 — 0.000 760 ± 0.000 059 1011 ± 28 63.7 ± 1.7

AdamQLR 0.000 380 8± 0.000 009 0 — 0.000 832 ± 0.000 028 — 0.000 451 ± 0.000 037 36 463 ± 31 887.179± 0.061

AdamQLR (Untuned) 1.9× 1029 ± 2.9 × 1028 — 1.7× 1029 ± 3.3 × 1028 — −2.2× 1028 ± 6.2 × 1028 175.0± 2.8 10.63 ± 0.19

UCI Protein

SGD Minimal 0.2595 ± 0.0017 — 0.2696 ± 0.0024 — 0.0101 ± 0.0041 13 849 ± 61 887.052± 0.031

SGD Full 0.2227 ± 0.0042 — 0.238 98 ± 0.000 80 — 0.0163 ± 0.0050 54 190 ± 120 886.931± 0.032

Adam 0.2211 ± 0.0014 — 0.240 47 ± 0.000 72 — 0.0194 ± 0.0021 24 520 ± 130 886.767± 0.052

Adam (Untuned) 0.2264 ± 0.0024 — 0.244 04 ± 0.000 60 — 0.0176 ± 0.0030 34 000 ± 220 886.737± 0.054

K-FAC 0.1951 ± 0.0020 — 0.225 97 ± 0.000 69 — 0.0309 ± 0.0027 22 466 ± 90 884.757± 0.089

K-FAC (Untuned) 0.1932 ± 0.0013 — 0.2251 ± 0.0012 — 0.0320 ± 0.0025 12 890 ± 48 884.557± 0.074

AdamQLR 0.2147 ± 0.0026 — 0.234 18 ± 0.000 15 — 0.0195 ± 0.0028 38 623 ± 57 884.319± 0.096

AdamQLR (Untuned) 0.2218 ± 0.0010 — 0.240 02 ± 0.000 62 — 0.0182 ± 0.0016 14 089 ± 20 886.631± 0.068

Fashion-MNIST

SGD Minimal 0.0282 ± 0.0013 0.9942 ± 0.0011 0.7486 ± 0.0029 0.867 06± 0.000 38 0.7204 ± 0.0043 44 110 ± 200 886.24 ± 0.21

SGD Full 0.2351 ± 0.0028 0.9195 ± 0.0011 0.355 19 ± 0.000 57 0.875 04± 0.000 19 0.1201 ± 0.0034 20 940 ± 29 886.380± 0.052

Adam 0.000 996 ± 0.000 023 1.0 ± 0 1.618 ± 0.013 0.860 59± 0.000 42 1.617 ± 0.013 12 073 ± 24 886.212± 0.081

Adam (Untuned) 0.0345 ± 0.0038 0.9936 ± 0.0092 0.9026 ± 0.0038 0.867 93± 0.000 47 0.8681 ± 0.0076 62 801 ± 88 884.692± 0.087

K-FAC 3.9× 109 ± 3.3 × 109 0.045 ± 0.017 3.2× 109 ± 2.7 × 109 0.10 ± 0 −7.0× 108 ± 6.0 × 109 1888 ± 48 69.8 ± 1.7

K-FAC (Untuned) 4.0× 1013 ± 1.9 × 1014 0.084 ± 0.047 5.0× 1013 ± 2.2 × 1014 0.10 ± 0 1.0× 1013 ± 4.1 × 1014 5120 ± 240 425 ± 22

AdamQLR 0.000 188 ± 0.000 025 1.0 ± 0 2.137 ± 0.026 0.857 40± 0.000 43 2.137 ± 0.026 11 907 ± 47 883.45 ± 0.14

AdamQLR (Untuned) 0.000 231 ± 0.000 020 1.0 ± 0 2.143 ± 0.022 0.857 80± 0.000 61 2.142 ± 0.022 11 934 ± 34 886.09 ± 0.19

SVHN

SGD Minimal 0.0344 ± 0.0035 0.989 95± 0.000 80 0.5214 ± 0.0015 0.884 78± 0.000 43 0.4870 ± 0.0050 3551 ± 16 869.955± 0.059

SGD Full 0.000 055 ± 0.000 015 1.0 ± 0 0.6038 ± 0.0047 0.913 60± 0.000 42 0.6037 ± 0.0047 3282 ± 12 867.930± 0.079

Adam 0.0681 ± 0.0066 0.9788 ± 0.0025 0.3845 ± 0.0028 0.910 66± 0.000 67 0.3164 ± 0.0094 3516 ± 13 868.24 ± 0.16

Adam (Untuned) 0.0345 ± 0.0024 0.9887 ± 0.0011 0.3737 ± 0.0023 0.918 63± 0.000 42 0.3392 ± 0.0047 3635 ± 25 867.911± 0.078

K-FAC 0.0534 ± 0.0032 0.992 07± 0.000 83 0.4658 ± 0.0011 0.861 04± 0.000 40 0.4125 ± 0.0043 1296.0± 4.9 848.48 ± 0.14

K-FAC (Untuned) 0.0212 ± 0.0020 0.997 17± 0.000 41 0.4200 ± 0.0025 0.880 35± 0.000 58 0.3988 ± 0.0045 770.0± 5.6 843.65 ± 0.33

AdamQLR 0.000 73 ± 0.000 41 0.999 82± 0.000 15 0.5068 ± 0.0091 0.918 98± 0.000 84 0.5061 ± 0.0095 2184.0± 7.8 860.16 ± 0.19

AdamQLR (Untuned) 0.001 08 ± 0.000 53 0.999 72± 0.000 23 0.5068 ± 0.0082 0.918 54± 0.000 97 0.5058 ± 0.0088 2168 ± 11 862.534± 0.076

CIFAR-10

SGD Minimal 0.0400 ± 0.0028 0.9868 ± 0.0010 1.2623 ± 0.0053 0.777 28± 0.000 36 1.2222 ± 0.0082 26 157 ± 70 3567.73 ± 0.20

SGD Full 0.007 43 ± 0.000 57 0.997 52± 0.000 19 1.6225 ± 0.0021 0.784 08± 0.000 71 1.6151 ± 0.0027 14 950 ± 29 3564.70 ± 0.21

Adam 0.0274 ± 0.0017 0.989 87± 0.000 36 1.4217 ± 0.0048 0.7760 ± 0.0010 1.3943 ± 0.0064 20 855 ± 28 3565.16 ± 0.13

Adam (Untuned) 0.1175 ± 0.0077 0.9555 ± 0.0042 0.6830 ± 0.0031 0.8434 ± 0.0010 0.566 ± 0.011 31 420 ± 180 3566.670± 0.059

K-FAC 0.792 ± 0.015 0.7256 ± 0.0042 0.7967 ± 0.0032 0.725 17± 0.000 84 0.005 ± 0.018 8609 ± 34 3548.41 ± 0.18

K-FAC (Untuned) 0.0325 ± 0.0012 0.991 96± 0.000 37 0.9141 ± 0.0044 0.806 56± 0.000 52 0.8816 ± 0.0055 3097 ± 16 3541.10 ± 0.14

AdamQLR 630 ± 170 0.1283 ± 0.0018 1.4× 1012 ± 2.7 × 1012 0.10 ± 0 1.4× 1012 ± 2.7 × 1012 4100 ± 760 1120 ± 210

AdamQLR (Untuned) 190 ± 120 0.171 ± 0.043 9.0× 1010 ± 4.5 × 1011 0.13 ± 0.12 9.0× 1010 ± 4.5 × 1011 5700 ± 1000 2450 ± 450
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Figure 8: Median training (left) and test (right) loss trajectories, bootstrap-sampled over 50 repetitions per algorithm.

Hyperparameters chosen by ASHA over 200 initialisations to minimise training loss after a fixed runtime of 15 minutes,

characterising the naïve power of each algorithm. Note changes of scale on the time axes. See also our numerical comparison

in Table 7
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Table 7: Numerical study of the results shown in Figure 8: final statistics after runtime-constrained training on our benchmark

tasks, with hyperparameters optimised to minimise training loss.

Dataset Algorithm Training Loss Training Accuracy Test Loss Test Accuracy Generalisation Gap Total Steps Total Time (s)

UCI Energy

SGD Minimal 0.000 458 ± 0.000 015 — 0.001 029 ± 0.000 028 — 0.000 571 ± 0.000 044 68 023 ± 29 891.103± 0.017

SGD Full 0.000 355 ± 0.000 013 — 0.000 947 ± 0.000 052 — 0.000 592 ± 0.000 065 53 935 ± 25 889.305± 0.049

Adam 0.000 232 ± 0.000 011 — 0.000 952 ± 0.000 035 — 0.000 720 ± 0.000 046 13 486.0 ± 6.3 888.054± 0.063

Adam (Untuned) 0.000 185 3± 0.000 007 4 — 0.001 064 ± 0.000 051 — 0.000 879 ± 0.000 059 45 640 ± 190 889.305± 0.064

K-FAC 0.000 271 0± 0.000 007 7 — 0.001 055 ± 0.000 032 — 0.000 784 ± 0.000 040 971 ± 25 23.47 ± 0.46

K-FAC (Untuned) 0.000 308 ± 0.000 014 — 0.001 075 ± 0.000 043 — 0.000 767 ± 0.000 057 1018 ± 28 64.0 ± 2.0

AdamQLR 0.000 218 3± 0.000 004 8 — 0.000 912 ± 0.000 025 — 0.000 693 ± 0.000 030 38 402 ± 63 889.021± 0.051

AdamQLR (Untuned) 1.9× 1029 ± 3.2 × 1028 — 1.7× 1029 ± 2.8 × 1028 — −2.3× 1028 ± 6.0 × 1028 175.0 ± 3.1 10.62 ± 0.19

UCI Protein

SGD Minimal 0.2535 ± 0.0091 — 0.262 85 ± 0.000 88 — 0.0094 ± 0.0099 75 471 ± 52 886.875± 0.094

SGD Full 0.2214 ± 0.0014 — 0.241 21 ± 0.000 66 — 0.0198 ± 0.0020 13 813.0 ± 9.3 886.756± 0.057

Adam 0.2209 ± 0.0013 — 0.237 47 ± 0.000 67 — 0.0166 ± 0.0020 39 106 ± 20 886.605± 0.056

Adam (Untuned) 0.2266 ± 0.0030 — 0.244 19 ± 0.000 58 — 0.0176 ± 0.0036 34 000 ± 200 886.724± 0.047

K-FAC 0.1994 ± 0.0018 — 0.2262 ± 0.0012 — 0.0268 ± 0.0030 22 381 ± 18 884.61 ± 0.11

K-FAC (Untuned) 0.1927 ± 0.0013 — 0.2254 ± 0.0014 — 0.0327 ± 0.0027 12 907 ± 47 884.588± 0.083

AdamQLR 0.2109 ± 0.0026 — 0.233 11 ± 0.000 55 — 0.0223 ± 0.0032 54 825 ± 37 886.587± 0.060

AdamQLR (Untuned) 0.2215 ± 0.0010 — 0.239 81 ± 0.000 57 — 0.0183 ± 0.0016 14 088 ± 26 886.631± 0.061

Fashion-MNIST

SGD Minimal 0.019 21 ± 0.000 83 0.997 63± 0.000 52 0.8154 ± 0.0046 0.866 04± 0.000 59 0.7962 ± 0.0054 43 837 ± 51 881.95 ± 0.69

SGD Full 0.001 19 ± 0.000 27 0.999 78± 0.000 14 2.492 ± 0.051 0.854 16± 0.000 54 2.490 ± 0.051 12 106.0 ± 5.3 886.384± 0.070

Adam 0.000 034 ± 0.000 021 1.0 ± 0 3.26 ± 0.14 0.865 24± 0.000 48 3.26 ± 0.14 20 870 ± 46 885.83 ± 0.10

Adam (Untuned) 0.0342 ± 0.0031 0.9948 ± 0.0086 0.9023 ± 0.0038 0.868 01± 0.000 36 0.8681 ± 0.0070 62 787 ± 88 884.72 ± 0.12

K-FAC 9.0× 1013 ± 2.8 × 1014 0.038 ± 0.010 1.1 ± 3.9 × 1014 0.10 ± 0 2.0× 1013 ± 6.7 × 1014 5130 ± 110 437 ± 13

K-FAC (Untuned) 2.7× 1013 ± 8.2 × 1013 0.096 ± 0.061 1.3× 1014 ± 4.4 × 1014 0.10 ± 0 1.1× 1014 ± 5.2 × 1014 5170 ± 240 433 ± 24

AdamQLR 0.000 001 9± 0.000 002 7 1.0 ± 0 3.500 ± 0.055 0.860 91± 0.000 87 3.500 ± 0.055 20 872 ± 47 885.711± 0.072

AdamQLR (Untuned) 0.000 239 ± 0.000 025 1.0 ± 0 2.148 ± 0.024 0.857 97± 0.000 61 2.148 ± 0.024 11 937 ± 35 886.09 ± 0.22

SVHN

SGD Minimal 0.000 694 ± 0.000 019 1.0 ± 0 0.8492 ± 0.0058 0.831 71± 0.000 44 0.8485 ± 0.0058 3190.00± 0.28 867.716± 0.069

SGD Full 0.000 089 5± 0.000 004 0 1.0 ± 0 0.6520 ± 0.0025 0.883 26± 0.000 38 0.6519 ± 0.0025 3479.00± 0.47 867.876± 0.089

Adam 0.000 047 22± 0.000 000 95 1.0 ± 0 0.9528 ± 0.0053 0.844 17± 0.000 90 0.9528 ± 0.0053 3154.00± 0.51 865.862± 0.078

Adam (Untuned) 0.0349 ± 0.0023 0.9888 ± 0.0014 0.3743 ± 0.0026 0.918 50± 0.000 45 0.3394 ± 0.0050 3641 ± 25 867.911± 0.068

K-FAC 0.0254 ± 0.0021 0.997 02± 0.000 36 0.4344 ± 0.0026 0.8775 ± 0.0011 0.4090 ± 0.0047 786.00± 0.34 844.76 ± 0.18

K-FAC (Untuned) 0.0208 ± 0.0015 0.997 21± 0.000 35 0.4202 ± 0.0032 0.880 47± 0.000 62 0.3994 ± 0.0047 770.0 ± 5.4 843.69 ± 0.37

AdamQLR 0.0016 ± 0.0011 0.999 61± 0.000 18 0.5103 ± 0.0082 0.915 82± 0.000 69 0.5088 ± 0.0093 2180.0 ± 6.2 860.22 ± 0.15

AdamQLR (Untuned) 0.000 99 ± 0.000 59 0.999 74± 0.000 21 0.5074 ± 0.0060 0.9185 ± 0.0010 0.5064 ± 0.0066 2167 ± 12 862.534± 0.092

CIFAR-10

SGD Minimal 0.1939 ± 0.0081 0.9262 ± 0.0057 0.7827 ± 0.0034 0.7961 ± 0.0010 0.589 ± 0.012 33 701 ± 21 3568.63 ± 0.10

SGD Full 0.0264 ± 0.0014 0.992 45± 0.000 35 1.2644 ± 0.0064 0.792 74± 0.000 50 1.2380 ± 0.0078 26 676 ± 12 3566.73 ± 0.13

Adam 0.0559 ± 0.0039 0.9817 ± 0.0019 1.3471 ± 0.0034 0.756 20± 0.000 57 1.2912 ± 0.0073 26 696 ± 11 3565.90 ± 0.11

Adam (Untuned) 0.1192 ± 0.0058 0.9561 ± 0.0036 0.6822 ± 0.0036 0.8433 ± 0.0011 0.5630 ± 0.0094 31 390 ± 180 3566.676± 0.069

K-FAC 1.180 ± 0.019 0.5787 ± 0.0082 1.1067 ± 0.0080 0.6116 ± 0.0020 −0.074 ± 0.027 9660.0 ± 1.7 3548.50 ± 0.13

K-FAC (Untuned) 0.0327 ± 0.0016 0.992 03± 0.000 34 0.9137 ± 0.0043 0.806 52± 0.000 49 0.8810 ± 0.0059 3100 ± 14 3541.06 ± 0.17

AdamQLR 820 ± 420 0.1268 ± 0.0028 7.0× 1012 ± 1.7 × 1013 0.10 ± 0 7.0× 1012 ± 1.7 × 1013 5130 ± 960 1390 ± 260

AdamQLR (Untuned) 180 ± 120 0.174 ± 0.048 8.0× 1010 ± 5.5 × 1011 0.123 ± 0.088 8.0× 1010 ± 5.5 × 1011 5770 ± 970 2490 ± 420

Figure 9: Sensitivity studies over learning rate, which is scaled by a variety of constant factors k for our Fashion-MNIST

trial from Section 4.4.
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losses are obtained for k slightly larger than unity. This

makes sense given our use of damping: if stability can be

achieved without damping for any given update, then the

damping will serve only to downsize our proposed update

step, so we should expect the best results to be obtained

by slightly increasing it again. However, test loss appears

generally less sensitive to k, with the lowest value obtained

for k = 1: this would also be expected under damping,

since we would hope the damping would increase generali-

sation performance. In aggregate, these results confirm our

approach accurately selects the correct learning rate to use

for any given optimisation step.

B.2.2. INITIAL DAMPING

Next, we consider the initial value ¼0 assigned to our

Levenberg-Marquardt damping term ¼, testing values in

{10−8.0, 10−7.5, 10−7.0, · · · , 100.0}. Here, we seek to

quantify the trade-off between damping’s stabilising effect

and its tendency to worsen training loss. Figure 10 presents

our results.

With the exception of the very smallest values, we see our

performance is largely insensitive to ¼0. This matches our

empirical observation that damping becomes most important

for larger-scale problems than our Fashion-MNIST setting,

and thus has minimal effect here. However, given its sub-

stantial importance in these more complex experiments, it is

reassuring that the inclusion of damping does not dramati-

cally worsen performance when its influence is not required.

B.2.3. BATCH SIZE

In Figure 11, we consider each batch size available to ASHA

in Section 4.4 ({50, 100, 200, 400, 800, 1 600, 3 200}) to in-

vestigate the effect of this hyperparameter on our algorithm.

Since the optimal batch size selected by ASHA for

AdamQLR was generally large (3 200 in this case), it is

perhaps unsurprising that we see divergence from smaller

batches. This also matches our intuition: unlike classical

first-order methods, AdamQLR uses each batch to (implic-

itly) construct a full curvature matrix for the optimisation

surface, which magnifies the importance of having a low-

bias sample of the training data. Empirically, we found the

computational benefits of fewer batches outweighed the in-

creased cost of computing each batch, so this preference for

larger batch sizes aligns with our desire to minimise runtime.

Thus, our results show a clear trend that larger batch sizes

give greater training and generalisation performance.

B.2.4. DAMPING STEPPING FACTOR

Finally, we explore the effect of different stepping factors

by setting Éinc to values in {20.0, 20.2, 20.4, · · · , 22.0}, then

choosing a symmetric Édec =
1

Éinc
. Our results are plotted in

Figure 12.

The impact of different damping stepping factors becomes

most apparent when damping plays a key role in stabilis-

ing the optimiser, which does not happen in this Fashion-

MNIST test case. However, the plots match our subjective

observation that the behaviour at the very start of training is

critical to defining the optimisation trajectory, with a high

variance at around 2 s of runtime indicating an increased

sensitivity here. Moreover, the results reinforce our intuition

that the exact factor by which the damping ¼ is modified

is not crucially important, so long as AdamQLR is capable

of making rapid adjustments over successive optimisation

iterations when this becomes necessary.

B.2.5. ADAM (BATCH SIZE AND LEARNING RATE) AND

K-FAC (BATCH SIZE AND INITIAL DAMPING

To reinforce our conclusions about the robustness of

AdamQLR, we repeat our sensitivity study on batch

size applied to Adam, and perform an additional

study over learning rates, setting ³ to values in

{10−6.00, 10−5.67, 10−5.33, · · · , 100.00}. Our results are

plotted in Figures 13 and 14, respectively.

Similarly, we examine the robustness of K-FAC by means

of repeated sensitivity studies over batch size and initial

damping. These results are plotted in Figures 15 and 16,

respectively.

We see Adam is substantially more sensitive to its learning

rate than AdamQLR and K-FAC are to any of their hyperpa-

rameters, while AdamQLR strikes a middle ground between

Adam and K-FAC in its sensitivity to batch size. Despite

AdamQLR’s near-invariance to initial damping, this hyper-

parameter has a sizeable impact on K-FAC. These results

support the conclusion that AdamQLR is at least as robust

as — and for some particularly important hyperparameters

is more robust than — Adam and K-FAC.

B.3. Ablation Studies

In addition to the algorithms plotted in Section 4, we

conduct additional experiments to study the impact of

different components of AdamQLR on its overall perfor-

mance. Specifically, we examine the effects of Levenberg-

Marquardt damping and the choice of curvature matrix used

to construct our quadratic model. We use the same exper-

imental configuration as in Section 4, including hyperpa-

rameter tuning with ASHA, and plot bootstrapped average

trends over 50 repetitions of the best hyperparameters found.

The new results presented in this section were computed on

a mix of the Consumer Desktop and Local Cluster, using one

GPU at a time. Since the GPUs are of the same model, we

expect any performance difference due to this discrepancy

to be minor.

24



Studying K-FAC Heuristics by Viewing Adam through a Second-Order Lens

Figure 10: Sensitivity studies over initial damping value ¼0 for our Fashion-MNIST trial from Section 4.4.

Figure 11: Sensitivity studies over batch size for our Fashion-MNIST trial from Section 4.4.

Figure 12: Sensitivity studies over damping stepping factor for our Fashion-MNIST trial from Section 4.4.
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Figure 13: Sensitivity studies over batch size for our Fashion-MNIST trial from Section 4.4, considering now the Adam

setting.

Figure 14: Sensitivity studies over learning rates for our Fashion-MNIST trial from Section 4.4, considering now the Adam

setting.

Figure 15: Sensitivity studies over batch size for our Fashion-MNIST trial from Section 4.4, considering now the K-FAC

setting.
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Figure 16: Sensitivity studies over initial damping for our Fashion-MNIST trial from Section 4.4, considering now the

K-FAC setting.

B.3.1. LEVENBERG-MARQUARDT DAMPING

Appropriate damping is viewed as a necessity in many

second-order algorithms in order to defend against degen-

erate parameter updates, and Figure 17 examines its inclu-

sion in AdamQLR. We consider vanilla Adam alongside

two versions of AdamQLR: one which includes damping,

and another which excludes it, and perform hyperparameter

optimisation as before on each algorithm.

On Fashion-MNIST, we see minimal effect from the inclu-

sion of damping, as the problem does not suffer greatly

from degenerate parameter updates. Thus, especially when

the internal model of objective space performs well and

damping is pushed to very low values, the damping makes a

proportionally very small difference to the updates we take.

As such, while we do benefit slightly from damping here,

the advantage is very slight.

On CIFAR-10, however, we see more dramatic differences

from the inclusion of damping, though we note the differ-

ence in horizontal scale is likely due to different optimal

batch sizes chosen by ASHA. Adjusting for this factor, we

see the undamped version of AdamQLR is substantially

less stable than the standard damped setting. This result is

intuitive — since the model is larger and is substantially

more overparameterised than in the Fashion-MNIST case,

there are likely to be more parameters to which the output of

our network is insensitive, corresponding to low-curvature

directions of optimisation space. These low-curvature di-

rections correspond to small eigenvalues of the curvature

matrix, so a naïve curvature-based approach would take

very large steps in these directions. Because the problem is

inherently non-convex and non-quadratic, such large steps

would not be well-motivated, and we would suffer a result-

ing penalty in our rapidly-excursing loss. Indeed, during

our development of AdamQLR, we observed damping to

play an important role in avoiding the destabilisation of

training. Further, damping clearly stabilises the algorithm

here to allow for more aggressive optimisation over time.

This evidence justifies our use of damping in the default

AdamQLR approach.

B.3.2. CURVATURE MATRIX

As discussed in Appendix C, there is good reason to moti-

vate both the Hessian and the Fisher matrices as curvatures

to use to select the learning rate ³ at each update step. To

explore their relative merits, we consider two versions of

AdamQLR: one which uses Hessian curvature to compute a

learning rate and update damping, and another which uses

Fisher curvature for the same purposes. The performance of

hyperparameter-optimised versions of each setting is com-

pared alongside vanilla Adam in Figure 18.

On Fashion-MNIST, we see a slight advantage for Fisher

curvature compared to the Hessian curvature, both of which

generalise very slightly better than vanilla Adam. While the

generalisation benefit does not transfer to CIFAR-10, we

still see a small speed advantage for Fisher-based curvature.

Again, we note that different optimal batch sizes are likely

responsible for most of the horizontal scaling difference.

The similarity of these results, combined with the subjec-

tively greater stability of the Fisher version of AdamQLR in

our development process, justify our use of the Fisher cur-

vature as the default in our algorithm. While Fisher-vector

products are more intricate than Hessian-vector products,

requiring a rederived component for each loss function, a rel-

atively small number of different loss functions see regular

use in practice, so we accept this additional burden.

B.3.3. ALTERNATIVE Adam (Tuned ϵ) SETTING

While the Adam optimiser is often invoked without tuning

the ϵ hyperparameter, its interpretation as a form of ‘damp-

ing’ for Adam’s ‘curvature estimate‘ invites the alternative

Adam (Tuned ϵ) setting, in which our hyperparameter op-

timisation approach also selects ϵ in the logarithmic range
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Figure 17: Evolution of Levelberg-Marquardt damping, as measured by Training (left) and Test (right) loss on Fashion-

MNIST (top) and CIFAR-10 (bottom)
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Figure 18: Evaluation of the choice of curvature matrix for the learning rate and damping calculations in AdamQLR

[10−8, 100]. Our results in Figure 19 demonstrate that this

implementation is generally interchangeable with the Adam

baseline of Section 4 in terms of performance.

B.3.4. K-FAC ADAPTIVE HEURISTICS

In addition to extending Adam with heuristics from K-FAC,

we briefly study the impact of removing these heuristics

from K-FAC. To this end, we introduce a K-FAC (Unadap-

tive) baseline, which replaces the adaptive damping, learn-

ing rate and momentum of the K-FAC setting with fixed

tuned values. The results of this additional comparison are

shown in Figure 20, which shows the Unadaptive variant

makes much slower progress than vanilla K-FAC, and in

some cases the lack of adaptivity completely destabilises

K-FAC. This gives convincing evidence that the adaptive

heuristics make a significant difference to K-FAC, and thus

reinforces the central hypothesis of this work.

We also note that correctly implementing K-FAC is an ex-

tremely subtle and complex task, with many libraries ex-

cluding some aspects of the algorithm presented by Martens

& Grosse (2015). For this reason, we feel many results

in the literature are not entirely fair comparisons between

K-FAC and other methods, which may lead to contradictory

conclusions about the effectiveness of K-FAC.

B.3.5. LEARNING RATE SCHEDULES

Many ML training approaches use learning rates which fol-

low a predefined schedule in order to improve performance.

We have chosen not to focus on learning rate scheduling

in this work, partly due to the myriad schedules available,

and partly because this can easily be incorporated into any

method we consider, including AdamQLR. In support of this

position, we introduce a new Baydin SGD baseline, which

combines the adaptive learning rate method of Baydin et al.

(2018) with our SGD Minimal setting, and compare to this

method in Figure 21.

These results show the adaptive learning rate — even when

its initialisation and hyper-learning rate are tuned — does

not perform significantly differently to the tuned fixed learn-

ing rate of SGD Minimal. This concurs with the general

belief that well-optimised learning rates tend to outperform

adaptive learning rate methods in practice.

C. Curvature Matrices: Hessian and Fisher

In this section we discuss in more detail the two main can-

didates for the curvature matrix C in our algorithm. Recall

from Section 3 that throughout we consider an arbitrary

function f(θ) representing the loss function of some net-

work parameterised by θ.
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Figure 19: Reprise of Figure 2, with additional results on an Adam (Tuned ϵ) setting extending Adam by additionally tuning

the ϵ hyperparameter.
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Figure 20: Reprise of Figure 2, with additional results on a K-FAC (Unadaptive) setting replacing adaptive heuristics with

fixed tuned values.
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Figure 21: Reprise of Figure 2, with additional results on a Baydin SGD setting examining the effect of a simple adaptive

learning rate strategy.
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C.1. Hessian Matrix

In this setting, the Hessian curvature matrix follows nat-

urally from the definition of the objective function. A

first derivative with respect to θ yields the gradient vec-

tor g = (∇θf)(θ), and repeating the derivative yields the

Hessian H = (∇θ(∇θf)
T)(θ).

C.2. Fisher Information Matrix

To draw a connection with the Fisher matrix, we must restate

our problem in a probabilistic form. We shall separate the

loss function from the neural network, naming the latter

wθ(·), and consider input-output data pairs (x,y). Let the

input data have some ground truth distribution p(x), and

suppose we choose to interpret the output of the network as

a probabilistic relationship, such that wθ(x) = log p(y|x).

For this model w, the Fisher Information Matrix (FIM, or

“the Fisher”) is defined as:

F = Ex∼p(x)Ey∼p(y|x)

[
∂ log p(y|x)

∂θ

∂ log p(y|x)

∂θ

T
]
.

(4)

In its exact form, the Fisher bears many favourable proper-

ties for use in optimisation: it is positive semi-definite by

construction (so represents a convex space), it is amenable

to efficient computation in the form of a matrix=vector prod-

uct, and provides a parameterisation-independent view of

the problem (as in the Natural Gradient Descent (Amari,

1998) family of methods).

Since
∂ log p(y|x)

∂θ
is the Jacobian of the network output wθ

with respect to the parameters θ, the outer product of deriva-

tives is readily available as part of our standard training

regime. Although p(x) is unknown, in the mini-batched

training setting it is commonly approximated by the empir-

ical distribution p̂(x) implied by our training dataset. It is

important to stress that the expectation of y is taken with

respect to the output distribution of the network, not with

respect to any ground-truth or empirical distribution p̂(y|x)
given by the training data. However, some previous work

uses the latter distribution as an approximation, resulting in

the empirical Fisher matrix, which is known to be inferior

to the true Fisher.

C.3. Gauss-Newton Matrix

We briefly note the Gauss-Newton matrix, which is also

commonly used in second-order optimisation algorithms.

We chose not to focus on this matrix because it is motivated

as a lossy approximation to the Hessian, which seemed

undesirable when we could access the exact Hessian and

Fisher matrices through Jacobian-vector products. While it

has been used in a derivation of K-FAC, we note also the

equivalence of the Fisher and Generalised Gauss-Newton

matrices when applying negative log-likelihood loss to the

natural parameters of an exponential family (Botev et al.,

2017), and to our knowledge there is only a marginal perfor-

mance difference between Fisher- and Gauss-Newton-based

K-FAC.

C.4. Adam and Fisher Matrix

While Adam is described by its authors as representing an

approximation to the Fisher matrix (Kingma & Ba, 2015),

we seek here to make the connection more explicit.

The matrix computed inside the expectation of Equation 4

has as its diagonal the elementwise square of
∂ log p(y|x)

∂θ
.

This is connected to the quantity gt = ∇θf(θt−1) com-

puted by Adam; by the chain rule, gt is precisely the product

of
∂ log p(y|x)

∂θ
and the derivative of the loss function with

respect to the model output. Neglecting the effect of the

latter allows us to view Adam’s second-moment buffer v̂t

as an approximation to the diagonal of the outer product in

Equation 4.

Further, because gt is averaged over a mini-batch of input

data, we are automatically taking approximate expectations

over p̂(x) and p̂(y|x). The approximation arises because

the underlying Fisher matrix is not constant, so the contri-

butions from each mini-batch relate to different underlying

curvatures. However, the argument motivates the idea that

Adam develops an approximation to the diagonal of the

empirical Fisher matrix in its buffer v̂t.

From this perspective, Adam’s elementwise division by the

reciprocal of v̂t is simply multiplication by the inverse (ap-

proximate) empirical Fisher, and we may interpret ϵ as a

fixed damping term. This picture is slightly corrupted by

the square root of v̂t being the quantity actually used by

Adam; this operation brings the eigenvalues of the approxi-

mate empirical Fisher closer to one, in particular increasing

problematic near-zero eigenvalues to more stable values,

thus justifying Kingma & Ba’s statement that the square

root permits more “conservative” preconditioning.
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