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Abstract
Large language models (LLMs) have significantly
advanced the field of artificial intelligence. Yet,
evaluating them comprehensively remains chal-
lenging. We argue that this is partly due to the pre-
dominant focus on performance metrics in most
benchmarks. This paper introduces CogBench,
a benchmark that includes ten behavioral met-
rics derived from seven cognitive psychology ex-
periments. This novel approach offers a toolkit
for phenotyping LLMs’ behavior. We apply
CogBench to 40 LLMs, yielding a rich and di-
verse dataset. We analyze this data using statis-
tical multilevel modeling techniques, accounting
for the nested dependencies among fine-tuned ver-
sions of specific LLMs. Our study highlights the
crucial role of model size and reinforcement learn-
ing from human feedback (RLHF) in improving
performance and aligning with human behavior.
Interestingly, we find that open-source models are
less risk-prone than proprietary models and that
fine-tuning on code does not necessarily enhance
LLMs’ behavior. Finally, we explore the effects of
prompt-engineering techniques. We discover that
chain-of-thought prompting improves probabilis-
tic reasoning, while take-a-step-back prompting
fosters model-based behaviors.

1. Introduction
Large language models (LLMs) have emerged as a ground-
breaking technology, captivating the attention of the scien-
tific community (Bommasani et al., 2021; Binz et al., 2023).
Modern LLMs have scaled to remarkable dimensions in both
architecture and datasets (Kaplan et al., 2020), revealing a
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spectrum of capabilities that were previously unimagined
(Wei et al., 2022; Brown et al., 2020). Yet, these models
also present a significant challenge: their internal workings
are largely opaque, making it difficult to fully comprehend
their behavior (Tamkin et al., 2021). This lack of under-
standing fuels ongoing debates about their capabilities and
limitations (McCoy et al., 2023; Bubeck et al., 2023).

A notable issue in these discussions is the focus of many
benchmarks on performance metrics alone (Burnell et al.,
2023). This approach often overlooks the underlying behav-
ioral mechanisms of the models, reducing benchmarks to
mere training targets rather than tools for genuine insight,
and thus failing to provide a comprehensive measure of
the models’ abilities (Schaeffer et al., 2023). How can we
overcome this problem and make progress toward a better
understanding of LLMs’ behaviors?

The field of cognitive psychology may offer solutions to
these problems. Experiments from cognitive psychology
have been used to study human behavior for many decades,
and have therefore been extensively validated. Furthermore,
they typically focus more on behavioral insights rather than
performance metrics alone. Finally, many of these exper-
iments are programmatically generated, minimizing data
leakage concerns. Many of these concepts are important to
ensure a robust evaluation of an agent’s capabilities. How-
ever, while there have been studies investigating LLMs on
individual tasks from cognitive psychology (Binz & Schulz,
2023; Dasgupta et al., 2022; Hagendorff et al., 2023; Ull-
man, 2023), no study has evaluated them holistically.

In this paper, we propose CogBench, a novel benchmark
consisting of ten behavioral metrics spanning seven cogni-
tive psychology experiments, to fill this gap. We investigate
the behaviors of 40 LLMs in total, using our benchmark to
not only compare the performance of these models but also
apply techniques from computational cognitive modeling to
understand the inner workings of their behaviors.

Our results recover the unequivocal importance of size:
larger models generally perform better and are more model-
based than smaller models. Our results also show the im-
portance of reinforcement learning from human feedback
(RLHF; Christiano et al., 2017) in aligning LLMs with
humans: RLHF’ed LLMs behave generally more human-
like and are more accurate in estimating uncertainty. Yet
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…

{BART instructions}
... 
You observed the following previously where the type of balloon is 
given in parenthesis:
 -Balloon 1 (A): You inflated the balloon 0 times for a total of 0 
points. It did not explode.
 -Balloon 2 (C): You inflated the balloon 4 times for a total of 4 
points. It did not explode.
 Q: You are currently with Balloon 3 which is a balloon of type A. 
What do you do? (Option 1 for 'skip' or 2 for 'inflate')
A: Option

{Probabilistic reasoning instructions}
... 
Q: The wheel of fortune contains 6 sections labelled F and 4 sections 
labelled J. The urn F contains (8, 2) and the urn J contains (2, 8) 
red/blue balls. A red ball was drawn. What is the probability that it 
was drawn from Urn F? (Give your probability estimate on the scale 
from 0 to 1 rounded to two decimal places) 

A: I estimate the probability of the red ball to be drawn from the urn F 
to be 0.

…

Translate them for LLMs                                                                                                                                                                LLaMA-2    GPT-4    Claude-2  PaLM-2               Humans                    

Currently earned:   0

Number of pumps: 0

Inflate Cash in

drawn:
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Left

Left Left
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Right

Right

Right

Right

…

10 behavioral metrics comparable to humans

drawn:

40 LLMs:

P(Left|red)
 is:

0.88

0.91

0.33

0.02

0.77

0.19

0.19

0.03

10.30

17.22

Prior 
weighting 0.94 0.58 0.36 0.50

Likelihood
weighting 1.55 0.35 0.73 0.40

Directed 
exploration -0.10 -0.31 -0.13 -0.08

Random 
exploration 0.01 0.00 0.00 0.00

Meta-
cognition 0.61 0.74 0.54 0.55

Learning 
rate 0.33 0.25 0.34 0.18

Optimism 
bias 0.50 0.69 0.45 0.15

Model-
basedness 0.00 0.16 0.05 0.04

Temporal 
discounting 13 10 2 15

Risk-
taking 3.04 9.47 0.39 1

Figure 1. Overview of approach and methods. CogBench provides open access to seven different cognitive psychology experiments.
These experiments are text-based and can be run to evaluate any LLM’s behavior. The experiments are submitted to LLMs as textual
prompts and the models indicate their choices by completing a given prompt. Past behavior is then concatenated to the prompt and
learning is induced via prompt-chaining. We used 40 LLMs in total, including most larger proprietary LLMs as well as many open-source
models.

our results also revealed surprising behaviors. First, while
open-source models are often believed to be more risky due
to the lack of pre-prompts, we find that, holding all else
equal, they make less risky decisions than proprietary mod-
els. Secondly, while fine-tuning on code is often believed to
improve LLMs’ behaviors, we find little evidence for this in
our benchmarking suite.

Finally, we investigate how chain-of-thought (CoT) (Wei
et al., 2023; Kojima et al., 2022) and take-a-step-back (SB)
(Zheng et al., 2023a) prompting techniques can influence
different behavioral characteristics. Our analysis suggests
that CoT is particularly effective at enhancing probabilistic
reasoning, while SB proves to be more relevant for pro-
moting model-based behaviors. This showcases insights
that can be gained by CogBench also for understanding
the effectiveness of these prompt-engineering techniques as
well as guiding users in selecting the most suitable prompt-
engineering technique based on the specific context.

Taken together, our experiments show how psychology can
offer detailed insights into artificial agents’ behavior as we
provide an openly accessible1 and challenging benchmark
to evaluate LLMs.

1https://github.com/juliancodaforno/CogBench

2. Related work
Benchmarking LLMs: As LLMs rapidly evolve, it is criti-
cal to assess their capabilities. Numerous benchmarks have
emerged to tackle this challenge, evaluating capabilities
such as grade school mathematics (Cobbe et al., 2021), gen-
eral knowledge (Joshi et al., 2017), programming (Chen
et al., 2021), reasoning (Collins et al., 2022), among others
(Hendrycks et al., 2021). In addition, the Chatbot Arena
(Zheng et al., 2023b) provides a platform for comparing AI
chatbots, and the Beyond the Imitation Game Benchmark
(BIG-bench; Srivastava & authors, 2023) offers a compre-
hensive evaluation of LLMs across over 200 tasks.

Psychology for LLMs: Our benchmark is part of a new
wave of research that uses cognitive psychology to study
LLMs (Binz & Schulz, 2023; Dasgupta et al., 2022; Coda-
Forno et al., 2023; Ullman, 2023; Hagendorff et al., 2023;
Akata et al., 2023; Yax et al., 2023; Chen et al., 2023;
Buschoff et al., 2024). The power of this approach lies in its
incorporation of tools from cognitive psychology that have
been developed and refined over many decades. Instead
of focusing solely on how well LLMs perform, this area
of research prioritizes describing and characterizing their
behavior in terms of underlying mechanisms. This shift in
focus helps us understand LLMs in a more meaningful way.
It is important to note that while these works have signifi-
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cantly contributed to our understanding of LLMs, they have
mainly targeted specific behaviors in isolation and did not
establish a benchmark providing a standardized evaluation
of different models and across a diverse, comprehensive set
of tasks and skills.

3. Methods
CogBench is a benchmark rooted in cognitive psychology
for evaluating the behaviors of language models. It incorpo-
rates ten metrics derived from seven canonical experiments
in the literature on learning and decision-making. These
metrics offer a robust measure of wide-ranging behaviors
and allow for comparisons with human behavior. In this sec-
tion, we provide an overview of the models included in our
study, followed by brief descriptions of the used cognitive
experiments and their respective metrics. Figure 1 displays
a visual representation that complements the discussion in
this section.

3.1. Prompting and summary of included models

We evaluated over 40 different LLMs using our bench-
mark. This selection includes proprietary models such as
Anthropic’s Claude models (Anthropic, 2023), Open-AI’s
GPT-3 (text-davinci-003) and GPT-4 (OpenAI, 2023), and
Google’s PaLM-2 for text (text-bison@002) (Google, 2023).
We also tested open-source models like Mosaic’s MPT (Mo-
saicML, 2023), Falcon (Almazrouei et al., 2023), and nu-
merous LLaMA-2 variants (Touvron et al., 2023). For a full
list of the models used, we refer the reader to Appendix A.

It is important to note that all experiments performed in
this paper rely entirely on the LLMs’ in-context learning
abilities and do not involve any form of fine-tuning. We set
the temperature parameter to zero, leading to deterministic
responses2, and retained the default values for all other
parameters.

3.2. High-level summary of tasks

In the following, we provide a high-level summary of the
tasks included in CogBench, alongside their ten behavioral
metrics. It is important to highlight that a performance met-
ric can also be obtained for each task. For full descriptions
of all tasks and their corresponding metrics, we refer the
reader to Appendix B. CogBench consists of the following
tasks:

1. Probabilistic reasoning (Dasgupta et al., 2020): a
task that tests how agents update beliefs based on new
evidence. They are given a “wheel of fortune” (repre-
senting initial prior probabilities) and two urns with

2For some models, e.g., ChatGPT, setting the temperature to
zero has shown to sometimes not guarantee determinism (Ouyang
et al., 2023)

different colored ball distributions (representing like-
lihoods). Upon drawing a ball, agents can revise their
belief about the chosen urn, considering both the wheel
(prior) and the ball color (evidence). This tests adapt-
ability to different prior/likelihood scenarios by chang-
ing the wheel division and ball distributions. Agents
have to estimate the probability of the drawn ball’s
urn. The behavioral choices can be used to estimate an
agent’s prior and likelihood weightings. Experimen-
tally, people often exhibit a behavior known as system
neglect, meaning that they underweight both priors
and likelihoods (Massey & Wu, 2005; Dasgupta et al.,
2020).

2. Horizon task (Wilson et al., 2014): a two-armed bandit
task with stationary reward distributions. Agents first
observe four reward values of randomly determined
options, followed by making either one or six addi-
tional choices. We use this task to measure whether an
agent uses uncertainty to guide its exploration behavior
(directed exploration) and/or whether it injects noise
into its policy to explore (random exploration). People
are known to rely on a combination of both strategies
(Wilson et al., 2014; Brändle et al., 2021).

3. Restless bandit task (Ershadmanesh et al., 2023): a
two-armed bandit task with non-stationary reward dis-
tributions. There is always one option with a higher
average reward. Every few trials a switch between the
reward distributions of the two options occurs. Agents
furthermore have to indicate after each choice how
confident they are in their decisions. We use this task
to measure meta-cognition, which indicates whether
an agent can assess the quality of its own cognitive
abilities. People generally display this ability but its
extent is influenced by various internal and external
factors (Shekhar & Rahnev, 2021; Ershadmanesh et al.,
2023).

4. Instrumental learning (Lefebvre et al., 2017): Agents
encounter four two-armed bandit problems in an in-
terleaved order. Each bandit problem is identified by
a unique symbol pair. We use this task to investigate
how an agent learns. First, we report the learning rate
of the agent which is common practice in two-armed
bandits. Furthermore, we use it to reveal whether an
agent learns more from positive than from negative
prediction errors, i.e., whether it has an optimism bias.
People commonly display asymmetric tendencies when
updating their beliefs by showing higher learning rates
after encountering positive prediction errors compared
to negative ones (Lefebvre et al., 2017; Palminteri &
Lebreton, 2022).

5. Two-step task (Daw et al., 2011): a reinforcement
learning task in which agents have to accumulate as
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many treasures as possible. Taking an action from
a starting state transfers the agent to one out of two
second-stage states. In each of these second-stage
states, the agent has the choice between two options
that probabilistically lead to treasures. Finally, the
agent is transferred back to the initial state and the pro-
cess repeats for a predefined number of rounds. The
task experimentally disentangles model-based from
model-free reinforcement learning. We therefore use
it to measure an agent’s model-basedness. Previous
studies using this task have shown that people rely on a
combination of model-free and model-based reinforce-
ment learning (Daw et al., 2011).

6. Temporal discounting (Ruggeri et al., 2022): Agents
have to make a series of choices between two options.
Each option is characterized by a monetary outcome
and an associated delay until the outcome is received.
We use this task to assess temporal discounting, indi-
cating whether an agent prefers smaller but immediate
gains over larger delayed ones. People generally show
a preference for immediate gains, although the pre-
cise functional form of their discounting is a matter of
debate (Cavagnaro et al., 2016; Ruggeri et al., 2022).

7. Balloon Analog Risk Task (BART) (Lejuez et al.,
2002): Agents have to inflate an imaginary balloon
to obtain rewards. They may choose to stop inflating
and cashing out all rewards accumulated so far. There
is a chance that the balloon pops at any point in time
and all rewards will be lost. We use this task to as-
sess risk-taking behavior. Human risk-taking in this
task is “significantly correlated with scores on self-
report measures of risk-related constructs and with the
self-reported occurrence of real-world risk behaviors”
(Lejuez et al., 2002).

3.3. Human data

We obtained the human data directly from the authors for
most experiments (Dasgupta et al., 2020; Wilson et al., 2014;
Ershadmanesh et al., 2023; Lefebvre et al., 2017; Kool et al.,
2017) except for BART and temporal discounting. For these,
we averaged the reported number from the original studies
across the different subpopulations. For the performance
metrics, we calculated the average participant scores. We
also did this for the behavioral metrics, except for the met-
rics where we had to fit a regression (model-basedness,
exploration, and likelihood & prior weightings). For the
latter, we fitted a single regression across all human runs,
combining the data from all participants. This approach
provided a more robust estimate of the average human be-
havior for these specific metrics (which is also why we did
not include human spread for behavioral metrics in Figure
2B). More details can be found in the Appendix B.

4. The cognitive phenotype of LLMs
This section provides the reader with a high-level overview
of our benchmark’s metrics. From our suite of 7 tasks, we
can derive two classes of metrics: 1) performance metrics
that represent the score participants aim to optimize, and 2)
behavioral metrics measuring how participants complete the
task (tasks are typically designed in a way that allows one to
disentangle between different types of behavior). Figure 2
visualizes phenotypes for both classes of metrics for six well-
established LLMs.3 We want to make it clear that the main
focus of this benchmark is inter-LLM comparison and that
the human data is only provided as an additional reference
point. We report the results of all 40 LLMs in Appendix C.4

The observed differences underscore the practical value and
importance of CogBench for evaluating LLMs, offering a
more comprehensive assessment than standard performance-
based benchmarks alone.

4.1. Performance summary

As presented in Figure 2A, in terms of performance, GPT-4
distinguishes itself, achieving human-level scores in most
tasks (five out of six).5 In general, all models demonstrate
competence in at least half of the tasks (three out of six).
Each of the six models excels in probabilistic reasoning and
instrumental learning. The horizon task sees most models
outperforming humans except for text-bison. The restless
bandit task poses a challenge for the majority of models,
with GPT-4 being a notable exception. Finally, the BART
proves to be a hurdle for all models.

4.2. Differences between behavioral and performance
metrics

Figure 2B shows that none of the models exhibit human-like
behavior on the majority of behavioral metrics, revealing a
complex structure that warrants further exploration.

High performance indicates high meta-cognition and
model-basedness: Models that demonstrate satisfactory
performance on the restless bandit task exhibit a certain
degree of meta-cognition, although not to the same extent
as humans. Proprietary models that are capable of solving
the two-step task display model-based behavior at least
on par with humans, with GPT-4 significantly surpassing

3A computational phenotype is a collection of mathematically
derived parameters that precisely describe individuals across dif-
ferent domains (Patzelt et al., 2018; Montague et al., 2012; Schurr
et al., 2023).

4Also see Appendix D and E for robustness and redundancy
analyses, respectively, of this benchmark.

5It is worth noting that although there are seven experiments,
there are only six performance metrics since the temporal dis-
counting experiment’s performance metric is used as a behavioral
one.
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A

0 2
                                                                                                                                                                                                       Values (Normalized: Random=0, Human average=1)

Probabilistic Reasoning

Horizon Task

Restless Bandit

Instrumental Learning

Two Step Task

BART

GPT-4

0 2

text-davinci-003

0 2

Claude-2

0 2

text-bison

0 2

LLaMA-2-70

0 2

LLaMA-2-70-chat

0 2

Humans

B
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                                                                                                                                                                                                       Values (Normalized: Random=0, Human average=1)

Prior weighting
Likelihood weighting
Directed exploration
Random exploration

Meta-cognition
Learning rate

Optimism bias
Model-basedness

Temporal discounting
Risk taking

GPT-4
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text-davinci-003
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Claude-2

0 5
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0 5
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0 5
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Figure 2. CogBench results for established LLMs. A: Performance metrics. We also included humans spread in performance to give the
reader a feeling for how different LLMs compare to the best performing human subjects in the population; B: Behavioral metrics.
All metrics are human-normalized: a value of zero corresponds to a random agent, while a value of one corresponds to the average human
subject (dotted lines). Errors bars represent 95% confidence intervals.

human levels. Thus, within the scope of these two tasks, it
seems that a model’s performance can serve as an indicator
of its corresponding behavioral metrics. In this context,
meta-cognition and model-basedness appear to emerge as
properties of high-performing models.

High performance despite lack of exploration: Interest-
ingly, almost all models (except for text-bison) demonstrate
super-human performance on the horizon task. While they
exhibit high performance, they still lack exploration (except
for LLaMA2-70-chat which exhibits higher-than-human
random exploration). This underscores the importance of
behavioral metrics in understanding the strategies employed
by LLMs. In this case, it appears that LLMs achieve high
performance primarily through exploitation without any
human-like exploration.

Stronger priors than likelihoods: All models place much
more weight on priors than observations, suggesting strong
biases that are difficult to alter. Additionally, we can observe
a prevalence of optimism bias and high learning rates. Al-
most all models exhibit a very strong optimism bias (except
for text-bison), aligning with the notion that these LLMs
harbor strong biases.

Low performance but high behavioral variance for risk-

taking and temporal discounting: Temporal discounting
and risk-taking behaviors exhibit high variance among mod-
els. While some models, such as text-bison and LLaMA-2-
70, appear myopic on the temporal discounting task, others,
including text-davinci-003, Claude, and LLaMA-2-70-chat,
demonstrate a much more far-sighted approach. GPT-4,
interestingly, exhibits behavior akin to humans. For the
BART, models are positioned at extreme ends of the risk-
taking spectrum, i.e., they either never take any risks at all
or always risk everything. LLaMA-2-70 and LLaMA-2-
70-chat, for example, display the same performance in this
task but exhibit opposite risk-taking behavior. This not only
indicates a struggle for LLMs to apprehend risks but also
underscores the importance of our benchmark. Indeed, it
raises questions about what influences a model’s behavior. It
also highlights how recording only their performance would
have overlooked the contrasting risk-taking behavior of the
two LLaMA models.

The comparison between LLaMA-2-70 and LLaMA-2-70-
chat is particularly compelling. Even though LLaMA-2-
70-chat is a fine-tuned version of LLaMA-2-70, they ex-
hibit markedly different behavior in risk-taking, temporal
discounting, and random exploration. This divergence is
intriguing, especially considering their performance on all
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tasks is relatively similar. This observation sets the stage
for the subsequent section, where we will conduct a more
comprehensive analysis of how specific features of these
models influence their performance and behaviors.

5. Hypothesis-driven experiments
CogBench provides researchers with the means to explore
a broad spectrum of LLMs’ behaviors. We have applied
CogBench to 40 distinct LLMs. This diversity allows us
to test how different aspects of LLMs, such as the number
of parameters, the application of Reinforcement Learning
from Human Feedback (RLHF), fine-tuning for code, and
many more, can impact specific LLMs’ performance and
behaviors.

5.1. Experimental procedure

The metrics provided by CogBench enable us to perform
various analyses to test specific hypotheses of interest. In
this section, we formulate and test five hypotheses about dif-
ferent mechanisms in LLMs and how these can affect their
behavioral profiles. We use both qualitative, visualization-
based techniques (dimensionality reduction) as well as quan-
titative analyses (multi-level regression) to test our hypothe-
ses. For all regression analyses, we use the features of LLMs
to predict specific behavioral metrics from the benchmark.
The multi-level regression approach was chosen because
some models are fine-tuned versions of other models. For
instance, certain LlaMA models have a -chat version which
adds RLHF and conversational fine-tuning, and thus are in
the same higher-level group. This approach allows us to ac-
count for the hierarchical structure in our data and provides
a more nuanced understanding of the behaviors of LLMs.
We can isolate the effects of specific features or modifica-
tions by comparing models within the same higher-level
group. Here is how it works:

Level 1 (Within-Group) Model: At this level, we’re mod-
eling the relationship between the specific metrics (outcome
variable) and the features of the LLMs (predictor variables)
within each group. Each group in our context is formed by
the rule that any finetuned version of another LLM is part
of the same higher level group. For instance, LLaMA-2-
13b-chat-longlora-32k, LongAlpaca-13b, CodeLlama-13B,
LLaMA-2-13-chat would all be from the same family as
they are all finetuned versions of LLaMA-2-13. This is
similar to running a separate regression analysis for each
group. The model can be written as follows:

Yij = β0j +

p∑
k=1

βkj ×Xijk + ϵij

where:

• Yij is the outcome for LLM i in group j.

• β0j is the intercept for group j.

• βkj is the slope for the kth feature in group j.

• Xijk is the for the kth feature predictor for LLM i in
group j.

• ϵij is the error term for LLM i in group j.

Level 2 (Between-Group) Model: At this level, we’re
modeling the relationship between the group-level charac-
teristics (e.g., whether the model is a ”-chat” version or not)
and the group-specific regression coefficients (intercepts
and slopes) from the Level 1 model. This allows us to see
how the regression relationships vary across groups. The
group-specific intercepts and slopes (β0j and βkj) are also
modeled as outcomes from group-level predictors:

β0j = γ00 + γ01 × Zj + u0j

βkj = γk0 + γk1 × Zj + ukj

where:

• γ00 and γk0 are the average intercept and slope for the
kth feature across all groups.

• γ01 and γk1 are the effects of the group-level predictor
Zj on the intercept and slope for the kth feature.

• u0j and ukj are the random effects for the intercept
and slope for the kth feature in group j.

5.2. Results

Hypothesis 1: Does RLHF make LLMs more human-
like?
To evaluate this hypothesis, we used UMAP (McInnes et al.,
2020) on the ten behavioral metrics of all LLMs, as illus-
trated in Figure 3A. Clear separation is evident between
LLMs that incorporate RLHF and those that do not. LLMs
with RLHF demonstrate behaviors that appear, on average,
roughly 2× more similar to human behavior compared to
the models without. However, it is important to note that
while UMAP space retains some global structure, it is pri-
marily used for visualization purposes. Consequently, we
also analyzed the average distances before dimensionality
reduction (using normalized feature vectors), observing a
11.7% average decrease in L2-Norm distance for models
with RLHF (Figure 3B).
Conclusion: Hypothesis is supported.

Hypothesis 2: Does performance increase with the num-
ber of parameters, training data, and the inclusion of
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Figure 3. A: UMAP visualization of the ten behavioral metrics
for all LLMs. Each point represents an LLM, with models using
RLHF and models without RLHF indicated by different colors.
B: Difference in average L2-norm with humans between RLHF
models and non-RLHF models.

code?
To answer this question, we used the multi-level regres-
sion previously mentioned, focusing on the performance of
LLMs. We performed a regression analysis with the average
standardized performance scores across all seven tasks as
the dependent variable, using LLMs’ features as predictors.
We found that the number of parameters indeed had a sig-
nificant influence on performance (β = 0.277± 0.39, z =
14.1, p < 0.001; see Figure 4A). However, the size of the
training dataset and the use of code training data did not
have a substantial impact. One possible explanation for this
could be that the quality of the training data, rather than
its sheer volume, plays a more determining role in perfor-
mance, as well as that larger models also tend to be trained
on larger datasets.
Conclusion: Hypothesis is partially supported.

Hypothesis 3: Does an increase of parameters, train-
ing data, and the inclusion of code increase model-
basedness?
We again used the multi-level regression technique from
before, this time focusing on a specific behavioral metric:
model-basedness. We found that the number of parameters
had a significant positive effect (β = 0.481 ± 0.22, z =
4.2, p < 0.001; see Figure 4B), while the size of the train-
ing dataset and the use of code training data did not appear

to significantly influence model-basedness. This again sug-
gests that the quality of the data might be more crucial than
its quantity when it comes to determining both performance
and the emergence of model-based behaviors here. How-
ever, identifying which factors constitute ‘quality’ in the
data requires a deeper exploration. This highlights the issue
of transparency about data. For a thorough evaluation of
how specific data features impact the emergence of behav-
ioral functionalities such as model-basedness, it is essential
to be transparent about a model’s data and methodologies.
Conclusion: Hypothesis is partially supported.

Hypothesis 4: Does RLHF enhance meta-cognition?
To answer this question, we focus our multi-level regression
on meta-cognition. Our analysis revealed a strong effect
(β = 0.461 ± 0.15, z = 5.9, p < 0.001; see Figure 4C),
indicating that RLHF significantly increased meta-cognition
in LLMs. This finding underscores the potential of RLHF
in enhancing the cognitive capabilities of LLMs.
Conclusion: Hypothesis is supported.

Hypothesis 5: Do open-source models take more risks?
The open-source feature could be seen as a proxy for the
engineering efforts that proprietary models undergo. There
is a growing body of research suggesting that hidden pre-
prompts being one of them, can significantly influence the
behavior of LLMs (Liu et al., 2023). They can act as a
form of ‘priming’ that guides the model’s responses, po-
tentially making the model more cautious and less likely
to take risks by constraining the model towards safer be-
haviors. However, our regression analysis suggested oth-
erwise: contrary to expectations, we observed a negative
effect (β = −0.612 ± 0.11, z = −11.4, p < 0.001; see
Figure 4D), indicating that proprietary models, which often
have hidden pre-prompts, are more likely to take risks. This
surprising outcome could be influenced by various factors
from different engineering techniques. However, this under-
scores the limited behavioral evaluation of these techniques.
In the subsequent section, we aim to bridge this gap in un-
derstanding through an initial exploration into the change
of behavior of two standard prompt-engineering techniques.
Conclusion: Hypothesis is refuted.

6. Impact of prompt-engineering
We also explored the impact of prompt-engineering tech-
niques, namely chain-of-thought (CoT) and take-a-step-
back (SB) prompting, on the behavior of LLMs. Both
techniques are incorporated at the end of a question:
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Figure 4. Multi-level regressions of LLMs features onto different performance or behavioral metrics. Red bars represent effects included
in a hypothesis. A: Regression onto all task performances. B: Regression onto model-basedness. C: Regression onto meta-cognition. D:
Regression onto risk taking. *** : p < 0.001, ** : 0.001 ≤ p < 0.01, * : 0.01 ≤ p < 0.05
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Take-a-step-back:

First take a step back and think in the following two
steps to answer this:
Step 1) Abstract the key concepts and principles rele-
vant to this question.
Step 2) Use the abstractions to reason through.

Chain-of-thought:

First break down the problem into smaller steps and
reason through each step logically.

Their purpose is to stimulate the generation of reasoning
steps. These steps serve as an additional context that the
LLM can use to elicit better final responses. While these

techniques have been shown to enhance performance, it
is essential to confirm whether they indeed improve the
behaviors they are designed to augment.

We focused on examining two specific behaviors that are
hypothesized to improve with the inclusion of reasoning
steps. These behaviors are the models’ performance in the
probabilistic reasoning task and their model-basedness.

We evaluated five specific LLMs: GPT-4, PaLM-2 for text
(text-bison@002), Claude-1/2, and LLaMA-2, applying
CoT and SB techniques and comparing the outcomes with
their base models. The selection of these five models and a
limited set of metrics was necessitated by the additional en-
gineering effort required to process the outputs when using
these techniques. The choice of LLMs aimed at ensuring
a diverse representation of established models, considering
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the complexity of our benchmark tasks and the potential for
erratic outputs from smaller LLMs when given the freedom
to reason. For a comprehensive explanation of the querying
process for these models, please refer to Appendix F.

Our investigation initially focused on probabilistic reason-
ing, which is a fundamental cognitive ability in decision-
making. This ability facilitates the optimal integration of
new information with pre-existing knowledge. We used the
performance metric from the probabilistic reasoning exper-
iment, namely posterior accuracy, which is calculated as
one minus the deviation from the Bayes optimal prediction
for each task. As depicted in Figure 6A, both CoT and SB
techniques generally enhanced probabilistic reasoning com-
pared to their base models, with CoT showing an average
increase of 9.01% and SB showing an increase of 3.10%.

Furthermore, we discovered that model-basedness, a critical
aspect of reasoning and planning, is significantly augmented
by both CoT and SB techniques, as shown in Figure 6B.
Specifically, CoT demonstrated a 64.59% increase, while
SB showed a substantial increase of 118.59%.

Interestingly, a closer examination of the figures and the
numerical data suggests that CoT is more effective for prob-
abilistic reasoning, while SB excels in enhancing model-
basedness. This observation aligns with the notion that
step-by-step thinking can aid mathematical reasoning (Ko-
jima et al., 2022) while abstracting a problem by taking
a step back can foster a better representation of the prob-
lem’s abstract structure. However, it is important to note
that this analysis only serves as an initial observation. It
does, nonetheless, highlight potential future applications of
CogBench and illustrates how examining specific behav-
iors can provide valuable context, potentially guiding future
decisions on the selection of one reasoning technique over
another.

7. Discussion
We have presented CogBench, a new open-source bench-
mark for evaluating LLMs. CogBench is rooted in well-
established experimental paradigms from the cognitive psy-
chology literature, providing a unique set of advantages over
traditional LLM benchmarks. First, it is based on tried-and-
tested experiments whose measures have been extensively
validated over many years and shown to capture general cog-
nitive constructs. In addition, unlike standard benchmarks,
CogBench does not only focus on performance metrics
alone but also comes with behavioral metrics that allow us
to gain insights into how a given task is solved. Finally,
many of the included problems are procedurally-generated,
thereby making it hard to game our benchmark by training
on the test set. All our code and analysis will be publicly
available, making it easy to use CogBench for the LLM

community.

Our analyses yielded several key findings: as expected,
RLHF enhanced the human-likeness of LLMs, while the
number of parameters improved their performance and
model-basedness. However, we also found surprising results.
Despite expectations, code fine-tuning did not influence
performance or model-basedness and open-source models
exhibited less risk-taking behavior. Further, we found CoT
prompting to be a promising choice for enhancing proba-
bilistic reasoning. Conversely, SB prompting proved more
effective for model-based reasoning.

While these results demonstrate the versatility of our bench-
mark, our analysis also faces several challenges. For in-
stance, the limited transparency of certain proprietary mod-
els poses an issue to our regression analysis because acquir-
ing details about certain models can be difficult or impossi-
ble. This lack of transparency could potentially affect the
precision of our analysis. It also underscores the need for
more transparency to facilitate more thorough and accurate
evaluations (LAION, 2024; Binz et al., 2023). Furthermore,
evaluations of LLMs on psychological tasks have to be taken
with some caution, as these tasks and the corresponding con-
structs have not been designed for artificial agents. The
direct comparison to average human behavior also has to
be taken with caution as it is unclear if one LLM should be
considered a single subject or a population of agents.

Taken together, our study highlights the importance of be-
havioral metrics and cognitive modeling in evaluating LLMs
and presents a novel benchmark for this purpose. The anal-
ysis was preliminary and intended to provide a broad view
of how CogBench can be used. The primary aim of this
work is to equip the LLM community with new tools, in-
spired by cognitive science, to evaluate their models more
comprehensively. Future work should focus on three areas.
First, while cognitive science studies have demonstrated
the external validity of the investigated tasks, it is yet to
be shown for LLMs. Furthermore, we aim to extend the
set of included tasks to cover a broader set of domains. Fi-
nally, we plan to properly automate our benchmark, mostly
for prompt engineering techniques that were only briefly
examined in this study. This could include studying the
influence of impersonation (Salewski et al., 2023), meta-in-
context learning (Coda-Forno et al., 2024), and explanations
(Lampinen et al., 2022) on LLMs.
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A. List of LLMs used

Model Name No. of Parameters Finetuned LLM Use of RLHF Open Source Size of Dataset Context Length Conversational Code

GPT-4 1760 No Yes No 1.56 8 No No

text-davinci-003 170 No Yes No 1.37 4 No No

text-davinci-002 170 No No No 1.37 4 No No

Claude-1 100 No RLAIF No 3.7 100 No No

Claude-2 200 No RLAIF No 7.4 100 No No

text-bison@002 340 No Yes No 1.4 8 No No

Falcon-40b 40 No No Yes 0.54 2 No No

Falcon-40b-instruct 40 Falcon-40b No Yes 0.6 2 No No

MPT-30b 30 No No Yes 1.76 8 No No

MPT-30b-instruct 30 MPT-30b No Yes 1.8 8 No No

MPT-30b-chat 30 MPT-30b No Yes 1.8 8 Yes No

LLaMA-2-70 70 No No Yes 2 4 No No

LLaMA-2-13 13 No No Yes 2 4 No No

LLaMA-2-7 7 No No Yes 2 4 No No

LLaMA-2-70-chat 70 Yes Yes Yes 2 4 Yes No

LLaMA-2-13-chat 13 Yes Yes Yes 2 4 Yes No

LLaMA-2-7-chat 7 Yes Yes Yes 2 4 Yes No

Vicuna-7b-v1.5 7 LLaMA-2-7 Yes Yes 2.37 4 Yes No

Vicuna-13b-v1.5 13 LLaMA-2-13 Yes Yes 2.37 4 Yes No

LLaMA-2-7b-longlora-100k-ft 7 LLaMA-2-7 No Yes 2 100 No No

LLaMA-2-7b-longlora-8k-ft 7 LLaMA-2-7 No Yes 2 8 No No

LLaMA-2-7b-longlora-16k-ft 7 LLaMA-2-7 No Yes 2 16 No No

LLaMA-2-7b-longlora-32k-ft 7 LLaMA-2-7 No Yes 2 32 No No

LLaMA-2-7b-longlora-32k 7 LLaMA-2-7 No Yes 2 32 No No

LLaMA-2-13b-longlora-32k-ft 13 LLaMA-2-13 No Yes 2 32 No No

LLaMA-2-13b-longlora-64k 13 LLaMA-2-13 No Yes 2 64 No No

LLaMA-2-13b-longlora-32k 13 LLaMA-2-13 No Yes 2 32 No No

LLaMA-2-70b-longlora-32k 70 LLaMA-2-70 No Yes 2 32 No No

LLaMA-2-70b-chat-longlora-32k 70 LLaMA-2-70-chat Yes Yes 2 32 Yes No

LongAlpaca-7B 7 LLaMA-2-7 No Yes 2 16 Yes No

LongAlpaca-13B 13 LLaMA-2-13 No Yes 2 16 Yes No

LongAlpaca-70B 70 LLaMA-2-70 No Yes 2 16 Yes No

CodeLlama-7B 7 LLaMA-2-7 No Yes 2.5 16 No Yes

CodeLlama-13B 13 LLaMA-2-13 No Yes 2.5 16 No Yes

CodeLlama-34B 34 LLaMA-2-34 No Yes 2.5 16 No Yes

Yi-6B 6 No No Yes 3 4 No No

Yi-34B 34 No No Yes 3 4 No No

Claude-3-opus-20240229 300 No RLAIF No 2 4 No No

Mistral-7B-v0.1 7 No Yes Yes 2 8 No No

Mixtral-8x7B-v0.1 56 No Yes Yes 2 8 No No

This table lists the 40 LLMs used in this paper with different features where:

• No. of Parameters: This represents the number of parameters in the model, expressed in billions.

• Finetuned LLM: This column indicates whether the model is a fine-tuned version of another model. If it is, the name
of the original model from which it was fine-tuned is provided. If it is not a fine-tuned model, ’No’ is written. However,
if the model serves as the base model for another model listed in this table, ’Yes’ is written.

• Use of RLHF: This column specifies whether Reinforcement Learning from Human Feedback (RLHF) was used in the
training of the model.

• Open Source: This indicates whether the model is open source, meaning we have access to the weights of the model.

• Size of Dataset: This represents the size of the dataset on which the model was trained, expressed in trillions of tokens.

• Context Length: This refers to the length of the context available to the model during its operation.

• Conversational: This indicates whether the model was fine-tuned with conversational datasets.
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• Code: This indicates whether the model was fine-tuned with code datasets.

Please note that the selection of features used for our analyses was made based on the best available knowledge of the
authors, as some information about certain models can be challenging to obtain. This limitation could potentially impact the
precision of the regression analysis. It underscores the need for greater transparency about LLMs to facilitate more thorough
evaluations.
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B. Comprehensive list & explanation of the cognitive experiments
This section provides a detailed list of all seven experiments conducted in this study. For each experiment, we include
a summary of the task, the methods used, the prompts given to the LLMs, and an explanation of the behavioral and
performance metrics employed. These experiments were selected to target different cognitive constructs. A redundancy
analysis, which demonstrates that the experiments capture distinct cognitive dimensions, can be found in Appendix E.
Furthermore, we find that the metrics are relatively robust across task variants, as shown in Appendix D.

B.1. Probabilistic reasoning (Dasgupta et al., 2020) - Prior & likelihood weighting

We obtained human data for this experiment from the original study of (Dasgupta et al., 2020).

B.1.1. SUMMARY

This experiment tests how agents update beliefs based on new evidence. Participants are given a wheel of fortune
(representing initial prior probabilities) and two urns with different colored ball distributions (representing likelihoods).
Upon drawing a ball, participants can revise their belief about the chosen urn, considering both the wheel (prior) and the ball
color (evidence). The task allows testing adaptability to different prior/likelihood scenarios by changing the wheel division
and ball distributions. Agents have to estimate the probability of the drawn ball’s urn. We use this task to estimate an agent’s
prior and likelihood weightings. In this task, people showed similar weighting between prior and likelihood, both under one.
This underweighting is often referred to as system neglect (Massey & Wu, 2005).

B.1.2. METHODS

We matched the probabilities used in (Dasgupta et al., 2020) to compare to human data. There they had either an informative
likelihood case (P (left urn|red) = 0.7, 0.8 or 0.9) and an informative prior (P (left urn) = 0.5 or 0.6) or vice versa. They
also trained humans on this experiment, so we only compared it to data from a human’s first trial as we are not interested in
learning but in how an LLM weighs its prior and likelihoods by default. The default number of simulations here was 100.

B.1.3. PROMPTS FOR LLMS

Example with informative likelihood

You are participating in an experiment where you are provided with a wheel of fortune and two urns. The wheel of
fortune contains 10 evenly sized sections labeled either F or J, corresponding to the urns F and J. Another person
will spin the wheel of fortune, select an urn based on the outcome of the spin, and then randomly pick a ball from
the selected urn. Your goal is to give your best estimate of the probability of the urn being F after observing the ball
drawn from the urn.

Q: The wheel of fortune contains 6 sections labeled F and 4 sections labeled J. The urn F contains (8, 2) and the urn
J contains (2, 8) red/blue balls. A red ball was drawn. What is the probability that it was drawn from Urn F? (Give
your probability estimate on the scale from 0 to 1 rounded to two decimal places).

A: I estimate the probability of the red ball to be drawn from the urn F to be 0.

B.1.4. METRICS

Performance: Calculated as the posterior accuracy, therefore 1 minus the Bayes optimal.

Behaviours 1 & 2: Prior and likelihood weightings A generalized version of Bayes rule considers prior β1 and likelihood
β2 weightings to account for biases in Bayesian updating:

P (A|B) ∝ P (B|A)β2 · P (A)β1

For analytical convenience, this model can be reformulated as linear in log-odds. By fitting this model to the data using least
squares linear regression, we can obtain the maximum likelihood estimates of the prior and likelihood weightings:
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log

(
P (Urn F|Ball)

1− P (Urn F|Ball)

)
= β0 + β1 log

(
P (Urn F)

1− P (Urn F)

)
+ β2 log

(
P (Ball|Urn F)
P (Ball|Urn J)

)

- P (Urn F|Ball) is the subjective probability judgment of the urn being ‘F’ given the ball’s color.

- P (Urn F) and P (Ball|Urn F) are the prior probability and likelihood, respectively.

- β1 and β2 are the prior and likelihood weightings, respectively, which are given as exponents in a generalized version of
Bayes’ rule to capture specific biases. These two coefficients are the two behavioral metrics we report for this experiment.

- β0 is the intercept term.

B.2. Horizon task (Wilson et al., 2014) - Directed & random exploration

We obtained human data for this experiment from the original study of (Wilson et al., 2014)

B.2.1. SUMMARY

This task is a two-armed bandit task with stationary reward distributions. Agents first observe four reward values of randomly
determined options, followed by making either one or six additional choices. We use this task to measure whether an agent
uses uncertainty to guide its exploration behavior (directed exploration) and/or whether it injects noise into its policy to
explore (random exploration). People are known to rely on a combination of both strategies when exploring (Wilson et al.,
2014; Brändle et al., 2021).

B.2.2. METHODS

We followed the same methods for prompting LLMs as in (Binz & Schulz, 2023). In the Horizon task, two distinct contexts
are presented to participants, each differing in their time horizons. Each game involves 4 forced-choice trials, after which
participants are given the opportunity to make a single choice (in the horizon 1 scenario) or six consecutive choices (in
the horizon 6 scenario). The 4 forced-choice trials either offer one observation from one option and three from the other
(unequal information condition), or two observations from each option (equal information condition).

The design of the horizon 1 and horizon 6 scenarios inherently provides a baseline for pure exploitation. Furthermore,
the equal and unequal information conditions are designed to differentiate between directed and random exploration by
examining the decision made in the first trial. In the equal information condition, a choice is categorized as random
exploration if it aligns with the option with the lower average. Conversely, in the unequal information condition, a choice is
classified as directed exploration if it aligns with the option that was observed less frequently during the forced-choice trials.

Our default number of simulations was 100.
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B.2.3. PROMPTS FOR LLMS

Example with horizon 1 scenario

You are going to a casino that owns two slot machines. You earn money each time you play on one of these machines.

You have received the following amount of dollars when playing in the past:
- Machine J delivered 15 dollars.
- Machine F delivered 37 dollars.
- Machine F delivered 28 dollars.
- Machine J delivered 11 dollars.

Your goal is to maximize the sum of received dollars within one additional round.

Q: Which machine do you choose?

A: Machine

B.2.4. METRICS

Performance: Average delivered dollars.

Behaviour 1 - Directed Exploration: This metric is analyzed in the unequal information condition. Here, a regression is
performed on the choice variable using three regressors:

• x1 represents the difference in rewards,

• x2 represents the horizon (binary variable), and

• x3 is the interaction term of x1 and x2 (i.e., x1× x2).

The beta coefficient for x2 (the presence or not of a horizon) is then extracted as the measure of directed exploration.

Behaviour 2 - Random exploration: We follow the same procedure as for the directed exploration but in the equal
information condition to measure random exploration. However, in this case, the beta coefficient for x3 (the interaction
effect between the difference in rewards and the presence of a horizon) from the regression provides the measure of random
exploration.

B.3. Restless bandit task (Ershadmanesh et al., 2023) - Meta-cognition

It is worth noting that as opposed to the other chosen experiments, this restless bandit task is not considered a canonical
experiment. We opted for this choice because meta-cognitive experiments typically use memory or perceptual tasks to
analyze humans (Fleming & Lau, 2014; McCurdy et al., 2013), which are not applicable to LLMs. We obtained human
data for this experiment from the original study of Ershadmanesh et al. (2023). The human data here is not available in the
github repository as we promised the authors to only report the averages and not report the data before they publish their
work in a journal.

B.3.1. SUMMARY

This is a two-armed bandit task with non-stationary reward distributions. There is always one option with a higher average
reward. Every few trials a switch between the reward distributions of the two options occurs. Agents furthermore have to
indicate after each choice how confident they are in their decisions. We use this task to measure meta-cognition, which
indicates whether an agent can assess the quality of its own cognitive abilities. People generally display this ability but its
extent is influenced by various internal and external factors (Shekhar & Rahnev, 2021).
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B.3.2. METHODS

In each trial, LLMs are tasked with choosing between one arm which samples a reward from a normal distribution N(60, 8),
while the other arm samples a reward from a N(40, 8). LLMs are informed that the slot machine with the higher average
reward changes every 18-22 trials.

Additionally, in each trial, LLMs must express their confidence in their choice on a scale from 0 to 1, as opposed to humans
who use a Likert scale. The task is composed of 4 blocks, each containing 18-22 trials, resulting in approximately 80 trials
in total. This is in contrast to the human task, which consists of 20 blocks for a total of 400 trials. The decision to limit the
number of trials was made due to context size restrictions for some LLMs.

Our default number of simulations was 10.
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B.3.3. PROMPTS FOR LLMS

Example for reporting confidence at trial 23

Q: You are going to a casino that owns two slot machines named machine J and F. You earn dollars $ each time you
play on one of these machines with one machine always having a higher average $ reward. Every 18 to 22 trials a
switch of block takes place and the other slot machine will now give the higher point reward on average. However,
you are not told about the change of block. After each choice, you have to indicate how confident you were about
your choice being the best on a scale from 0 to 1. The casino includes 4 blocks of 18 to 22 trials, for a total of 80
trials ’t’. Your goal is to interact with both machines and optimize your $ as much as possible by identifying the best
machine at a given point in time which comes in hand with being attentive to a potential change of block. The
rewards will range between 20$ and 80$.

You have received the following amount of $ when playing in the past:
t=1: You chose J with a reported confidence of 0.43. It rewarded 54 $.
t=2: You chose J with a reported confidence of 0.53. It rewarded 57 $.
t=3: You chose J with a reported confidence of 0.88. It rewarded 70 $.
...

t=17: You chose F with a reported confidence of 0.99. It rewarded 59 $.
t=18: You chose F with a reported confidence of 0.44. It rewarded 45 $.
t=19: You chose J with a reported confidence of 0.06. It rewarded 61 $.
t=20: You chose J with a reported confidence of 0.51. It rewarded 64 $.
t=21: You chose J with a reported confidence of 0.37. It rewarded 59 $.
t=22: You chose J with a reported confidence of 0.54. It rewarded 42 $.

Q: You are now in trial t=23. Which machine do you choose between machine J and F?(Think carefully remembering
that exploration of both machines is required for optimal rewards. Give the answer in the form ’Machine <your
choice>’.)

A: Machine F.

Q: How confident are you about your choice being the best on a continuous scale running from 0 represent-
ing ” ’this was a guess’ to 1 representing ’very certain’? (Think carefully and give your answer to two decimal places)

A: On a scale from 0 to 1, I am confident at 0.

B.3.4. METRICS

Performance: Accuracy of choosing the best arm at a given trial.

Behaviour - Meta-cognition: We report the metacognitive sensitivity of a model by reporting the adjusted QSR (Carpenter
et al., 2019) defined as

QSR = 1− (accuracy − scaled confidence)2

which is a standard metric for metacognitive sensitivity. The scaled confidence is computed as

scaled confidence =
confidence − lowest reported confidence

highest reported confidence − lowest reported confidence

B.4. Experiment 2: Instrumental learning(Lefebvre et al., 2017) - Optimism bias & learning rate

We obtained human data for this experiment from the study of (Lefebvre et al., 2017).
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B.4.1. SUMMARY

Instrumental learning (Lefebvre et al., 2017): LLMs encounter four two-armed bandit problems in an interleaved order.
Each bandit problem is identified by a unique symbol pair. We use this task to investigate how an agent learns. First, we
report the learning rate of the agent which is common practice in two-armed bandits. Furthermore, we use it to reveal
whether an agent learns more from positive than from negative prediction errors, i.e., whether it has an optimism bias. People
commonly display asymmetric tendencies when updating their beliefs by showing higher learning rates after encountering
positive prediction errors compared to negative ones (Palminteri & Lebreton, 2022).

B.4.2. METHODS

As in (Lefebvre et al., 2017), the task is 4 two-armed bandits of 96 trials (24 per slot machine). Here we randomly sample
(without replacement) two letters for each to avoid biases towards a given letter. We used a cover story that involved a gambler
visiting different casinos to generate our prompts. This choice has been inspired by similar tasks for human experiments
(Gershman, 2018) and LLMs (Binz & Schulz, 2023; Coda-Forno et al., 2024). Our default number of simulations per LLM
is 10.

Casinos have the same reward probabilities as in the paper’s first experiment: All arms have probabilities P=0.75 or 0.25 of
winning 1 dollar and a reciprocal probability (1 – P) of getting nothing. In two casinos, the reward probability was the same
for both arms (‘symmetric’ conditions), and in two other conditions, the reward probability was different across symbols
(‘asymmetric’ conditions).

B.4.3. PROMPTS FOR LLMS

Example for 5th trial

You are going to visit four different casinos (named 1, 2, 3, and 4) 24 times each. Each casino owns two slot
machines which all return either 1 or 0 dollars stochastically with different reward probabilities. Your goal is to
maximize the sum of received dollars within 96 visits.

You have received the following amount of dollars when playing in the past:
- Machine Q in Casino 4 delivered 0.0 dollars.
- Machine B in Casino 1 delivered 1.0 dollars.
- Machine B in Casino 1 delivered 0.0 dollars.
- Machine R in Casino 3 delivered 0.0 dollars.

Q: You are now in visit 5 playing in Casino 4. Which machine do you choose between Machine Q and Machine D?
(Give the answer in the form ”Machine <your choice>”).

A: Machine

B.4.4. METRICS

Performance: The performance is the average amount of money retrieved by the LLM.

Behaviour 1 - Learning rate: We fit a Rescorla-Wagner model (Rescorla, 1972) which is standard to retrieve learning
rates in two-armed bandits. This model operates under the assumption that decisions are made according to a Softmax
function, which takes into account the predicted values of both arms. Each predicted value is updated using ∆V = α×
prediction error where ∆V represents the change in value, and α denotes the learning rate. We report the learning rate
which minimizes the negative log-likelihood.

Behaviour 2 - Optimism bias: As in (Lefebvre et al., 2017), we retrieve the optimism bias by assuming that there were
two different learning rates, one for positive (α+) and one for negative (α−) prediction errors, sometimes called the RW ±
model. The two learning rates were fit in the same way as for the standard Rescorla-Wagner model and the Optimism bias is
computed as α+ − α−. This measure provides a quantitative representation of an individual’s tendency to learn more from
positive outcomes than from negative ones.
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B.5. Two step task (Daw et al., 2011) - Model-basedness

We obtained human data for this experiment from the study of (Kool et al., 2017).

B.5.1. SUMMARY

This is a decision-making task in which agents have to accumulate as many treasures as possible. Taking an action from a
starting state transfers the agent to one out of two second-stage states. In each of these second-stage states, the agent has
the choice between two options that probabilistically lead to treasures. Finally, the agent is transferred back to the initial
state and the process repeats for a predefined number of rounds. The task experimentally disentangles model-based from
model-free reinforcement learning. We therefore use it to measure an agent’s model-basedness. Previous studies using
this task have shown that people rely on a combination of model-free and model-based reinforcement learning (Daw et al.,
2011).

B.5.2. METHODS

We followed the same methods for LLMs as in (Binz & Schulz, 2023) with a 20-day horizon. Our default number of
simulations was 100.

The transition probabilities from the first stage to the chosen second stage are fixed at 70%. The two-step task gauges
model-based decision-making by observing how past outcomes influence current choices. If a participant’s decisions reflect
the previous trial’s second-stage state and reward, it suggests model-based decision-making, as they’re using a cognitive
model of the task. However, if decisions are solely based on the previous trial’s first-stage choice and reward, it indicates
model-free decision-making.

B.5.3. PROMPTS FOR LLMS

Example on 5th day after choosing planet Y for the first-step of the task.

You will travel to foreign planets in search of treasures. When you visit a planet, you can choose an alien to trade
with. The chance of getting treasures from these aliens changes over time. Your goal is to maximize the number of
received treasures.

Your previous space travels went as follows:
- 4 days ago, you boarded the spaceship to planet Y, arrived at planet Y, traded with alien J, and received treasures.
- 3 days ago, you boarded the spaceship to planet Y, arrived at planet X, traded with alien D, and received treasures.
- 2 days ago, you boarded the spaceship to planet Y, arrived at planet Y, traded with alien J, and received junk.
- 1 day ago, you boarded the spaceship to planet Y, arrived at planet X, traded with alien D, and received treasures.

Q: Do you want to take the spaceship to planet X or planet Y?

A: Planet Y.
You arrive at planet Y.

Q: Do you want to trade with alien J or K?

A: Alien

B.5.4. METRICS

Performance: Average number of received treasures. It is worth noting that the design of this experiment was done in a
way that being model-free or model-based retrieves the same amount of rewards in average.

Behaviour - Model-basedness: To retrieve the model-basedness of an agent, we compute a regression using three regressors:

• x1 representing rewards,
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• x2 representing common transitions (binary variable) and

• x3 is the interaction term of x1 and x2 (i.e., x1× x2).

The regression is performed with the ‘stay probabilities’ as the dependent variable, and x1, x2, and x3 as the independent
variables. The ‘stay probabilities’ represent the likelihood of a participant repeating the same first-stage choice on the next
trial. We then retrieve the beta parameter for the interaction effect.

In essence, the interaction effect captures how the influence of rewards on stay probabilities changes depending on whether
the previous trial involved a common or rare transition. A significant beta parameter for x3 would suggest that the effect
of rewards on stay probabilities is not the same for common and rare transitions, indicating the presence of model-based
decision-making.

B.6. Temporal discounting (Ruggeri et al., 2022)

For this task, we got the human averages by using the reported average in the original study of (Ruggeri et al., 2022)

B.6.1. SUMMARY

Agents have to make a series of choices between two options. Each option is characterized by a monetary outcome and
an associated delay until the outcome is received. We use this task to assess temporal discounting, indicating whether an
agent prefers smaller but immediate gains over larger delayed ones. People generally show a preference for immediate gains,
although the precise functional form of their discounting is still a matter of debate (Cavagnaro et al., 2016).

B.6.2. METHODS

This task tests discounting patterns from three baseline scenarios to determine preference for immediate or delayed choices
for gains (at two magnitudes) and losses (one). Second, they analyzed the prevalence of all choice anomalies using 4
additional items. Participants responded to 10 to 13 questions, depending on their responses to the initial three sets. Each
baseline consisted of five sub-questions. Individuals saw at most three sub-questions depending on the order of their choices.
It is worth noting that since this task is the only one which is not procedurally generated, there is only one simulation needed
per LLM.

B.6.3. PROMPTS FOR LLMS

Examples for first baseline

Q: What do you prefer between the following two options:
- Option 1: Receive 500 dollars now.
- Option 2: Receive 550 dollars in 12 months.
A: I prefer option 2.

Q: What do you prefer between the following two options:
- Option 1: Receive 500 dollars now.
- Option 2: Receive 600 dollars in 12 months.

A: I prefer option
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Examples for 2nd baseline (different magnitude)

Q: What do you prefer between the following two options:
- Option 1: Receive 5000 dollars now.
- Option 2: Receive 5500 dollars in 12 months.
A: I prefer option 1.

Q: What do you prefer between the following two options:
- Option 1: Receive 5000 dollars now.
- Option 2: Receive 5100 dollars in 12 months.
A: I prefer option 1.

“Q: What do you prefer between the following two options:
- Option 1: Receive 5000 dollars now.
- Option 2: Receive 5050 dollars in 12 months.

A: I prefer option

Examples for 3rd baseline (loss as opposed to gain)

Q: What do you prefer between the following two options:
- Option 1: Pay 500 dollars now.
- Option 2: Pay 550 dollars in 12 months.

A: I prefer option 1

Q: What do you prefer between the following two options:
- Option 1: Pay 500 dollars now.
- Option 2: Pay 510 dollars in 12 months.

A: I prefer option 1

Q: What do you prefer between the following two options:
- Option 1: Pay 500 dollars now.
- Option 2: Pay 505 dollars in 12 months.

A: I prefer option

Example for testing present bias

Q: What do you prefer between the following two options:
- Option 1: Receive 500 dollars in 12 months.
- Option 2: Receive 600 dollars in 24 months.

A: I prefer option
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Example for testing subbaddictivity

Q: What do you prefer between the following two options:
- Option 1: Receive 500 dollars now.
- Option 2: Receive 700 dollars in 24 months.

A: I prefer option

Example for testing delay-speedup asymmetry

Q: What do you prefer between the following two options:
- Option 1: Receive 500 dollars now.
- Option 2: Wait 12 months for the 500 dollars but with an additional 99 dollars.

A: I prefer option

Example for testing delay-length asymmetry

Q: What do you prefer between the following two options:
- Option 1: Wait 12 months to receive 600 dollars now.
- Option 2: Pay 100 dollars and receive the 600 dollars gain now.

A: I prefer option

B.6.4. METRICS

Behaviour: We only report one temporal discounting metric as behavioral. We use the same scoring system as in (Ruggeri
et al., 2022) where the score is between 0 and 19.

The constructed score corresponded to the ranking of the sub-question where the individual switched from choosing the
delayed option towards the sooner option. An individual who always chose the latter option was assigned a score of 0. An
individual who always chose the sooner option was assigned a score of 5 (for baselines) and 1 for each of the 4 biases.
Adding this score across questions results in a total score of 0 for individuals always choosing the delayed amount and 19
(5+5+5+4) for individuals always choosing the sooner amount.

B.7. Balloon Analogue Risk Task (BART) (Lejuez et al., 2002) - Risk

For this task, we got the human averages by averaging the reported averages of men and women in the original study of
(Lejuez et al., 2002).

B.7.1. SUMMARY

Agents have to inflate an imaginary balloon to obtain rewards. They may choose to stop inflating and cashing out all rewards
accumulated so far. There is a chance that the balloon pops at any point in time and all rewards will be lost. We use this task
to assess risk-taking behavior. Human risk-taking in this task is “significantly correlated with scores on self-report measures
of risk-related constructs and with the self-reported occurrence of real-world risk behaviors” (Lejuez et al., 2002).

B.7.2. METHODS

We substitute the colors of the balloons with the letters A, B, and C. We reduce the number of balloons from 15 to 10 per
category to avoid context-size limits from some LLMs. Our default number of simulations per LLM is 10.

For the three balloons we sample from the same three distributions as in the paper where probabilities increase when inflating
the balloon but start at 1/32, 1/8 and 1/128 per different balloon category. We randomly shuffle the assignment to A, B,
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and C to avoid biases of LLMs towards certain letters.

B.7.3. PROMPTS FOR LLMS

Example for 5th balloon

In this game, you will encounter 3 different balloons labeled A, B, and C. There will be a total of 10 balloons for
each type of balloon. Your goal is to accumulate as many points as possible without popping the balloon. You will
be presented with a balloon and given the option to inflate it or not. Each inflation increases the balloon’s size and
potential points but also carries a risk of the balloon popping. Your task is to decide whether to inflate the balloon or
not knowing that a successful inflation adds 1 point from that balloon. Once you decide to stop inflating the balloon,
you can no longer earn points from that balloon. If the balloon pops before you stop inflating, you will lose all the
points accumulated in that balloon. Your final score will be determined by the total number of points earned across
all 30 balloons. Your goal is to maximize your final score.

You observed the following previously where the type of balloon is given in parenthesis:
-Balloon 1 (A): You inflated the balloon 1 times for a total of 1 point. It did not explode.
-Balloon 2 (C): You inflated the balloon 4 times for a total of 4 points. It did not explode.
-Balloon 3 (A): You inflated the balloon 7 times for a total of 0 points. It did explode.
-Balloon 4 (C): You inflated the balloon 5 times for a total of 5 points. It did not explode.
-Balloon 5 (A): You inflated the balloon 9 times for a total of 0 points. It did explode.

Q: You are currently with Balloon 5 which is a balloon of type A. What do you do? (Option 1 for ’skip’ or 0 for
’inflate’)

A: Option

B.7.4. METRICS

Performance: The performance is the average points across all simulations.

Behaviour: Risk In the paper they report the adjusted risk which is defined as the average number of pumps excluding
balloons that exploded. However, this does not take into account edge behaviours which always inflate which is the case for
some LLMs and therefore we decided to report the risk as the average number of inflation attempts.
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C. Full benchmark results for rest of LLMs
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Figure 6. Performance metrics
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Figure 7. Behavioral metrics

Figures 6 & 7 show the metrics for the remaining LLMs not included in the paper. In the original submission, the five
LLMs ’claude-3-opus-20240229’, ’hf Mixtral-8x7B-v0.1’, ’hf Mistral-7B-v0.1’, ’hf Yi-34B’, ’hf Yi-6B’ were not included.
This explains why they were not considered at first for the original figures of established LLMs in the main paper. It is
noteworthy that Claude-3-opus is one of the few models that engages in both directed and random exploration and it is the
only one above human-level in terms of meta-cognition.
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D. Robustness analysis
Robustness analysis in the following four tasks: probabilistic reasoning, two-step task, restless bandit, and BART. We chose
these tasks because the temporal discounting task is not procedurally generated and already accounts for different biases
(e.g., present bias, different magnitudes, loss vs. gain, delay-speedup asymmetry) within its varying question sets. The
horizon and instrumental learning tasks, being neutral bandits, were expected to exhibit similar changes to the restless bandit
task and were thus not included. Below you can find example for the changed prompts. Figure 8 shows the results. We
observe that the CogBench metrics are relatively robust across task variants. This is with the exception of prior weightings
for Mixtral-8x7B which seem to be very different when changing from the wheel of fortune/urns to the coin/dices contexts.

For the restless bandit, we changed money to points and the mean reward distributions from 40/60 to -10/10:

Restless bandit V2

Q: You are participating in an experiment where you need to interact with two gaming machines named machine F
and J. You earn points each time you play on one of these machines with one machine always having a higher
average point reward. Every 18 to 22 trials a switch of block takes place and the other gaming machine will now
give the higher point reward in average. However, you are not told about the change of block. After each choice you
have to indicate how confident you were about your choice being the best on a scale from 0 to 1. The experiment
includes 4 blocks of 18 to 22 trials, for a total of 80 trials ’t’. Your goal is to interact with both machines and
optimize your points as much as possible by identifying the best machine at a given point in time which comes in
hand with being attentive at a potential change of block. The rewards will range between -20 and 20 points.

You are now in trial t=1. Which machine do you choose between machine J and F? Give the answer in the form
’Machine <your choice>’.

A: Machine

For the two-step task, we changed the cover story from aliens to a musician with a magical carpet:

Two-step task V2

You are a musician earning a living by traveling the mountains of a fantasy land with your magical carpet. When
you visit a mountain, you must decide for which of the local genies you want to perform. If the selected genie likes
your music, you will receive one gold coin. The music tastes of the genies change slightly over time. Your goal is to
maximize the number of received gold coins.

Q: Do you want to take the magical carpet to mountain X or mountain Y? X.
You arrive at mountain Y.

Q: Do you want to perform for genie J or K?

A: Genie

For the BART, we changed from 3×15 to 3×30 different balloons as for the original study and included a new cover story
changing the balloons to candies dispensers. The choice of 15 to 30 was made because in the original paper, they had 30
balloons per types of balloons and in the benchmark we only included 15 due to constraints in some LLMs’ context sizes.
And this was not an issue for the five LLMs we were analyzing here for robustness:

30



CogBench: a large language model walks into a psychology lab

BART V2

In this game you will encounter 3 different candy dispensers labeled A, B and C. There will be a total of 30 candy
dispensers for each type. Your goal is to accumulate as many candies as possible without causing the dispenser to
explode. You will be presented with a candy dispenser and given the option to pump candies into a container or not.
Each pump adds one candy to the container but also carries a risk of the dispenser exploding. Your task is to decide
whether to pump candies or not, knowing that a successful pump adds 1 candy from that dispenser. Once you decide
to stop pumping candies from a dispenser, you can no longer earn candies from that dispenser. If the dispenser
explodes before you stop pumping, you will lose all the candies accumulated from that dispenser. Your final score
will be determined by the total number of candies earned across all 90 dispensers. Your goal is to maximize your
final number of candies.

Q: You are currently with dispenser 1 which is a dispenser of type C. What do you do? (Option 1 for ’skip’ or
Option 2 for ’pump candies’)

A: Option

For the probabilistic reasoning task, we changed from wheel of fortunes & urns to coin & dices:

Probabilistic reasoning V2

You are participating in an experiment where you are provided with a wheel of fortune and two ten-sided dice, F
and J. The coin is a biased coin where heads corresponds to dice F and tail to dice J. Another person will toss the
coin, select one of the two dice based on the outcome of the toss, and then randomly throw the selected dice which
has only red or blue faces. Your goal is to give your best estimate of the probability of the dice being dice F after
observing the face of the dice thrown.

Q: The coin has a bias of 0.5 towards heads (representing dice F). The dice F contains (7, 3) and the
dice J contains (3, 7) red/blue faces respectively. A blue face was observed. What is the probability that it
was from the throw of dice F? (Give your probability estimate on the scale from 0 to 1 rounded to two decimal places)

A: I estimate the probability of the blue face to be drawn from the dice F to be 0.
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Figure 8. Comparison of results in 4 tasks (from left to right: restless bandit, two-step task, BART probabilistic reasoning) between
original and changed prompts for 5 LLMs. A: Performance metrics of B: Behavioral metrics.
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E. Redundancy analysis
We first performed a Principal Component Analysis (PCA) on both the behavioral and performance metrics for all 40
LLMs. The results of this analysis show that to retain up to 95% of the variance in the benchmark, all dimensions for both
performance and behavior are needed. More specifically, the explained variance for the 10 behavioral metrics is: [0.21, 0.18,
0.18, 0.11, 0.08, 0.06, 0.06, 0.06, 0.04, 0.03], and for the 6 performance metrics: [0.52, 0.17, 0.13, 0.09, 0.05, 0.04].

Furthermore, we looked at the average correlations between metrics for the three bandit tasks (restless bandit, instrumental
learning horizon task). We found that the average correlations for these tasks’ metrics seemed indistinguishable compared
to the average correlations across all tasks for both behavioral metrics (0.0 ± 0.27 vs 0.05 ± 0.20) and performance metrics
(0.45 ± 0.18 vs 0.41 ± 0.16) respectively. This suggests that even though many tasks share a similar bandit structure, the
metrics used for CogBench seem to capture different cognitive dimensions.
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F. Prompt Engineering techniques
In both the CoT and SB experiments, we appended specific prompts at the end (details provided below) where the function
‘self.format answer’ was different for each experiment. We imposed a limit of 300 tokens for an LLM. This approach,
however, presented some challenges when compared with the standard benchmark analysis, which is designed to output a
maximum of one token to ensure a context that enforces a one-token answer.

When we permit an LLM to modify the context with a flexible number of tokens, despite our attempts to enforce a maximum
word limit, some LLMs do not consistently adhere to this constraint. This flexibility introduces complexity into the process
of automating these engineering techniques across different experiments for various types of LLMs.

Additionally, some LLMs begin to exhibit chaotic behavior, and once this occurs, it becomes difficult to revert to a controlled
state. This phenomenon, known as the ‘Waluigi effect’ (Nardo, 2024), underscores the challenges of managing the balance
between flexibility and control in the design and operation of LLMs. In addition, it is important to note that recent criticisms
and limitations of the CoT approach, particularly regarding faithfulness and inadequacy in some reasoning tasks (Sprague
et al., 2024; Kambhampati et al., 2024), have emerged.

Example for take-a-step-back

First, take-a-step-back and think in the following two steps to answer this:
Step 1) Abstract the key concepts and principles relevant to this question in a maximum of 60 words.”
Step 2) Use the abstractions to reason through the question in a maximum of 60 words.

Finally, give your final answer in the format ’Final answer: {self.format answer}<your choice>’. It is very impor-
tant that you always answer in the right format even if you have no idea or you believe there is not enough information.

A: Step 1)

Example for chain-of-thought

First break down the problem into smaller steps and reason through each step logically in a maximum of 100 words
before giving your final answer in the format ’Final answer: {self.format answer}<your choice>’. It is very impor-
tant that you always answer in the right format even if you have no idea or you believe there is not enough information.

A: Let’s think step by step:

G. Regression package
We fitted the multi-level regression model using the statsmodels.formula.api package in Python:

1 import statsmodels.formula.api as smf
2 model = mixedlm(f"{score}∼{'+'.join(llm_features)}", df_standardized, groups=

df_standardized['type_of_llm'])

Listing 1. Python multi-level regression code
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