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Abstract
Quantization techniques commonly reduce the in-
ference costs of neural networks by restricting
the precision of weights and activations. Re-
cent studies show that also reducing the preci-
sion of the accumulator can further improve hard-
ware efficiency at the risk of numerical overflow,
which introduces arithmetic errors that can de-
grade model accuracy. To avoid numerical over-
flow while maintaining accuracy, recent work pro-
posed accumulator-aware quantization (A2Q)—
a quantization-aware training method that con-
strains model weights during training to safely use
a target accumulator bit width during inference.
Although this shows promise, we demonstrate
that A2Q relies on an overly restrictive constraint
and a sub-optimal weight initialization strategy
that each introduce superfluous quantization er-
ror. To address these shortcomings, we introduce:
(1) an improved bound that alleviates accumula-
tor constraints without compromising overflow
avoidance; and (2) a new strategy for initializing
quantized weights from pre-trained floating-point
checkpoints. We combine these contributions
with weight normalization to introduce A2Q+.
We identify and characterize the various trade-
offs that arise as a consequence of accumulator
constraints and support our analysis with exper-
iments that show A2Q+ significantly improves
these trade-offs when compared to prior methods.

1. Introduction
Quantizing neural network weights and activations to low-
precision integers can drastically reduce the inference costs
of multiplications. However, the resulting products are com-
monly accumulated at high-precision and thus require high-
precision additions and registers. Recent studies show that
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reducing the standard 32-bit accumulators to 16 bits can
yield a near-optimal 2× increase in throughput and band-
width efficiency on ARM processors (de Bruin et al., 2020;
Xie et al., 2021) and up to a 1.6× reduction in resource
utilization on FPGAs (Colbert et al., 2023). However, ex-
ploiting such an optimization is highly non-trivial in practice
as doing so also incurs a high risk of numerical overflow,
which introduces arithmetic errors that can significantly
degrade model accuracy (Ni et al., 2021).

To train quantized neural networks (QNNs) for low-
precision accumulation, Colbert et al. 2023 recently pro-
posed accumulator-aware quantization (A2Q). While prior
approaches had sought to either reduce the risk of numerical
overflow (Xie et al., 2021; Li et al., 2022; Azamat et al.,
2022) or mitigate its impact on model accuracy (Ni et al.,
2021; Blumenfeld et al., 2023), A2Q circumvents arithmetic
errors caused by numerical overflow by constraining model
weights to restrict the range of outputs. In doing so, A2Q
provides state-of-the-art performance for low-precision ac-
cumulation with guaranteed overflow avoidance.

Our work contributes to this body of research by further
improving the trade-off between accumulator bit width and
model accuracy. We show that A2Q relies on: (1) an overly
restrictive ℓ1-norm bound that constrains QNNs more than
necessary; and (2) a sub-optimal initialization strategy that
forces QNNs to recover from superfluous quantization error.
In addressing these shortcomings, we establish a new state-
of-the-art for low-precision accumulation with guaranteed
overflow avoidance. Our results show for the first time that
ResNet50 (He et al., 2016) can maintain 95% of its baseline
accuracy when trained on ImageNet (Deng et al., 2009) to
accumulate at 12 bits without overflow, resulting in a +17%
improvement in test top-1 accuracy over A2Q.

Our contributions are four-fold: (1) we introduce a new
theoretical analysis for an improved ℓ1-norm bound that
alleviates accumulator constraints without compromising
overflow avoidance; (2) we introduce a weight initialization
strategy that minimizes the initial weight quantization error
caused by accumulator constraints; (3) we combine (1) and
(2) with weight normalization (Salimans & Kingma, 2016)
to introduce A2Q+ and show significant improvements in
the trade-off between accumulator bit width and model accu-
racy; and (4) we identify and characterize various trade-offs
that arise as a consequence of accumulator constraints.
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2. Background and Related Work
2.1. Low-Precision Accumulation

Neural network primitives are commonly executed as
dot products consisting of numerous multiply-accumulate
(MAC) operations. During inference, the inputs to these dot
products (i.e., the weights and activations) are increasingly
being represented with lower precision integers to reduce
the cost of multiplications; meanwhile, their products are
still accumulated using high-precision additions.

The skew towards weight and activation quantization is in
large part because the most commonly studied data formats
in deep learning inference have required 8 or more bits (Wu
et al., 2020; Gholami et al., 2021). Because the cost of
integer MACs scales quadratically with the bit widths of the
weights and activations but linearly with that of the accu-
mulator (Horowitz, 2014; Blott et al., 2018; Hawks et al.,
2021), the cost of multiplications dwarfs that of additions in
such paradigms. However, with even lower precision data
formats increasing in popularity (Aggarwal et al., 2023; Wu
et al., 2023), ignoring the accumulator to solely focus on
low-precision weight and activation quantization will have
diminishing returns. For example, Ni et al. 2021 show that
when constraining weights and activations to 3-bit × 1-bit
multipliers, the cost of 32-bit accumulation dominates that
of multiplication, consuming nearly 75% of the total power
and 90% of the total area of their MAC unit. When reduc-
ing to an 8-bit accumulator, they report 4× power savings
and 5× area reduction. In addition to power and area, re-
cent work has also demonstrated savings in throughput and
bandwidth utilization when reducing the accumulator bit
width on general-purpose platforms (de Bruin et al., 2020;
Xie et al., 2021). Both de Bruin et al. 2020 and Xie et al.
2021 report a near-optimal 2× increase in throughput on
computer vision workloads when reducing the accumulator
width from 32 to 16 bits on ARM processors.

Exploiting such an optimization in a principled manner
is non-trivial in practice. The risk of numerical overflow
increases exponentially as the accumulator bit width is re-
duced (Colbert et al., 2023). The resulting arithmetic errors
can lead to catastrophic degradation in model accuracy if
the accumulator is not large enough (Ni et al., 2021).

2.2. Accumulator-Aware Quantization (A2Q)

Training neural networks with quantization in the loop is a
useful means of recovering model accuracy lost to quanti-
zation errors (Gholami et al., 2021; Wu et al., 2020). The
standard operators used to emulate quantization during train-
ing are built on top of uniform affine transformations that
map high-precision values to low-precision ones. We re-
fer to the operators that perform these transformations as
quantizers. As given by Eq. 1, quantizers are commonly

parameterized by zero-point z and scaling factor s. Here,
z is an integer value that ensures that zero is exactly repre-
sented in the quantized domain, and s is a strictly positive
real scalar that corresponds to the resolution of the mapping.
Scaled values are commonly rounded to the nearest inte-
gers using half-way rounding, denoted by ⌊·⌉, and elements
that exceed the largest supported values in the quantized
domain are clipped to n and p, which depend on the target
bit width b. We assume n = −2b−1 and p = 2b−1−1 when
signed, and n = 0 and p = 2b − 1 when unsigned.

Q(w) := s ·
(

clip(
⌊w
s

⌉
+ z;n, p)− z

)
(1)

One approach to training QNNs for low-precision accu-
mulation is to mitigate the impact of numerical overflow
on model accuracy during QAT. To do so, researchers
have sought to either tune scale factors to control overflow
rates (Xie et al., 2021; Azamat et al., 2022; Li et al., 2022)
or train QNNs to be robust to wraparound arithmetic (Ni
et al., 2021; Blumenfeld et al., 2023). However, empirical
estimates of overflow rely on a priori knowledge of the
input distribution, which is impractical to assume in many
real-world use cases and can even introduce vulnerabili-
ties (Baier et al., 2019). Thus, as an alternative, Colbert
et al. 2023 proposed accumulator-aware quantization (A2Q)
to directly train QNNs to use low-precision accumulators
during inference without any risk of numerical overflow.

A2Q guarantees overflow avoidance by constraining the
ℓ1-norm of weights to restrict the range of dot product out-
puts. To accomplish this, Colbert et al. 2023 introduce a
quantizer inspired by weight normalization (Salimans &
Kingma, 2016) that re-parameterizes weights w into vector
v and scalar g such that w = g · v/∥v∥1. This allows the
ℓ1-norm of w to be learned as an independent parameter
since g = ∥w∥1. To avoid numerical overflow during infer-
ence, Colbert et al. 2023 constrain g according to a derived
upper bound T so that ∥Q(w)∥1 ≤ T , as further discussed
in Section 3.3. The resulting quantizer is defined as:

Q(w) := s · clip
(⌊w

s

⌋
;n, p

)
(2)

where w =
v

∥v∥1
·min(g, T ) (3)

and T = s · 2P−1 − 1

2N−1signed(x)
(4)

Here, P denotes the target accumulator bit width, N denotes
the input activation bit width, and 1signed(x) is an indicator
function that returns 1 when input activations are signed
and 0 when unsigned. Unlike in Eq. 1, scaled weights are
rounded towards zero (Loroch et al., 2017), denoted by ⌊·⌋,
to prevent any upward rounding that may cause ∥Q(w)∥1
to increase past the derived upper bound T . Each output
channel is assumed to have its own accumulator so g is
independently defined and constrained per-channel.
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3. A2Q+
Let weights q be a K-dimensional vector of M -bit integers,
and let ZK

N denote the set of all K-dimensional vectors of
N -bit integers. When accumulating the dot product of q by
any x ∈ ZK

N into a signed P -bit register, Colbert et al. 2023
show that one can avoid overflow if q satisfies:

∥q∥1 ≤ 2P−1 − 1

2N−1signed(x)
(5)

Irrespective of weight bit width M , Eq. 5 establishes an
upper bound on the ℓ1-norm of q as a function of accumu-
lator bit width P and activation bit width N . For fixed N ,
reducing P exponentially tightens the constraint on ∥q∥1,
which restricts the range of the weights by pulling them
towards zero. Colbert et al. 2023 demonstrate that learning
under such a constraint introduces a trade-off in the form of
a Pareto frontier, where reducing the accumulator bit width
invariably limits model accuracy within a fixed quantization
design space. We observe that this bound also introduces
a non-trivial trade-off between activation bit width N and
model accuracy. Reducing the precision of the activations
alleviates pressure on ∥q∥1, which becomes more signifi-
cant as P is reduced. However, aggressive discretization of
intermediate activations can significantly hurt model accu-
racy (Wu et al., 2020; Gholami et al., 2021). In Section 4.1,
we show that balancing this trade-off results in the Pareto-
optimal activation bit width N decreasing with P .

Rather than tackling this balancing act (which is an intrigu-
ing problem for future work), our work extends the approach
of A2Q to directly improve these trade-offs. We demon-
strate that A2Q relies on an overly restrictive constraint and
a sub-optimal weight initialization strategy that each intro-
duce superfluous quantization errors. In Section 4, we show
that minimizing these errors ultimately leads to improved
model accuracy as the accumulator bit width is reduced.

3.1. Improved ℓ1-norm Bound via Zero-Centering

Let the closed interval [a, b] denote the representation range
of a signed P -bit register. To avoid overflow when accumu-
lating xTq into this register, the dot product output needs
to fall within [a, b] for any x ∈ ZK

N . Without loss of gen-
erality, we assume a two’s complement representation in
our work, where [a, b] = [−2P−1, 2P−1−1], as is common
practice (Wu et al., 2020; Gholami et al., 2021).

Colbert et al. 2023 approach this task by constraining the
magnitude of xTq such that |xTq| ≤ 2P−1 − 1. They
use worst-case values for x to derive the upper bound on
∥q∥1 given by Eq. 5. Note that this bound can similarly be
constructed via Hölder’s inequality (Hardy et al., 1952) as
shown in Eq. 6, where ∥x∥∞ = 2N−1signed(x).

|xTq| ≤ ∥x∥∞∥q∥1 ≤ 2P−1 − 1 (6)
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Figure 1. We visualize Eq. 8 for both signed (blue crosses) and
unsigned (green circles) integers to show the relative increase
in ℓ1-norm budget that our new bound (Eq. 7) gives to q when
compared to the standard A2Q bound (Eq. 5).

Note that this bound has two shortcomings: (1) it does not
make full use of the representation range of the accumulator,
which becomes increasingly important as its bit width P
is reduced; and (2) it depends on the sign of x, which
tightens the constraint by 2× when 1signed(x) = 0. In this
work, we resolve both of these. We find that zero-centering
our weight vector such that

∑
i wi = 0 yields a favorable

property, as formally presented in the following proposition.

Proposition 3.1. Let x be a K-dimensional vector of N -bit
integers such that the value of the i-th element xi lies within
the closed interval [c, d] and d − c = 2N − 1. Let q be a
K-dimensional vector of signed integers centered at zero
such that

∑
i qi = 0. To guarantee overflow avoidance

when accumulating the result of xTq into a signed P -bit
register, it is sufficient that the ℓ1-norm of q satisfies:

∥q∥1 ≤ 2P − 2

2N − 1
(7)

The proof of this proposition is provided in Appendix A.1.
It is important to note that our new bound (Eq. 7) utilizes the
full representation range of the accumulator and is agnostic
to the sign of the input data. Furthermore, when compared
to the original bound (Eq. 5), ours is greater by a factor of:

2N+1−1signed(x)

2N − 1
(8)

In Fig. 1, we visualize this relationship as a function of
activation bit width N . As implied by Eq. 8, the impact of
our bound increases as the activation bit width is reduced,
with the greatest significance in sub-4-bit quantization sce-
narios. In fact, our bound yields up to a 4× increase in the
ℓ1-norm budget afforded to q when input activations are
unsigned (i.e., 1signed(x) = 0), and up to 2× when they are
signed (i.e., 1signed(x) = 1). In Section 4, we show that this
increased freedom significantly improves model accuracy.
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3.2. Improved Initialization via Euclidean Projections

By re-parameterizing weight vector w as defined below in
Eq. 9, A2Q introduces two new parameters to initialize: g
and v. However, because w is a function of these learned
parameters, it can no longer be directly initialized from a
pre-trained floating-point checkpoint.

w = g · v

∥v∥1
(9)

One could trivially initialize v to be the pre-trained floating-
point weight vector wfloat and g to be its ℓ1-norm, where
v = wfloat and g = ∥wfloat∥1, making w = wfloat. However,
A2Q clips g according to T in Eq. 3. As a consequence,
we observe that naı̈vely initializing g and v according to
wfloat introduces excessive weight quantization error when
∥wfloat∥1 > T (see Appendix B.3). Thus, we aim to mini-
mize weight quantization error at initialization.

We formulate our objective as a projection task described
by the constrained convex optimization problem in Eq. 10.
Here, the optimal initialization v∗ minimizes the weight
quantization error while satisfying the ℓ1-norm accumulator
constraint on the re-scaled quantized weights Q(w).

v∗ = min
v

1

2
∥Q(w)−wfloat∥22 (10)

subject to ∥Q(w)∥1 ≤ T (11)

where w = g · v

∥v∥1
(12)

To solve this optimization problem, we exploit the round-
to-zero operator, which ensures that the magnitude of any
weight wi is always greater than or equal to that of its quan-
tized counterpart Q(wi), or more formally |Q(wi)| ≤ |wi|
for all i. This allows us to solely focus on initializing v such
that ∥v∥1 ≤ T and then initialize g such that g = ∥v∥1.
Thus, we can simplify our optimization problem to:

v∗ = min
v

1

2
∥v −wfloat∥22 (13)

subject to ∥v∥1 ≤ T (14)

It is important to first note that if ∥wfloat∥1 ≤ T , then the op-
timal solution to Eq. 13 is trivially v∗ = wfloat. In addition,
when ∥wfloat∥1 > T , the optimal solution v∗ lies on the
boundary of the constrained set such that ∥v∗∥1 = T . This
allows us leverage the optimal solution derived in Duchi
et al. 2008, which efficiently projects wfloat onto an ℓ1-ball
of radius T using Eq. 15.

v∗ = sign(wfloat) (|wfloat| − θ)+ (15)

Here, (·)+ denotes the rectified linear unit, which zeroes
out all negative values, and θ is a Lagrangian scalar derived
from the optimal solution. We direct the reader to Duchi
et al. 2008 for the associated proofs and derivations.

3.3. Constructing A2Q+

Similar to A2Q, our quantizer is inspired by weight nor-
malization (Salimans & Kingma, 2016) and leverages the
re-parameterization given in Eq. 9. However, unlike A2Q,
we are unable to simply constrain scalar parameter g accord-
ing to Eq. 7 because Prop. 3.1 relies on the assumption that
Q(w) is zero-centered such that

∑
i Q(wi) = 0, which is

not inherently guaranteed.

Enforcing such a zero-centering constraint on a vector of
integers is non-trivial in practice. Emulating quantization
during QAT adds to this complexity as integer-quantized
weights Q(w) are a function of floating-point counterpart w.
However, A2Q is able to guarantee the ℓ1-norm constraint
on Q(w) by constraining norm parameter g, then rounding
the scaled floating-point weights w/s towards zero, which
ensures that ∥Q(w)∥1 ≤ ∥w∥1. We similarly exploit
this property to enforce our zero-centering constraint, as
formally articulated in the following proposition.

Proposition 3.2. Let x be a vector of N -bit integers such
that the i-th element xi lies within the closed interval [c, d]
and d − c = 2N − 1. Let w be a zero-centered vector
such that

∑
i wi = 0. Let Q(w) be a symmetric quantizer

parameterized in the form of Eq. 2, where Q(w) = s · q
for strictly positive scaling factor s and integer-quantized
weight vector q. Given that sign(s · qi) = sign(wi) and
|s · qi| ≤ |wi| for all i, then xTq can be safely accumulated
into a signed P -bit register without overflow if w/s satisfies
all necessary conditions for such a constraint.

The proof of this proposition, as well as a formal defini-
tion of the necessary accumulator constraint conditions, is
provided in Appendix A.2. Based on Prop. 3.2, we are
able to enforce our zero-centering constraint on w without
compromising overflow avoidance, assuming we maintain
a symmetric quantizer that rounds towards zero. However,
rather than directly zero-centering w when leveraging the re-
parameterization given by Eq. 9, we enforce our constraint
on v so as to control its ℓ1-norm. Given that γ = g/∥v∥1
and γv = w, it follows that

∑
i wi = 0 when

∑
i vi = 0.

Thus, we construct our quantizer as follows:

Q(w) := s · clip
(⌊w

s

⌋
;n, p

)
(16)

where w =
v − µv

∥v − µv∥1
·min(g, T+) (17)

and µv =
1

K

K∑
i=1

vi (18)

and T+ = s · 2
P − 2

2N − 1
(19)

To maintain a symmetric quantizer, we eliminate the zero
points in our mapping such that z = 0. We also use an ex-
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Figure 2. We visualize the trade-off between accumulator bit width and model accuracy using Pareto frontier. We observe that A2Q+
(green triangles) dominates both A2Q (blue circles) and the baseline QAT (red stars) in all benchmarks.

ponential parameterization of both the scaling factor s = 2d

and norm parameter g = 2t, where d and t are defined
per-output channel and learned through gradient descent.
Note that norm parameter g is clipped to T+, which is our
new upper bound defined in Eq. 7 scaled by s to ensure
∥w/s∥1 ≤ T+. Our scaled floating-point weights are then
rounded towards zero, denoted by ⌊·⌋. The rounded weights
are then clipped and re-scaled. When updating learnable
parameters throughout training, we use the straight-through
estimator (Bengio et al., 2013) to allow gradients to perme-
ate the rounding function, where ∇x⌊x⌋ = 1 everywhere
and ∇x denotes the gradient with respect to x.

Extending our Euclidean projection-based initialization
strategy to A2Q+ is non-trivial in practice. In such a sce-
nario, our optimization problem is instead subject to the
following constraint: ∥v − µv∥1 ≤ T+. Furthermore, the
optimal solution derived by Duchi et al. 2008 requires each
non-zero component of the optimal solution v∗ to share the
same sign as its counterpart in wfloat, which is not inherently
guaranteed due to our zero-centering constraint. Therefore,
we initialize all A2Q+ networks using the A2Q initialization
in the scope of this work. In practice, we observe this still
significantly reduces initial weight quantization error for
A2Q+ networks. In Appendix B.3, we provide a deeper
investigation for both A2Q and A2Q+ networks.

4. Experimental Results
Models & Datasets. Throughout our experiments, we fo-
cus on two computer vision tasks: image classification and
single-image super resolution. In Section 4.1, we evalu-
ate MobileNetV1 (Howard et al., 2017) and ResNet18 (He
et al., 2016) trained on the CIFAR-10 dataset (Krizhevsky
et al., 2009) for image classification, and ESPCN (Shi et al.,
2016) and U-Net (Ronneberger et al., 2015) trained on the
BSD300 dataset (Martin et al., 2001) for super resolution. In
Section 4.2, we evaluate larger image classification bench-
marks, namely ResNet18, ResNet34, and ResNet50 trained
on the ImageNet-1K dataset (Deng et al., 2009).

Quantization Design Space. Following the experiments
of Colbert et al. 2023, we constrain our quantization design
space to uniform-precision models such that every hidden
layer has the same weight, activation, and accumulator bit
width, respectively denoted as M , N , and P . Our exper-
iments consider 3- to 8-bit integers for both weights and
activations, extending the quantization design space of Col-
bert et al. 2023 by 4×. For each of the 64 weight and
activation combinations, we calculate the most conserva-
tive accumulator bit width for each model using Eq. 20,
as derived by Colbert et al. 2023. Here, ⌈·⌉ denotes ceil-
ing rounding and K∗ = argmaxKl

{Kl}Ll=1, where Kl is
the dot product size of layer l in a network with L layers.
We calculate P ∗ for each unique (M,N) combination and
evaluate up to a 10-bit reduction in accumulator bit width,
creating a total of 640 unique configurations per model. We
repeat each experiment 3 times using different random seeds.

P ∗ = ⌈α+ ϕ(α) + 1⌉ (20)
α = log2(K

∗) +N +M − 1− 1signed(x) (21)

ϕ(α) = log2(1 + 2−α) (22)

We implement A2Q+ in PyTorch (Paszke et al., 2019) using
v0.10 of the Brevitas quantization library (Pappalardo, 2021)
and leverage their implementations of A2Q and baseline
QAT methods for benchmarking. We include all training
details and hyperparameters in Appendix B.1.

4.1. Optimizing for Accumulator Constraints

Following the benchmarking strategy in Colbert et al. 2023,
we first optimize QNNs for accumulator-constrained pro-
cessors. Here, the goal is to maximize model accuracy1

given a target accumulator bit width P . This scenario has
implications for accelerating inference on general-purpose
platforms (Xie et al., 2021; Li et al., 2022) and reducing the
computational overhead of encrypted computations (Lou

1We loosely use the term model accuracy to also describe peak
signal-to-noise ratio (PSNR) for convenience of discussion.
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Table 1. We provide the test top-1 accuracy and quantization configuration for some of the Pareto-optimal image classification models that
form a section of the frontiers visualized in Fig. 2. We emphasize the Pareto-dominant points in bold.

P

MobileNetV1
(Float: 92.43%)

ResNet18
(Float: 95.00%)

Base A2Q A2Q+ Base A2Q A2Q+
Top-1 (M,N) Top-1 (M,N) Top-1 (M,N) Top-1 (M,N) Top-1 (M,N) Top-1 (M,N)

11 - - 71.8% (5,4) 78.5% (4,5) - - 81.0% (3,3) 89.9% (3,3)
12 - - 76.9% (4,5) 83.5% (4,6) - - 89.1% (3,3) 92.8% (3,3)
13 - - 83.4% (6,5) 89.7% (3,6) - - 92.5% (3,3) 93.8% (4,3)
14 - - 89.3% (3,6) 90.8% (3,7) - - 93.9% (4,3) 94.1% (4,4)
15 - - 90.9% (4,7) 91.9% (4,7) - - 94.2% (4,4) 94.4% (5,5)
16 - - 91.9% (4,7) 92.1% (5,8) - - 94.4% (4,4) 94.5% (3,5)
17 62.2% (3,3) 92.2% (4,8) 92.3% (6,8) - - 94.5% (5,5) 94.6% (6,6)
18 83.0% (3,4) 92.2% (4,8) 92.4% (6,8) - - 94.7% (4,5) 94.6% (6,7)
19 90.3% (3,5) 92.3% (6,8) 92.4% (6,8) 94.0% (3,3) 94.8% (4,7) 94.7% (6,8)
20 91.1% (3,6) 92.3% (6,8) 92.4% (8,8) 94.3% (3,4) 94.8% (4,7) 94.7% (8,8)

Table 2. We provide the test peak signal-to-noise ratio (PSNR) and quantization configuration for some of the Pareto-optimal super
resolution models that form a section of the frontiers visualized in Fig. 2. We emphasize the Pareto-dominant points in bold.

P

ESPCN
(Float: 24.91)

U-Net
(Float: 25.37)

Base A2Q A2Q+ Base A2Q A2Q+
PSNR (M,N) PSNR (M,N) PSNR (M,N) PSNR (M,N) PSNR (M,N) PSNR (M,N)

9 - - 17.0 (4,3) 21.9 (3,3) - - 18.2 (5,3) 23.9 (5,3)
10 - - 21.1 (4,3) 24.1 (4,3) - - 23.4 (4,3) 24.4 (3,3)
11 - - 24.1 (6,3) 24.4 (4,3) - - 24.5 (6,3) 24.8 (5,4)
12 - - 24.4 (7,3) 24.7 (4,4) - - 24.7 (4,4) 25.0 (3,5)
13 - - 24.8 (7,4) 24.8 (5,5) - - 25.0 (8,4) 25.1 (7,5)
14 - - 24.8 (7,4) 25.0 (6,5) - - 25.2 (8,5) 25.2 (8,5)
15 - - 24.9 (4,5) 25.0 (6,5) - - 25.3 (8,6) 25.3 (6,6)
16 24.5 (3,3) 25.0 (6,6) 25.1 (6,7) 24.6 (3,3) 25.4 (8,6) 25.4 (6,6)
17 24.7 (3,4) 25.0 (6,6) 25.2 (8,7) 25.0 (3,4) 25.5 (4,8) 25.5 (6,8)
18 24.8 (3,5) 25.0 (6,7) 25.2 (8,7) 25.2 (3,5) 25.5 (4,8) 25.5 (6,8)

& Jiang, 2019; Stoian et al., 2023). As an alternative to
A2Q, one could also heuristically manipulating weight bit
width M and activation bit width N according to Eq. 20. To
the best of our knowledge, this is the only other method to
train a uniform-precision QNN for a given P without over-
flow. Therefore, we use exhaustive bit width manipulation
as a baseline when comparing A2Q+ against A2Q.

In Fig. 2, we visualize this comparison using Pareto frontiers
and provide the 32-bit floating-point model accuracy for ref-
erence. For each model and each QAT algorithm, the Pareto
frontier provides the maximum observed model accuracy for
a given target accumulator bit width P . In addition, we pro-
vide a detailed breakdown of each Pareto frontier in Tables 1
and 2, where we also report the weight and activation bit
widths of the Pareto-dominant model. In these experiments,
all super resolution benchmarks are trained from scratch
and all image classification benchmarks are initialized from
pre-trained floating-point checkpoints using our Euclidean
projection-based weight initialization (EP-init). We handle

depthwise separable convolutions using the technique dis-
cussed in Appendix B.2, which only impacts MobileNetV1.
It is important to note that this is not a direct comparison
against Colbert et al. 2023 because we apply EP-init to both
A2Q and A2Q+ models to strictly compare weight quantiz-
ers. However, we provide an ablation study in Appendix B.3
that shows EP-init improves both A2Q and A2Q+ by up to
+50% in extremely low-precision accumulation regimes.

Intuitively, heuristic bit width manipulations can only reduce
the accumulator bit width so far because P is ultimately lim-
ited by dot product size K. Alternatively, using A2Q to
train QNNs directly for low-precision accumulation allows
one to push the accumulator bit width lower than previously
attainable without compromising overflow; yet, a trade-off
still remains. We observe that A2Q+ significantly improves
this trade-off, especially in the extremely low-precision ac-
cumulation regime. Thus, by alleviating the pressure on
model weights, A2Q+ recovers model accuracy lost to the
overly restrictive accumulator constraints imposed by A2Q.
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Figure 3. We evaluate the trade-off between activation bit width N and model accuracy under fixed accumulator constraints. We visualize
the average and standard deviation in model accuracy measured over 3 experiments as N is increased from 3 to 8 bits when targeting
accumulator widths that range from 14 to 20 bits. The weights of all hidden layers are fixed to 4-bits.

Finally, we observe that the Pareto-optimal activation bit
width N monotonically decreases along the frontier as the
target accumulator bit width P is reduced. We hypothe-
size this is in part a consequence of the alleviated pressure
on ∥q∥1 discussed in Section 3. To investigate this relation-
ship, we evaluate model accuracy as we increase N with
fixed P . To focus on N and P , we fix weights to 4 bits.
Figure 3 shows the average accuracy for each model as we
increase N from 3 to 8 bits when targeting 14- to 20-bit accu-
mulation. As previously established, reducing P invariably
limits model accuracy. However, additionally increasing N
continues to tighten the constraint on ∥q∥1, further limiting
model accuracy and introducing a non-trivial trade-off ob-
served across neural architectures. When compared to A2Q,
A2Q+ significantly alleviates this trade-off by alleviating
the constraints on ∥q∥1 for fixed N and P , increasing the
Pareto-optimal activation bit width and model accuracy.

4.2. Low-Precision Accumulation for ImageNet Models

The ℓ1-norm of an unconstrained weight vector inherently
grows as its dimensionality K increases. This suggests that,
with a fixed activation bit width N and target accumulator
bit width P , A2Q and A2Q+ scale well to deeper architec-
tures as the accumulator constraint tightens with the width
of a neural architecture rather than the depth.

We investigate this hypothesis by evaluating larger ResNet
models trained on ImageNet from pre-trained floating-point
checkpoints. Rather than exploring the full quantization
design space, we focus on 4-bit weights and activations
while evaluating A2Q and A2Q+ under various accumulator
constraints. We also evaluate the impact of our Euclidean
projection-based weight initialization strategy (EP-init) on
standard A2Q and use the standard methods discussed in
Appendix B.1 to provide a reference QAT baseline. We use
the pre-trained checkpoints provided by PyTorch (Paszke
et al., 2019) and report our results in Table 3.

We observe that both A2Q and A2Q+ can maintain baseline
accuracy when targeting 16-bit accumulators; however, it
is important to note that this is a non-trivial result. Only
about 50% of the output channels in the PyTorch ResNet18
and ResNet34 checkpoints inherently satisfy a 16-bit ac-
cumulator constraint, with less than 10% satisfying 12-bit
constraints (see Appendix B.3). While A2Q is able to re-
cover when P = 16, we observe that EP-init significantly
improves model accuracy as P is reduced, with a noteable
+11.7% increase in test top-1 accuracy on ResNet50 when
targeting 12-bit accumulation. Furthermore, we observe
that A2Q+ can consistently maintain over 96% of the test
top-1 accuracy relative to the 32-bit floating-point baselines
when targeting 14-bit accumulators.
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Interestingly, we observe that the accuracy gap between
accumulator-constrained models and their original floating-
point counterparts decreases as model size increases. Build-
ing from our hypothesis, we conjecture this is in part be-
cause the models are growing in depth but not width, which
increases model capacity without tightening our constraints.

Finally, we observe that both A2Q and A2Q+ inherently
expose opportunities to exploit unstructured weight sparsity.
As shown in Colbert et al. 2023, decreasing P increases
sparsity when N is fixed. Furthermore, since A2Q is more
restrictive than A2Q+ for fixed P and N , we see that A2Q
can result in significantly higher sparsity levels. We observe
this gap in sparsity decreases with P while the accuracy gap
increases, with A2Q+ resulting in +17% top-1 accuracy
with only −6.3% sparsity when compared to A2Q for 12-
bit accumulator constraints on ResNet50.

Table 3. We evaluate A2Q+ for W4A4 ImageNet models and com-
pare against baseline QAT methods and standard A2Q, both with
and without Euclidean projection-based initialization (EP-init.)

Network Method P Top-1 Sparsity

ResNet18
(Float: 69.76%)

Base 32 70.2% 20.8%

A2Q
16 69.2% 73.7%
14 60.3% 91.7%
12 35.5% 94.7%

A2Q
(w/ EP-init)

16 69.3% 73.7%
14 62.5% 91.2%
12 42.7% 94.6%

A2Q+
16 69.8% 50.4%
14 67.1% 85.0%
12 56.4% 93.4%

ResNet34
(Float: 73.31%)

Base 32 73.4% 23.9%

A2Q
16 73.1% 75.2%
14 65.8% 94.5%
12 43.4% 96.9%

A2Q
(w/ EP-init)

16 73.1% 74.9%
14 67.6% 94.2%
12 51.4% 96.8%

A2Q+
16 73.3% 51.4%
14 71.4% 85.0%
12 62.1% 95.9%

ResNet50
(Float: 76.13%)

Base 32 75.9% 25.8%

A2Q
16 76.0% 56.1%
14 73.8% 77.2%
12 55.0% 90.7%

A2Q
(w/ EP-init)

16 76.0% 56.1%
14 74.5% 77.1%
12 66.7% 88.6%

A2Q+
16 76.0% 44.0%
14 75.7% 67.7%
12 72.0% 84.4%

5. Conclusions and Future Work
As weights and activations are increasingly represented with
fewer bits, we anticipate the accumulator to play a critical
role in the quantization design space. However, while re-
ducing the precision of the accumulator offers significant
hardware efficiency improvements, it also invariably limits
model accuracy by means of either numerical overflow or
learning constraints (de Bruin et al., 2020; Ni et al., 2021;
Xie et al., 2021; Colbert et al., 2023). Our results show that
A2Q+ significantly improves this trade-off, outperforming
prior methods that guarantee overflow avoidance.

A2Q+ uses zero-centering to alleviate the ℓ1-norm con-
straints of A2Q, improving model accuracy without com-
promising overflow avoidance. It is important to note that
prior work has also studied benefits of zero-centering in
other contexts. Huang et al. 2017 show that normalizing
weights to have zero mean and unit ℓ2-norm can stabilize
pre-activation distributions and yield better-conditioned op-
timization problems. Qiao et al. 2019 show that normalizing
weights to instead have zero mean and unit variance can
smooth the loss landscape and improve convergence. Li
et al. 2019 propose a non-uniform quantization scheme that
also normalizes weights to have zero mean and unit variance
and report increased training stability. However, this col-
lection of favorable properties may not directly translate to
A2Q+, which is a uniform quantization scheme that normal-
izes each output channel of the weights to have zero mean
and unit ℓ1-norm, but we do observe that A2Q+ inherits an
unfavorable property of zero-centering that seems to have
been overlooked in these prior works: implicit dimension-
ality reduction. We observe this to only negatively impact
depthwise separable convolutions (see Appendix B.2).

A2Q+ uses Euclidean projections to minimize weight quan-
tization error at initialization. As a consequence of accu-
mulator constraints, naı̈ve initialization forces models to
recover from superfluous quantization error as P is reduced.
However, while our experiments show that minimizing the
weight quantization error at initialization yields significant
improvements in the resulting model accuracy, we do not
observe increased post-training quantization performance.
Similar to Colbert et al. 2023, we find this is due to the
reliance on round-to-zero and the severity of accumulator
constraints, which we highlight for future work.

Prior works have reported that weight normalization and
its variants have negligible training overhead, which we
observe in our experiments with A2Q+. Furthermore, be-
cause we apply our zero-centering constraint directly to the
floating-point weights, it is part of the quantization mapping
itself. After the model is trained, our quantization mapping
is intended to be applied once offline before deployment
and is therefore transparent to any hardware implementation.
Thus, there is zero inference overhead as well.
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Finally, A2Q+ introduces unstructured weight sparsity as
the accumulator bit width is reduced. Although studies have
exploited unstructured sparsity to improve inference perfor-
mance on both programmable logic (Nurvitadhi et al., 2017;
Colbert et al., 2021a) and general-purpose platforms (Elsen
et al., 2020; Gale et al., 2020), many off-the-shelf acceler-
ators require structured patterns to see performance bene-
fits (Mao et al., 2017; Mishra et al., 2021). We highlight
controlling weight sparsity patterns for future work.
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A. Proofs
A.1. Proof of Proposition 3.1

Let weights q be a K-dimensional vector of M -bit integers,
and let ZK

N denote the set of all K-dimensional vectors
of N -bit integers. To prove Prop. 3.1, restated below for
completeness, we examine the vectors that maximize and
minimize the dot product of q by any x ∈ ZK

N and directly
derive our result by exhaustively evaluating each case.
Without loss of generality, we assume a two’s complement
representation for signed integers in our work as is common
practice (Wu et al., 2020; Gholami et al., 2021).

Proposition 3.1. Let x be a K-dimensional vector of N -bit
integers such that the value of the i-th element xi lies within
the closed interval [c, d] and d − c = 2N − 1. Let q be a
K-dimensional vector of signed integers centered at zero
such that

∑
i qi = 0. To guarantee overflow avoidance

when accumulating the result of xTq into a signed P -bit
register, it is sufficient that the ℓ1-norm of q satisfies:

∥q∥1 ≤ 2P − 2

2N − 1
(7)

Proof. Let α denote the sum of all positive elements of q
and let β denote the sum of all negative elements of q. It
follows that α+β = 0 (property of the zero-centered vector)
and α− β = ∥q∥1 (property of the ℓ1-norm). This yields
the following relationships: α = −β = 1

2 ∥q∥1.

Let the closed interval [e, f ] denote the output range of the
dot product of q by any x ∈ ZK

N , where f ≥ e. To safely
use a signed P -bit accumulator without overflow, all of the
following inequalities need to be satisfied:

f ≤ 2P−1 − 1 (23)

−e ≤ 2P−1 (24)

f − e ≤ 2P − 1 (25)

We start with the first inequality, Eq. 23. Since the value of
each input element xi is bounded to the closed interval [c, d],
the maximizing vector µ = argmaxx xTq is defined as:

µi =

{
d, where qi ≥ 0

c, where qi < 0
(26)

Exploiting the identities of α, β, c, d, and f , we can derive
the following upper bound on the ℓ1-norm of q:

µTq ≤ 2P−1 − 1 (27)

dα+ cβ ≤ 2P−1 − 1 (28)

α(d− c) ≤ 2P−1 − 1 (29)

∥q∥1 ≤ 2P − 2

2N − 1
(30)

Note that this aligns with Prop. 3.1. Next, we prove that
satisfying this bound will also satisfy Eqs. 24 and 25.

We continue onto Eq. 24. Similar to Eq. 26, the minimizing
vector ν = argminx xTq is defined as:

νi =

{
c, where qi ≥ 0

d, where qi < 0
(31)

Again exploiting our defined identities, we can derive the
following upper bound on the ℓ1-norm of q:

−νTq ≤ 2P−1 (32)

−cα− dβ ≤ 2P−1 (33)

α(d− c) ≤ 2P−1 (34)

∥q∥1 ≤ 2P

2N − 1
(35)

Note that by satisfying Eq. 30, we also satisfy Eq. 35.

Finally, we evaluate the last inequality, Eq. 25. From Eqs. 26
and 31, it follows that µi − νi = (d− c)sign(qi). With this
new identity, we can derive the following upper bound on
the ℓ1-norm of q:

(µ− ν)
T
q ≤ 2P − 1 (36)

(d− c)sign(q)Tq ≤ 2P − 1 (37)

∥q∥1 ≤ 2P − 1

2N − 1
(38)

Thus, by satisfying Eq. 30, we also satisfy both Eqs. 35
and 38, enabling the use of a signed P -bit accumulator.

A.2. Proof of Proposition 3.2

To prove Prop. 3.2, we first present the following lemma:

Lemma A.1. Let x, w, and q each be K-dimensional
vectors. If sign(xi) = sign(wi) = sign(qi) for all non-zero
xi and |qi| ≤ |wi| for all i, then xTq ≤ xTw.

Proof. Given that sign(xi) = sign(wi) = sign(qi) for all
non-zero xi, it follows that xTq =

∑
i |xi||qi| and xTw =∑

i |xi||wi|. Using these identities, we can directly derive
the following inequality:

xTq ≤ xTw (39)∑
i |xi||qi| ≤

∑
i |xi||wi| (40)∑

i |xi| (|qi| − |wi|) ≤ 0 (41)

Given that |qi| ≤ |wi| for all i, this leads us to the desired
result that the inequality holds, i.e., xTq ≤ xTw.

Consider again inputs x and integer-quantized weights q.
Recall that simulated quantization derives q from floating-
point counterpart w using a transformation function referred
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to as a quantizer. To prove Prop. 3.2, we leverage the neces-
sary accumulator constraint conditions formally articulated
in Appendix A.1: Eqs. 7, 23, 24, and 25. We again directly
derive our result by exhaustively evaluating each case.

Proposition 3.2. Let x be a vector of N -bit integers such
that the i-th element xi lies within the closed interval [c, d]
and d − c = 2N − 1. Let w be a zero-centered vector
such that

∑
i wi = 0. Let Q(w) be a symmetric quantizer

parameterized in the form of Eq. 2, where Q(w) = s · q
for strictly positive scaling factor s and integer-quantized
weight vector q. Given that sign(s · qi) = sign(wi) and
|s · qi| ≤ |wi| for all i, then xTq can be safely accumulated
into a signed P -bit register without overflow if w/s satisfies
all necessary conditions for such a constraint.

Proof. As shown in Section 3.1, q must satisfy Eqs. 7, 23,
24, and 25 to avoid overflow when accumulating the re-
sult of xTq into a P -bit register. To show that q satisfies
these four necessary conditions when w/s does as well, we
directly prove each case, starting with Eq. 7. Given that
|s · qi| ≤ |wi| for all i and s is a strictly positive scalar,
it follows that |qi| ≤ |wi/s| and thus ∥q∥1 ≤ ∥w/s∥1.
Therefore, when w/s satisfies Eq. 7, then q does as well.

To evaluate Eq. 23, let µ be the vector that maximizes xTw
as defined in Eq. 26. Given that s is strictly positive and
sign(s · qi) = sign(wi), it follows that sign(qi) = sign(wi)
and thus µ also maximizes xTq. Furthermore, given that
µi is an N -bit integer, the closed interval [c, d] is defined
as [−2N−1, 2N−1 − 1] when µi is signed and [0, 2N − 1]
when unsigned. It follows that sign(µi) = sign(wi) =
sign(qi) for all non-zero µi and |qi| ≤ |wi/s| for all i, and
thus µTq ≤ µTw/s by Lemma A.1. Therefore, when w/s
satisfies Eq. 23, then so does q.

Similarly, let ν be the vector that minimizes xTw as defined
in Eq. 31. Given that sign(qi) = sign(wi), then ν also min-
imizes xTq. It again follows that sign(−νi)− sign(wi) =
sign(qi) for all non-zero νi and |qi| ≤ |wi/s| for all i, and
thus −νTq ≤ −νTw/s by Lemma A.1. Therefore, q
satisfies Eq. 24 when w/s does as well.

Following the same logic for Eq. 25, sign(µi − νi) =
sign(wi) = sign(qi) for all i where µi ̸= νi, and thus
(µ− ν)

T
q ≤ (µ− ν)

T
w/s, again by Lemma 25. There-

fore, when w/s satisfies Eq. 25, then so does q, leading to
the desired result for all four necessary conditions.

B. Experiment Details & Ablations
B.1. Hyperparameters & Quantization Schemes

Below, we provide further details on training hyperparame-
ters, neural network architectures, and quantization schemes
for our image classification and single-image super resolu-
tion benchmarks. As we are building from the work of Col-

bert et al. 2023, we adopt a quantization scheme that is
amenable to compilation through FINN (Umuroglu et al.,
2017), where batch normalization layers, floating-point bi-
ases, and even scaling factors are absorbed into thresholding
units via mathematical manipulation during graph compi-
lation (Umuroglu & Jahre, 2017). Thus, we are not con-
strained to rely on power-of-2 scaling factors, quantized
biases, or batch-norm folding as is common for integer-only
inference (Jacob et al., 2018; Wu et al., 2020; Gholami et al.,
2021). For all models, we fix the first and last layers to 8-bit
weights and activations for all configurations, as is common
practice (Wu et al., 2020; Gholami et al., 2021).

Following the quantization scheme of Colbert et al. 2023,
we apply A2Q and A2Q+ to only the weights of a QNN and
adopt the regularization penalty defined in Eq. 42 to avoid g
getting stuck when g > T+.

R = max{g − T+, 0} (42)

This penalty is imposed on every hidden layer and com-
bined into one regularizer: Lreg =

∑
l

∑
i Rl,i, where Rl,i

denotes the regularization penalty for the i-th output channel
in the l-th layer of the network. We scale this regulariza-
tion penalty Lreg by a constant scalar λ = 1e− 3 such that
Ltotal = Ltask + λLreg, where Ltask is the task-specific loss.

Baseline QAT. Our baseline QAT method is synthesized
from common best practices. Similar to A2Q and A2Q+,
we symmetrically constrain the weight quantization scheme
around the origin such that z = 0 while allowing activations
to be asymmetric (Gholami et al., 2021; Zhang et al., 2022).
Eliminating these zero points on the weights reduces the
computational overhead of cross-terms during integer-only
inference (Jacob et al., 2018; Jain et al., 2020). We use
unique floating-point scaling factors for each output chan-
nel (or neuron) to adjust for varied dynamic ranges (Nagel
et al., 2019). However, extending this strategy to activations
can be computationally expensive (Jain et al., 2020). As
such, we use per-tensor scaling factors for activations and
per-channel scaling factors on the weights, as is standard
practice (Jain et al., 2020; Wu et al., 2020; Zhang et al.,
2022). Similar to A2Q and A2Q+, all scaling factors are
learned in the log domain such that s = 2d, where d is a
log-scale learnable parameter. The scaled weights (or acti-
vations) are rounded to the nearest integer and clipped to
the limits of the representation range (see Section 2.2). No-
ticeably, the rounding function introduces extremely sparse
gradients; therefore, we use the straight-through estima-
tor (Bengio et al., 2013) during training to allow gradients
to permeate the rounding function such that ∇x⌊x⌉ = 1
everywhere and ∇x denotes the gradient with respect to x.

ImageNet models. When training ResNet (He et al., 2016)
models on ImageNet (Deng et al., 2009), we leverage the
unmodified implementations from PyTorch (Paszke et al.,
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2019) as well as their pre-trained floating-point checkpoints.
We use batch sizes of 64 images with an initial learning
rate of 1e-4 that is reduced by a factor of 0.1 at epochs 30
and 50. We fine-tune all models for 60 epochs using the
standard stochastic gradient descent (SGD) optimizer with
a weight decay of 1e-5. Before fine-tuning, we apply the
graph equalization and bias correction techniques proposed
by Nagel et al. 2019 using a calibration set of 3000 images
randomly sampled from the training dataset. When applying
our Euclidean projection-based weight initialization strategy
discussed in Section 3.2, we do so after graph equalization,
but before bias correction. Finally, although common prac-
tice is to keep residuals as 32-bit additions (Yao et al., 2021),
we quantize our residual connections to 8 bits to reduce the
cost of such high-precision additions.

CIFAR10 models. When training MobileNetV1 (Howard
et al., 2017) and ResNet18 (He et al., 2016) to classify im-
ages on the CIFAR10 dataset (Krizhevsky et al., 2009), we
follow the modified network architectures used by Colbert
et al. 2023. These modifications reduce the degree of down-
sampling throughout these networks to yield intermediate
representations that are more amenable to the smaller im-
age sizes of CIFAR10. For MobileNetV1, we use batch
sizes of 64 images with an initial learning rate of 1e-3 that
is reduced by a factor of 0.9 every epoch. For ResNet18,
we use batch sizes of 256 with an initial learning rate of
1e-3 that is reduced by a factor of 0.1 every 30 epochs. We
use a weight decay of 1e-5 for both models. We initialize
all quantized models from pre-trained floating-point check-
points and fine-tune for 100 epochs using the standard SGD
optimizer. We again apply the graph equalization and bias
correction techniques before fine-tuning, but using a cali-
bration set of 1000 images. We again use our Euclidean
projection-based weight initialization strategy after graph
equalization, but before bias correction. Finally, we fur-
ther quantize our residual additions to the same bit width
specified for our hidden activations, i.e., N .

BSD300 models. When training ESPCN (Shi et al., 2016)
and U-Net (Ronneberger et al., 2015) to upscale images by a
factor of 3× using the BSD300 dataset (Martin et al., 2001),
we again follow the modified architectures used by Colbert
et al. 2023. These modifications rely on the nearest neighbor
resize convolution to upsample intermediate representations
to improve model accuracy during training (Odena et al.,
2016), without impacting inference efficiency (Colbert et al.,
2021b). For both models, we use batch sizes of 8 images
with an initial learning rate of 1e-3 that is reduced by a
factor of 0.999 every epoch and again use a weight decay
of 1e-5. We randomly initialize all models according to He
et al. 2015 and train them from scratch for 300 epochs using
the Adam optimizer (Kingma & Ba, 2014). Similar to the
CIFAR10 models, we quantize our residual additions in
U-Net to the hidden activation bit width N .

B.2. A2Q+ for Depthwise Separable Convolutions

A2Q+ relies on zero-centering the weights for the purpose
of alleviating the overly restrictive ℓ1-norm constraints of
A2Q. As discussed in Section 5, several studies have in-
vestigated the impact of zero-centering within the context
of weight normalization (Huang et al., 2017; Qiao et al.,
2019; Li et al., 2019). While these works highlight the fa-
vorable properties of zero-centered weight normalization,
such as stabilized pre-activation distributions and improved
convergence, they seem to overlook an unfavorable property:
implicit dimensionality reduction.

Given K-dimensional weight vector w, the zero-centering
operation can be interpreted as a projection onto a K −
1 hyperplane (Yang et al., 2019). This implies that such
a constraint reduces the degrees of freedom of the zero-
centered weight vector, and such a reduction has a more
significant impact with smaller K. In the context of our
work, we find that this introduces issues when handling
layers with smaller dot product sizes, as is the case with the
depthwise separable convolutions (Sifre & Mallat, 2014)
commonly used in MobileNets (Howard et al., 2017).

Depthwise separable convolutions factorize the standard
convolution into two chained operations: (1) a depthwise
convolution that applies a single filter to each input channel;
followed by (2) a pointwise convolution that applies a 1× 1
kernel that combines the resulting output channels (Sifre &
Mallat, 2014; Howard et al., 2017). The size of pointwise
convolution dot products is equivalent to the number of the
input channels in the layer, which tend to be large. However,
size of depthwise convolution dot products is equivalent to
the size of the kernels, which tend to be orders of magnitude
smaller (Howard et al., 2017). Prior studies on zero-centered
weight normalization focus on benchmarks without these
convolutions, e.g., VGGs and ResNets. In the scope of our
work, we find that zero-centering the weights of depthwise
convolutions negatively impacts model accuracy.

In Fig. 4, we evaluate the impact of zero-centering on depth-
wise separable convolutions. We visualize the maximum
test top-1 accuracy observed over 3 experiments when train-
ing MobileNetV1 to classify CIFAR10 images assuming
4-bit weights and activations (W4A4). Using the hyperpa-
rameters detailed in Section B.1, we find that using A2Q
for depthwise convolutions and A2Q+ for pointwise con-
volutions, we are able to recover model accuracy lost to
implicit dimensionality reduction. In addition, we are able
to improve the trade-off between model accuracy and ac-
cumulator bit width. Thus, we use the mixed depthwise
separable convolution wherever possible in this work.
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Figure 4. We evaluate the impact of zero-centering on depthwise
convolutions as we reduce the target accumulator bit width. We
visualize the maximum observed test top-1 accuracy when training
a W4A4 MobileNetV1 model on CIFAR10. We show that using
A2Q for all depthwise convolutions and A2Q+ for all other hidden
layers (green triangles) outperforms uniformly applying A2Q
(blue circles) or A2Q+ (red crosses) to all hidden layers.

B.3. Impact of Euclidean Projection Initialization

In Section 3.2, we introduce a Euclidean projection-based
weight initialization strategy designed to minimize the quan-
tization error when initializing A2Q and A2Q+ models from
pre-trained floating-point checkpoints. We refer to this strat-
egy as EP-init. Our results in Section 4.2 show that EP-init
significantly improves A2Q as a reference baseline for Im-
ageNet models. This section provides a deeper empirical
analysis of the initial weight quantization error. We addi-
tionally discuss our ablation study that isolates the impact of
EP-init across quantizers and target accumulator bit widths.

B.3.1. INITIAL WEIGHT QUANTIZATION ERROR

A common practice when initializing QNNs from pre-
trained floating-point checkpoints is to define scaling fac-
tor s to be the ratio given by Eq. 43 (Gholami et al.,
2021; Zhang et al., 2022; Aggarwal et al., 2023). Here,
max(|wfloat|) is the maximum observed floating-point
weight magnitude defined per-output channel and M is the
target weight bit width defined per-tensor.

s =
max(|wfloat|)
2M−1 − 1

(43)

Using A2Q and A2Q+ to fine-tune QNNs from pre-trained
floating-point checkpoints requires initializing two new
learnable parameters: g and v. One could trivially initialize
v to be the pre-trained floating-point weight vector wfloat
and g to be its ℓ1-norm such that v = wfloat and g = ∥wfloat∥1
to ensure w = wfloat. While this works well when target-
ing high-precision accumulators (e.g., 32 bits), we observe
that A2Q-quantized networks are forced to quickly recover
from extremely high losses when targeting low-precision
accumulation scenarios (e.g., 16 bits or fewer).

Figure 5 visualizes the test cross entropy loss when train-
ing various W4A4 ResNets to classify ImageNet images
while targeting 14-bit accumulators. A2Q-quantized net-
works do not fully recover when naı̈vely initialized. Upon
deeper investigation, we identify that this is in large part a
consequence of A2Q clipping g according to T in Eq. 3.

We first analyze the pre-trained floating-point ResNet check-
points to demonstrate the breadth of this problem. We evalu-
ate ∥wfloat/s∥1 for each output channel in each hidden layer
of each ImageNet model using the scaling factor definition
provided in Eq. 43. We visualize the results as an empirical
cumulative distribution function (CDF) in Fig. 6. This CDF
shows the percentage of channels in each W4A4 ImageNet
model that inherently satisfies 14-, 16-, and 18-bit accumula-
tor constraints assuming A2Q is the weight quantizer. While
all per-channel weight vectors satisfy a 18-bit accumulator
constraint upon initialization, we observe that only 52% of
ResNet18 channels inherently satisfy a 16-bit accumulator
constraint and a mere 23% inherently satisfy a 14-bit accu-
mulator constraint. For ResNet34, we observe 47% satisfy
the 16-bit constraint and 14% satisfy the 14-bit constraint.
Interestingly, we observe that 92% of ResNet50 channels
inherently satisfy the 16-bit constraint and 46% satisfy the
14-bit constraint. We hypothesize this is because our accu-
mulator constraints tighten with the width rather than the
depth of a neural network. This allows model capacity to
increase without tightening of constraints. It is important
to note that these observations are dependent on the exact
weight values of the pre-trained floating-point checkpoint.
We use the standard pre-trained floating-point checkpoints
provided by PyTorch (Paszke et al., 2019) within the scope
of this work and leave an exhaustive analysis of other check-
points for future work.

As a consequence of the ℓ1-norm constraints, naı̈vely ini-
tializing g such that g = ∥wfloat∥1 significantly increases
the initial weight quantization error when ∥wfloat∥1 > T .
Consider again the same ResNet models and let the weight
quantization error at initialization be defined as follows:

1

2
∥Q(w)−wfloat∥22 (44)

To demonstrate how this weight quantization error increases
as the target accumulator bit width is reduced, we indepen-
dently evaluate Eq. 44 for each output channel and plot the
average in Fig. 7. To account for the varied sizes of each
layer in the network, we normalize the quantization error of
each output channel by the squared ℓ2-norm of the floating-
point weights, formally defined as 1

2∥wfloat∥22. Noticeably,
when initializing g and v, the average weight quantization
error increases exponentially with the reduction in accumu-
lator bit width regardless of the strategy. In fact, when tar-
geting 10-bit accumulation, Q(w) is initialized with nearly
100% sparsity across all output channels. However, we are
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Figure 5. We visualize the test cross entropy loss when training ResNet18, ResNet34, and ResNet50 to classify ImageNet images using
4-bit weights and activations (W4A4) and targeting 14-bit accumulation using A2Q. We observe that our Euclidean projection initialization
(EP-init) helps improve convergence. Note that respective test top-1 accuracies are detailed in Table 3.
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Figure 6. We provide an empirical CDF to visualize the percentage
of output channels in various A2Q-quantized W4A4 ResNets that
inherently satisfies 14-, 16-, and 18-bit ℓ1-norm constraints when
first initialized from a pre-trained ImageNet checkpoint.

able to effectively minimize initial weight quantization error
when using EP-init. We additionally observe that combin-
ing this strategy with our new bound further reduces the
initial weight quantization error as the ℓ1-norm constraints
are relaxed. We show this reduced weight quantization error
yields improved model accuracy in Section 4.2.

B.3.2. ABLATION STUDY ON CIFAR10

When constructing our Pareto frontiers in Section 4.1, we
applied EP-init to all A2Q and A2Q+ models to strictly
compare the quantizers without the influence of initializa-
tion. To isolate the influence of initialization, we detail an
ablation study that further investigates the impact of EP-init
on model accuracy. Our analysis aims to further connect ini-
tial weight quantization error to model accuracy. Thus, we
focus on ResNet18 trained on the CIFAR10 dataset. Build-
ing from the ImageNet analysis, we again focus on 4-bit
weights and activations (W4A4).

We first analyze ∥wfloat/s∥1 for each output channel in each

layer of the model using the scaling factor initialization de-
fined in Eq. 43. We again calculate the percentage of chan-
nels that inherently satisfy various ℓ1-norm constraints and
visualize the analysis as an empirical CDF in Fig. 8a. We
observe that all channels natively satisfy an 18-bit accumu-
lator constraint with only 53% satisfying a 16-bit constraint
and only 19% satisfying a 14-bit constraint.

Next, we evaluate the initial weight quantization error as the
target accumulator bit width is reduced. We again normalize
the quantization error of each output channel by its squared
ℓ2-norm. We visualize the results in Fig. 8b, where we
plot the average weight quantization error for each target
accumulator bit width for both A2Q and A2Q+ models with
and without EP-init. Similar to our ImageNet results, we
observe that combing our new bound with EP-init yields
the lowest initial weight quantization error across target
accumulator bit widths.

Finally, we evaluate the how initial weight quantization error
translates to model accuracy as we reduce the target accumu-
lator bit width for both A2Q and A2Q+ models. In Fig. 8c,
we visualize the maximum test top-1 accuracy observed
over 3 experiments. Intuitively, the strategy for initialization
becomes more important as the target accumulator bit width
is reduced. The impact of EP-init increases as the expected
initial weight quantization error increases, with the highest
impact in the extremely low-precision accumulation regime.
In fact, we observe that EP-init yields up to a +50% in-
crease in test top-1 accuracy for both A2Q+ and A2Q when
targeting 9- and 10-bit accumulation, respectively.
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Figure 7. We evaluate the normalized weight quantization error averaged over each output channel when initializing W4A4 ResNet
variants from a pre-trained floating-point models trained on ImageNet. As the accumulator bit width is reduced, we observe that our
Euclidean projection initialization (EP-init) yields less error than naı̈ve initialization for A2Q. We additionally show that A2Q+ yields the
lowest initial weight quantization error by combining EP-init with our new bound.
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Figure 8. We evaluate the impact of Euclidean projection-based weight initialization (EP-init) as we reduce the target accumulator bit
width for W4A4 ResNet18 trained on CIFAR10: (a) we visualize an empirical CDF to visualize the percentage of output channels that
inherently satisfies various ℓ1-norm constraints; (b) we visualize the initial weight quantization error for both A2Q and A2Q+ with and
without EP-init; and (c) we visualize the maximum observed test top-1 accuracy for both A2Q and A2Q+ both with and without EP-init.
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