
Provable Multi-Task Representation Learning by Two-Layer ReLU Neural
Networks

Liam Collins 1 Hamed Hassani 2 Mahdi Soltanolkotabi 3 Aryan Mokhtari 1 Sanjay Shakkottai 1

Abstract

An increasingly popular machine learning
paradigm is to pretrain a neural network (NN) on
many tasks offline, then adapt it to downstream
tasks, often by re-training only the last linear
layer of the network. This approach yields strong
downstream performance in a variety of contexts,
demonstrating that multitask pretraining leads to
effective feature learning. Although several recent
theoretical studies have shown that shallow NNs
learn meaningful features when either (i) they are
trained on a single task or (ii) they are linear, very
little is known about the closer-to-practice case
of nonlinear NNs trained on multiple tasks. In
this work, we present the first results proving that
feature learning occurs during training with a non-
linear model on multiple tasks. Our key insight
is that multi-task pretraining induces a pseudo-
contrastive loss that favors representations that
align points that typically have the same label
across tasks. Using this observation, we show
that when the tasks are binary classification tasks
with labels depending on the projection of the data
onto an r-dimensional subspace within the d≫ r-
dimensional input space, a simple gradient-based
multitask learning algorithm on a two-layer ReLU
NN recovers this projection, allowing for gener-
alization to downstream tasks with sample and
neuron complexity independent of d. In contrast,
we show that with high probability over the draw
of a single task, training on this single task cannot
guarantee to learn all r ground-truth features.

1Department of Electrical and Computer Engineering, Uni-
versity of Texas at Austin, Austin, Texas, USA 2Department
of Electrical and Systems Engineering, University of Pennsyl-
vania, Philadelphia, Pennsylvania, USA 3Department of Electrical
and Computer Engineering, University of Southern California,
Los Angeles, California, USA. Correspondence to: Liam Collins
<liamc@utexas.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1. Introduction
Recent empirical results have demonstrated huge successes
in pretraining large neural networks (NNs) on many tasks
with gradient-based algorithms (Crawshaw, 2020; Zhang
& Yang, 2021; Wang et al., 2023b). These works suggest
that the quality of the pretrained representation improves
with the number of pretraining tasks, yet this phenomenon
remains not well understood from a theoretical standpoint.
Specifically, the natural questions of why nonlinear NNs
learn effective feature representations when pretrained on
multiple tasks with gradient-based methods and how the
number of pretraining tasks affect the downstream perfor-
mance of these representations remain largely unanswered.

Significant progress has been made in theoretically under-
standing the dynamics of NNs trained with gradient-based
methods in recent years, especially in regards to proving that
shallow NNs can learn meaningful features when trained
with gradient descent and its variants (Damian et al., 2022;
Shi et al., 2022; Abbe & Sandon, 2020; Abbe et al., 2022;
Allen-Zhu et al., 2019a; Bai & Lee, 2019; Li et al., 2020;
Daniely & Malach, 2020; Barak et al., 2022; Telgarsky,
2022; Akiyama & Suzuki, 2022; Zhou et al., 2021). How-
ever, these results are limited to single-task settings, so they
cannot explain the improvements in model performance
seen by pretraining on many tasks. While a few studies
show the representation learning benefits of multi-task pre-
training with gradient-based algorithms (Argyriou et al.,
2006; Thekumparampil et al., 2021; Collins et al., 2022b;a;
Saunshi et al., 2021; Sun et al., 2021; Chua et al., 2021;
Bullins et al., 2019; Chen et al., 2022), these analyses study
only linear models; it is not clear whether they can general-
ize to even simple non-linear NNs.

In this work, we aim to bridge this gap by analyzing the
training dynamics of a two-layer ReLU network pretrained
with a generic gradient-based multi-task learning algorithm
on many binary classification tasks. Following the aforemen-
tioned line of work, we suppose the existence of a ground-
truth low-dimensional subspace that for all tasks preserves
all information in the input data relevant to its label. We ask
whether a variant of gradient descent applied to this multi-
task setting can learn a representation that projects the input
data onto the ground-truth subspace. Learning such a repre-

1

Provable Multi-Task Representation Learning

sentation entails successful pretraining, since it reduces the
complexity of solving a downstream task to that of solving a
classification problem in the low-dimensional space, rather
than the potentially very high-dimensional input data space.

Figure 1 shows that gradient-based multi-task learning with
a two-layer ReLU NN with first-layer parameters (the rep-
resentation) shared among all tasks and last-layer weights
(the head) learned uniquely for each task indeed recovers
the ground-truth subspace with error diminishing with the
number of tasks. We theoretically justify this observation,
providing the first known proofs of multi-task feature learn-
ing with a nonlinear model along with a new explanation for
why multi-tasking aids feature learning. Our theoretical con-
tributions are summarized below, and verified numerically
in Appendix F.

• Proof of multi-task representation learning with two-
layer ReLU network. We consider binary classification
tasks whose labels depend on only r features of the input,
where r is much smaller than the ambient dimension d,
and a large class of task distributions that includes, e.g., a
uniform distribution over sparse parity tasks. We prove
that multi-task pretraining with a gradient-based learning
algorithm on T tasks drawn from such a distribution leads
the first-layer ReLU weights to approximately project
onto the ground-truth r-dimensional feature space, with
error diminishing with T and the number of samples per
task n as roughly 2r

√
d√
T
(1+

√
d√
n
) (see Proposition 3.1 and

Theorem 3.2). The key to this result is showing that updat-
ing task-specific heads prior to the representation induces
a pseudo-contrastive loss function of the representation,
which encourages learning the ground-truth features to
align points likely to share a label on a randomly drawn
task (see Section 4).

• Generalization guarantees. We show that we can add a
random ReLU layer on top of the pretrained representa-
tion, then train a linear layer on top of this random layer
with finite samples, to solve any downstream task with bi-
nary labels that are a function of the r important features.
Crucially, we prove that the sample and neuron complex-
ity of solving the downstream task are independent of the
ambient dimension d (see Theorem 3.3).

• Negative results. We confirm the necessity of multi-
task pretraining by proving that using a random features
model (no pretraining) or pretraining on only a single,
randomly-selected task with high probability require neu-
ron or sample complexity scaling polynomially in d for
solving a downstream task (see Theorems 3.6 and 3.7).

Notations. We uppercase boldface to denote matrices, low-
ercase boldface to denote vectors, and standard typeface to
denote scalars. We employ Unif(S) to denote the uniform

0 200 400 600 800 1000 1200 1400 1600
Number of Iterations

10 1

100

101

102

Re
pr

es
en

ta
tio

n
Le

ar
ni

ng
 E

rro
r

Representation Learning Error vs # Tasks
T = 1
T = 4
T = 16
T = 64

Figure 1. Representation learning error vs training iterations
with varying numbers of tasks T . Here we sample tasks from
the uniform distribution over sparse parity tasks on r binary coor-
dinates determined by sign(Mx) for some row-orthogonal matrix
M and d-dimensional input x. Here d = 32, r = 3, and the learn-
ing model is a two-layer, m-neuron ReLU network with first-layer
weights W∈Rm×d (the representation). All cases use the same
total number of training samples, i.e. the number of samples/task
is inversely proportional to the number of training tasks T . Still, as
T increases, the row space of W approaches that of M (smaller
representation learning error). Please see Appendix F for details.

distribution over the set S. We denote the zero vector in
Rd as 0d, the identity matrix in Rd×d as Id, the standard
multivariate normal distribution over Rd as N (0d, Id), and
the Rademacher hypercube in Rd as Hd := {−1, 1}d. We
denote the space of r×d matrices with orthonormal rows as
Or×d, and use χ{A} as the indicator function for the event
A. We denote the set {1, . . . , r} as [r]. We use Ω(·),Θ(·)
and O(·) in the standard fashion, and Ω̃(·), Θ̃(·) and Õ(·) to
denote scalings up to logarithmic factors.

1.1. Related Work

Single-task learning with neural networks. A plethora
of works have studied the behavior of gradient-based al-
gorithms for optimizing NNs on single tasks in recent
years. Many of these studies consider the neural tan-
gent kernel (NTK) regime (Jacot et al., 2018; Arora et al.,
2019; Du et al., 2019; Allen-Zhu et al., 2019b; Oymak &
Soltanolkotabi, 2020; Ji & Telgarsky, 2019; Li & Liang,
2018; Du et al., 2020; Zou et al., 2018; Lee et al., 2019;
Chizat et al., 2019), in which a large initialization and small
step size mean that early layer model weights barely change
during training, so the algorithm dynamics reduce to those
of linear regression on fixed features. We are interested
in the feature learning regime of training neural networks,
wherein the representation weights change significantly and
the dynamics are nonlinear.

2

Provable Multi-Task Representation Learning

Numerous works have studied feature learning in NNs, but
the vast majority consider optimizing only a single task
from a particular class of functions (Allen-Zhu et al., 2019a;
Bai & Lee, 2019; Li et al., 2020; Daniely & Malach, 2020;
Barak et al., 2022; Telgarsky, 2022; Akiyama & Suzuki,
2022; Zhou et al., 2021; Abbe et al., 2022; Ba et al., 2022;
Mousavi-Hosseini et al., 2022; Shi et al., 2022; Damian
et al., 2022; 2023; Wang et al., 2023a; Abbe et al., 2023;
Dandi et al., 2023). Among studies most similar to ours,
Abbe et al. (2022; 2023); Wang et al. (2023a); Dandi et al.
(2023) showed that gradient-based algorithms can learn
hierarchical features when training on single polynomial
tasks. Damian et al. (2022) proved that a gradient-based
method on a single r-index polynomial regression task with
two-layer ReLU network can learn all r relevant indices
as long as this single task satisfies a Hessian lower bound
assumption, and Nichani et al. (2023) extended this line of
work to three-layer networks. Shi et al. (2022) showed that
two-layer ReLU networks with activation noise can learn
functions of the sum of r inputs. Additional works consider
single-task feature learning in the mean-field regime with
infinitely-wide networks (Chizat & Bach, 2018; Mei et al.,
2018; Sirignano & Spiliopoulos, 2020; Nguyen, 2019).

Multitask feature learning. Several works have studied
whether multitask learning algorithms recover expressive
low-dimensional data representations shared across tasks,
but only consider linear models (Argyriou et al., 2006;
Thekumparampil et al., 2021; Collins et al., 2022b; 2021;
2022a; Saunshi et al., 2021; Sun et al., 2021; Chua et al.,
2021; Bullins et al., 2019; Chen et al., 2022; Yuksel et al.,
2023). Kao et al. (2021) noticed a similar phenomenon as
this work in that adapting task-specific heads induces a con-
trastive loss, but in the context of a particular meta-learning
algorithm, and they did not provide feature learning results.
Further studies including (Maurer et al., 2016; Tripuraneni
et al., 2021; Du et al., 2020; Tripuraneni et al., 2020; Xu
& Tewari, 2021) have provided statistical bounds on the
downstream task loss for multitask-pretrained representa-
tions. However, these representations are learned by exactly
solving an empirical risk minimization problem on the pre-
training tasks, not by executing a gradient-based algorithm.

2. Formulation
In this section, we formally define the multi-task learning
problem and the algorithms analyzed in Section 3. Our
motivation is drawn from classification problems where the
input data for all tasks share a common representation, i.e.
a small set of features that determine their labels. However,
the mapping from these features to labels varies across tasks.
Ultimately, the goal of the multi-task learner is to leverage
the large set of pretraining tasks to learn a representation
that captures the small set of label-relevant features, thereby

enabling strong performance on downstream tasks.

2.1. Pretraining tasks and data generating model

We consider pretraining on a set of T binary classification
tasks, each drawn independently from a distribution T over
tasks. All these tasks share a common characteristic: their
labeling function depends solely on a projection of the input
features onto a low-dimensional subspace. Specifically, each
task i consists of a distribution Di on X × Y , where the
input space is X = Rd and the label space is Y = {−1, 1}.
Samples are drawn from Di by first selecting a Gaussian
feature vector x ∈ X , then computing its label fi(x) ∈ Y
as follows:

x ∼ N (0d, Id); fi(x) = gi(sign(Mx)) ∈ {−1, 1}. (1)

Here, M := [m1, . . . ,mr]
⊤ ∈ Rr×d is a matrix with

orthonormal rows that captures the r label-relevant fea-
tures (sign(m⊤

1 x), . . . , sign(m
⊤
r x)) in x, and gi : Hr →

{−1, 1} is the ground-truth link function for task i that maps
vertices on the r-dimensional Rademacher hypercube to bi-
nary labels. To model shared information across the tasks,
we assume that r ≪ d. Thus, the complexity of solving a
new task can be drastically reduced by learning an appro-
priate low-dimensional projection onto the row space of M.
The question we ask here is whether gradient-based multi-
task pretraining can efficiently recover the r label-relevant
features expressed by M.

This setting is similar to the sparse coding model studied by
Shi et al. (2022), except we assume the input data is continu-
ous in Rd, while Shi et al. (2022) assume the input data is on
the hypercube Hd. By assuming that the labelling function
is a function of “sign” of the r ground-truth features, we
make our model more similar to the one in (Shi et al., 2022),
as they assume the label for each task is a function of the
first r coordinates of the integer input data.

Critically, the set of label-relevant coordinates of the input
data are shared among all tasks, while the link functions
gi mapping from these coordinates to labels are specific to
each task. Thus, the goal of the multi-task learner is to re-
cover the shared label-relevant features, so that it may solve
a downstream task with complexity scaling only with the
number r of label-relevant features, rather than the much
larger ambient dimension of the data d. This model draws
inspiration from classification tasks in which labels are func-
tions of the presence (or lack thereof) of a small number of
features in the data. For example, whether or not a brain
MRI reveals cancerous tissue depends on the presence of
tumor-shaped structures in the image, indicated by a small
number of features relative to the MRI dimension.

More formally, the generative model in (1) implies that, for
any task, the sample labels are a function of the projection
of the data onto the r ground-truth features in M. We

3

Provable Multi-Task Representation Learning

use T to denote the distribution over link functions gi :
Hr → {−1, 1}, and T (M) to denote the distribution over
functions mapping from Rd → {−1, 1}, i.e. the distribution
over fi, where fi(x) = gi(sign(Mx)) and gi ∼ T .

However, in order to recover all the r ground-truth features,
it is not sufficient that the labels simply depend on the r
ground-truth features – they must depend on all of them
in aggregate across tasks. For example, if the labels for
all tasks can be written as functions of only the projection
of the inputs onto the first r − 1 rows of M, there is no
hope to recover the r-th row of M. Thus, the tasks must be
“diverse” in the sense that in aggregate they depend on all
ground-truth features.

To formalize this idea, we make the following assumption
on the distribution of task link functions T . Our condition
entails that for any pair of points with different sign patterns
on their r label-relevant features, it is equally likely for them
to have the same label as it is for them to have different
labels on a task link function drawn from T .

Assumption 2.1. For any two points z, z′ ∈ Hr such that
z ̸= z′, the probability that the labels of z and z′ are the
same for a task link function drawn from T satisfies:

Pi∼T [gi(z) = gi(z
′)] = 1

2 . (2)

Assumption 2.1 is necessary to ensure the task link func-
tions depend equally on all inputs. To see this, suppose
that all pairs of inputs z, z′ with identical first r − 1 coordi-
nates but differing r-th coordinates had the same labels, i.e.
Pi∼T [gi(z) = gi(z

′)] = 1. Then, all link functions in the
support of T would in fact only depend on the first r − 1
input coordinates, rather than all r inputs. So, we need
Pi [gi(z) = gi(z

′)] < 1 for some dependence on all inputs.
We make a stronger assumption of 1

2 in the RHS of (2) that
ensures perfectly balanced dependence across all inputs. We
note that our results do not strictly require perfect balance,
rather it is useful for ease of exposition1.

Another interpretation of Assumption 2.1 is that it enforces
that the correlation of the labels of z and z′ across tasks, i.e.
Ei∼T [gi(z)gi(z

′)], is 1 if z = z′, and 0 otherwise. In other
words, the label correlation of x and x′ across tasks is 1 if
the ground-truth features of x and x′ are the same, and 0
otherwise. We will show in Section 4 intuitively why the
correlation of the labels of x and x′ need only be “roughly”
increasing with the similarity of the ground-truth features in

1Our results hold for finitely-many tasks drawn for training, so
the empirical distribution of tasks does not assign equal importance
to each of the r input features, in the sense that Assumption 2.1
does not hold exactly on the empirical task distribution. This
implies that our results can extend to cases in which the population
distribution of tasks T does not satisfy Assumption 2.1 exactly, i.e.
we can tolerate Pi∼T [gi(sign(Mx)) = gi(sign(Mx′))] ≤ 1

2
+ϵ

for some small ϵ > 0.

x and x′, a very natural condition, for gradient-based multi-
task training to recover row(M). For now, we describe two
examples of task distributions that satisfy Assumption 2.1.

Example 1: Uniform distribution over all tasks. Here we
have T = Tall, where

Tall := Unif({gi : Hr → {−1, 1}}), (3)

i.e. Tall is the uniform distribution over all possible map-
pings from the r-dimensional ±1 hypercube to {−1, 1}.

Example 2: Uniform distribution over all sparse parity
tasks. Sparse parity tasks are a well-studied class of tasks
in which the label is the parity of a subset of the number of
−1’s among a particular subset of input bits (Kearns, 1998).
In this case we have T = Ts.p., where Ts.p. is the uniform
distribution over parity functions on r input bits, formally
defined as follows:

Ts.p. := Unif({gi : gi(z) = (−1)
∑

j∈Si
χ{zj=−1},

Si ⊆ [r], ∀ z ∈ Hr}). (4)

Both Tall and Ts.p. effectively assign equal importance to all
r inputs, so they naturally satisfy Assumption 2.1 (please
see Appendix D for proofs).

2.2. Learning model and loss

We consider multi-task pretraining of a two-layer neural
network ŷ(·) = ŷ(·;W,b,a) : Rd → R with m ReLU
neurons in the hidden layer, namely

ŷ(x) = ŷ(x;W,b,a) :=

m∑
j=1

ajσ(w
⊤
j x+ bj) (5)

where σ(x) = max(x,0) element-wise, wj ∈ Rd and
bj ∈ R are the weight vector and bias for the j-th neuron,
respectively, and aj ∈ R is the last-layer weight for the j-th
neuron. We let W = [w1, . . . ,wm] ∈ Rd×m denote the
matrix of concatenated weight vectors, b = [b1, . . . , bm] ∈
Rm denote the vector of biases, and a = [a1, . . . , am] ∈
Rm denote the vector of last-layer weights, which we call
the head. We use the hinge loss to measure the accuracy of
the predictions of this model:

ℓ(ŷ(x), fi(x)) := max
(
1− fi(x)ŷ(x), 0

)
,

and for each task i, we define

Li(W,b,a) := E(x,fi(x))∼Di
[ℓ(ŷ(x), fi(x))]

L̂i(W,b,a; D̂i) :=
1

|D̂i|

∑
(x,fi(x))∈D̂i

ℓ(ŷ(x), fi(x))

as the population loss on Di and empirical loss on a finite
dataset D̂i drawn from Di, respectively. Ultimately, the goal

4

Provable Multi-Task Representation Learning

of multi-task pretraining is to learn a first-layer representa-
tion that generalizes to downstream tasks, in the sense that
we can easily train a new classifier on top of the first layer
in order to achieve small task-specific loss. To this end, we
consider optimizing the following multi-task objective:

min
W,b,{a1,...,aT }

L(W,b, {ai}Ti=1)

:=
1

T

T∑
i=1

Li(W,b,ai) +
λa
2
∥ai∥22 +

λw
2

∥W∥2F , (6)

where λa and λw are regularization parameters. Optimizing
L entails learning task-specific heads on top of a shared
representation, a widely used and empirically successful ap-
proach to multi-task learning (Zhang & Yang, 2021; Craw-
shaw, 2020; Ruder, 2017). By optimizing the above prob-
lem, we hope to find a W that projects input data onto the
row space of M and thus captures all r label-relevant fea-
tures, while disregarding all other spurious features. How-
ever, we cannot access L directly, and instead must approxi-
mate it via stochastic queries of finite samples from each Di.
So, we will use the gradient of L̂i instead of L to update the
variables, as we discuss next.

2.3. Algorithm

We consider a two-stage learning process: (1) Representa-
tion learning, in which we aim to learn effective features
using T available tasks, and (2) Downstream evaluation, in
which we encounter a new task and aim to efficiently learn
an accurate classifier on the pre-trained features.

Representation learning phase. The multi-task learning
algorithm we consider aims to solve the global objective (6)
with task-specific heads. We denote the j-th neuron weights
at initialization as w0

j ∈ Rd, and the global bias and head
corresponding to task i at time 0 as b0 ∈ Rm and a0i ∈ Rm,
respectively. We initialize these parameters as:

w0
j ∼ N (0d, ν

2
wId), a0i = 0m, b0 = 0m (7)

where νw ∈ R≥0. After initialization, we execute an al-
ternating gradient descent-based algorithm. We first opti-
mize the heads, i.e., a1, . . . ,aT , with one step of stochastic
gradient descent (SGD) on the corresponding task-specific
empirical loss on a batch of samples D̂i,a for each task i:

a1i = (1−ηλa)a0i −η∇aL̂i(W
0,b0,a0i ; D̂i,a) ∀ i ∈ [T].

The same number of samples is used for each task, denoted
by n1 := |D̂i,a|. Next, we update the model weights W
with one step of SGD on the global empirical loss induced
by the updated heads, with a fresh batch of samples D̂i,W

for each task i:

W1 = W0 − η

T

T∑
i=1

∇WL̂i(W
0,b0,a1i ; D̂i,W)

Again all tasks use the same number of samples, denoted
by n2 := |D̂i,W|. In Theorem 3.2, we show that this sin-
gle iteration of alternating stochastic gradient descent with
respect to {a1, . . . ,aT } and W is sufficient to learn mean-
ingful features. Notably, it is standard practice in the feature
learning theory literature to consider only one gradient de-
scent step for the first layer weights (Daniely & Malach,
2020; Abbe et al., 2022; Barak et al., 2022; Damian et al.,
2022; Ba et al., 2022). We later show empirically that in our
multi-task setting, it is necessary to first optimize the heads
before updating the first-layer weights in order to recover
the ground-truth features. In any case, following Damian
et al. (2022), we do not update the biases during pretraining.
Next we describe how we leverage the pre-trained weights
W1 for learning a downstream task.

Downstream evaluation phase. After the representation
learning phase, we consider learning a prediction function
to fit a downstream task that may have any link function on
the r ground-truth features, i.e. any function in the support
of Tall. Since we consider such a wide range of possible
downstream tasks, we need to increase the model complex-
ity to allow for solving such tasks. Thus, we use prediction
functions with two hidden layers with first layer weights de-
termined by the output of the representation learning phase,
and second hidden layer parameters set randomly. This
random second layer is necessary to linearly separate the
classes induced by any binary function on the r coordinates
with high probability, without having to use a very wide first
layer; please see Remark 3.4 for more details.

In other words, the first hidden layer has m neurons and
the weights are a scaled version of W1 denoted by αW1,
and the bias term is b. Note that here α > 0 is a re-scaling
factor (see Appendix B for more details). The second hidden
layer of the classifier has m̂ neurons with weights denoted
by Ŵ := [ŵ1, . . . , ŵm̂]⊤ ∈ Rm̂×m and bias by b̂ ∈ Rm̂.
Hence, the embedding of these two layers for input x, which
we denote by ϕ(x) ∈ Rm̂, is given by

ϕ(x) = σ
(
Ŵ σ

(
αW1x+ b

)
+ b̂

)
(8)

Again note that W1 is fixed from the previous phase; it
remains to set b, Ŵ, and b̂ to create an effective embedding
for the downstream task. We do this by sampling Ŵ and
(b, b̂) from mean-zero Gaussian and uniform distributions,
respectively, with variances that depend only on m; see
Appendix B for more details.

Next, given a dataset D̂T+1 := {(xl, fT+1(xl))}Nℓ=1 of N
i.i.d. samples from a distribution DT+1 corresponding to a
downstream task, we learn a task-specific head a and a bias
term τ by solving the following problem:

min
a∈Rm̂,τ∈R

1

N

N∑
l=1

ℓ(a⊤ϕ(xl)+τ, fT+1(xl)) +
λ̂a
2
∥a∥22.

5

Provable Multi-Task Representation Learning

We use the resulting head, i.e., aT+1, and bias term, i.e.
τT+1, to define the prediction function for task T + 1 as

F (x;aT+1, τT+1,W
1,b,Ŵ, b̂)

:= a⊤T+1σ
(
Ŵ σ

(
αW1x+ b

)
+ b̂

)
+ τT+1.

For ease of notation, we denote the above function by F (x).
We evaluate the performance of the prediction function on
the task population loss:

Leval
T+1(F) := E(x,fT+1(x))∼DT+1

[ℓ(F (x), fT+1(x))].

Note that Leval
T+1 is a random function of b,Ŵ, b̂, and D̂T+1

in addition to the randomness from pretraining. We upper
bound Leval

T+1 with high probability in Theorem 3.3.

3. Theoretical Results
Feature learning guarantees. We start by showing that
the gradient-based multi-task learning algorithm described
in the previous section recovers the ground-truth features.
To do this, we first need the following proposition, which
shows that the projection of the initial features W0 onto
the subspace spanned by the label-relevant, or ground-truth,
features stays roughly the same after one step, while their
projection onto the subspace spanned by the spurious fea-
tures becomes very small.

Here, we let Π∥(W) := WM⊤M denote the projection of
the rows of the matrix W onto the ground-truth subspace,
and Π⊥(W) := WM⊤

⊥M⊥ denote the projection onto the
spurious subspace. For brevity, we abbreviate the statements
of the theoretical results in this section and defer the full
versions, along with their proofs, to the Appendix.
Proposition 3.1. Consider the gradient-based multi-task
algorithm described in Section 2.3 that uses T tasks
and (n1, n2) samples per task to update the (head, rep-
resentation), respectively, and suppose Assumption 2.1
holds. Further assume2 m = O(d) and define ϵ :=

O

(
d log(dTn2/δ)√

Tn2

(
1 +

√
log(T/δ)
√
n1

)
+

√
dr log(dm/δ)√

T

)
for

δ < 1 and δ = Ω(e−d). Then there is a setting of the
parameters η, λw and νw s.t. with probability at least 1− δ,

1. 1
νw

√
m
∥Π∥(W

1)− 1
2r+1πΠ∥(W

0)∥2

= O
(

r4+log4(m/δ)
2rd + ϵ

)
,

2. 1
νw

√
m
∥Π⊥(W

1)∥2 = O
(

r3.5+log3.5(m/δ)
2rd1.5 + ϵ

)
.

Proposition 3.1 shows that with high probability (w.h.p.)
over the random initialization, the weights learned by the

2The m = O(d) condition in Proposition 3.1 and Theorem 3.2
is purely for ease of presentation; please see Lemma A.17 for a
complete statement of the errors for arbitrary m.

gradient-based multi-task learning algorithm satisfy two
properties, for sufficiently large T, n1, and n2: (1) the pro-
jection of these weights onto the ground-truth subspace is
close to a slightly scaled down (by a factor of 2−r) version
of their projection at initialization, and (2) their projection
onto the spurious subspace is negligible. These two ob-
servations, combined with the fact that the neuron weights
have independent standard Gaussian initializations, imply
that the projection of the neuron weights onto the ground-
truth subspace dominates their projection onto the spurious
subspace. We formalize this observation below.

Theorem 3.2 (Representation Learning). Consider the set-
ting in Proposition 3.1 with d = Ω̃(r4), m = O(d), and
ϵ defined the same way. Further suppose m = Ω̃(r),
T = Ω̃(22rdr) and Tn2 = Ω̃(22rd2). Let σr(B) denote the
r-th singular value of the matrix B. Then with probability
at least 1− δ,

σ1(Π⊥(W
1))

σr(Π∥(W1))
= O

(
r3.5+log3.5(m/δ)

d1.5 + 2rϵ
)
.

Theorem 3.2 characterizes the representation learned by
multi-task pretraining in an intuitive manner. For d ≫ r4,
T ≫ 22rd and Tn2 ≫ 22rd2, we have σr(Π∥(W

1)) ≫
σ1(Π⊥(W

1)), meaning that most of the energy in each
neuron weight is in the column space of the ground-truth
subspace. This is equivalent to saying that applying W1

to an input x essentially projects it onto the ground-truth
subspace spanned by the row space of M, as desired.

Downstream performance. Now that we have shown that
the learned representation recovers the ground-truth sub-
space, we use this result to show that the representation
generalizes to downstream tasks. We consider tasks with
input data sharing the same label-relevant r features as the
pretraining tasks, but here the input data is discrete. In
particular, each v ∈ Rd is generated as:

v = M⊤z+M⊤
⊥ξ, z ∼ Unif(Hr), ξ ∼ Unif(Hd−r)

where z is a latent vector whose coordinates indicate the
activations of the ground-truth features in the input x and ξ
is a noise vector whose coordinates indicate the activation
of the spurious features in the input. Again, labels for the
downstream task T +1 are generated by projecting the input
onto the row space of M as follows:

fT+1(x) = gT+1(sign(Mv)) = gT+1(z) ∈ {−1, 1}

We formally show below that the features learned during
pretraining generalize to any such link function gT+1.

Theorem 3.3 (End-to-end Guarantee). Let W1 be the out-
come of the multi-task representation learning algorithm
described in Section 2.3 on the task distribution T (M),
where T satisfies Assumption 2.1. Consider a downstream

6

Provable Multi-Task Representation Learning

task in the support of T (M) with link function gT+1. Con-
struct the two-layer ReLU embedding ϕ using the rescaled
W1 for first layer weights as in (8), and train the task-
adapted head (aT+1, τT+1) using N i.i.d. samples from the
downstream task. Further, suppose d = exp(Ω̃(r5)), T =
d2r exp(Ω̃(r5)), Tn2 = d3 exp(Ω̃(r5)), n1 = Ω(log(T))

m = Θ̃(r5), and m̂ = exp
(
Ω̃(r5)

)
. Then there is a

setting of the parameters η, λw and νw such that for any
δ ∈ (e−d, 0.05], with probability at least 1− δ,

Leval
T+1 =

exp(Õ(r5))√
N

. (9)

Theorem 3.3 shows that the features learned by multi-task
pretraining generalize to any downstream task that has the
same representation as the pretraining tasks, i.e., its labels
are a function of the input’s projection onto the row space of
M. Specifically, if we compose the learned representation
with a random ReLU layer, then learn a linear head using
exp(Õ(r5)) samples from the task, we solve the task w.h.p.
Crucially, the number of samples and neurons needed to
solve the downstream task do not depend on the ambient
dimension d.

The proof of Theorem 3.3 leverages Proposition 3.1 to show
that the embedding generated by multi-task learning is close
to the embedding of a coupled, “purified” two-hidden layer
random ReLU network whose first layer weights project
the input exactly onto the row space of M. Then, the proof
applies Theorem 2 from Dirksen et al. (2022) which im-
plies that w.h.p. the purified network linearly separates two
classes of points on Hr with margin and neuron complexity
scaling as functions of the input dimension r. The represen-
tation learning error from Proposition 3.1 is smaller than
this margin due to the lower bounds on T , n1, n2, and d in
Theorem 3.3, so the learned network also linearly separates
the two classes w.h.p. Then, the proof invokes a standard
linear classification generalization bound to control the final
error in learning the head (Livni, 2017). Note that Theorem
3.3 requires d3 training sample complexity rather than the
d2 complexity of Theorem 3.2 because Theorem 3.2 con-
cerns the spectral norm of the representation learning error,
whereas for the generalization result, we require a Frobenius
norm bound, which induces an extra d factor. Please see the
proof of Lemma C.3 for details.

Remark 3.4 (Necessity of second layer). In the ideal repre-
sentation learning scenario, the first-layer weights are i.i.d.
isotropic Gaussians in the ground-truth subspace row(M).
In this scenario we can think of the network as taking an
r-dimensional input (corresponding to the r ground-truth
features of the input) and having first-layer weights that
are i.i.d.isotropic Gaussians in Rr. Even in this ideal sce-
nario, existing results have not shown whether such a repre-
sentation is sufficiently expressive or generalization to all

downstream tasks w.h.p. There are several positive results
for the expressivity of a random, finite-width ReLU layer,
but these concern approximating low-degree polynomials
under the squared loss (Hsu et al., 2021; Ji et al., 2019;
Yehudai & Shamir, 2019; Bach, 2017). However, to our
knowledge, there are no analogous positive results show-
ing that one layer of random ReLU neurons can linearly
separate two arbitrary classes of points on the Boolean hy-
percube w.h.p., even with exponentially-many neurons or
exponentially-small margin.

Remark 3.5 (Tightness of exponential complexity in r in
positive results). Replacing d with r, Theorem 3.6 implies
that at least rΩ(k) samples or width is necessary to express
all k-sparse parity tasks on r inputs. So, even if we learn ex-
actly the correct representation, we require rΩ(r) samples or
width to solve all r

2 -sparse parity tasks on the r ground-truth
features. Please see (Malach & Shalev-Shwartz, 2022; Abbe
& Sandon, 2020; Abbe et al., 2022; 2023; Shalev-Shwartz
et al., 2017; Hsu et al., 2021; Kamath et al., 2020; Ghor-
bani et al., 2020) for similar lower bounds. Nevertheless,
our complexity of exp(poly(r)) is larger than such lower
bounds. We leave to future work to investigate whether the
poly(r) complexity in the exponent can be reduced.

3.1. Negative Results

Next, we present two negative results that underscore the
tightness of our findings in the previous section. The first
result emphasizes the significance of representation learning
in achieving strong generalization guarantees. The second
result highlights the importance of multi-task learning by
demonstrating that single-task learning may fail to capture
all critical features.

Random features do not generalize. A consequence of
Theorem 3.3 is that multi-task pretraining improves the
sample and neuron complexity of solving downstream tasks
by an exponential factor in d. To show this, we consider
sparse parity tasks, and show that learning a linear classifier
on top of random features entails exponential complexity in
d to solve the task. Now, there is no feature learning, so the
learner has no knowledge of which few features are relevant
and needs to consider tasks on all d inputs. We model this by
considering a set of tasks sharing a single link function but
having many distinct representations. We consider a smaller
class of representations than in our positive results: here M
belongs to Or×d

{0,1} := {M : M ∈ Or×d,M ∈ {0, 1}r×d},
that is, the rows of M are standard basis elements. The
single link function we consider is the parity function on r
inputs, namely g(r)(v) := (−1)

∑r
j=1 χ{vj=−1}.

While there is a large literature demonstrating the hardness
of learning sparse parities in various settings (Kearns, 1998;
Abbe & Sandon, 2020; Telgarsky, 2022; Barak et al., 2022;
Malach & Shalev-Shwartz, 2022; Kamath et al., 2020; Goel

7

Provable Multi-Task Representation Learning

et al., 2019), the most relevant results to our setting show
that any data-independent, m̂-dimensional embedding of d
inputs can admit linear classifiers that solve all sparse parity
tasks on subset only if the dimension m̂ and/or the classi-
fication margin is exponentially large (small, respectively)
in d. In particular, the following result adapts Theorem 5
in (Barak et al., 2022), which in turn draws on the works of
Kamath et al. (2020) and Malach & Shalev-Shwartz (2022).

Theorem 3.6. Consider any embedding Ψ : Hd → Rm̂

such that ∥Ψ(v)∥2 ≤ 1 for all v ∈ Hd. For any ϵ > 0,
if m̂B2 ≤ ϵ2

(
d
r

)
, then there exists a representation M ∈

Or×d
{0,1} such that:

inf
a:∥a∥2≤B

Ev∼Unif(Hd)

[
ℓ
(
a⊤Ψ(v), g(r)(Mv)

)]
≥ 1− ϵ.

Theorem 3.6 implies that any random feature model requires
a number of neurons and/or inverse margin that is polynomi-
ally large in dr in order to solve a downstream sparse parity
task with a linear classifier. Note that the margin (i.e. inverse
of B in Theorem 3.6) is inversely proportional to the num-
ber of samples that are required to learn the classifier (Livni,
2017). On the other hand, Theorem 3.2 guarantees that after
multi-task pretraining, the output embedding admits a linear
classifier that solves any sparse parity task on the extracted
r features, with the number of neurons and samples of the
downstream task of the order of exp(poly(r)).

Single task does not suffice for feature learning. Al-
though Theorem 3.6 shows that feature learning is essential
for generalization in our setting, we have not yet shown
that effective feature learning necessitates pretraining on
multiple tasks. We address this issue next.

Theorem 3.7. Consider any algorithm A that takes as input
infinite samples from any single task in Ts.p.(M) and returns
an m̂-dimensional representation Ψ : Hd → Rm̂. Then
there exists an M ∈ Or×d

{0,1} such that for any k ∈ [r], with
probability at least 1−2−r

∑r
j=k

(
r
j

)
over the draw of a sin-

gle training task f1 ∼ Ts.p.(M), the representation Ψf1 :=

A(f1) satisfies that for any ϵ > 0, m̂B2 > ϵ2
(
d−k+1
r−k+1

)
is

necessary to obtain

min
a2:∥a2∥2≤B

Ev∼Unif(Hd)[ℓ(a
⊤
2 Ψf1(v), f2(v))] ≥ 1− ϵ.

Theorem 3.7 shows that w.h.p., a single task drawn from the
task distribution Ts.p.(M) cannot be used to guarantee gen-
eralization with downstream neuron and margin complexity
smaller than the ambient dimension for all ground-truth
representations M. For example, if k = r, then with proba-
bility at least 1− 2−r, the number of neurons must be Ω(d)
and/or the margin must be O(d−1/2) to allow for non-trivial
error. The underlying reason is that most tasks in Ts.p.(M)
are “simple” in that they only depend on a strict subset of

the r ground-truth features, thus do not contain information
about all the important features (although they are still “hard”
by virtue of being sparse parity tasks), so single-task pre-
training cannot improve upon random features in terms of
recovering the remaining important features. Nevertheless,
Theorem 3.2 shows that multi-task pretraining aggregates
information across the tasks to learn a generalizable model.

Remark 3.8 (Single-task training with highly informative
task). Theorem 3.2 leaves open the possibility that training
on a highly-informative task could perform as well as multi-
tasking. Note that there is one task supported by Ts.p.(M),
the full parity task, that provides information abut all r
ground-truth features in M. While gradient-based training
on this task may allow for efficient generalization to any
downstream task on the r features (Barak et al., 2022)3, the
sample complexity of this training may be much larger than
multi-tasking. Additional prior results show that gradient-
based algorithms require at least Ω(dr) samples to solve
the full parity task on r inputs (Abbe et al., 2023; Abbe &
Sandon, 2020; Shalev-Shwartz et al., 2017). This complexity
has worse dependence on d and T than the n1+n2 = Õ(d

3

T)
training samples per task required by Theorem 3.3 for down-
stream generalization with the number of downstream sam-
ples independent of d. In fact, it is even worse complexity in
d than the T (n1 + n2) +N = Õ(d3) total samples across
tasks that Theorem 3.3 requires for multi-task pretraining
followed by downstream adaptation. Thus multi-tasking
reduces feature learning sample complexity compared to
training with any single task.

4. Proof Sketch
In this section, we sketch the proof of Proposition 3.1, which
is the key feature learning result that enables downstream
guarantees. The proof heavily leverages the fact that multi-
task pretraining entails updating the first-layer weights after
fitting a unique head to each task. Surprisingly, we show
that making one gradient-based update of the head for each
task induces a pseudo-contrastive loss that encourages repre-
sentations of two points to be similar if and only if they are
likely to share a label on a randomly drawn task. Since two
points are likely to share a label on a drawn task if and only
if they share the same sign pattern on their r ground-truth
features (by Assumption 2.1), the pseudo-contrastive loss
inclines the representation to extract these r latent features4.
For ease of exposition, in this setting we focus on the popu-
lation setting with infinite tasks and samples per task, and

3Barak et al. (2022) show that SGD on a two-layer ReLU
NN with batch size Ω̃(dr) can solve the parity task on r features
with unknown M ∈ Od×r

0,1 , which suggests that the representation
learned during this process generalizes to simpler tasks on the
features in M.

4We also show in Appendix E that these intuitions can be
extended to the regression setting.

8

Provable Multi-Task Representation Learning

defer the finite-task and samples proof to Appendix A.

Step 1: Derive pseudo-contrastive loss after head up-
dates. We first update the task-specific head with one
gradient step for each task i given the initial parame-
ters (W0,b0,a0i). Due to the symmetric initialization,
f(x;W0,b0,a0i) = 0 for all x ∈ Rd, so the hinge loss is
affine in a0i for all tasks (the max(·, 0) threshold is inactive).
Therefore, using the choice of λa = 1/η and b0 = 0m,

a1i = (1− ηλa)a
0
i − η∇Li(W

0,b0,a0i)

= ηEx[fi(x)σ(W̄
0x)] (10)

where we use W̄0 to denote a stop-gradient on W0. As a
result, the updated head for task i, a1i , is proportional to the
average label-weighted neuron output over the dataset for
task i. Now we can insert this value of a1i back into the loss,
to obtain Li(W

0,b0,a1i). For ease of notation we define
β(x,x′) := Ei[fi(x)fi(x

′)] for all pairs of inputs x,x′, and
replace max(·, 0) with σ(·) in the hinge loss (recall σ(·) is
the ReLU). Taking the average over all tasks yields

L(W0,b0, {a1i }i)
= Ei,x

[
σ
(
1− ηfi(x)Ex′ [fi(x

′)σ(W̄0x′)]⊤σ(W0x)
)]

≈ 1− η Ex,x′
[
β(x,x′)σ(W̄0x′)⊤σ(W0x)

]
(11)

where the approximation holds as
|ηEx′ [fi(x

′)σ(W0x′)]⊤σ(W0x)| < 1 w.h.p. over x
and W0. The resulting loss in (11) encourages the first-
layer representation to align sample pairs (x,x′) that have
the same label for most tasks (β(x,x′) ≈ 1) and penalizes
the representation for aligning pairs of samples that do not
have the same label on most tasks (β(x,x′) ≪ 1). In this
way, (11) is reminiscent of a constrastive loss5 (Chen et al.,
2020) in which positive pairs are pairs with large β.

To translate these intuitive connections with contrastive
learning to feature learning, we must leverage Assumption
2.1, which implies that β(x,x′) encodes information about
the ground-truth features Mx and Mx′. In particular, pairs
of points with the same sign patterns among the ground-
truth features have the same label, so β(x,x′) = 1 almost
surely, while pairs of points with different sign patterns on
the ground-truth features have the same label for only half of
the tasks in the universe of tasks T , meaning β(x,x′) = 0.

5This analysis suggests that any β(x,x′) that is “roughly” in-
creasing with the similarity of Mx and Mx′ results in a pseudo-
contrastive loss, that, as we later show, results in representation
learning. As such, our observations suggest that Assumption 2.1
can be relaxed to the very natural condition that the correlation of
the labels of x and x′ across tasks is roughly increasing with the
similarity of their ground-truth features. We verify this conjecture
empirically in Appendix F.

As a result, the loss can now be approximated as:

1
ηL(W

0,b0, {a1i }i) ≈ (12)

−Ex,x′
[
χ{sign(Mx)=sign(Mx′)}σ(W̄0x′)⊤σ(W0x)

]
We next show that a gradient descent step on (12) results in
W1 essentially projecting onto the row space of M.

Step 2: Update neuron weights. The proof of this step
requires computing the gradient of L(W0,b0, {a1i }i) with
respect to each vector of neuron weights. For ease of nota-
tion, we from here onwards denote wj = w0

j . Using (12),
this gradient can be approximated by A(wj)wj , where
A(w) ∈ Rd×d is defined as:

A(w) :=−Ex,x′
[
χ{sign(Mx) = sign(Mx′)}
× σ′(w⊤x)σ′(w̄⊤x′)x(x′)⊤

]
(13)

where σ′(z) = 1 if z > 0 and σ′(z) = 0 otherwise. The
crucial reason why A(wj) has favorable structure is due
to the indicator χ{sign(Mx) = sign(Mx′)} in the RHS
of (12). Intuitively, this indicator encourages the first-layer
weights to align only the representations of points with
the same sign pattern on the label-relevant coordinates, by
ensuring that only these pairs of points appear in the gradient.
With this indicator removed, we would have A(wj) =

2
π∥wj∥2

2
wjw

⊤
j , meaning the gradient would not put any

emphasis on the ground-truth projection. However, the
indicator means that A(wj) is an average outer product
over vectors whose signs agree on the r important features
and may disagree on all other features. This disagreement
results in cancellation during averaging, unlike the important
r features, leading to:

MA(wj)wj ≈ − 1
2rπMwj (14)

M⊥A(wj)wj ≈ − 1
2r+1πM⊥wj (15)

meaning that the gradient up-weights the energy of wj in
the ground-truth subspace by a factor of roughly 2 compared
to the the energy in the spurious subspace. Moreover, apply-
ing A(wj) to wj does not change the direction of Mwj ,
meaning Mw1

j remains isotropic in Rr. These observations
are the crux of the proof; please see Appendix A for full
details.

5. Conclusion
We have provided the first results showing that multi-task
pretraining with a gradient-based algorithm on a non-linear
neural network learns generalizable features. Moreover, our
analysis reveals that updating the task-specific heads prior to
updating the first-layer weights induces a pseudo-contrastive
loss that encourages recovering the features indicative of
whether two points share a label. As a result, this work
suggests further exploring the role of adapting the head to
each task in order to learn more expressive features.

9

Provable Multi-Task Representation Learning

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Abbe, E. and Sandon, C. Poly-time universality and limita-

tions of deep learning. arXiv preprint arXiv:2001.02992,
2020.

Abbe, E., Adsera, E. B., and Misiakiewicz, T. The merged-
staircase property: a necessary and nearly sufficient con-
dition for sgd learning of sparse functions on two-layer
neural networks. In Conference on Learning Theory, pp.
4782–4887. PMLR, 2022.

Abbe, E., Adsera, E. B., and Misiakiewicz, T. Sgd learning
on neural networks: leap complexity and saddle-to-saddle
dynamics. In The Thirty Sixth Annual Conference on
Learning Theory, pp. 2552–2623. PMLR, 2023.

Akiyama, S. and Suzuki, T. Excess risk of two-layer relu
neural networks in teacher-student settings and its superi-
ority to kernel methods. arXiv preprint arXiv:2205.14818,
2022.

Allen-Zhu, Z., Li, Y., and Liang, Y. Learning and generaliza-
tion in overparameterized neural networks, going beyond
two layers. Advances in neural information processing
systems, 32, 2019a.

Allen-Zhu, Z., Li, Y., and Song, Z. A convergence theory for
deep learning via over-parameterization. In International
Conference on Machine Learning, pp. 242–252. PMLR,
2019b.

Argyriou, A., Evgeniou, T., and Pontil, M. Multi-task fea-
ture learning. Advances in neural information processing
systems, 19, 2006.

Arora, S., Du, S. S., Hu, W., Li, Z., Salakhutdinov, R. R.,
and Wang, R. On exact computation with an infinitely
wide neural net. Advances in neural information process-
ing systems, 32, 2019.

Ba, J., Erdogdu, M. A., Suzuki, T., Wang, Z., Wu, D., and
Yang, G. High-dimensional asymptotics of feature learn-
ing: How one gradient step improves the representation.
arXiv preprint arXiv:2205.01445, 2022.

Bach, F. Breaking the curse of dimensionality with convex
neural networks. Journal of Machine Learning Research,
18(19):1–53, 2017.

Bai, Y. and Lee, J. D. Beyond linearization: On quadratic
and higher-order approximation of wide neural networks.
arXiv preprint arXiv:1910.01619, 2019.

Barak, B., Edelman, B., Goel, S., Kakade, S., Malach, E.,
and Zhang, C. Hidden progress in deep learning: Sgd
learns parities near the computational limit. Advances
in Neural Information Processing Systems, 35:21750–
21764, 2022.

Bullins, B., Hazan, E., Kalai, A., and Livni, R. Generalize
across tasks: Efficient algorithms for linear representation
learning. In Algorithmic Learning Theory, pp. 235–246.
PMLR, 2019.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations. In International conference on machine
learning, pp. 1597–1607. PMLR, 2020.

Chen, Y., Jamieson, K., and Du, S. Active multi-task repre-
sentation learning. In International Conference on Ma-
chine Learning, pp. 3271–3298. PMLR, 2022.

Chizat, L. and Bach, F. On the global convergence of gradi-
ent descent for over-parameterized models using optimal
transport. Advances in neural information processing
systems, 31, 2018.

Chizat, L., Oyallon, E., and Bach, F. On lazy training in
differentiable programming. Advances in neural informa-
tion processing systems, 32, 2019.

Chua, K., Lei, Q., and Lee, J. D. How fine-tuning allows for
effective meta-learning. Advances in Neural Information
Processing Systems, 34, 2021.

Collins, L., Hassani, H., Mokhtari, A., and Shakkottai, S.
Exploiting shared representations for personalized feder-
ated learning. In International Conference on Machine
Learning, pp. 2089–2099. PMLR, 2021.

Collins, L., Hassani, H., Mokhtari, A., and Shakkottai, S.
Fedavg with fine tuning: Local updates lead to representa-
tion learning. Advances in Neural Information Processing
Systems, 35:10572–10586, 2022a.

Collins, L., Mokhtari, A., Oh, S., and Shakkottai, S. Maml
and anil provably learn representations. arXiv preprint
arXiv:2202.03483, 2022b.

Crawshaw, M. Multi-task learning with deep neural net-
works: A survey. arXiv preprint arXiv:2009.09796, 2020.

Damian, A., Lee, J., and Soltanolkotabi, M. Neural net-
works can learn representations with gradient descent. In
Conference on Learning Theory, pp. 5413–5452. PMLR,
2022.

10

Provable Multi-Task Representation Learning

Damian, A., Nichani, E., Ge, R., and Lee, J. D. Smoothing
the landscape boosts the signal for sgd: Optimal sam-
ple complexity for learning single index models. arXiv
preprint arXiv:2305.10633, 2023.

Dandi, Y., Krzakala, F., Loureiro, B., Pesce, L., and Stephan,
L. How two-layer neural networks learn, one (giant) step
at a time. In NeurIPS 2023 Workshop on Mathematics of
Modern Machine Learning, 2023.

Daniely, A. and Malach, E. Learning parities with neural
networks. Advances in Neural Information Processing
Systems, 33:20356–20365, 2020.

Dirksen, S., Genzel, M., Jacques, L., and Stollenwerk, A.
The separation capacity of random neural networks. The
Journal of Machine Learning Research, 23(1):13924–
13970, 2022.

Du, S., Lee, J., Li, H., Wang, L., and Zhai, X. Gradient
descent finds global minima of deep neural networks. In
International conference on machine learning, pp. 1675–
1685. PMLR, 2019.

Du, S. S., Hu, W., Kakade, S. M., Lee, J. D., and Lei,
Q. Few-shot learning via learning the representation,
provably. In International Conference on Learning Rep-
resentations, 2020.

Ghorbani, B., Mei, S., Misiakiewicz, T., and Montanari, A.
When do neural networks outperform kernel methods?
Advances in Neural Information Processing Systems, 33:
14820–14830, 2020.

Goel, S., Karmalkar, S., and Klivans, A. Time/accuracy
tradeoffs for learning a relu with respect to gaussian
marginals. Advances in neural information processing
systems, 32, 2019.

Hsu, D., Sanford, C. H., Servedio, R., and Vlatakis-
Gkaragkounis, E. V. On the approximation power of
two-layer networks of random relus. In Conference on
Learning Theory, pp. 2423–2461. PMLR, 2021.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent ker-
nel: Convergence and generalization in neural networks.
Advances in neural information processing systems, 31,
2018.

Ji, Z. and Telgarsky, M. Polylogarithmic width suffices for
gradient descent to achieve arbitrarily small test error with
shallow relu networks. arXiv preprint arXiv:1909.12292,
2019.

Ji, Z., Telgarsky, M., and Xian, R. Neural tangent kernels,
transportation mappings, and universal approximation.
arXiv preprint arXiv:1910.06956, 2019.

Kamath, P., Montasser, O., and Srebro, N. Approximate is
good enough: Probabilistic variants of dimensional and
margin complexity. In Conference on Learning Theory,
pp. 2236–2262. PMLR, 2020.

Kao, C.-H., Chiu, W.-C., and Chen, P.-Y. Maml is a
noisy contrastive learner in classification. arXiv preprint
arXiv:2106.15367, 2021.

Kearns, M. Efficient noise-tolerant learning from statistical
queries. Journal of the ACM (JACM), 45(6):983–1006,
1998.

Lee, J., Xiao, L., Schoenholz, S., Bahri, Y., Novak, R., Sohl-
Dickstein, J., and Pennington, J. Wide neural networks of
any depth evolve as linear models under gradient descent.
Advances in neural information processing systems, 32,
2019.

Li, Y. and Liang, Y. Learning overparameterized neural
networks via stochastic gradient descent on structured
data. Advances in neural information processing systems,
31, 2018.

Li, Y., Ma, T., and Zhang, H. R. Learning over-parametrized
two-layer neural networks beyond ntk. In Conference on
learning theory, pp. 2613–2682. PMLR, 2020.

Livni, R., 2017. URL https://www.cs.princeton.
edu/˜rlivni/cos511/lectures/lect13.
pdf.

Malach, E. and Shalev-Shwartz, S. When hardness of ap-
proximation meets hardness of learning. Journal of Ma-
chine Learning Research, 23(91):1–24, 2022.

Maurer, A., Pontil, M., and Romera-Paredes, B. The benefit
of multitask representation learning. Journal of Machine
Learning Research, 17(81):1–32, 2016.

Mei, S., Montanari, A., and Nguyen, P.-M. A mean field
view of the landscape of two-layer neural networks. Pro-
ceedings of the National Academy of Sciences, 115(33):
E7665–E7671, 2018.

Mousavi-Hosseini, A., Park, S., Girotti, M., Mitliagkas, I.,
and Erdogdu, M. A. Neural networks efficiently learn
low-dimensional representations with sgd. arXiv preprint
arXiv:2209.14863, 2022.

Nguyen, P.-M. Mean field limit of the learning dy-
namics of multilayer neural networks. arXiv preprint
arXiv:1902.02880, 2019.

Nichani, E., Damian, A., and Lee, J. D. Provable guaran-
tees for nonlinear feature learning in three-layer neural
networks. arXiv preprint arXiv:2305.06986, 2023.

11

https://www.cs.princeton.edu/~rlivni/cos511/lectures/lect13.pdf
https://www.cs.princeton.edu/~rlivni/cos511/lectures/lect13.pdf
https://www.cs.princeton.edu/~rlivni/cos511/lectures/lect13.pdf

Provable Multi-Task Representation Learning

Oymak, S. and Soltanolkotabi, M. Toward moderate overpa-
rameterization: Global convergence guarantees for train-
ing shallow neural networks. IEEE Journal on Selected
Areas in Information Theory, 1(1):84–105, 2020.

Ruder, S. An overview of multi-task learning in deep neural
networks. arXiv preprint arXiv:1706.05098, 2017.

Saunshi, N., Gupta, A., and Hu, W. A representation learn-
ing perspective on the importance of train-validation split-
ting in meta-learning. In International Conference on
Machine Learning, pp. 9333–9343. PMLR, 2021.

Shalev-Shwartz, S., Shamir, O., and Shammah, S. Failures
of gradient-based deep learning. In International Con-
ference on Machine Learning, pp. 3067–3075. PMLR,
2017.

Shi, Z., Wei, J., and Liang, Y. A theoretical analysis on
feature learning in neural networks: Emergence from
inputs and advantage over fixed features. arXiv preprint
arXiv:2206.01717, 2022.

Sirignano, J. and Spiliopoulos, K. Mean field analysis of
neural networks: A law of large numbers. SIAM Journal
on Applied Mathematics, 80(2):725–752, 2020.

Sun, Y., Narang, A., Gulluk, I., Oymak, S., and Fazel, M. To-
wards sample-efficient overparameterized meta-learning.
Advances in Neural Information Processing Systems, 34:
28156–28168, 2021.

Telgarsky, M. Feature selection with gradient descent
on two-layer networks in low-rotation regimes. arXiv
preprint arXiv:2208.02789, 2022.

Thekumparampil, K. K., Jain, P., Netrapalli, P., and Oh,
S. Sample efficient linear meta-learning by alternating
minimization. arXiv preprint arXiv:2105.08306, 2021.

Tripuraneni, N., Jordan, M., and Jin, C. On the theory
of transfer learning: The importance of task diversity.
Advances in Neural Information Processing Systems, 33:
7852–7862, 2020.

Tripuraneni, N., Jin, C., and Jordan, M. Provable meta-
learning of linear representations. In International Con-
ference on Machine Learning, pp. 10434–10443. PMLR,
2021.

Vershynin, R. High-dimensional probability: An introduc-
tion with applications in data science, volume 47. Cam-
bridge university press, 2018.

Wang, Z., Nichani, E., and Lee, J. D. Learning hierarchical
polynomials with three-layer neural networks. arXiv
preprint arXiv:2311.13774, 2023a.

Wang, Z., Panda, R., Karlinsky, L., Feris, R., Sun,
H., and Kim, Y. Multitask prompt tuning enables
parameter-efficient transfer learning. arXiv preprint
arXiv:2303.02861, 2023b.

Xu, Z. and Tewari, A. Representation learning beyond linear
prediction functions. Advances in Neural Information
Processing Systems, 34, 2021.

Yehudai, G. and Shamir, O. On the power and limitations
of random features for understanding neural networks.
Advances in Neural Information Processing Systems, 32,
2019.

Yuksel, O., Boursier, E., and Flammarion, N. Model agnos-
tic methods meta-learn despite misspecifications. arXiv
preprint arXiv:2303.01335, 2023.

Zhang, Y. and Yang, Q. A survey on multi-task learning.
IEEE Transactions on Knowledge and Data Engineering,
34(12):5586–5609, 2021.

Zhou, M., Ge, R., and Jin, C. A local convergence theory for
mildly over-parameterized two-layer neural network. In
Conference on Learning Theory, pp. 4577–4632. PMLR,
2021.

Zou, D., Cao, Y., Zhou, D., and Gu, Q. Stochastic gradient
descent optimizes over-parameterized deep relu networks.
arXiv preprint arXiv:1811.08888, 2018.

12

Provable Multi-Task Representation Learning

A. Proofs of Proposition 3.1 and Theorem 3.2
In this section we prove Proposition 3.1 and Theorem 3.2. Throughout, we will slightly abuse notation by reusing c, c′, c′′

and C as absolute constants independent of all other parameters. The notations O(·), Θ(·), and Ω(·) describe scalings up to
absolute constants independent of all other parameters.

A.1. General lemmas

Lemma A.1. Suppose x ∼ N (0d, Id). Then for any w ∈ Rd,

Ex

[
σ′(w⊤x)x

]
=

√
2

π

w

∥w∥2
.

Proof. For any u : w⊤u = 0, we have

u⊤(Ex

[
σ′(w⊤x)x

]
) = Ex

[
σ′(w⊤x)u⊤x

]
= Ex

[
σ′(w⊤x)

]
Ex

[
u⊤x

]
= 0 (16)

by the independence of orthogonal projections of isotropic Gaussian vectors. So, Ex

[
σ′(w⊤x)x

]
is parallel to w. Thus,

Ex

[
σ′(w⊤x)x

]
=

ww⊤

∥w∥22
Ex

[
σ′(w⊤x)x

]
=

w

∥w∥22
Ex

[
σ′(w⊤x)w⊤x

]
=

w

∥w∥22
Ex

[
σ(w⊤x)

]
(17)

where σ(w⊤x) is a half-normal random variable with parameter ∥w∥2, so it has mean ∥w∥2
√

2
π , completing the proof.

Lemma A.2. Suppose x ∼ N (0d, Id) and M⊥ ∈ O(d−r)×d and M ∈ Or×d such that M⊥M
⊤ = 0(d−r)×r, i.e. the

rowspaces of M and M⊥ are orthogonal. Then for any w ∈ Rd,

EM⊥x

[
M⊥x σ

′(w⊤x)
]
=

1√
2π

exp

(
− (w⊤M⊤Mx)2

2

)
M⊥w

∥M⊥w∥2
(18)

Proof. We have

EM⊥x

[
M⊥x σ

′(w⊤x)
]

= EM⊥x

[
M⊥x σ

′(w⊤M⊤Mx+w⊤M⊤
⊥M⊥x)

]
= EM⊥x

[
M⊥x|w⊤M⊤Mx+w⊤M⊤

⊥M⊥x > 0
]
PM⊥x[w

⊤M⊤Mx+w⊤M⊤
⊥M⊥x > 0]

= EM⊥x

[
M⊥x

∣∣∣∣w⊤M⊤Mx > |w⊤M⊤
⊥M⊥x|

]
PM⊥x[w

⊤M⊤Mx > |w⊤M⊤
⊥M⊥x|] (19)

where the last line follows by considering two cases: (i) w⊤M⊤
⊥M⊥x < 0 and (ii) w⊤M⊤

⊥M⊥x > 0.
If case (i) holds, then −w⊤M⊤

⊥M⊥x = |w⊤M⊤
⊥M⊥x| so EM⊥x

[
M⊥x|w⊤M⊤Mx+w⊤M⊤

⊥M⊥x > 0
]

=

EM⊥x

[
M⊥x

∣∣∣∣w⊤M⊤Mx > |w⊤M⊤
⊥M⊥x|

]
and PM⊥x[w

⊤M⊤Mx + w⊤M⊤
⊥M⊥x > 0] = PM⊥x[w

⊤M⊤Mx >

13

Provable Multi-Task Representation Learning

|w⊤M⊤
⊥M⊥x|]. Alternatively, if case (ii) holds, then by the law of total expectation,

EM⊥x

[
M⊥x|w⊤M⊤Mx+w⊤M⊤

⊥M⊥x > 0
]

= EM⊥x

[
M⊥x|w⊤M⊤Mx > w⊤M⊤

⊥M⊥x
]
PM⊥x

[
w⊤M⊤Mx > w⊤M⊤

⊥M⊥x|w⊤M⊤Mx > −w⊤M⊤
⊥M⊥x

]
+ EM⊥x

[
M⊥x|w⊤M⊤

⊥M⊥x > w⊤M⊤Mx > −w⊤M⊤
⊥M⊥x

]
× PM⊥x

[
w⊤M⊤

⊥M⊥x > w⊤M⊤Mx > −w⊤M⊤
⊥M⊥x|w⊤M⊤Mx > −w⊤M⊤

⊥M⊥x
]

= EM⊥x

[
M⊥x|w⊤M⊤Mx > w⊤M⊤

⊥M⊥x
]
PM⊥x

[
w⊤M⊤Mx > w⊤M⊤

⊥M⊥x|w⊤M⊤Mx > −w⊤M⊤
⊥M⊥x

]
= EM⊥x

[
M⊥x|w⊤M⊤Mx > |w⊤M⊤

⊥M⊥x|
]
PM⊥x

[
w⊤M⊤Mx > w⊤M⊤

⊥M⊥x|w⊤M⊤Mx > −w⊤M⊤
⊥M⊥x

]
(20)

= EM⊥x

[
M⊥x|w⊤M⊤Mx > |w⊤M⊤

⊥M⊥x|
] PM⊥x

[
w⊤M⊤Mx > |w⊤M⊤

⊥M⊥x|
]

PM⊥x

[
w⊤M⊤Mx > −w⊤M⊤

⊥M⊥x
]

where (20) follows since w⊤M⊤
⊥M⊥x = |w⊤M⊤

⊥M⊥x|. Now we return to (19). Note that

EM⊥x

[
M⊥x

∣∣∣∣w⊤M⊤Mx > |w⊤M⊤
⊥M⊥x|

]
= EM⊥x

[
M⊥x− 2σ

(
− w⊤M⊤

⊥
∥M⊥w∥2

M⊥x

)
M⊥w

∥M⊥w∥2

∣∣∣∣|w⊤M⊤Mx| > |w⊤M⊤
⊥M⊥x|

]
(21)

by the symmetry of the Gaussian distribution and the fact that

M⊥x− 2σ

(
− w⊤M⊤

⊥
∥M⊥w∥2

M⊥x

)
M⊥w

∥M⊥w∥2

is the flip of M⊥x across the hyperplane with normal vector w⊤M⊤
⊥

∥M⊥w∥2
when w⊤M⊤

⊥M⊥x < −|w⊤M⊤
⊥M⊥x|. Using this,

we obtain

EM⊥x

[
M⊥xσ

′(w⊤x)
]

= EM⊥x

[
M⊥x− 2σ

(
− w⊤M⊤

⊥
∥M⊥w∥2

M⊥x

)
M⊥w

∥M⊥w∥2

∣∣∣∣|w⊤M⊤
⊥M⊥x| > |w⊤M⊤Mx|

]
× PM⊥x

[
w⊤M⊤

⊥M⊥x > |w⊤M⊤Mx|
]

= 2EM⊥x

[
σ

(
−w⊤M⊤

⊥M⊥x

∥M⊥w∥2

) ∣∣∣∣|w⊤M⊤
⊥M⊥x| > |w⊤M⊤Mx|

]
PM⊥x

[
w⊤M⊤

⊥M⊥x > |w⊤M⊤Mx|
] M⊥w

∥M⊥w∥2

= EM⊥x

[
σ

(
−w⊤M⊤

⊥M⊥x

∥M⊥w∥2

) ∣∣∣∣w⊤M⊤
⊥M⊥x < −|w⊤M⊤Mx|

]
PM⊥x

[
w⊤M⊤

⊥M⊥x > |w⊤M⊤Mx|
] M⊥w

∥M⊥w∥2

=

1√
2π

exp(−(w⊤M⊤Mx)2/2)

PM⊥x

[
w⊤M⊤

⊥M⊥x < −|w⊤M⊤Mx|
]PM⊥x

[
w⊤M⊤

⊥M⊥x > |w⊤M⊤Mx|
] M⊥w

∥M⊥w∥2
(22)

=
1√
2π

exp(−(w⊤M⊤Mx)2/2)
M⊥w

∥M⊥w∥2
(23)

where (22) follows by the definition of the inverse Mills ratio.

Lemma A.3. For any function f : Rd → {−1, 1} such that f(x) = g(Mx) for some row-orthonormal matrix M ∈ Or×d

and some function g : Rr → {−1, 1} for all x ∈ Rd. Then for any vector w ∈ Rd,

∥Ex

[
f(x)σ′(w⊤x)x

]
∥2 ≤

√
r

2

(
1 +

√
π

2

∥Mw∥2
∥M⊥w∥2

)
+

(
1 + ∥Mw∥22

2π

)1/2

. (24)

Proof. Let M⊥ ∈ O(d−r)×d be a row-orthonormal matrix whose rowspace is orthogonal to that of M. Using that

14

Provable Multi-Task Representation Learning

M⊤M+M⊤
⊥M⊥ = Id and Mx and M⊥x are independent standard normal multivariate random vectors, we have

Ex

[
f(x)σ′(w⊤x)x

]
= Ex

[
g(Mx)σ′(w⊤M⊤Mx+w⊤M⊤

⊥M⊥x)M
⊤Mx

]
+ Ex

[
g(Mx)σ′(w⊤M⊤Mx+w⊤M⊤

⊥M⊥x)M
⊤
⊥M⊥x)

]
= EMx

[
g(Mx)EM⊥x

[
σ′(w⊤M⊤Mx+w⊤M⊤

⊥M⊥x)
]
M⊤Mx

]︸ ︷︷ ︸
1

+ EMx

[
g(Mx)EM⊥x

[
σ′(w⊤M⊤Mx+w⊤M⊤

⊥M⊥x)M
⊤
⊥M⊥x)

]]︸ ︷︷ ︸
2

so ∥Ex

[
f(x)σ′(w⊤x)x

]
∥2 ≤

∥∥∥ 1
∥∥∥
2
+
∥∥∥ 2

∥∥∥
2

by the triangle inequality. First we consider 1 . We have

EMx

[
g(Mx)EM⊥x

[
σ′(w⊤M⊤Mx+w⊤M⊤

⊥M⊥x)
]
M⊤Mx

]
= EMx

[
g(Mx)PM⊥x

[
w⊤M⊤

⊥M⊥x > −w⊤M⊤Mx
]
M⊤Mx

]
= EMx

[
g(Mx)

(
1

2
+

1

2
erf

(
w⊤M⊤Mx√
2∥M⊥w∥2

))
M⊤Mx

]
(25)

=
1

2
EMx

[
g(Mx)M⊤Mx

]
+

1

2
EMx

[
g(Mx) erf

(
w⊤M⊤Mx√
2∥M⊥w∥2

)
M⊤Mx

]
where (25) is due to the Gaussian CDF. Thus by the triangle inequality,∥∥∥ 1

∥∥∥
2
≤ 1

2

∥∥EMx

[
g(Mx)M⊤Mx

]∥∥
2
+

1

2

∥∥∥∥EMx

[
g(Mx) erf

(
w⊤M⊤Mx√
2∥M⊥w∥2

)
M⊤Mx

]∥∥∥∥
2

(26)

For the first term, ∥∥EMx

[
g(Mx)M⊤Mx

]∥∥
2
≤ EMx

[∥∥g(Mx)M⊤Mx
∥∥
2

]
(27)

= EMx [∥Mx∥2]

≤ EMx

[
∥Mx∥22

]1/2
(28)

=
√
r (29)

where (27) and (28) follow by Jensen’s inequality. For the second term in (26), we have∥∥∥∥EMx

[
g(Mx) erf

(
w⊤M⊤Mx√
2∥M⊥w∥2

)
M⊤Mx

]∥∥∥∥
2

≤ EMx

[∥∥∥∥g(Mx) erf

(
w⊤M⊤Mx√
2∥M⊥w∥2

)
M⊤Mx

∥∥∥∥
2

]
(30)

≤

(
EMx

[∣∣∣∣g(Mx) erf

(
w⊤M⊤Mx√
2∥M⊥w∥2

)∣∣∣∣2
]
EMx

[∥∥M⊤Mx
∥∥2
2

])1/2

(31)

=
√
rEMx

[∣∣∣∣g(Mx) erf

(
w⊤M⊤Mx√
2∥M⊥w∥2

)∣∣∣∣2
]1/2

(32)

≤
√
rEMx

[(√
πw⊤M⊤Mx

2∥M⊥w∥2

)2
]1/2

(33)

=

√
πr

2

∥Mw∥2
∥M⊥w∥2

(34)

15

Provable Multi-Task Representation Learning

where (30) follows by Jensen’s inequality, (32) follows by the Cauchy-Schwarz inequality, and (33) follows since | erf(x)| ≤
|
√
π/2 x|. Combining (26), (29) and (34) yields∥∥∥ 1

∥∥∥
2
≤

√
r

2

(
1 +

√
π

2

∥Mw∥2
∥M⊥w∥2

)
(35)

Next we consider 2 . We have

EMx

[
g(Mx)EM⊥x

[
σ′(w⊤M⊤Mx+w⊤M⊤

⊥M⊥x)M
⊤
⊥M⊥x)

]]
=

1√
2π

EMx

[
g(Mx) exp

(
− (w⊤M⊤Mx)2

2

)]
M⊤

⊥M⊥w

∥M⊥w∥2
(36)

by Lemma A.2, thus ∥∥∥ 2
∥∥∥
2
=

1√
2π

∣∣∣∣EMx

[
g(Mx) exp

(
− (w⊤M⊤Mx)2

2

)]∣∣∣∣ . (37)

Next we upper bound
∣∣∣EMx

[
g(Mx) exp

(
− (w⊤M⊤Mx)2

2

)]∣∣∣. We have∣∣∣∣EMx

[
g(Mx) exp

(
− (w⊤M⊤Mx)2

2

)]∣∣∣∣
≤ EMx

[
exp

(
− (w⊤M⊤Mx)2

2

)]
(38)

=

∫
Rr

1

(2π)r/2
exp

(
− (w⊤M⊤Mx)2

2
− x⊤M⊤Mx

2

)
dMx (39)

=

∫
Rr

1

(2π)r/2
exp

−
x⊤M⊤

(
Ir +Mww⊤M⊤

)
Mx

2

 dMx

= det(Ir +Mww⊤M⊤)1/2

×
∫
Rr

1

(2π)r/2det(Ir +Mww⊤M⊤)1/2
exp

−
x⊤M⊤

(
Ir +Mww⊤M⊤

)
Mx

2

 dMx (40)

= det(Ir +Mww⊤M⊤)1/2

=
(
1 + ∥Mw∥22

)1/2
(41)

where (38) follows since exp() is positive, (39) follows since w⊤M⊤Mx is a Gaussian random variable with mean zero and
variance ∥Mw∥22, and (40) follows due to the multivariate normal distribution, and (41) follows by the matrix determinant
lemma. Therefore, ∥∥∥ 2

∥∥∥
2
≤
(
1 + ∥Mw∥22

2π

)1/2

, (42)

completing the proof.

A.2. Finite-task and finite-sample concentration results

Lemma A.4 (Initialization I). For any δ ∈ (0, 1), define the set

Gw(δ) :=
{
w ∈ Rd : ∥Mw∥2 ≤ cνw(

√
r +

√
log(m/δ)),

cνw(
√
d− r −

√
log(m/δ)) ≤ ∥M⊥w∥2 ≤ cνw(

√
d− r +

√
log(m/δ)),

cνw(
√
d−

√
log(m/δ)) ≤ ∥w∥2 ≤ cνw(

√
d+

√
log(m/δ))

}
(43)

for an absolute constant c. Then with probability at least 1− δ, wj ∈ Gw(δ) for all j ∈ [m].

16

Provable Multi-Task Representation Learning

Proof. Since each wj ∼ N (0d, ν
2
wId), each ∥Mwj∥2, ∥M⊥wj∥2, and ∥wj∥2 are sub-Gaussian with parameters νw

√
r,

νw
√
d− r, and νw

√
d. That is,

Pwj
[|∥Mwj∥2 − νw

√
r| ≤ t] ≤ e−c′t2/ν2

w (44)

for any t > 0, and likewise for ∥M⊥wj∥2 and ∥wj∥2 (with νw
√
r replaced by νw

√
d− r and νw

√
d, respectively).

Choosing t = c′′νw
√
log(m/δ) and union bounding over all j ∈ [m] completes the proof.

Lemma A.5 (Initialization II). Suppose m > r. For an absolute constant c and any δ ∈ (0, 1),

σmin(MW0) ≥ νw
√
m

(
1− c

√
r +

√
log(1/δ)√
m

)
(45)

with probability at least 1− δ.

Proof. The result follows from the fact that each row of W0 is drawn independently from N (0d, ν
2
wId), so each of the r

rows of MW0 are drawn i.i.d. from N (0m, ν
2
wIm) (recalling that the rows of M are orthogonal, so u⊤

i wj and u⊤
i′wj are

independent for any two distinct rows ui and ui′ of M). A standard (sub-)Gaussian matrix concentration inequality yields
the result (e.g. Equation 4.21 in (Vershynin, 2018)).

Lemma A.6 (Initialization III). For an absolute constant c and any δ ∈ (0, 1),

∥W0∥2 ≤ νw
√
m

(
1 +

√
d+

√
log(1/δ)√
m

)
(46)

for some absolute constant with probability at least 1− δ.

Proof. As in Lemma A.5, the proof follows by standard (sub-)Gaussian matrix concentration (e.g. Equation 4.21 in
(Vershynin, 2018)).

Lemma A.7. For any δ ∈ (0, 1) define the event Ew(δ) as follows:

Ew(δ) :=

{
w0

j ∈ Gx(δ), σmin(MW0) ≥ νw
√
m

(
1− c

√
r −

√
log(1/δ)√
m

)
,

∥W0∥2 ≤ νw
√
m

(
1 +

√
d+

√
log(1/δ)√
m

)}
. (47)

Then P(Ew(δ)) ≥ 1− 3δ.

Proof. The proof follows immediately from Lemmas A.4, A.5, A.6 and a union bound.

Next we begin to analyze the first gradient-based update of the algorithm. Throughout, let D̂i,a = {(xi,k, fi(xi,k))}n1

k=1 and
D̂i,W = {(xi,l, fi(xi,l))}n2

l=1, where all samples are drawn i.i.d. from Di, for each i ∈ [T].

Lemma A.8. Let λa = 1
η and x ∼ N (0d, Id). On the first iteration of the multitask learning algorithm described in Section

2.3, the locally updated head for task i is:

a1i =
η

n1

n1∑
k=1

fi(xi,k)σ(W
0xi,k) (48)

for all tasks i ∈ [T].

17

Provable Multi-Task Representation Learning

Proof. Since a0i = 0m for all i, (a0i)
⊤σ(W0x+b0) = 0 for all x and i. Therefore, max(1−fi(x)(a0i)⊤σ(W0x+b0), 0) =

1− fi(x)(a
0
i)

⊤σ(W0x), and

a1i = a0i − η∇aL̂i(W
0,b0,a0i ; D̂i,a)

= − η

n1

n1∑
k=1

∇a(max(1− fi(xi,k)(a
0
i)

⊤σ(W0xi,k + b0), 0))

= − η

n1

n1∑
k=1

∇a(1− fi(xi,k)(a
0
i)

⊤σ(W0xi,k + b0))

=
η

n1

n1∑
k=1

fi(xi,k)σ(W
0xi,k)

where in the last equality we have used b0 = 0m by choice of initialization.

Next, we substitute the updated heads in the global empirical loss. Since the gradient computation for the update of W does
not backpropagate through the update of the heads, we use σ̄(·) to denote the stop-gradient ReLU activation, meaning all
model parameters inside are treated as constants for the purposes of later gradient updates. In particular, from Lemma A.8
we have

a1i =
η

n1

n1∑
k=1

fi(xi,k)σ(W
0xi,k) (49)

for all i ∈ [T].

Lemma A.9. After updating the heads on the first iteration, the empirical loss averaged across the task datasets {D̂i,W}Ti=1

used for updating the neuron weights is given by

L̂(W0,b0, {a1i }Ti=1; {D̂i,W}Ti=1) :=
1

T

T∑
i=1

L̂i(W
0,b0,a1i ; D̂i,W)

= 1− η

Tn1n2

T∑
i=1

n2∑
l=1

n1∑
k=1

fi(xi,l)fi(xi,k)σ̄(W
0xi,k)

⊤σ(W0xi,l)

− 1

Tn2

T∑
i=1

n2∑
l=1

χ

ηfi(xi,l)

(
1

n1

n1∑
k=1

fi(xi,k)σ̄(W
0xi,k)

)⊤

σ(W0xi,l) > 1

×

1− ηfi(xi,l)

(
1

n1

n1∑
k=1

fi(xi,k)σ̄(W
0xi,k)

)⊤

σ(W0xi,l)

18

Provable Multi-Task Representation Learning

Proof. First, by the fact that b0 = 0m by choice of initialization, we have

L̂(W0,b0, {a1i }Ti=1; {D̂i,W}Ti=1) =
1

T

T∑
i=1

L̂i(W
0,b0, {a1i }Ti=1; D̂i,W)

=
1

Tn2

T∑
i=1

n2∑
l=1

max
(
1− fi(xi,l)(a

1
i)

⊤σ(W0xi,l), 0
)

=
1

Tn2

T∑
i=1

n2∑
l=1

χ
{
fi(xi,l)(a

1
i)

⊤σ(W0xi,l) < 1
} (

1− fi(xi,l)(a
1
i)

⊤σ(W0xi,l)
)

= 1− 1

Tn2

T∑
i=1

n2∑
l=1

fi(xi,l)(a
1
i)

⊤σ(W0xi,l)

− 1

Tn2

T∑
i=1

n2∑
l=1

χ
{
fi(xi,l)(a

1
i)

⊤σ(W0xi,l) > 1
} (

1− fi(xi,l)(a
1
i)

⊤σ(W0xi,l)
)

Substituting the value of a1i from (49) completes the proof.

Next we show that after one update of the heads, the model predictions are still close to zero, so max() in the hinge loss is
mostly inactive.

Lemma A.10. Suppose ν2w = O(1
η2dm log(T)(d+m)). With probability at least 1− δ,

η

Tn2

T∑
i=1

n2∑
l=1

χ

ηfi(xi,l)

(
1

n1

n1∑
k=1

fi(xi,k)σ
′(W0xi,k)

)⊤

σ(W0xi,l) > 1

= ηO

(
exp

(
− c

η2ν2wm log(T/δ)(d+ log(m/δ))(d+m)

))
+ η O

(√
log(1/δ)√
Tn2

)
(50)

for an absolute constant c.

Proof. Consider any fixed W0 satisfying Ew(δ1) for δ1 ∈ (0, 1), which occurs with probability at least 1− 3δ1 by Lemma
A.7. For ease of notation we replace w0

j with wj . Recall that

ηfi(xi,l)

(
1

n1

n1∑
k=1

fi(xi,k)σ
′(W0xi,k)

)⊤

σ(W0xi,l) = fi(xi,l)(a
1
i)

⊤σ(W0xi,l) (51)

by the computation of a1i in Lemma A.8. For any fixed fi and fixed a1i , χ
{
fi(xi,l)(a

1
i)

⊤σ(W0xi,l) > 1
}

is a Bernoulli
random variable with parameter

Pxi,l

(
fi(xi,l)(a

1
i)

⊤σ(W0xi,l) > 1
)

≤ Pxi,l

(∣∣(a1i)⊤σ(W0xi,l)
∣∣ > 1

)
(52)

≤ Pxi,l

(∣∣(a1i)⊤σ(W0xi,l)− Exi,l
[(a1i)

⊤σ(W0xi,l)]
∣∣ > 1− Exi,l

[(a1i)
⊤σ(W0xi,l)]

)
(53)

≤ 2 exp

(
−
(
1− Exi,l

[(a1i)
⊤σ(W0xi,l)]

)2
c∥a1i ∥22∥W0∥22

)

≤ 2 exp

(
−
(
1− ∥a1i ∥2∥W0∥2

)2
c∥a1i ∥22∥W0∥22

)

≤ 2 exp

(
−1− 2∥a1i ∥2∥W0∥2

c∥a1i ∥22∥W0∥22

)
=: γi (54)

19

Provable Multi-Task Representation Learning

for some absolute constant c, where (52) follows since fi(xi,l) ∈ {−1, 1}, and (53) follows since (a1i)
⊤σ(W0xi,l) −

Exi,l
[(a1i)

⊤σ(W0xi,l)] is sub-Gaussian with mean 0 and variance O(∥a1i ∥22∥W0∥22). Next, since for fixed a1i and fi, the
random variables {χ{ηfi(xi,l)(a

1
i)

⊤σ(W0xi,l) > 1}}n1

l=1 are i.i.d., we have by Hoeffding’s inequality

Pxi,l

(∣∣∣∣∣ 1n2
n2∑
l=1

χ{fi(xi,l)(a
1
i)

⊤σ(W0xi,l) > 1} − Px(fi(x)(a
1
i)

⊤σ(W0x) > 1)

∣∣∣∣∣ > t

)
≤ 2 exp

(
−2n2t

2
)

(55)

for any t > 0. So 1
n2

∑n2

l=1 χ{fi(xi,l)(a
1
i)

⊤σ(W0xi,l) > 1} − Px(ηfi(x)(a
1
i)

⊤σ(W0x) > 1) is sub-Gaussian
with mean zero and variance proxy 1

n2
. Also, each random variable in { 1

n2

∑n2

l=1 χ{fi(xi,l)(a
1
i)

⊤σ(W0xi,l) >

1} − Px(ηfi(x)(a
1
i)

⊤σ(W0x) > 1)}Ti=1 is independent, so again by Hoeffding’s inequality,

Pxi,l

(∣∣∣∣∣ 1

Tn2

T∑
i=1

n2∑
l=1

χ{fi(xi,l)(a
1
i)

⊤σ(W0xi,l) > 1} − 1

T

T∑
i=1

Px(fi(x)(a
1
i)

⊤σ(W0x) > 1)

∣∣∣∣∣ > t

)
≤ 2 exp

(
−2Tn2t

2
)

(56)

Set t = O(

√
log(1/δ2)√

Tn2
), then we have

1

Tn2

T∑
i=1

n2∑
l=1

χ{fi(xi,l)(a
1
i)

⊤σ(W0xi,l) > 1} =
1

T

T∑
i=1

Px(fi(x)(a
1
i)

⊤σ(W0x) > 1) +O

(√
log(1/δ)√
Tn2

)

≤ 1

T

T∑
i=1

γi +O

(√
log(1/δ2)√
Tn2

)
(57)

with probability at least 1− δ2 over the sampling of {xi,l}i,l. It remains to bound each γi. Next, for any i ∈ [T], we have

∥a1i ∥2 =

∥∥∥∥∥ ηn1
n1∑
k=1

fi(xi,k)σ(W
0xi,k)

∥∥∥∥∥
2

≤ η
√
m max

j∈[m]

∣∣∣∣∣ 1n1
n1∑
k=1

fi(xi,k)σ(w
⊤
j xi,k)

∣∣∣∣∣ (58)

Each fi(xi,k)σ(w
⊤
j xi,k) is sub-Gaussian with mean O(∥wj∥2) and variance O(∥wj∥22). Also, for fixed fi, the random

variables {fi(xi,k)σ(w
⊤
j xi,k)}n1

k=1 are independent. So, we have ∥a1i ∥2 = O(η
√
mtmaxj∈[m] ∥wj∥2) with probability

at least 1 − e−t2 for any t > 0. Union bounding over all i ∈ [T] and setting t = Θ(
√
log(T) +

√
log(1/δ3)) yields

maxi∈[T] ∥a1i ∥2 = O(η
√
m log(T/δ3)maxj∈[m] ∥wj∥2), with probability at least 1− δ3. Now applying Lemma A.4 and

the fact that Ew(δ) holds results in maxi∈[T] ∥a1i ∥2 = O(ηνw
√
m log(T/δ3)(

√
d+

√
log(m/δ1))) and

max
i∈[T]

∥a1i ∥2∥W0∥2 = O
(
ηνw

√
m log(T/δ3)(

√
d+

√
log(m/δ1))(

√
d+

√
m+

√
log(1/δ1))

)
= O

(
ηνw

√
m log(T/δ3)(

√
d+

√
log(m/δ1))(

√
d+

√
m)
)

(59)

with probability at least 1 − δ3 − 3δ1. Set δ3 + 3δ1 + δ2 ≤ δ, then from (54) and using νw =
O(1

η
√

m log(T/δ)(
√
d+

√
log(m/δ))(

√
d+

√
m)

), we have maxi∈[T] ∥a1i ∥2∥W0∥2 = O(1) and

1

T

T∑
i=1

γi ≤ max
i∈[T]

γi =
2

T

T∑
i=1

exp

(
−1− 2∥a1i ∥2∥W0∥2

c∥a1i ∥22∥W0∥22

)
≤ 2 exp

(
−
1− 2maxi∈[T] ∥a1i ∥2∥W0∥2
cmaxi∈[T] ∥a1i ∥22∥W0∥22

)
≤ 2c′ exp

(
− 1

cmaxi∈[T] ∥a1i ∥22∥W0∥22

)
≤ 2c′ exp

(
− c′′

η2ν2wm log(T/δ)(d+ log(m/δ))(d+m)

)
with probability at least 1− δ, completing the proof in light of (57).

20

Provable Multi-Task Representation Learning

Lemma A.11. For any δ ∈ (0, 1), with probability at least 1− δ, for all neurons j ∈ [m], the gradient used to compute w1
j

satisfies

∥∥∥∥∥∇wj L̂(W0,b0, {a1i }Ti=1; {D̂i,W}Ti=1) +
η

Tn1n2

T∑
i=1

n2∑
l=1

n1∑
k=1

fi(xi,l)fi(xi,k)σ
′(w⊤

j xi,k)σ
′(w⊤

j xi,l)xi,lx
⊤
i,kw

0
j

∥∥∥∥∥
2

= O

(
ηνw(

√
d+

√
log(m/δ))

√
d log(Tn2/δ)

(
1 +

√
log(T/δ)
√
n1

)

×

(
exp

(
− c

η2ν2wm log(T/δ)(d+ log(m/δ))(d+m)

)
+

√
log(1/δ)√
Tn2

))

where c is an absolute constant and σ′(x) = χ{x > 0} denotes the derivative of the ReLU.

Proof. Consider any fixed W0 satisfying Ew(δ1) for δ1 ∈ (0, 1), which occurs with probability at least 1− 3δ1 by Lemma
A.7. For ease of notation we write wj = w0

j . Using Lemma A.9 and the chain rule,

∇wj
L̂(W0,b0, {a1i }Ti=1; {D̂i,W}Ti=1)

= − η

Tn1n2

T∑
i=1

n2∑
l=1

n1∑
k=1

fi(xi,l)fi(xi,k)σ̄(w
⊤
j xi,k)σ

′(w⊤
j xi,l)xi,l

+
η

Tn2

T∑
i=1

n2∑
l=1

χ

ηfi(xi,l)

(
1

n1

n1∑
k=1

fi(xi,k)σ̄(W
0xi,k)

)⊤

σ(W0xi,l) > 1

× fi(xi,l)

(
1

n1

n1∑
k=1

fi(xi,k)σ̄(w
⊤
j xi,k)

)
σ′(w⊤

j xi,l)xi,l

= − η

Tn1n2

T∑
i=1

n2∑
l=1

n1∑
k=1

fi(xi,l)fi(xi,k)σ
′(w⊤

j xi,k)σ
′(w⊤

j xi,l)xi,lx
⊤
i,kwj︸ ︷︷ ︸

1

+
η

Tn2

T∑
i=1

n2∑
l=1

χ

ηfi(xi,l)

(
1

n1

n1∑
k=1

fi(xi,k)σ̄(W
0xi,k)

)⊤

σ(W0xi,l) > 1

︸ ︷︷ ︸
2

×fi(xi,l)

(
1

n1

n1∑
k=1

fi(xi,k)σ̄(w
⊤
j xi,k)

)
σ′(w⊤

j xi,l)xi,l︸ ︷︷ ︸
2

(60)

where (60) follows since σ̄(x) = σ′(x)x when σ̄ is the ReLU activation. By (60) and the triangle inequality we have
∥∇wj L̂(W0,b0, {a1i }Ti=1; {D̂i,W}Ti=1)− 1 ∥2 ≤ ∥ 2 ∥2, so the result follows by bounding ∥ 2 ∥2. To do this, note that

21

Provable Multi-Task Representation Learning

by Hölder’s inequality,

∥ 2 ∥2 ≤

∥∥∥∥∥ η

Tn2

T∑
i=1

n2∑
l=1

χ

ηfi(xi,l)

(
1

n1

n1∑
k=1

fi(xi,k)σ̄(W
0xi,k)

)⊤

σ(W0xi,l) > 1

× fi(xi,l)

(
1

n1

n1∑
k=1

fi(xi,k)σ̄(w
⊤
j xi,k)

)
σ′(w⊤

j xi,l)xi,l

∥∥∥∥∥
2

≤ η
1

Tn2

T∑
i=1

n2∑
l=1

χ

ηfi(xi,l)

(
1

n1

n1∑
k=1

fi(xi,k)σ̄(W
0xi,k)

)⊤

σ(W0xi,l) > 1

× max

i∈[T],l∈[n2]

∥∥∥∥∥
(

1

n1

n1∑
k=1

fi(xi,k)σ̄(w
⊤
j xi,k)

)
σ′(w⊤

j xi,l)xi,l

∥∥∥∥∥
2

≤ η
1

Tn2

T∑
i=1

n2∑
l=1

χ

ηfi(xi,l)

(
1

n1

n1∑
k=1

fi(xi,k)σ̄(W
0xi,k)

)⊤

σ(W0xi,l) > 1

︸ ︷︷ ︸
2a

×max
i∈[T]

∣∣∣∣∣ 1n1
n1∑
k=1

fi(xi,k)σ̄(w
⊤
j xi,k)

∣∣∣∣∣ max
i∈[T],l∈[n2]

∥xi,l∥2︸ ︷︷ ︸
2b

(61)

By Lemma A.10, we have

2a = ηO

(
exp

(
− c

η2ν2wm log(T/δ3)(d+ log(m/δ3))(d+m)

))
+ η O

(√
log(1/δ3)√
Tn2

)
(62)

with probability at least 1− δ3. It remains to control 2b . Fix wj , i, and l, then each random variable fi(xi,k)σ̄(w
⊤
j xi,k) is

sub-Gaussian with mean O(∥wj∥2) and variance O(∥wj∥22), and each random variable in {fi(xi,k)σ̄(w
⊤
j xi,k)}n1

k=1 is i.i.d.

Thus, 1
n1

∑n1

k=1 fi(xi,k)σ̄(w
⊤
j xi,k) is sub-Gaussian with mean O(∥wj∥2) and variance O

(
∥wj∥2

2

n1

)
, so, by a union bound

over all i ∈ [T],

max
i∈[T]

∣∣∣∣∣ 1n1
n1∑
k=1

fi(xi,k)σ̄(w
⊤
j xi,k)

∣∣∣∣∣ = O

∥wj∥2

1 +

√
log(T/δ2)

n1

= O

νw(
√
d+

√
log(m/δ1))

1 +

√
log(T/δ2)

n1

 (63)

with probability at least 1 − 3δ1 − δ2. Next, ∥xi,l∥22 is sub-exponential with mean O (d) and variance O
(
d2
)
. So, with

probability at least 1− δ4,

max
i∈[T],l∈[n2]

∥xi,l∥22 = O (d(1 + log(Tn2/δ4))) = O (d log(Tn2/δ4)) =⇒ max
i∈[T],l∈[n2]

∥xi,l∥2 = O
(√

d log(Tn2/δ4)
)

(64)

Combining these bounds via a union bound, applying (61), and setting δ1, δ2, δ3, δ4 = Θ(δ) yields

2 = O

(
ηνw(

√
d+

√
log(m/δ))

√
d log(Tn2/δ)

(
1 +

√
log(T/δ)
√
n1

)

×

(
exp

(
− c

η2ν2wm log(T/δ)(d+ log(m/δ))(d+m)

)
+

√
log(1/δ)√
Tn2

))

22

Provable Multi-Task Representation Learning

for an absolute constant c with probability at least 1− δ, completing the proof.

Lemma A.12. For any δ ∈ (0, 1), with probability at least 1− δ, for all j ∈ [m],

∥∥∥∥∥ 1

Tn1n2

T∑
i=1

n2∑
l=1

n1∑
k=1

fi(xi,l)fi(xi,k)σ
′((w0

j)
⊤xi,k)σ

′((w0
j)

⊤xi,l)xi,lx
⊤
i,kw

0
j

− Ei∼T E(x,fi(x))∼Di
E(x′,fi(x′))∼Di

[
fi(x)fi(x

′)σ′((w0
j)

⊤x′)σ′((w0
j)

⊤x′)x(x′)⊤w0
j

] ∥∥∥∥∥
2

= O

(
νw

√
d+ log(m/δ)

T
log(d/δ)

(√
r log(m/δ) +

√
d

n2

))
.

Proof. For ease of notation we replace E(x,fi(x))∼Di
E(x′,fi(x′))∼Di

with Ex,x′ and Ei∼T with Ei, and write wj = w0
j .

Consider any fixed W0 satisfying Ew(δ1) for δ1 ∈ (0, 1), which occurs with probability at least 1− 3δ1 by Lemma A.7.
We have

∥∥∥∥∥ 1

Tn1n2

T∑
i=1

n2∑
l=1

n1∑
k=1

fi(xi,l)fi(xi,k)σ
′(w⊤

j xi,k)σ
′(w⊤

j xi,l)xi,lx
⊤
i,kwj

− EiEx,x′
[
fi(x)fi(x

′)σ′(w⊤
j x

′)σ′(w⊤
j x

′)x(x′)⊤wj

] ∥∥∥∥∥
2

=

∥∥∥∥∥ 1T
T∑

i=1

qi − EiEx,x′
[
fi(x)fi(x

′)σ′(w⊤
j x

′)σ′(w⊤
j x

′)x(x′)⊤wj

]∥∥∥∥∥
2

(65)

where qi :=
1

n1n2

∑n2

l=1

∑n1

k=1 fi(xi,l)fi(xi,k)σ
′(w⊤

j xi,k)σ
′(w⊤

j xi,l)xi,lx
⊤
i,kwj . By the linearity of the expectation,

E[qi] =
1

n1n2

n2∑
l=1

n1∑
k=1

EiExi,l,xi,k
[fi(xi,l)fi(xi,k)σ

′(w⊤
j xi,k)σ

′(w⊤
j xi,l)xi,lx

⊤
i,kwj]

= EiEx,x′
[
fi(x)fi(x

′)σ′(w⊤
j x

′)σ′(w⊤
j x

′)x(x′)⊤wj

]
(66)

which means that the random vectors qi − EiEx,x′
[
fi(x)fi(x

′)σ′(w⊤
j x

′)σ′(w⊤
j x

′)x(x′)⊤wj

]
= qi − E[qi] in (65)

are mean zero. Next we bound ∥ 1
T

∑T
i=1 qi − E[qi]∥2 by bounding each coordinate of 1

T

∑T
i=1 qi − E[qi] separately.

Let qi,h denote the h-th entry of qi, and xi,l,h denote the h-th entry of xi,l. Note that each qi,h is the sum of products
of two sub-Gaussian random variables (fi(xi,l)σ

′(w⊤
j xi,l)xi,l,h and fi(xi,k)σ

′(w⊤
j xi,k)x

⊤
i,kwj), so qi,h is the sum of

23

Provable Multi-Task Representation Learning

sub-exponential random variables and is therefore sub-exponential. Its variance is upper bounded by:

E
[
(qi,h − E[qi,h])2

]
= E

((1

n2

n2∑
l=1

fi(xi,l)σ
′(w⊤

j xi,l)xi,l,h

)(
1

n1

n1∑
k=1

fi(xi,k)σ
′(w⊤

j xi,k)x
⊤
i,kwj

)
− E[qi,h]

)2

≤ 4Ei,D̂i,D̂′
i

[((
1

n2

n2∑
l=1

fi(xi,l)σ
′(w⊤

j xi,l)xi,l,h

)(
1

n1

n1∑
k=1

fi(xi,k)σ
′(w⊤

j xi,k)x
⊤
i,kwj

)
︸ ︷︷ ︸

1

−Ex

[
fi(x)σ

′(w⊤
j x)xh

](1

n1

n1∑
k=1

fi(xi,k)σ
′(w⊤

j xi,k)x
⊤
i,kwj

))2]
︸ ︷︷ ︸

1

+ 4Ei,D̂′
i

[(
Ex

[
fi(x)σ

′(w⊤
j x)xh

](1

n1

n1∑
k=1

fi(xi,k)σ
′(w⊤

j xi,k)x
⊤
i,kwj

)
︸ ︷︷ ︸

2

−Ex

[
fi(x)σ

′(w⊤
j x)xh

]
Ex′

[
fi(x

′)σ′(w⊤
j x

′)(x′)⊤wj

])2]
︸ ︷︷ ︸

2

+ 2Ei

[(
Ex

[
fi(x)σ

′(w⊤
j x)xh

]
Ex′

[
fi(x

′)σ′(w⊤
j x

′)(x′)⊤wj

]
︸ ︷︷ ︸

3

−Ei

[
Ex

[
fi(x)σ

′(w⊤
j x)xh

]
Ex′

[
fi(x

′)σ′(w⊤
j x

′)(x′)⊤wj

]])2]
︸ ︷︷ ︸

3

(67)

where (67) follows from the triangle inequality and the fact that (a + b)2 ≤ 2a2 + 2b2. To bound 1 , first let si :=

Ex

[
fi(x)σ

′(w⊤
j x)xh

]
and si,h be its h-th element. Also denote s2h := Ei[s

2
i,h]. Observe that

1 = Ei,D̂i,D̂′
i

[(
1

n2

n2∑
l=1

fi(xi,l)σ
′(w⊤

j xi,l)xi,l,h − si,h

)2(
1

n1

n1∑
k=1

fi(xi,k)σ
′(w⊤

j xi,k)x
⊤
i,kwj

)2]

≤ Ei,Di

[(
1

n2

n2∑
l=1

fi(xi,l)σ
′(w⊤

j xi,l)xi,l,h − si,h

)4]1/2

× ED̂i

[(
1

n1

n1∑
k=1

fi(xi,k)σ
′(w⊤

j xi,k)x
⊤
i,kwj

)4]1/2
(68)

= Ei,Di

[(
1

n2

n2∑
l=1

fi(xi,l)σ
′(w⊤

j xi,l)xi,l,h − si,h

)4]1/2
O
(
∥wj∥22

)
(69)

= O

(
∥wj∥22
n2

)
(70)

= O

(
ν2w

d+ log(m/δ1)

n2

)
(71)

where (68) follows by the Cauchy-Schwarz inequality, (69) follows since 1
n1

∑n1

k=1 fi(xi,k)σ
′(w⊤

j xi,k)x
⊤
i,kwj is sub-

24

Provable Multi-Task Representation Learning

Gaussian with mean O(∥wj∥2) and variance O(
∥wj∥2

2

n1
), and (70) follows since 1

n2

∑n2

l=1 fi(xi,l)σ
′(w⊤

j xi,l)xi,l,h − si,h is
sub-Gaussian with mean zero and variance O(1

n2
Ex[fi(x)

2σ′(w⊤
j x)x

2
h]) = O(1

n2
). To bound 2 , consider that

2 = Ei,D̂′
i

[
Ex

[
fi(x)σ

′(w⊤
j x)xh

]2(1

n1

n1∑
k=1

fi(xi,k)σ
′(w⊤

j xi,k)x
⊤
i,kwj − Ex′

[
fi(x

′)σ′(w⊤
j x

′)(x′)⊤wj

])2]

= Ei

s2i,hED̂′
i

(1

n1

n1∑
k=1

fi(xi,k)σ
′(w⊤

j xi,k)x
⊤
i,kwj − Ex′

[
fi(x

′)σ′(w⊤
j x

′)(x′)⊤wj

])2

≤ Ei

s2i,h max
i′

ED̂′
i′

(1

n1

n1∑
k=1

fi′(xi′,k)σ
′(w⊤

j xi′,k)x
⊤
i′,kwj − Ex′

[
fi′(x

′)σ′(w⊤
j x

′)(x′)⊤wj

])2
 (72)

= Ei

[
s2i,h
]
max
i′

ED̂′
i′

(1

n1

n1∑
k=1

fi′(xi′,k)σ
′(w⊤

j xi′,k)x
⊤
i′,kwj − Ex′

[
fi′(x

′)σ′(w⊤
j x

′)(x′)⊤wj

])2

= Ei

[
s2i,h
]
O

(
ν2w

d+ log(m/δ1)

n1

)
(73)

= O

(
s2hν

2
w

d+ log(m/δ1)

n1

)
where (72) follows since s2i,h ≥ 0 and

ED̂′
i′

[(
1
n1

∑n1

k=1 fi′(xi′,k)σ
′(w⊤

j xi′,k)x
⊤
i′,kwj − Ex′

[
fi′(x

′)σ′(w⊤
j x

′)(x′)⊤wj

])2]
≥ 0, and (82) follows since for all

i′, 1
n1

∑n1

k=1 fi′(xi′,k)σ
′(w⊤

j xi′,k)x
⊤
i′,kwj −Ex′

[
fi′(x

′)σ′(w⊤
j x

′)(x′)⊤wj

]
is sub-Gaussian with mean zero and variance

O(
∥wj∥2

2

n1
) = O(

dν2
w

n1
). To control 3 , note that

3 = Ei

[(
Ex

[
fi(x)σ

′(w⊤
j x)xh

]
Ex′

[
fi(x

′)σ′(w⊤
j x

′)(x′)⊤wj

])2]
− Ei

[
Ex

[
fi(x)σ

′(w⊤
j x)xh

]
Ex′

[
fi(x

′)σ′(w⊤
j x

′)(x′)⊤wj

]]2
= Ei

[
s2i,hEx′

[
fi(x

′)σ′(w⊤
j x

′)(x′)⊤wj

]2]
≤ Ei

[
s2i,h max

i′
Ex′

[
fi′(x

′)σ′(w⊤
j x

′)(x′)⊤wj

]2]
= Ei[s

2
i,h] max

i′
Ex′

[
fi′(x

′)σ′(w⊤
j x

′)(x′)⊤wj

]2]
= Ei

[
s2i,h

]
O(ν2w(d+ log(m/δ1)))

= O(s2hν
2
w(d+ log(m/δ1))) (74)

Combining the bounds on 1 , 2 and 3 yields E
[
(qi,h − E[qi,h])2

]
= O(ν2w(d+ log(m/δ1))(s2h +

1
n2

)), therefore, since
each random variable in {qi,h}Ti=1 is i.i.d., Bernstein’s inequality gives

P{qi,h}i

(∣∣∣∣∣ 1T
T∑

i=1

qi,h − E[qi,h]

∣∣∣∣∣ > th

)

≤ 2 exp

−cT min

 t2h

ν2w(d+ log(m/δ1))(s2h + 1
n2

)
,

th

νw
√
d+ log(m/δ1)

√
s2h + 1

n2

 (75)

with probability at least 1 − 3δ1 over the selection of W0 for an absolute constant c and any th ≥ 0. Set th =

O

(
νw

√
d+log(m/δ1)

T (s2h + 1
n2

) log(d/δ)

)
for all h ∈ [d], then as long as T ≥ log(d/δ2), via a union bound over all

25

Provable Multi-Task Representation Learning

h ∈ [d] we have∥∥∥∥∥ 1T
T∑

i=1

qi − E[qi]

∥∥∥∥∥
2

=

 d∑
h=1

(
1

T

T∑
i=1

qi,h − E[qi,h]

)2
1/2

≤ c

(
d∑

h=1

ν2w
d+ log(m/δ1)

T

(
s2h +

1

n2

)
log(d/δ2)

)1/2

(76)

= cνw

√
d+ log(m/δ1)

T
log(d/δ2)

(
d∑

h=1

s2h +
d

n2

)1/2

= cνw

√
d+ log(m/δ1)

T
log(d/δ2)

(
Ei

[
d∑

h=1

s2i,h

]
+

d

n2

)1/2

= cνw

√
d+ log(m/δ1)

T
log(d/δ2)

(
Ei

[
∥si∥22

]
+

d

n2

)1/2

≤ c′νw

√
d+ log(m/δ1)

T
log(d/δ2)

(
r +

r∥Mwj∥22
∥M⊥wj∥22

+ ∥Mwj∥22 +
d

n2

)1/2

(77)

≤ c′νw

√
d+ log(m/δ1)

T
log(d/δ2)

(
r(1 + log(m/δ1)) +

d

n2

)1/2

(78)

= O

(
νw

√
d+ log(m/δ1)

T
log(d/δ2)

(√
r log(m/δ1) +

√
d

n2

))
with probability at least 1− 3δ1 − δ2 for absolute constants c, c′, where (76) follows with probability at least 1− 3δ1 − δ2
due to (75) and our choice of th, (77) follows by Lemma A.3 and the fact that (a+ b)2 ≤ 2a2 + 2b2, and (78) follows since
wj ∈ Gw. Setting δ1, δ2 = Θ(δ) completes the proof.

Lemma A.13. For any δ ∈ (0, 1), with probability at least 1− δ, for all j ∈ [m],

∇wj L̂(W0,b0, {a1i }Ti=1; {D̂i,W}Ti=1) = −η2−rA(w0
j)w

0
j + ηe (79)

where

∥e∥2 = νw O

(
(
√
d+

√
log(m/δ))

√
d log(Tn2/δ)

(
1 +

√
log(T/δ)
√
n1

)

×

(
exp

(
− c

η2ν2wm log(T/δ)(d+ log(m/δ))(d+m)

)
+

√
log(1/δ)√
Tn2

))

+ νw O

(√
d+ log(m/δ)

T
log(d/δ)

(√
r log(m/δ) +

√
d

n2

))
(80)

and for a vector w ∈ Rd,

A(w) := Eu

[
Ex,x′

[
σ′(w⊤x′)σ′(w⊤x)x(x′)⊤| sign(Mx) = sign(Mx′) = u

]]
(81)

where u ∼ Unif(Hr) is a random vector drawn uniformly from the Rademacher hypercube in r dimensions.

Proof. Let wj = w0
j . We have

∇wj
L̂(W0,b0, {a1i }Ti=1; {D̂i,W}Ti=1)

= − η

Tn1n2

T∑
i=1

n2∑
l=1

n1∑
k=1

fi(xi,l)fi(xi,k)σ
′(w⊤

j xi,k)σ
′(w⊤

j xi,l)xi,lx
⊤
i,kwj + ηe1 (82)

= −ηEi∼T E(x,fi(x))∼Di
E(x′,fi(x′))∼Di

[
fi(x)fi(x

′)σ′(w⊤
j x)σ

′(w⊤
j x

′)x(x′)⊤wj

]
+ ηe1 + ηe2 (83)

26

Provable Multi-Task Representation Learning

where

∥e1∥2 = O

(
νw(

√
d+

√
log(m/δ1))

√
d log(Tn2/δ1)

(
1 +

√
log(T/δ1)√

n1

)

×

(
exp

(
− c

η2ν2wm(log(T/δ1))(d+ log(m/δ1))(d+m)

)
+

√
log(1/δ1)√
Tn2

))

with probability at least 1− δ1 by Lemma A.11 and

∥e2∥2 = O

(
νw

√
d+ log(m/δ2)

T
log(d/δ2)

(√
r log(m/δ2) +

√
d

n2

))
(84)

with probability at least 1− δ2 by Lemma A.12. Set δ1, δ2 = Θ(δ) and apply the triangle inequality to complete the bound
on ∥e∥2 = ∥e1 + e2∥2 in the theorem statement.

Next, for ease of notation we replace E(x,fi(x))∼Di
E(x′,fi(x′))∼Di

with Ex,x′ and Ei∼T with Ei. Also, let u ∼ Unif(Hr)
be uniformly drawn from the r-dimensional Rademacher hypercube Hr = {−1, 1}r. We have

EiEx,x′
[
fi(x)fi(x

′)σ′(w⊤
j x)σ

′(w⊤
j x

′)x(x′)⊤wj

]
= Ex,x′

[
Ei[fi(x)fi(x

′)]σ′(w⊤
j x)σ

′(w⊤
j x

′)x(x′)⊤wj

]
= Ex,x′

[
χ{sign(Mx) = sign(Mx′)}σ′(w⊤

j x
′)σ′(w⊤

j x)x(x
′)⊤wj

]
= 2−rEu

[
Ex,x′

[
σ′(w⊤

j x
′)σ′(w⊤

j x)x(x
′)⊤| sign(Mx) = sign(Mx′) = u

]]
wj

= −2−rA(wj)wj (85)

where (85) follows by the definition of A(w).

A.3. Analysis of the population gradient

Next we define matrices capturing the energy of A(wj) in the ground-truth subspace and its perpendicular complement.
Again let u ∼ Unif(Hr) be a random variable drawn uniformly from the Rademacher hypercube in r dimensions, and x
and x′ be drawn independently from N (0d, Id), then for any w ∈ Rd the matrices A||,||(w), A||,⊥(w), A⊥,||(w), and
A⊥,⊥(w) are defined as

A||,||(w) = MA(w)M⊤ = Eu

[
Ex,x′

[
σ′(w⊤x)σ′(w⊤x′)Mx(x′)⊤M⊤| sign(Mx) = sign(Mx′) = u

]]
(86)

A||,⊥(w) = MA(w)M⊤
⊥ = Eu

[
Ex,x′

[
σ′(w⊤x)σ′(w⊤x)Mx(x′)⊤M⊤

⊥| sign(Mx) = sign(Mx′) = u
]]

(87)

A⊥,||(w) = M⊥A(w)M⊤ = Eu

[
Ex,x′

[
σ′(w⊤x)σ′(w⊤x′)M⊥x(x

′)⊤M⊤| sign(Mx) = sign(Mx′) = u
]]

(88)

A⊥,⊥(w) = M⊥A(w)M⊤
⊥ = Eu

[
E,x,x′

[
σ′(w⊤x)σ′(w⊤x′)M⊥x(x

′)⊤M⊤
⊥| sign(Mx) = sign(Mx′) = u

]]
(89)

Next we control the matrices A||,||(w), A||,⊥(w), A⊥,||(w), and A⊥,⊥(w).

Lemma A.14. For any δ ∈ (0, 1) such that δ = Ω(me−d), then if w ∈ Gw(δ), we have

∥∥∥∥A∥,∥(w)− 1

2π
Ir

∥∥∥∥
2

= O

(
r3 + log3(m/δ)

d

)
. (90)

27

Provable Multi-Task Representation Learning

Proof. Recall that u is drawn uniformly from Hr. From Lemma A.13, we have

A∥,∥(w)

= Eu

[
Ex,x′

[
σ′(w⊤x′)σ′(w⊤x)Mx(Mx′)⊤| sign(Mx′) = sign(Mx) = u

]]
= Eu

[
EMx,Mx′

[
EM⊥x,M⊥x′

[
σ′(w⊤x′)σ′(w⊤x)

]
Mx(Mx′)⊤| sign(Mx′) = sign(Mx) = u

]]
= Eu

[
EMx,Mx′

[
Mx(x′)⊤M⊤PM⊥x

[
w⊤M⊤

⊥M⊥x > −w⊤M⊤Mx
]

× PM⊥x′
[
w⊤M⊤

⊥M⊥x
′ > −w⊤M⊤Mx′] | sign(Mx′) = sign(Mx) = u

]]
= Eu,Mx,Mx′

[
Mx(x′)⊤M⊤

(
1

2
+

1

2
erf

(
w⊤M⊤Mx√
2∥M⊥w∥2

))
(
1

2
+

1

2
erf

(
w⊤Mx′

√
2∥M⊥w∥2

))
| sign(Mx′) = sign(Mx) = u

]
(91)

=
1

4
Eu,Mx,Mx′

[
Mx(x′)⊤M⊤| sign(Mx′) = sign(Mx) = u

]
+

1

2
Eu,Mx,Mx′

[
Mx(x′)⊤M⊤ erf

(
w⊤M⊤Mx√
2∥M⊥w∥2

)
| sign(Mx′) = sign(Mx) = u

]
+

1

4
Eu,Mx,Mx′

[
Mx(x′)⊤M⊤ erf

(
w⊤M⊤Mx√
2∥M⊥w∥2

)
erf

(
w⊤M⊤Mx′
√
2∥M⊥w∥2

)
| sign(Mx′) = sign(Mx) = u

]
(92)

where (91) follows using the Gaussian CDF. For the first term in (92), we can re-write Mx conditioned on sign(Mx) = u
as diag(u)|Mx|, where | · | denotes element-wise absolute value, to obtain

1

4
Eu,Mx,Mx′

[
Mx(x′)⊤M⊤| sign(Mx′) = sign(Mx) = u

]
=

1

4
Eu,Mx,Mx′

[
diag(u)|Mx||Mx′|⊤ diag(u)

]
=

1

4
Eu

[
diag(u)EMx [|Mx|]EMx′

[
|Mx′|

]⊤
diag(u)

]
=

1

2π
Eu

[
diag(u)1r1

⊤
r diag(u)

]
(93)

=
1

2π
Eu

[
uu⊤]

=
1

2π
Ir (94)

where (93) follows since each element of |Mx| and |Mx′| is a standard half-normal random variable. For the second term
in (92), we have

1

2
Eu,Mx,Mx′

[
Mx(x′)⊤M⊤ erf

(
w⊤M⊤Mx√
2∥M⊥w∥2

)
| sign(Mx′) = sign(Mx) = u

]
=

1

2
Eu,Mx,Mx′

[
diag(u)|Mx||Mx′|⊤ diag(u) erf

(
w⊤M⊤ diag(u)|Mx|√

2∥M⊥w∥2

)]
(95)

=
1

2
Eu,Mx,Mx′

[
diag(−u)|Mx||Mx′|⊤ diag(−u) erf

(
w⊤M⊤ diag(−u)|Mx|√

2∥M⊥w∥2

)]
(96)

= −1

2
Eu,Mx,Mx′

[
diag(u)|Mx||Mx′|⊤ diag(u) erf

(
w⊤M⊤ diag(u)|Mx|√

2∥M⊥w∥2

)]
(97)

= 0 (98)

where (96) follows from the fact that u and −u have the same distribution, (97) follows since erf() is an odd function, and
(98) follows since x = −x ⇐⇒ x = 0.

28

Provable Multi-Task Representation Learning

The final term in (92) is

Eu,Mx,Mx′

[
Mx(x′)⊤M⊤ erf

(
w⊤M⊤Mx√
2∥M⊥w∥2

)
erf

(
w⊤M⊤Mx′
√
2∥M⊥w∥2

)
| sign(Mx′) = sign(Mx) = u

]
= Eu

[
EMx

[
Mx erf

(
w⊤M⊤Mx√
2∥M⊥w∥2

) ∣∣∣∣ sign(Mx) = u

]

× EMx′

[
(x′)⊤M⊤ erf

(
w⊤M⊤Mx′
√
2∥M⊥w∥2

) ∣∣∣∣ sign(Mx′) = u

]]
(99)

Again to remove the conditioning, we can equivalently write EMx

[
Mx erf

(
w⊤M⊤Mx√
2∥M⊥w∥2

) ∣∣∣∣ sign(Mx) = u

]
as

EMx

[
Mx erf

(
w⊤M⊤Mx√
2∥M⊥w∥2

) ∣∣∣∣ sign(Mx) = u

]
= EMx

[
diag(u)|Mx| erf

(
w⊤M⊤diag(u)|Mx|√

2∥M⊥w∥2

)]
(100)

For all u ∈ Hr, we have ∥∥∥∥EMx

[
diag(u)|Mx| erf

(
w⊤M⊤diag(u)|Mx|√

2∥M⊥w∥2

)]∥∥∥∥
2

≤ EMx

[∥∥∥∥diag(u)|Mx| erf
(
w⊤M⊤diag(u)|Mx|√

2∥M⊥w∥2

)∥∥∥∥
2

]

≤ EMx

[
∥diag(u)|Mx|∥2

∣∣∣∣erf (w⊤M⊤diag(u)|Mx|√
2∥M⊥w∥2

)∣∣∣∣]
≤ EMx

[
∥diag(u)|Mx|∥2

∣∣∣∣w⊤M⊤diag(u)|Mx|
∥M⊥w∥2

∣∣∣∣] (101)

≤ ∥diag(u)∥2 EMx

[
∥Mx∥22

] ∥w⊤M⊤diag(u)∥2
∥M⊥w∥2

≤
cr(

√
r +

√
log(m/δ))√
d

(102)

for an absolute constant c, where (101) follows since | erf(x)| ≤
√
2|x|, and (102) follows since w ∈ Gw(δ) and

m/δ = O(ed), thus ∥M⊥w∥2 = Ω(
√
d). Therefore, using (99),∥∥∥∥Eu,Mx,Mx′

[
Mx(x′)⊤M⊤ erf

(
w⊤M⊤Mx√
2∥M⊥w∥2

)
erf

(
w⊤M⊤Mx′
√
2∥M⊥w∥2

)
| sign(Mx′) = sign(Mx) = u

]∥∥∥∥
2

≤ c′r3 + c′ log3(m/δ)

d
(103)

completing the proof.

Lemma A.15. For any δ ∈ (0, 1) such that δ = Ω(me−d), then if w ∈ Gw(δ), we have∥∥∥∥A⊥,⊥(w)−
(
1− ∥Mw∥22

∥M⊥w∥22

)
M⊥ww⊤M⊤

⊥
2π∥M⊥w∥22

∥∥∥∥
2

≤ O

(
r4 + log4(m/δ)

d2

)
. (104)

Proof. We have

A⊥,⊥(w) = Eu

[
Ex,x′

[
M⊥x(M⊥x

′)⊤σ′(w⊤x′)σ′(w⊤x)| sign(Mx′) = sign(Mx) = u
]]

= Eu,Mx,Mx′
[
EM⊥x,M⊥x′

[
M⊥x(M⊥x

′)⊤σ′(w⊤x′)σ′(w⊤x)
]
| sign(Mx′) = sign(Mx) = u

]
= Eu,Mx,Mx′

[
EM⊥x

[
M⊥xσ

′(w⊤x)
]
EM⊥x′

[
(M⊥x

′)⊤σ′(w⊤x′)
]
| sign(Mx′) = sign(Mx) = u

]
(105)

29

Provable Multi-Task Representation Learning

Using Lemma A.2 to compute EM⊥x

[
M⊥xσ

′(w⊤x)
]

and EM⊥x′
[
(M⊥x

′)⊤σ′(w⊤x′)
]

yields

A⊥,⊥(w) = Eu,Mx,Mx′

[
exp

(
− (x⊤M⊤Mw)2 + ((x′)⊤M⊤Mw)2

2∥M⊥w∥22

) ∣∣∣∣ sign(Mx′) = sign(Mx) = u

]
× 1

2π∥M⊥w∥22
M⊥ww⊤M⊤

⊥ (106)

We analyze the scalar term in the top line. We have

Eu

[
EMx,Mx′

[
exp

(
− (x⊤M⊤Mw)2 + ((x′)⊤M⊤Mw)2

2∥M⊥w∥22

) ∣∣∣∣ sign(Mx′) = sign(Mx) = u

]]
= Eu

[
EMx

[
exp

(
− (x⊤M⊤Mw)2

2∥M⊥w∥22

) ∣∣∣∣ sign(Mx) = u

]

× EMx′

[
exp

(
− ((x′)⊤M⊤Mw)2

2∥M⊥w∥22

) ∣∣∣∣ sign(Mx′) = u

]]

= Eu

[
EMx

[
exp

(
− (x⊤M⊤Mw)2

2∥M⊥w∥22

) ∣∣∣∣ sign(Mx) = u

]2]
(107)

where, using the Taylor expansion of exp(−x2) and re-writing Mx conditioned on {sign(Mx) = u} as diag(u)|Mx|,

EMx

[
exp

(
− (x⊤M⊤Mw)2

2∥M⊥w∥22

) ∣∣∣∣ sign(Mx) = u

]
= EMx

[
exp

(
− (|Mx|⊤diag(u)Mw)2

2∥M⊥w∥22

)]
= 1− 1

2∥M⊥w∥22
EMx

[
(|Mx|⊤ diag(u)Mw)2

]
+O

(
r4 + log4(m/δ)

d2

)
(108)

where (108) follows since ∥M⊥w∥22 = Ω((
√
d −

√
log(m/δ))4) = Ω(d2) and EMx[(|Mx|⊤diag(u)Mw)4] ≤

EMx[∥Mx∥42]∥Mw∥42 = O(r4 + log4(m/δ)) since w ∈ Gw. To compute the second term in (108), note that

EMx

[
(|Mx|⊤diag(u)Mw)2

]
= w⊤M⊤diag(u)EMx

[
|Mx||Mx|⊤

]
diag(u)Mw

= w⊤M⊤diag(u)
(
2

π
1r1

⊤
r +

(
1− 2

π

)
Ir

)
diag(u)Mw

= w⊤M⊤
(
2

π
uu⊤ +

(
1− 2

π

)
Ir

)
Mw

30

Provable Multi-Task Representation Learning

therefore

Eu

[
EMx

[
exp

(
− (x⊤M⊤Mw)2

2∥M⊥w∥22

) ∣∣∣∣ sign(Mx) = u

]2]

= Eu

[(
1− 1

2∥M⊥w∥22
w⊤M⊤

(
2

π
uu⊤ +

(
1− 2

π

)
Ir

)
Mw +O

(
r4 + log4(m/δ)

d2

))2
]

= 1− 1

∥M⊥w∥22
w⊤M⊤

(
2

π
Eu[uu

⊤] +

(
1− 2

π

)
Ir

)
Mw

+
1

4∥M⊥w∥42
w⊤M⊤Eu

[(
2

π
uu⊤ +

(
1− 2

π

)
Ir

)
Mww⊤M⊤

(
2

π
uu⊤ +

(
1− 2

π

)
Ir

)]
Mw

+O

(
r4 + log4(m/δ)

d2

)
= 1− ∥Mw∥22

∥M⊥w∥22
+

(
(1− 2

π)
2 + 4

π

(
1− 2

π

))
∥Mw∥42

4∥M⊥w∥42

+
4

π2
w⊤M⊤Eu

[
uu⊤Mww⊤M⊤uu⊤]Mw +O

(
r4 + log4(m/δ)

d2

)
= 1− ∥Mw∥22

∥M⊥w∥22
+

(
(1− 2

π)
2 + 4

π

(
1− 2

π

))
∥Mw∥42

4∥M⊥w∥42

+
1

π2∥M⊥w∥42
w⊤M⊤Eu

[
uu⊤(u⊤Mw)2

]
Mw +O

(
r4 + log4(m/δ)

d2

)
= 1− ∥Mw∥22

∥M⊥w∥22
+

(
(1− 2

π)
2 + 4

π

(
1− 2

π

))
∥Mw∥42

4∥M⊥w∥42

+
1

π2∥M⊥w∥42
w⊤M⊤ (∥Mw∥22Ir + 2Mww⊤M⊤ − diag(Mw)2

)
Mw +O

(
r4 + log4(m/δ)

d2

)
= 1− ∥Mw∥22

∥M⊥w∥22
+

(
(1− 2

π)
2 + 4

π

(
1− 2

π

))
∥Mw∥42

4∥M⊥w∥42
+

3∥Mw∥42 − ∥Mw∥44
π2∥M⊥w∥42

+O

(
r4 + log4(m/δ)

d2

)
= 1− ∥Mw∥22

∥M⊥w∥22
+O

(
r4 + log4(m/δ)

d2

)
,

where we have used w ∈ Gw(δ) and m/δ = O(ed). Combining this with (106) and (107) completes the proof.

Lemma A.16. For any δ ∈ (0, 1) such that δ = Ω(me−d), then if w ∈ Gw(δ), we have

∥∥∥∥A∥,⊥(w)− Mww⊤M⊤
⊥

2π∥M⊥w∥22

∥∥∥∥
2

≤ O

(
r3.5 + log3.5(m/δ)

d1.5

)
(109)

Proof. Arguing similarly to the previous two lemmas, we obtain

A∥,⊥(w) = Eu,x,x′
[
Mx(M⊥x

′)⊤σ′(w⊤x′)σ′(w⊤x)| sign(Mx′) = sign(Mx) = u
]

= Eu,x,Mx′
[
Mxσ′(w⊤x)EM⊥x′

[
(M⊥x

′)⊤σ′(w⊤x′)
]
| sign(Mx′) = sign(Mx) = u

]
= Eu,x,Mx′

[
Mxσ′(w⊤x) exp

(
− ((x′)⊤M⊤Mw)2

2∥M⊥w∥22

)
| sign(Mx′) = sign(Mx) = u

]
× w⊤M⊤

⊥√
2π∥M⊥w∥2

(110)

31

Provable Multi-Task Representation Learning

where (110) follows by Lemma A.2. Next, since the only term that depends on M⊥x is σ′(w⊤x), we have

= Eu,Mx,Mx′

[
MxEM⊥x[σ

′(w⊤x)] exp

(
− ((x′)⊤M⊤Mw)2

2∥M⊥w∥22

)
| sign(Mx′) = sign(Mx) = u

]
× w⊤M⊤

⊥√
2π∥M⊥w∥2

= Eu,Mx,Mx′

[
MxPM⊥x[w

⊤M⊤
⊥M⊥x > −w⊤M⊤Mx] exp

(
− ((x′)⊤M⊤Mw)2

2∥M⊥w∥22

)
| sign(Mx′) = sign(Mx) = u

]
× w⊤M⊤

⊥√
2π∥M⊥w∥2

= Eu,Mx,Mx′

[
Mx

(
1

2
+

1

2
erf

(
x⊤M⊤Mw√
2∥M⊥w∥2

))
exp

(
− ((x′)⊤M⊤Mw)2

2∥M⊥w∥22

)
| sign(Mx′)=sign(Mx)=u

]
× w⊤M⊤

⊥√
2π∥M⊥w∥2

(111)

where (111) is due to the Gaussian CDF. Note that

Eu,Mx,Mx′

[
Mx exp

(
− ((x′)⊤M⊤Mw)2

2∥M⊥w∥22

)
| sign(Mx′) = sign(Mx) = u

]
= Eu,Mx,Mx′

[
diag(u)|Mx| exp

(
− (|Mx′|⊤ diag(u)Mw)2

2∥M⊥w∥22

)]
= EMx,Mx′

[
Eu

[
diag(u)|Mx|

(
1− (|Mx′|⊤ diag(u)Mw)2

2∥M⊥w∥22
+

(|Mx′|⊤ diag(u)Mw)4

2∥M⊥w∥42
− . . .

)]]
(112)

= 0 (113)

where (113) follows since each term in (112) is an odd power of u. Thus, from (111) we have

A∥,⊥(w) = Eu,Mx,Mx′

[
Mx erf

(
x⊤M⊤Mw√
2∥M⊥w∥2

)
exp

(
− ((x′)⊤M⊤Mw)2

2∥M⊥w∥22

)
| sign(Mx′) = sign(Mx) = u

]
× w⊤M⊤

⊥
2
√
2π∥M⊥w∥2

(114)

Next we take the Taylor expansions of erf(x) and exp(−x2) to obtain

A∥,⊥(w) = Eu,Mx,Mx′

[
Mx

(
x⊤M⊤Mw

∥M⊥w∥2
− (x⊤M⊤Mw)3

6∥M⊥w∥32
+ . . .

)

×
(
1− ((x′)⊤M⊤Mw)2

2∥M⊥w∥22
+ . . .

)
| sign(Mx′) = sign(Mx) = u

]
w⊤M⊤

⊥
2π∥M⊥w∥2

= Eu,Mx,Mx′
[
Mxx⊤M⊤| sign(Mx′) = sign(Mx) = u

]Mww⊤M⊤
⊥

2π∥M⊥w∥22
+E

= EMx

[
Mxx⊤M⊤]Mww⊤M⊤

⊥
2π∥M⊥w∥22

+E

=
Mww⊤M⊤

⊥
2π∥M⊥w∥22

+E

where ∥E∥2 = O
(

r3.5+log3.5(m/δ)
d1.5

)
since ∥M⊥w∥2 = Ω(

√
d) and ∥Mw∥2 = O(

√
r +

√
log(m/δ)) as w ∈ Gw(δ) and

m/δ = O(ed).

32

Provable Multi-Task Representation Learning

A.4. Full results

Lemma A.17. Set η = Θ(1) and λw = 1
η + η

2r+1π . Consider any δ ∈ (0, 1) such that δ = Ω(me−d). Then there is an
absolute constant c such that for all j ∈ [m],

∥∥∥∥∥Mw1
j −

η2

2r+2
Mw0

j

∥∥∥∥∥
2

≤ η2νwO

(
r4 + log4(m)

2rd

)
+ η2νw O

(√
d

T
log(d/δ)

(√
r log(m/δ) +

√
d

n2

))
+ η2νw

×O

(
d
√
log(Tn2/δ)

(
1 +

√
log(T/δ)
√
n1

)(
exp

(
− c

η2ν2wlog(T/δ)dm(d+m)

)
+

√
log(1/δ)√
Tn2

))
(115)

and ∥∥∥∥M⊥w
1
j

∥∥∥∥
2

≤ η2νw O

(
r3.5 + log3.5(m)

2rd1.5

)
+ η2νw O

(√
d

T
log(d/δ)

(√
r log(m/δ) +

√
d

n2

))
+ η2νw

×O

(
d
√
log(Tn2/δ)

(
1 +

√
log(T/δ)
√
n1

)(
exp

(
− c

η2ν2wlog(T/δ)dm(d+m)

)
+

√
log(1/δ)√
Tn2

))

with probability at least 1− δ.

Proof. First note that W0 ∈ Ew(δ1) with probability at least 1− δ1 by Lemma A.7. We consider any fixed W0 satisfying
Ew(δ1) for the rest of the proof. Due to the computation of the gradient in Lemma A.13, we have

w1
j = (1− ηλw)w0

j −∇wj
L̂(W0,b0, {a1i }Ti=1; {D̂i,W}Ti=1)

= (1− ηλw)w0
j + η22−rA(w0

j)w
0
j + ηe

Mw1
j = (1− ηλw)Mw0

j + η22−rA∥,∥(w
0
j)Mw0

j + η22−rA∥,⊥(w
0
j)M⊥w

0
j + ηMe

M⊥w
1
j = (1− ηλw)M⊥w

0
j + η22−rA⊥,∥(w

0
j)Mw0

j + η22−rA⊥,⊥(w
0
j)M⊥w

0
j + ηM⊥e

where, with probability at least 1− δ2 for δ2 = Ω(me−d),

∥e∥2 = ηνw O

(
d
√

log(Tn2/δ)

(
1 +

√
log(T/δ)
√
n1

)

×

(
exp

(
− c

η2ν2wlog(T/δ)dm(d+m)

)
+

√
log(1/δ)√
Tn2

))

+ ηνw O

(√
d

T
log(d/δ)

(√
r log(m/δ) +

√
d

n2

))
. (116)

33

Provable Multi-Task Representation Learning

Next,

Mw1
j = (1− ηλw)Mw0

j +
η22−r

2π
Mw0

j +
η22−r

2π∥M⊥w0
j∥22

Mw0
j (M⊥w

0
j)

⊤M⊥w
0
j

+ η22−r

(
A∥,∥(w

0
j)−

1

2π
Ir

)
Mw0

j

+ η22−r

(
A∥,⊥(w

0
j)−

1

2π∥M⊥w0
j∥22

Mw0
j (M⊥w

0
j)

⊤

)
M⊥w

0
j + ηMe

=

(
1− ηλw +

η2

2rπ

)
Mw0

j + η22−re∥ + ηMe (117)

where

∥e∥∥2 =

∥∥∥∥∥(A∥,∥(w
0
j)− 1

2π Ir
)
Mw0

j +

(
A∥,⊥(w

0
j)−

1

2π∥M⊥w0
j∥22

Mw0
j (M⊥w

0
j)

⊤

)
M⊥w

0
j

∥∥∥∥∥
2

≤
∥∥(A∥,∥(w

0
j)− 1

2π Ir
)
Mw0

j

∥∥
2

+

∥∥∥∥∥
(
A∥,⊥(w

0
j)−

1

2π∥M⊥w0
j∥22

Mw0
j (M⊥w

0
j)

⊤

)
M⊥w

0
j

∥∥∥∥∥
2

≤
∥∥A∥,∥(w

0
j)− 1

2π Ir
∥∥
2

∥∥Mw0
j

∥∥
2

+

∥∥∥∥∥A∥,⊥(w
0
j)−

1

2π∥M⊥w0
j∥22

Mw0
j (M⊥w

0
j)

⊤

∥∥∥∥∥
2

∥∥M⊥w
0
j

∥∥
2

= O

(
νw

r4 + log4(m/δ1)

d

)
, (118)

where (118) follows by Lemmas A.14 and A.16 and the fact that w0
j ∈ Gw(δ1). Similarly,

M⊥w
1
j = (1− ηλw)M⊥w

0
j + η22−r

M⊥w
0
j (Mw0

j)
⊤

2π∥M⊥w0
j∥22

Mw0
j

+

(
1−

∥Mw0
j∥22

∥M⊥w0
j∥22

)
η22−r

M⊥w
0
j (M⊥w

0
j)

⊤

2π∥M⊥w0
j∥22

M⊥w
0
j

+ η22−r

(
A⊥,∥(w

0
j)−

M⊥w
0
j (Mw0

j)
⊤

2π∥M⊥w0
j∥22

)
Mw0

j

+ η22−r

(
A⊥,⊥(w

0
j)−

(
1−

∥Mw0
j∥22

∥M⊥w0
j∥22

)
M⊥w

0
j (M⊥w

0
j)

⊤

2π∥M⊥w0
j∥22

)
M⊥w

0
j + ηM⊥e

= (1− ηλw)M⊥w
0
j + η22−r

M⊥w
0
j (M⊥w

0
j)

⊤

2π∥M⊥w0
j∥22

M⊥w
0
j

+ η22−r

(
A⊥,∥(w

0
j)−

M⊥w
0
j (Mw0

j)
⊤

2π∥M⊥w0
j∥22

)
Mw0

j

+ η22−r

(
A⊥,⊥(w

0
j)−

(
1−

∥Mw0
j∥22

∥M⊥w0
j∥22

)
M⊥w

0
j (M⊥w

0
j)

⊤

2π∥M⊥w0
j∥22

)
M⊥w

0
j + ηM⊥e

=

(
1− ηλw +

η2

2r+1π

)
M⊥w

0
j + η22−re⊥ + ηM⊥e (119)

34

Provable Multi-Task Representation Learning

where

∥e⊥∥ =

∥∥∥∥∥
(
A⊥,∥(w

0
j)−

M⊥w
0
j (Mw0

j)
⊤

2π∥M⊥w0
j∥22

)
Mw0

j

+

(
A⊥,⊥(w

0
j)−

(
1−

∥Mw0
j∥22

∥M⊥w0
j∥22

)
M⊥w

0
j (M⊥w

0
j)

⊤

2π∥M⊥w0
j∥22

)
M⊥w

0
j

∥∥∥∥∥
2

≤

∥∥∥∥∥A⊥,∥(w
0
j)−

M⊥w
0
j (Mw0

j)
⊤

2π∥M⊥w0
j∥22

∥∥∥∥∥
2

∥Mw0
j∥2

+

∥∥∥∥∥A⊥,⊥(w
0
j)−

(
1−

∥Mw0
j∥22

∥M⊥w0
j∥22

)
M⊥w

0
j (M⊥w

0
j)

⊤

2π∥M⊥w0
j∥22

∥∥∥∥∥
2

∥M⊥w
0
j∥2

= O

(
νw

r3.5 + log3.5(m/δ1)

d1.5

)
(120)

where (120) follows by Lemmas A.15 and A.16 and the fact that w0
j ∈ Gw(δ1). Applying the choice of λw and setting

δ1, δ2 = Θ(δ) completes the proof.

Finally we are ready to prove Proposition 3.1 and Theorem 3.2. For convenience, we restate the statements in full detail here.

Proposition A.18. Consider the gradient-based multi-task algorithm described in Section 2.3 and suppose Assumption 2.1
holds. Further let η = Θ(1), λw = 1/η + η/(2r+1π), and νw = O(d−5/4(m log(T/δ))−1/2). Then for any m = O(d)
and δ = Ω(e−d), with probability at least 1− δ we have

1. 1
νw

√
m
∥Π∥(W

1)− Ω(1
2r)Π∥(W

0)∥2

= O

(
r4+log4(m/δ)

2rd + dlog(dTn2/δ)√
Tn2

(
1 +

√
log(T/δ)
√
n1

)
+

√
dr log(dm/δ)√

T

)
,

2. 1
νw

√
m
∥Π⊥(W

+)∥2 = O

(
r3.5+log3.5(m/δ)

2rd1.5 + dlog(dTn2/δ)√
Tn2

(
1 +

√
log(T/δ)
√
n1

)
+

√
dr log(dm/δ)√

T

)
.

Proof. The result is a direct consequence of Lemma A.17, the additional conditions on η,m and νw (which make the
exp

(
− c

η2ν2
wlog(T/δ)dm(d+m)

)
term negligible), and the fact that ∥B∥2 ≤

√
mmaxj∈[m] ∥bj∥2 for any matrix B ∈ Rm×d,

where bj is the j-th row of B. We use ab ≤ a2 + b2 ≤ (a+ b)2 for nonnegative a, b to combine log terms.

Theorem A.19. Consider that η, νw and λw are set as in Proposition 3.1 and let d = Ω(r4 + log4(m/δ)), m =
Ω(r + log(1/δ)) and m = O(d), δ = Ω(e−d), T = Ω(22rdr log2(dm/δ)), Tn2 = Ω(22rd2 log2(dTn2)), and Tn1n2 =
Ω(22rd2(log2(dTn2/δ) log(T/δ)). Let σr(B) denote the r-th singular value of the matrix B. Then with probability at
least 1− δ, we have

σ1(Π⊥(W
1))

σr(Π∥(W1))
= O

(
r3.5 + log3.5(m/δ)

d1.5
+

2rdlog(dTn2/δ)√
Tn2

(
1 +

√
log(T/δ)
√
n1

)
+

2r
√
dr log(dm/δ)√

T

)
(121)

Proof. By Lemma A.7, we have that Ew(δ1) holds with probability at least 1 − δ1, which entails that σr(Π∥(W
0)) ≥

35

Provable Multi-Task Representation Learning

νw
√
m

(
1− c

√
r+

√
log(1/δ1)√
m

)
for an absolute constant c. Thus we can invoke Lemma A.17 to obtain

σr(Π∥(W
1))

≥ η

2π
2−r−2σr(Π∥(W

0))

− νw
√
mO

(
r4+log4(m/δ2)

2rd + dlog(dTn2/δ2)√
Tn2

(
1 +

√
log(T/δ2)√

n1

)
+

√
dr log(dm/δ2)√

T

)
≥ η

2π
2−rνw

√
m

− 2−rνw
√
m

×O

(√
r+

√
log(1/δ1)√
m

+ r4+log4(m/δ2)
d + 2rdlog(dTn2/δ2)√

Tn2

(
1 +

√
log(T/δ2)√

n1

)
+ 2r

√
dr log(dm/δ2)√

T

)
= Ω(2−rνw

√
m) (122)

with probability at least 1− 3δ1 − δ2. Likewise, we have by Proposition A.18

σ1(Π⊥(W
1)) = 2−rνw

√
m O

(
r3.5+log3.5(m/δ2)

d1.5 + 2rdlog(dTn2/δ2)√
Tn2

(
1 +

√
log(T/δ2)√

n1

)
+ 2r

√
dr log(dm/δ2)√

T

)
. (123)

with probability at least 1− δ2. Combining (122) and (123) and setting δ1, δ2 = Θ(δ) completes the proof.

36

Provable Multi-Task Representation Learning

B. Proof of Downstream Guarantees
In this section we prove Theorem 3.3 and a corollary thereof. Given a function g : Hr → {−1, 1} and representation
M ∈ Or×d, we refer to the sets V+ := {v = Mz⊤ + M⊤

⊥ξ : z ∈ Hr, ξ ∈ Hd−r, g(z) = 1} and V− := {v =

Mz⊤ +M⊤
⊥ξ : z ∈ Hr, ξ ∈ Hd−r, g(z) = −1} as the inverse sets of g. Note that solving the task described by g entails

finding a classifier that separates the inverse sets of g. As in Appendix A, we will abuse notation by reusing c and c′ as
absolute constants independent of all other parameters.

Proof summary. Informally, the proof of Theorem 3.3 follows six steps:

1. Construct a two-layer ReLU network embedding using the weights output by the during multi-task pretraining algorithm
for the first-layer weights, then randomly sampling first-layer biases and second layer weights and biases (calling this
the “learned” embedding),

2. Construct a nearby two-layer ReLU network embedding that is “purified” in the sense that it is only a function of the
the r label-relevant features of the input,

3. Show that the “purified” network linearly separates the pair of inverse sets corresponding to any binary function on
the r-dimensional hypercube with high probability as long as the number of neurons in each layer is larger than some
function of r,

4. Prove that the outputs of the learned embedding are very close to the outputs of the “purified” embedding, meaning the
learned embedding has the same linear separation capability with only slightly smaller margin,

5. Prove that the learned embedding linearly separates the inverse sets with lower bounded margin, and finally

6. Apply a standard generalization result for linear classification showing that the empirically-optimal head achieves loss
close to the minimal loss (zero).

Step 1: Construct downstream embedding. We start by fully describing the construction of the downstream classifier as
described first in Section 2.3. Let W1 be the model weights resulting from one step of the multitask representation learning
algorithm.

The downstream classifier is a linear head composed with a two-layer ReLU network embedding with m neurons in the first
layer and m̂ neurons in the second layer. For now, we focus on the embedding itself, excluding the linear classification head.
The weights of the first layer of the embedding are equal to the weights in W1 up to rescaling. The biases of the first layer
and weights and biases of the second layer are contained in b, Ŵ := [ŵ1, . . . , ŵm̂]⊤ and b̂, respectively, where

b ∼ Unif

([
−
√
2γ√
m
,

√
2γ√
m

]m)

ŵj ∼ N
(
0m,

2

m̂
Im

)
∀ j = 1, . . . , m̂

b̂ ∼ Unif

[−√
2γ̂√
m̂
,

√
2γ̂√
m̂

]m̂
for some γ, γ̂ > 0 to be defined later. The full embedding is given by:

ϕ(v;αW1,b,Ŵ, b̂) := σ(Ŵσ(αW1v + b) + b̂) ∀ v ∈ Hd (124)

where α := 2r+2.5
√
mη2 is a rescaling factor. For ease of notation we denote ϕ(v) := ϕ(v;αW1,b,Ŵ, b̂).

Step 2: Construct purified downstream embedding. Next, the “purified” embedding also has m neurons in the first
layer and m̂ neurons in the second layer, and is also parameterized by b, W and b, for the first layer biases and second
layer weights and biases, respectively, but has a different construction of the first layer weights. In particular, the first-layer

37

Provable Multi-Task Representation Learning

weights are equal to the component of the corresponding weights in W0 in the rowspace of M, up to rescaling. Formally,
this embedding is given by

ϕ̃(v;W0M⊤M,b,Ŵ, b̂) := σ(Ŵσ(α̂W0M⊤Mv + b) + b̂) (125)

where α̂ = 2
νw

√
m

.

For ease of notation we denote ϕ̃(v) := ϕ̃(v; α̂W0M⊤M,b,Ŵ, b̂).

Step 3: Purified embedding linearly separates the two classes. We start by showing that for any function ḡ :
{− 1√

r
, 1√

r
}r → {−1, 1}, with high probability ϕ̃ linearly separates the pair of inverse sets V̄+ := {v̄ = M⊤z̄+M⊤

⊥ξ :

z̄ ∈ {− 1√
r
, 1√

r
}r, ξ ∈ Hd−r, ḡ(z̄) = 1} and V̄− := {v̄ = M⊤z̄+M⊤

⊥ξ : z̄ ∈ {− 1√
r
, 1√

r
}r, ξ ∈ Hd−r, ḡ(z̄) = −1} with

lower bounded margin by adapting a result of (Dirksen et al., 2022). Note that we have not optimized the dependence of m
on log() and the dependence of m̂ on log() factors in the exponent.

Lemma B.1 (Adapted from Theorem 1 in (Dirksen et al., 2022)). Let δ ∈ (0, 0.05], γ = Θ(log(r)), γ̂ = Θ(r2.5 log4(r)),
m = Ω(r5 log8(r)log(1/δ)), and m̂ = exp (Ω (m)). Consider any function g : {− 1√

r
, 1√

r
}r → {−1, 1}. With prob-

ability at least 1 − δ, ϕ̃ makes the classes V̄+ := {v̄ = M⊤z̄ + M⊤
⊥ξ : z̄ ∈ {− 1√

r
, 1√

r
}r, ξ ∈ Hd−r, ḡ(z̄) = 1}

and V̄− := {v̄ = M⊤z̄ + M⊤
⊥ξ : z̄ ∈ {− 1√

r
, 1√

r
}r, ξ ∈ Hd−r, ḡ(z̄) = −1} linearly separable with margin

µ = exp
(
−O(r5 log6(r) log(log(r)/δ))

)
, i.e. there exists a vector a ∈ Rm̂ with ∥a∥2 = 1 and bias τ ∈ R such

that for all v̄ = M⊤z̄+M⊤
⊥ξ : z̄ ∈ {− 1√

r
, 1√

r
}r, ξ ∈ Hd−r

ḡ(z̄) = 1 =⇒ a⊤ϕ̃(v̄) + τ > µ

ḡ(z̄) = −1 =⇒ a⊤ϕ̃(v̄) + τ < −µ

Proof. First note that given v̄ = M⊤z̄+M⊤
⊥ξ, ϕ̃(v̄) = ϕ̃′(z̄) for a random network ϕ̃′ : Rr → R. So, the problem reduces

to showing whether ϕ̃′ linear separates the classes Z̄+ := {z̄ ∈ {− 1√
r
, 1√

r
}r : ḡ(z̄) = 1} and Z̄− := {z̄ ∈ {− 1√

r
, 1√

r
}r :

ḡ(z̄) = −1}. The construction of ϕ̃′ matches that in Theorem 1 in (Dirksen et al., 2022), so we can directly apply this
theorem. Note that to compute the margin, we use that the distance between Z̄+ and Z̄− is 2√

r
and |Z̄+||Z̄−| ≤ 22r.

Next we extend the above result to the case in which z is on the Rademacher hypercube.

Lemma B.2. Let γ = Θ(
√
r log(r)), γ̂ = Θ(r3 log4(r)), and m, m̂ satisfy the same conditions as in Lemma B.1, for any

δ ∈ (0, 0.05]. Consider any function g : Hr → {−1, 1}. With probability at least 1− δ, ϕ̃ makes the classes V+ := {v =
M⊤z+M⊤

⊥ξ : z ∈ Hr, ξ ∈ Hd−r, g(z) = 1} and V− := {v = M⊤z+M⊤
⊥ξ : z ∈ Hr, ξ ∈ Hd−r, g(z) = −1} linearly

separable with margin µ = exp(−O(r5 log6(r) log(log(r)/δ))).

Proof. Let ϕ̃√r : Rd → Rm̂ denote the version of ϕ̃ that was constructed in Lemma B.1, with γ and γ′ set accordingly.
Construct the coupled network ϕ̃ : Rd → Rm̂ by scaling the biases up by

√
r, so the γ, γ corresponding to ϕ̃ have the

scaling defined in the current lemma statement. Note that

ϕ̃(
√
rM⊤z̄+M⊤

⊥ξ;W
0M⊤M,

√
rb,Ŵ,

√
rb̂) =

√
rϕ̃√r(M

⊤z̄+M⊤
⊥ξ),

thus if V̄+ := {v̄ = M⊤z̄ + M⊤
⊥ξ : z̄ ∈ {− 1√

r
, 1√

r
}r, ξ ∈ Hd−r, ḡ(z̄) = 1} and V̄− := {v̄ = M⊤z̄ + M⊤

⊥ξ : z̄ ∈
{− 1√

r
, 1√

r
}r, ξ ∈ Hd−r, ḡ(z̄) = −1} are linearly separated with margin µ′ by ϕ̃√r, then V+ := {v =

√
rM⊤z̄+M⊤

⊥ξ :
√
rz̄ ∈ Hr, ξ ∈ Hd−r, g(

√
rz̄) = 1} and V− := {v =

√
rM⊤z̄ + M⊤

⊥ξ :
√
rz̄ ∈ Hr, ξ ∈ Hd−r, g(

√
rz̄) = −1} are

linearly separated by ϕ̃ with margin
√
rµ′. So the result follows from Lemma B.1.

Step 4: Downstream embedding is close to purified embedding. Next we compare the outputs of the “purified” embedding
ϕ̃ to those of the learned embedding ϕ.

Lemma B.3. Suppose the same conditions as Lemma B.2 hold. Additionally, suppose η = Θ(1), λw = 1/η + η/(2r+1π),
and νw = O(d−5/4(m log(T/δ))−1/2), m = O(d), δ = Ω(e−d) and Assumption 2.1 holds, then with probability at least

38

Provable Multi-Task Representation Learning

1− δ, for all v = M⊤z+M⊤
⊥ξ : z ∈ Hr, ξ ∈ Hd−r,

∥ϕ̃(v)− ϕ(v)∥2

= O

(
r3.5 + log3.5(m/δ)

2r
√
d

++
d1.5log(dTn2/δ)√

Tn2

(
1 +

√
log(T/δ)
√
n1

)
+
d
√
r log(dm/δ)√

T

)
.

Proof. For any v = M⊤z+M⊤
⊥ξ : z ∈ Hr, ξ ∈ Hd−r, we have

∥ϕ̃(v)− ϕ(v)∥2

=

∥∥∥∥σ(Ŵσ

(
2√
mνw

W0M⊤Mv + b

)
+ b̂

)
− σ

(
Ŵσ

(
2√

mνwη22−r−2
W1v + b

)
+ b̂

)∥∥∥∥
2

=

∥∥∥∥σ(Ŵσ

(
2√
mνw

W0M⊤z+ b

)
+ b̂

)
− σ

(
Ŵσ

(
2√

mνwη22−r−2
W1v + b

)
+ b̂

)∥∥∥∥
2

≤
∥∥∥∥Ŵσ

(
2√
mνw

W0M⊤z+ b

)
− Ŵσ

(
2√

mνwη22−r−2
W1v + b

)∥∥∥∥
2

(126)

≤ ∥Ŵ∥2
∥∥∥∥ 2√

mνw
W0M⊤z− 2√

mνwη22−r−2
W1v

∥∥∥∥
2

(127)

=
2√
mνw

∥Ŵ∥2
∥∥∥∥W0M⊤z− 1

η22−r−2
W1M⊤Mv − 1

η22−r−2
W1M⊤

⊥M⊥v

∥∥∥∥
2

(128)

≤ 2√
mνw

∥Ŵ∥2
∥∥∥∥W0M⊤z− 1

η22−r−2
W1M⊤z

∥∥∥∥
2

+
2√
mνw

∥Ŵ∥2
∥∥∥∥ 1

η22−r−2
W1M⊤

⊥ξ

∥∥∥∥
2

(129)

≤ 2√
mνw

∥Ŵ∥2
∥∥∥∥W0M⊤ − 1

η22−r−2
W1M⊤

∥∥∥∥
2

∥z∥2 +
2√

mνwη22−r−2
∥Ŵ∥2

∥∥W1M⊤
⊥
∥∥
2
∥ξ∥2 (130)

=
2
√
r√

mνw
∥Ŵ∥2

∥∥∥∥W0M⊤ − 1

η22−r−2
W1M⊤

∥∥∥∥
2

+
2
√
d− r√

mνwη22−r−2
∥Ŵ∥2

∥∥W1M⊤
⊥
∥∥
2

= O

(
r4.5 +

√
r log4(m/δ1)

2rd
+
√
rϵ

)
∥Ŵ∥2 +O

(
r3.5 + log3.5(m/δ1)

2r
√
d

+
√
dϵ

)
∥Ŵ∥2 (131)

= O

(
r3.5 + log3.5(m/δ1)

2r
√
d

+
√
dϵ

)(
1 +

√
log(1/δ2)√

m̂

)
(132)

where ϵ = O

(
dlog(dTn2/δ1)√

Tn2

(
1 +

√
log(T/δ1)√

n1

)
+

√
dr log(dm/δ1)√

T

)
, (126) and (127) follow since σ() is 1-Lipschitz and by

the Cauchy-Schwarz Inequality, (130) follows by the Cauchy-Schwarz Inequality, (131) follows with probability at least
1 − δ1 by Proposition A.18, and (132) follows with probability at least 1 − δ2 over the random selection of Ŵ. Setting
δ1, δ2 = Θ(δ) completes the proof.

Step 5: Downstream embedding linearly separates the two classes. Now we reason that ϕ linearly separates the two
classes with high probability.
Lemma B.4. Suppose the same conditions as Lemma B.3 hold. Additionally, suppose
d = Ω(log7(m) exp(cr5 log6(r) log(log(r)/δ))), T = Ω(d2r log2(dm/δ) exp(cr5 log6(r) log(log(r)/δ))), and Tn2 =

log2(dTn2/δ)(1 +
log(T/δ)

n1
)Ω(d3 exp(cr5 log6(r) log(log(r)/δ))) for an absolute constant c and δ ∈ (0, 0.05] such that

δ = Ω(e−min(d,m̂)). Consider any function g : Hr → {−1, 1}. With probability at least 1− δ, ϕ makes the classes V+ :=
{v = Mz⊤ +M⊤

⊥ξ : z ∈ Hr, ξ ∈ Hd−r, g(z) = 1} and V− := {v = Mz⊤ +M⊤
⊥ξ : z ∈ Hr, ξ ∈ Hd−r, g(z) = −1}

linearly separable with margin
µ = exp(−O(r5 log6(r) log(log(r)/δ)))

i.e. there exists a vector a ∈ Rm̂ with ∥a∥2 = 1 and bias τ ∈ R such that for all v ∈ Hd,

g(v) = 1 =⇒ a⊤ϕ(v) + τ > µ

g(v) = −1 =⇒ a⊤ϕ(v) + τ < −µ

39

Provable Multi-Task Representation Learning

Proof. The proof follows from Lemmas B.2 and B.3. In particular, for any point v = Mz⊤ +M⊤
⊥ξ : z ∈ Hr, ξ ∈ Hd−r,

from Lemma B.2 we have with probability at least 1− δ, for absolute constants c, c′, there exists a ∈ Rm̂ with ∥a∥2 = 1
and τ ∈ R such that

g(z) = 1 =⇒ a⊤ϕ̃(v) + τ > exp(−cr5 log6(r) log(log(r)/δ))
=⇒ a⊤ϕ(v) + τ > exp(−cr5 log6(r) log(log(r)/δ))

− c′
(
r3.5 + log3.5(m/δ)

2r
√
d

+
√
dϵ

)(
1 +

√
log(1/δ)√
m̂

)
(133)

=⇒ a⊤ϕ(v) + τ > exp(−O(r5 log6(r) log(log(r)/δ))) (134)

where ϵ = O

(
dlog(dTn2/δ)√

Tn2

(
1 +

√
log(T/δ)
√
n1

)
+

√
dr log(dm/δ)√

T

)
, (133) follows with probability at least 1− δ by Lemma

B.3 and a union bound, and (134) follows since d, T , Tn2, n1 and m̂ are sufficiently large. Note that the input to ϕ̃(·)
is effectively r-dimensional since the first-layer weights immediately project the input onto an r-dimensional subspace.
Repeating the same argument for the case g(z) = −1 with the same a, τ completes the proof.

Step 6: Complexity of learning the linear head. Now that we have shown that for any binary function on the r-dimensional
hypercube, g makes its inverse sets linearly separable with high probability, we complete the proof by bounding the sample
complexity of finding a linear separator. For convenience, we restate the theorem here in full detail.

Theorem B.5 (End-to-end Guarantee). Consider a downstream task with labeling function gT+1. Construct the two-layer
ReLU embedding ϕ : Rd → Rm̂ using the rescaled W1 for first layer weights as in (124), and train the task-adapted
head (aT+1, τT+1) using N i.i.d. samples from the downstream task, as described in Section 2, with regularization
parameter λ̂a = exp(−cr5 log6(r) log(log(r)/δ)) for an absolute constant c. Further, suppose Assumption 2.1 holds,
m = Ω(r5 log8(r)log(1/δ)), m̂ = exp (Ω (m)), d = Ω(log7(m/δ) exp(cr5 log6(r) log(log(r)/δ))),
T = Ω(d2r log2(d/δ) exp(cr5 log6(r) log(log(r)/δ))), and
Tn2 = Ω(log2(dTn2/δ)(1+

log(T/δ)
n1

)d3 exp(cr5 log6(r) log(log(r)/δ))), and set γ = Θ(
√
r log(r)), γ̂ = Θ(r3 log4(r)),

η = Θ(1), νw = O(d−5/4(m log(T/δ))−1/2), and λw = 1/η + η/(2r+1π).

Then for any δ ∈ (0, 0.05], with probability at least 1− δ over the random initializations, draw of T pretraining tasks, draw
of n1 + n2 samples per task, and draw of N downstream samples, we have

Leval
T+1 =

exp(−O(r5 log6(r) log(log(r)/δ)))√
N

. (135)

Proof. By standard Gaussian matrix concentration, we have that with probability at least 1 − δ1, ∥α̂W0M⊤∥2 =

O

(√
r+

√
log(1/δ1)√
m

)
. Similarly, with probability at least 1 − δ2, ∥Ŵ∥2 = O

(
1 +

√
log(1/δ2)√

m̂

)
. Let δ3 := δ1 + δ2.

Thus, by Lemma B.3 and the triangle inequality, for any v ∈ V(M) := {M⊤z+M⊤
⊥ξ : z ∈ Hr, ξ ∈ Hd−r}, we have

∥ϕ(v)∥2 ≤ 2∥ϕ̃(v)∥2

≤ 2c

∥∥∥∥Ŵσ

(
2√
mνw

W0M⊤Mv + b

)
+ b̂

∥∥∥∥
2

≤ 4c
∥∥∥Ŵ∥∥∥

2

∥∥∥∥ 1√
mνw

W0M⊤Mv + b

∥∥∥∥
2

+ 2cγ̂

≤ 4c

(
1 +

√
log(1/δ3)√

m̂

)(
r +

√
r log(1/δ3)√
m

+ γ

)
+ 2cγ̂

≤ c′
√
r log(r)

√
log(1/δ3)√

m̂
+ c′

√
r log(1/δ3)√

m̂m
+ c′r2.5 log4(r) (136)

=: ι

for absolute constants c and c′, where (136) follows by choice of γ and γ̂.

40

Provable Multi-Task Representation Learning

Let (a∗T+1, τ
∗
T+1) be the linear head that separates the inverse sets of gT+1 with margin µ :=

exp(−O(r5 log6(r) log(log(r)/δ))), whose existence is guaranteed with high probability by Lemma B.4. We

have |τ∗T+1| ≤ maxv∈Hd |(a∗)⊤ϕ(v)| ≤ ι. Thus,
√

∥a∗T+1∥22 + (τ∗T+1)
2 ≤

√
2ι =: B. Since (a∗T+1, τ

∗
T+1) linearly

separates the two inverse sets with margin µ, (a∗T+1/µ, τ
∗
T+1/µ) linearly separates them with margin 1. Define

J := {(a, τ) : a ∈ Rm̂, τ ∈ R,
√
∥a∗T+1∥22 + (τ∗T+1)

2 ≤ B/µ}.

L∗
T+1 := min

(a,τ)∈J

1

2d

∑
v∈V(M)

ℓ(fT+1(Mv),a⊤ϕ(v) + τ)

≤ 1

2d

∑
v∈V(M)

ℓ((a∗T+1)
⊤ϕ(v)/µ+ τ∗T+1/µ, gT+1(Mv))

= 0 (137)

where ℓ is the hinge loss, as usual. Recall that

(aT+1, τT+1) ∈ argmin
a∈Rm̂,τ∈R

1

n

n∑
l=1

ℓ(a⊤ϕ(vl) + τ, gT+1(Mvl)) +
λ̂a
2
(∥a∥22 + τ2) (138)

for a set of N random samples {vl, fT+1(vl)}Nl=1, where each vl is drawn by independently sampling zl ∼ Unif(Hr) and
ξl ∼ Unif(Hd−r). Equivalently, for λ̂a = µ/B we have

(aT+1, τT+1) ∈ argmin
(a,τ)∈J

1

n

n∑
l=1

ℓ(a⊤g(vl) + τ, gT+1(Mvl)) (139)

Thus, by applying a standard generalization bound for 1-Lipschitz loss functions (Livni, 2017), we obtain, for an absolute
constant C,

Leval
T+1 :=

1

2d

∑
v∈V(M)

ℓ(a⊤T+1ϕ(v) + τT+1, gT+1(Mv))

≤ L∗
T+1 + C

B
√
log(1/δ4)

µ
√
N

= C
B
√
log(1/δ4)

µ
√
N

= O

(
exp(O(r5 log6(r) log(log(r)/δ5)))√

N

√
log(1/δ4)

)
. (140)

with probability at least 1− δ4 − δ5 where δ5 ≥ δ3, and where we have used the lower bound on µ from Lemma B.4 and
the choice of λ̂a (which determines the choice of B). Setting δ = δ4 + δ5 for some δ ∈ (0, 0.05] completes the proof.

To conclude, we state and prove a corollary of Theorem B.5.
Corollary B.6 (Generalization to set of tasks). Consider a set of possible downstream tasks Seval with cardinality |Seval| = D.
Construct the two-layer ReLU embedding ϕ : Rd → Rm̂ using the re-scaled W1 for first layer weights as in (124), and
train the task-adapted head (aT+1, τT+1) using N i.i.d. samples from the downstream task, as described in Section 2, with
regularization parameter λ̂a = exp(−cr5 log6(r) log(D log(r)/δ)) for an absolute constant c. Further, suppose Assumption
2.1 holds, m = Ω(r5 log8(r)log(D/δ)), m̂ = exp (Ω (m)), d = Ω(log7(mD/δ) exp(cr5 log6(r) log(D log(r)/δ))),
T = Ω(d2r log2(Dd/δ) exp(cr5 log6(Dr) log(D log(r)/δ))), and
Tn2 = Ω(log2(DdTn2/δ)(1 +

log(DT/δ)
n1

)d3 exp(cr5 log6(Dr) log(D log(r)/δ))), and set
γ = Θ(

√
r log(Dr)), γ̂ = Θ(r3 log4(Dr)), η = Θ(1), νw = O(d−5/4(m log(DT/δ))−1/2), and λw = 1/η+η/(2r+1π).

Then with probability at least 1− δ, any task T + 1 in Seval satisfies

Leval
T+1 =

exp(O(r5 log6(r) log(D log(r)/δ)))√
N

, (141)

41

Provable Multi-Task Representation Learning

Proof. Note that in the proof of Theorem B.5, δ upper bounds the probability of a bad event occurring that depends on the
choice of downstream task. Thus, setting δnew = δ/D applying a union bound over all tasks implies

Leval
T+1 =

exp(O(r5 log6(r) log(log(r)/δnew)))√
N

=
exp(O(r5 log6(r) log(D log(r)/δ)))√

N

for all tasks T + 1 ∈ T eval with probability at least 1− δnewD = 1− δ, as desired.

42

Provable Multi-Task Representation Learning

C. Negative Results
The proof of Theorem 3.6 follows directly from Theorem 5 in (Barak et al., 2022). We formally re-state and prove Theorem
3.7 below.

Theorem C.1. Consider any algorithm A that takes as input infinite samples from any single task in Ts.p.(M) and returns an
m̂-dimensional representation Ψ : Hd → Rm̂. Then there exists an M ∈ Or×d

{0,1} such that for any k ∈ [r], with probability
at least 1− 2−r

∑r
j=k

(
r
j

)
over the draw of a single training task f1 ∼ Ts.p.(M), the representation Ψf1 := A(f1) satisfies

that for any ϵ > 0, m̂B2 > ϵ2
(
d−k+1
r−k+1

)
is necessary to obtain

min
a2:∥a2∥2≤B

Ev∼Unif(Hd)[ℓ(a
⊤
2 Ψf1(v), f2(v))] ≥ 1− ϵ.

Proof. The proof is an extension of the argument in Section 4 of (Malach & Shalev-Shwartz, 2022) to the case wherein the
representation is not fixed, but depends on a training task that provides partial information about the target (test) task. First,
we establish notations.

Recall that any task f ∈ Ts.p.(M), satisfies that for all v ∈ Hd, f(v) = g(Mv) where g(Mv) =
∏

i∈S(Mv)i where
S ⊆ [r]. Thus, sampling f ∼ Ts.p.(M) is equivalent to sampling S ∼ Unif(P([r])) where P([r]) is the power set on [r] and
Unif(P([r])) is the uniform distribution over P([r]).

We condition on S being a strict subset of [r]. In particular, for any k ∈ {1, . . . , r}, define the set Sk := {S ⊂ r : |S| < k}.
Note that |Sk| =

∑k−1
j=1

(
r
j

)
. Thus, for S ∼ Unif(P([r])), PS(S ∈ Sk) = 2−r

∑k−1
j=1

(
r
j

)
= 1 − 2−r

∑r
j=k

(
r
j

)
. In the

following, we assume S ∈ Sk unless stated otherwise.

Next, recall that the algorithm A maps infinite training samples from a single training task f to a representation Ψ : Hd →
[−1, 1]m̂. Thus, the choice of training task (equivalently, the choice of M and S) determines the resulting representation.
Let fM,S denote the task in Ts.p.(M) with support S, and ΨM,S := A(fM,S) denote the resulting representation.

The test task is taken to be the parity task on all r bits specified by M, i.e. fM,[r]. For ease of notation, we write this task as
f̄M, and for for any representation Ψ : Hd → [−1, 1]m̂, define

LM(a,Ψ) := Ev∼Ud [ℓ(a⊤Ψ(v), f̄M(v))] (142)

where ℓ : R → R≥0 is the hinge loss and Ud is the uniform distribution over the d-dimension Rademacher hypercube
Hd := {−1, 1}d. We need to lower bound this loss for all a ∈ Rm̂ : ∥a∥2 ≤ B some representation resulting from
single-task training.

To do so, we now follow a similar argument as in Section 4.1 in (Malach & Shalev-Shwartz, 2022). Consider any
M ∈ Or×d

{0,1}, S ∈ Sk, and resulting representation ΨM,S : Hd → [−1, 1]m̂. Since the hinge loss is convex, for any a ∈ Rm̂

such that ∥a∥2 ≤ B, we have:

LM(a,ΨM,S) ≥ LM(0,ΨM,S) + ⟨∇LM(0,ΨM,S),a⟩
≥ 1−B∥∇LM(0,ΨM,S)∥2 (143)

where (143) follows by the Cauchy-Schwarz inequality and the fact that LM(0,Ψ) = 1 for all Ψ. Next, we motivate
considering random M. We have

max
M∈Od×r

{0,1}

min
a:∥a∥2≤B

LM(a,ΨM,S) ≥ EM∼Md
r

[
min

a:∥a∥2≤B
LM(a,ΨM,S)

]
(144)

where Md
r denotes the uniform distribution over all

(
d
r

)
possible choices of M ∈ Od×r

{0,1}. It remains to lower bound the
RHS of (144). For ease of notation, we write EM := EM∼Md

r
. Using (143), we obtain

EM

[
min

a:∥a∥2≤B
LM(a,ΨM,S)

]
≥ 1−B EM[∥∇aLM(0,ΨM,S)∥2]. (145)

43

Provable Multi-Task Representation Learning

The crux of the proof is to upper bound EM[∥∇aLM(0,ΨM,S)∥2]. Note that

EM

[
∥∇aLM(0,ΨM,S)∥22

]
= EM,S

 m̂∑
j=1

(Ev∼Ud [f̄M(v)ΨM,S(v)j])
2

=

m̂∑
j=1

EMEv∼UdEv′∼Ud

[
f̄M(v)f̄M(v′)ΨM,S(v)jΨM,S(v

′)j
]

=

m̂∑
j=1

EMEv,v′

[(
r∏

i=1

(Mv)i(Mv′)i

)
ΨM,S(v)jΨM,S(v

′)j

]
(146)

where (Mv)i and Ψ(v)j are the i-th and j-th elements of Mv and Ψ(v), respectively. Next, let MS denote the rows of
M picked out by S, and M\S denote the remaining rows. Further, let vM,S = MSv ∈ {−1, 1}|S| denote the bits in v

specified by MS , let vM,\S = M\Sv ∈ {−1, 1}r−|S| denote the bits specified by M\S . Also let v\(M,S) ∈ {−1, 1}d−|S|

denote the bits in v not specified by MS . We have, for any j ∈ [m̂],

EMEv,v′

[(
r∏

i=1

(Mv)i(Mv′)i

)
ΨM,S(v)jΨM,S(v

′)j

]

= EMS ,vM,S ,v′
M,S

[(|S|∏
i=1

(vM,S)i(v
′
M,S)i

)

× EM\S ,v\(M,S),v
′
\(M,S)

[(
r−|S|∏
i=1

(vM,\S)i(v
′
M,\S)i

)
ΨM,S(v)jΨM,S(v

′)j

]]
(147)

Note that for fixed S, MS , and vM,S , ΨM,S(v)j is a function of v\(M,S), namely ΨM,S,vM,S (v\(M,S))j . For ease of
notation, denote this function as ψ(v\(M,S)). We have:

EM\S ,v\(M,S),v
′
\(M,S)

[(
r−|S|∏
i=1

(vM,\S)i(v
′
M,\S)i

)
ΨM,S(v)jΨM,S(v

′)j

]

= EM\S ,v\(M,S),v
′
\(M,S)

[(
r−|S|∏
i=1

(vM,\S)i(v
′
M,\S)i

)
ψ(v\(M,S))ψ(v

′
\(M,S))

]

= EM\S ,v\(M,S),v
′
\(M,S)

[
hM,\S(v\(M,S))hM,\S(v

′
\(M,S))ψ(v\(M,S))ψ(v

′
\(M,S))

]

= E
B∼Md−|S|

r−|S|,u∼Ud−|S|,u′∼Ud−|S|

[
hB(u)hB(u

′)ψ(u)ψ(u′)

]
= E

B∼Md−|S|
r−|S|

[
⟨hB, ψ⟩2Ud−|S|

]
(148)

where hM,\S is the sparse parity task on input bits specified by M\S , hB is the sparse parity task on input bits specified by
B ∈ O(d−|S|)×(r−|S|)

{0,1} , and

⟨hB, ψ⟩Ud−|S| := Eu∼Ud−|S| [hB(u)ψ(u)] (149)

Note that (148) is exactly the variance of the task distribution Md−|S|
r−|S| with respect to the function ψ. Since Md−|S|

r−|S| is a

uniform distribution over
(
d−|S|
r−|S|

)
orthonormal tasks, and supu |ψ(u)| ≤ 1, we have by Parseval’s identity:

E
B∼Md−|S|

r−|S|

[
⟨hB, ψ⟩2Ud−|S|

]
=

1(
d−|S|
r−|S|

) ∑
B∈O(d−|S|)×(r−|S|)

{0,1}

⟨hB, ψ⟩Ud−|S| ≤
supu |ψ(u)|(

d−|S|
r−|S|

) ≤ 1(
d−|S|
r−|S|

) (150)

44

Provable Multi-Task Representation Learning

Please see Section 4.1 of (Malach & Shalev-Shwartz, 2022) for more details. Now combining (150) with (148) and (147),
we obtain via Cauchy-Schwarz:

EMEv,v′

[(
r∏

i=1

(Mv)i(Mv′)i

)
ΨM,S(v)jΨM,S(v

′)j

]2

≤ EMS ,vM,S ,v′
M,S

[(|S|∏
i=1

(vM,S)i(v
′
M,S)i

)2]

× EMS ,vM,S ,v′
M,S

[(
EM\S ,v\(M,S),v

′
\(M,S)

[(
r−|S|∏
i=1

(vM,\S)i(v
′
M,\S)i

)
ΨM,S(v)jΨM,S(v

′)j

])2]

≤ EMS ,vM,S ,v′
M,S

[(|S|∏
i=1

(vM,S)i(v
′
M,S)i

)2]
× 1(

d−|S|
r−|S|

)2
≤ 1(

d−|S|
r−|S|

)2
Therefore, returning to (146), we obtain

EM

[
∥∇aLM(0,ΨM,S)∥22

]
≤ m̂(

d−|S|
r−|S|

)2 (151)

thus

EM [∥∇aLM(0,ΨM,S)∥2] ≤
√
m̂(

d−|S|
r−|S|

) ≤
√
m̂(

d−k+1
r−k+1

) (152)

where the last inequality follows since S ∈ Sk. Combining this with (144) and (145) yields that for any S ∈ Sk,

max
M∈Od×r

{0,1}

min
a:∥a∥2≤B

LM(a,ΨM,S) ≥ 1−
√
m̂B(

d−k+1
r−k+1

) , (153)

completing the proof.

45

Provable Multi-Task Representation Learning

D. Distributions That Satisfy Assumption 2.1
Lemma D.1. The task link function distribution Tall satisfies Assumption 2.1.

Proof. The set of all functions Tall := {g : Hr → {−1, 1}} has a bijection with the power set on Hr, denoted by P2r ,
where each element of P2r is paired with the positive inverse set (i.e. {z ∈ Hr : g(z) = 1}) for some function g ∈ Tall. So,
sampling uniformly from Tall is equivalent to sampling uniformly from P2r , which is equivalent to the following procedure:
for all z ∈ Hr, independently assign z to Bin 1 (the ‘keep’ set) with probability 0.5 and Bin 2 (the ‘discard’ set) with
probability 0.5. If z ̸= z′, it is equally likely that z and z′ are in the same bin as they are in different bins, completing the
proof.

Lemma D.2. The task link function distribution Ts.p. satisfies Assumption 2.1.

Proof. First note that there are
(
r
0

)
subsets of [r] of size 0,

(
r
1

)
subsets of [r] of size 1, and so on, thus there are

(
r
0

)
+
(
r
1

)
+

· · · +
(
r
r

)
= 2r sparse parity tasks in total. Let dH(v,v′) =

∑r
i=1 χ{vi ̸= v′

i} be the Hamming distance between two
Boolean vectors of length r. If dH(v,v′) = 0, then clearly gi(v) = gi(v

′) for all gi ∈ T .

On the other hand, if dH(v,v′) = γ for any γ ∈ {1, . . . , r}, then v and v′ share the same values for r − γ coordinates, so
must share the same label on all sparse parity tasks on subsets of these coordinates, of which there are 2r−γ = 2r−γ

(
γ
0

)
.

Next, there are 2r−γ ×
(
γ
1

)
sparse parity tasks on one coordinate on which v and v′ differ and other coordinates on

which v and v′ agree. Since these tasks are sparse parities on a set of coordinates on which v and v′ differ on an odd
number of coordinates, gi(v) ̸= gi(v

′) for each of these 2r−γ ×
(
γ
1

)
tasks. Similarly, there are 2r−γ ×

(
γ
2

)
tasks on

two coordinates on which v and v′ differ, and since two is even, gi(v) = gi(v
′) for all such tasks. Extrapolating this

argument, if γ is even, then there are 2r−γ(
(
γ
0

)
+
(
γ
2

)
+ · · ·+

(
γ
γ

)
) = 2r−γ2γ−1 = 2r−1 tasks for which gi(v) = gi(v

′),
and 2r−γ(

(
γ
1

)
+
(
γ
3

)
+ · · ·+

(
γ

γ−1

)
) = 2r−γ2γ−1 = 2r−1 tasks for which gi(v) ̸= gi(v

′). Likewise, if γ is odd, there are
2r−γ(

(
γ
0

)
+
(
γ
2

)
+ · · ·+

(
γ

γ−1

)
) = 2r−1 tasks for which gi(v) = gi(v

′), and 2r−γ(
(
γ
1

)
+
(
γ
3

)
+ · · ·+

(
γ

γ−1

)
) = 2r−1 tasks

for which gi(v) ̸= gi(v
′).

46

Provable Multi-Task Representation Learning

E. Informal Extension to Regression
In this section, we show informally that our insights also apply to multi-task regression. In the regression setting, the global
loss is given by (consider infinite samples per task, and ignore the bias parameters for simplicity):

Lreg(W,a1, . . . ,aT) :=
1

2T

T∑
i=1

Ex[(a
⊤
i σ(Wx)− fi(x))

2] +
λW
2

||W||2F

For any fixed W, the optimal ai is a∗i (W) = Ex[σ(Wx)σ(Wx)⊤]−1Ex[fi(x)σ(Wx)], which is an average of the current
features weighted by labels (as in the classification case we study), that is now additionally multiplied by the normalizing
matrix Ex[σ(Wx)σ(Wx)⊤]−1. Note that this optimal a∗i (W) can be attained by one step of gradient descent.

Let ΣW := Ex[σ(Wx)σ(Wx)⊤]. Substituting the optimal a∗i (W)’s from above into the loss, we have

L̃reg(W) :=
1

2T

T∑
i=1

Ex

[(
Ex[fi(x)σ(Wx)]⊤Σ−1

Wσ(Wx)− fi(x)
)2]

+
λW
2

||W||2F

=
1

2T

T∑
i=1

Ex[fi(x)σ(Wx)]⊤Σ−1
WEx[σ(Wx)σ(Wx)⊤]Σ−1

WEx[fi(x)σ(Wx)]

−2Ex[fi(x)σ(Wx)]⊤Σ−1
WEx[fi(x)σ(Wx)] + Ex[f

2
i (x)] +

λW
2

||W||2F

=
1

2T

T∑
i=1

−Ex[fi(x)σ(Wx)]⊤Σ−1
WEx[fi(x)σ(Wx)] + Ex[f

2
i (x)] +

λW
2

||W||2F

= −1

2
Ex,x′

[
β(x,x′)σ(Wx)⊤Σ−1

Wσ(Wx′)
]
+
λW
2

||W||2F + c

where, as in the classification case, β(x,x′) := 1
T

∑T
i=1 fi(x)fi(x

′), and here, c := 1
2T

∑T
i=1 Ex[f

2
i (x)] is a constant

independent of W . This loss is very similar in form to the pseudo-contrastive loss we derived in (11) for the classification
case: we again have the negative average of β(x,x′) times a proxy for the similarities between the representations of x and
x′. For L̃reg to encourage learning the ground-truth features, β(x,x′) must be a proxy for the similarity of the ground-truth
features of x and x′.

This is a reasonable condition for the following reason: suppose the tasks are normalized such that Ef∼T [f(x)] = 0 and
Ef∼T [f

2(x)] = ν2 for all x. Then in the limit T → ∞, β(x,x′) = ν2Ef∼T [f(x)f(x
′)] is proportional to the correlation

between the labels of x and x′, which we expect to be a proxy for the similarity between the ground-truth features of x and
x′. Intuitively, inputs with similar ground-truth features should have more correlated labels (across tasks) than inputs with
dissimilar ground-truth features.

Consider for example f(x) = sin(h⊤ Mx
||Mx||2) (the following argument would also hold analogously for f(x) =

sin(h⊤sign(Mx)), where f ∼ T is induced by drawing h ∼ N (0r, Ir). Then for all x, Ef∼T [f(x)] = 0 and
Ef∼T [f

2(x)] = ν2 for some ν > 0, and, with T = ∞,

β(x,x′) = ν2Ef∼T

[
sin

(
h⊤ Mx

||Mx||2

)
sin

(
h⊤ Mx′

||Mx′||2

)]
=

ν2

2
Eh

[
cos

(
h⊤
(

Mx

||Mx||2
− Mx′

||Mx′||2

))
− cos

(
h⊤
(

Mx

||Mx||2
+

Mx′

||Mx′||2

))]
=

ν2

2
Ez∼N (0,1)

[
cos

(∥∥∥∥ Mx

||Mx||2
− Mx′

||Mx′||2

∥∥∥∥
2

z

)
− cos

(∥∥∥∥ Mx

||Mx||2
+

Mx′

||Mx′||2

∥∥∥∥
2

z

)]
a
=

ν2

4

(
exp

(
−
∥∥∥∥ Mx

||Mx||2
− Mx′

||Mx′||2

∥∥∥∥2
2

/2

)
− exp

(
−
∥∥∥∥ Mx

||Mx||2
+

Mx′

||Mx′||2

∥∥∥∥2
2

/2

))
b
=

ν2e

4

(
exp

(
cossim(Mx,Mx′)

)
− exp

(
−cossim(Mx,Mx′)

))
47

Provable Multi-Task Representation Learning

where a follows by a Gaussian integral calculation.

Observe that the expression in the RHS of b is monotonically increasing in the cosine similarity of the ground-truth
features of x and x′, as desired. Therefore, L̃reg encourages aligning the normalized representations of pairs of inputs (i.e.,
making σ(Wx)⊤Σ−1

Wσ(Wx′) large) that have similar ground-truth features (cossim(Mx,Mx′) ≈ 1), and encourages
the normalized representations of pairs of points with dissimilar ground-truth features (cossim(Mx,Mx′) ≈ −1) to also
be dissimilar (i.e., making σ(Wx)⊤Σ−1

Wσ(Wx′) small). The same intuitions hold if Ef∼T [f(x)] = µ ̸= 0 for all x. So
just as in the classification setting, L̃reg(W) again behaves as a pseudo-contrastive loss that encourages recovering the
ground-truth representation. Here, since β(x,x′) is smooth, we may refer to L̃reg as a “soft” contrastive loss.

Please see Tables 1 and 2 in Section F for empirical results verifying this conclusion.

48

Provable Multi-Task Representation Learning

0 200 400 600 800 1000 1200 1400 1600
Number of Iterations

10 1

100

101

102
m

ax
(W

M
)

m
in

(W
M

)

Representation Learning Error vs # Tasks
T = 1
T = 4
T = 16
T = 64

0 200 400 600 800 1000 1200 1400 1600
Number of Iterations

100

101

m
ax

(W
M

)
m

in
(W

M
)

Role of Task Distribution Imbalance

Skewed Distribution
Uniform Distribution

Figure 2. Representation learning error. (Left) Version of Figure 1 showing the benefit of pretraining with additional tasks that includes
the standard deviations (shaded regions) of each statistic around the plotted means over 10 trials. Note that d = 32, r = 3 and all cases
use the same total number of samples. (Right) Representation learning error vs number of training iterations when tasks are sampled from
either Ts.p. (‘Uniform Distribution’) or a skewed distribution over the support of Ts.p. (‘Skewed Distribution’). In this case d = 32, r = 4
and T = 32.

F. Numerical Simulations
In this section we verify our analysis with numerical simulations. We aim to both confirm that the alternating stochastic-
gradient descent algorithm for multi-task pretraining that we study recovers the ground-truth representation and further
explore the mechanisms by which it does so. To this end, all experiments are conducted on synthetic data generated according
to the model described in Section 2. To generate M, we sample each of its elements independently from the standard normal
distribution, then orthonormalize its rows via a QR decomposition. All experiments use Ts.p. as the distribution over task
link functions. The pretraining algorithm is the pretraining algorithm described in Section 2 but repeated for many iterations.

Benefit of training with many tasks. Figure 1 in Section 1 shows that increasing the number of pretraining tasks improves
representation learning, even though all cases in this experiment use the same total number of samples. In particular, for each
number of pretraining tasks T , gradients for each task are computed with n1 = n2 = 1024/T fresh samples per iteration,
so the more tasks, the fewer samples per task. Representation learning error is measured using the metric from Theorem
3.2: ρ(M,W) :=

σ1(WM⊤
⊥)

σr(WM⊤)
. This metric captures the extent to which the row space of W covers that of M (measured by

σr(WM⊤)) and the extent to which the row space of W lies only in that of M (measured by σ1(WM⊤
⊥)). Figure 1 shows

the mean values of ρ(Wt,M) across 10 independent random trials, including independently sampled sets of pretraining
tasks; Figure 2(Left) plots the same results plus shaded regions indicating ± one standard deviation across the 10 trials. Here
d = 32, r = 3, and m = 16.

Role of task distribution diversity. Figure 2(Right) motivates Assumption 2.1 by demonstrating that the quality of the
learned representation degrades with the diversity, or balancedness, of the task distribution. Here we use d = 32, r = 4,
T = 32, m = 16 and n1 = n2 = 16 (so larger r and fewer total samples than in Figure 2(Left). ‘Uniform Distribution’
means the task link functions are sampled from Ts.p. as usual, and ‘Skewed Distribution’ means the link functions are
sampled from a non-uniform distribution over the set sparse parity tasks on r inputs as follows: (1) sample |Si| from
{0, 1, ..., r}, weighted by the number of sparse parity tasks on support sets of that size, i.e. proportionally to the binomial
coefficients (same as in sampling from Ts.p.), (2) sample |Si| elements without replacement from {1, . . . , r} weighted by
[0.3, 0.3, 0.3, 0.1], noting that r = 4 (this step differs from sampling from Ts.p., which would apply uniform weights to the r
features). We see that sampling tasks from the uniform distribution leads to much smaller representation learning error than
sampling from the skewed distribution, since the skewed distribution de-emphasizes one feature ground-truth feature. Again
the experiment is repeated over 10 independent random trials and means and standard deviations are shown.

Generalization to downstream tasks. We also investigate whether learning an approximation of the ground-truth
representation leads to strong downstream performance. To evaluate the downstream performance of a learned representation,
we follow the same procedure from Section 2 by first randomly sampling m̂ neuron weights Ŵ from the multivariate
standard normal distribution and b and b̂ from the uniform distribution on [−10−3, 10−3]. Then, we run gradient descent

49

Provable Multi-Task Representation Learning

10 20 30 40 50 60
Ambient dimension d

0.0

0.1

0.2

0.3

0.4

0.5

%
 o

f m
isc

la
ss

ifi
ed

 te
st

 sa
m

pl
es

Performance After Linear Probing
Single task pretraining
Multitask pretraining
No pretraining

20 40 60 80 100 120
N

0.00

0.05

0.10

0.15

0.20

0.25

0.30

%
 o

f m
isc

la
ss

ifi
ed

 te
st

 sa
m

pl
es

Role of # of downstream training samples N

Figure 3. Downstream task performance. (Left) Downstream task performance for multi-task pretrained, single task, and random (‘No
pretrained’) representations W with varying dimension d. Unlike single task pretrained and the non-pretrained representations, the
downstream performance of representations trained with multiple tasks does not degrade with d. Note that for multi-task, T = 16+ d and
n1 = n2 = 16 and for single task, n1 = n2 = 16× (16+ d), and r = 4 and m = 16 in all cases. (Right) Downstream task performance
for multi-task-trained representation with T = 32, d = 32, r = 3, n1 = n2 = 16 and m = 16, and with m̂ = 32 for downstream linear
probing, with varying number of downstream training samples N .

on the regularized empirical hinge loss on a fixed set of N samples to learn the last layer head, i.e. linear probing. We run
this gradient descent with step size η = 0.1 and ℓ2−regularizer λ̂a = 0.01. After this linear probing on N samples, we
evaluate the performance of the returned classifier on a distinct set of 1000 test samples for each task.

Figure 3(Left) plots the number of misclassified test samples after this linear probing with N = 32 training samples averaged
across 10 randomly drawn tasks from Ts.p.(M) with varying d. In particular, for each value of d, we randomly generate an
M, execute multi-task and single task pretraining on task(s) drawn from Ts.p.(M) to learn W, then execute linear probing
with N = 32 samples for 100 iterations on the head of the random ReLU network with m̂ = 128 second-layer neurons
generated from these trained W’s, as well as a randomly generated W (‘No pretraining’), on each of 10 new downstream
tasks sampled from Ts.p., and save the average percentage of misclassified samples. We repeat this process end-to-end 10
times, and plot mean and standard deviations across these 10 trials. Again we use m = 16 neurons and execute pretraining
for 1600 rounds. To mitigate the effect of representation learning error, we scale T with d for multi-task pretraining,
specifically T = 16 + d. For fair comparison with single task pretraining, we scale n1 and n2 with d for the single task
case, specifically n1 = n2 = 16× (16 + d) for single task, whereas n1 = n2 = 16 for multi-task. While the percentage of
misclassified samples grows with d for single and no pretraining, it does not for multi-task pretraining. This confirms that
multi-task pretraining reduces the effective dimension of the downstream task from d to r, unlike single task pretraining,
which effectively confers no downstream benefit as it performs similarly to no pretraining.

Figure 3(Right) explores the role of N in downstream performance. Here we pretrain a single W on T = 32 tasks from Ts.p.
for 1600 rounds with d = 32, r = 3, n1 = n2 = 16, and m = 16. Then we execute linear probing for 200 iterations on the
random three-layer ReLU network with first-layer weights W. We fix either m̂ = 32 and vary N . The results shown are the
mean and standard deviation of the percentage of misclassified test samples across 25 tasks drawn from Ts.p., with 5000
test samples used per task. The classification accuracy improves with N , as predicted by Theorem 3.3, and even reaches
perfect test classification accuracy (when N = 128).

The role of head updates. Next, we explore why multi-tasking leads to better feature learning. We are motivated by
our discussion in Section 4 regarding the similarity of the multi-task loss induced from updating the task-specific heads
to a constrastive loss (Chen et al., 2020), which encourages representations that align points sharing semantic meanings
and dis-align arbitrary points. Recall that in the population setting, the multi-task loss is approximately of the form of
−Ex,x′

[
β(x,x′)σ(W0x′)⊤σ(W0x)

]
, where β(x,x′) = Ei[fi(x)fi(x

′)] is a scalar that either encourages the representa-
tion to align x and x′ (if β(x,x′) ≈ 1) or not (if β(x,x′) ≪ 1). The intuition is that β(x,x′) ≈ 1 if and only if x and x′ share
the same label on most tasks and thereby share important features. The gradient of Ex,x′

[
β(x,x′)σ(W0x′)⊤σ(W0x)

]
50

Provable Multi-Task Representation Learning

0 5 10 15

0

5

10

15

T=1

0 5 10 15

T=5

0 5 10 15

T=25

0 5 10 15

T=125

0.00

0.01

0.02

0.03

Figure 4. More tasks isolate important features. From the discussion in Section 4, the loss induced by multi-task training with
task-specific heads as a function of the representation is approximately L(W) ≈ −Ex,x′ [β(x,x′)σ(Wx)⊤σ(Wx′)], where β(x,x′) =
Ei[fi(x)fi(x

′)] is the average product of the labels of two points across tasks. This loss is pseudo-contrastive in that it encourages
representations of two points to be similar if and only if they share the same label on most tasks (β(x,x′) ≈ 1), which is equivalent to
saying that they share important features. Here we consider the gradient of L(W) with respect to one neuron weight wj . The gradient
takes the form −Awj , and we plot finite-task and finite-sample approximations of A. We set d = 16 and the ground-truth features to be
the first r = 4 coordinates of the data, i.e. M = [I4,04×12]. Roughly speaking, if the finite-task approximation of β(x,x′), namely
1
T

∑T
i=1 fi(x)fi(x

′), serves as a proxy for whether x and x′ share ground-truth features, as does Ei[fi(x)fi(x
′)], then the terms with x

and x′ having the same ground-truth features will dominate the loss, and these features themselves will dominate A. The above plots
confirm this; as the number of tasks T increases and 1

T

∑T
i=1 fi(x)fi(x

′) approaches Ei[fi(x)fi(x
′)], A becomes dominated by its top

4-by-4 submatrix, i.e. A ≈ cM⊤M for a scalar c. So, A behaves more like a projection onto the row space of M, as desired.

with respect to one neuron weight wj is of the form Awj where

A = Ex,x′ [β(x,x′)σ′(w⊤
j x)σ

′(w⊤
j x

′)x(x′)⊤].

See Appendix A for a rigorous derivation. In Figure 4 we plot finite-sample estimates of A with varying numbers of tasks T
drawn from Ts.p.(M), where here M = [I4,04×12] for ease of visualization. We use d = 16, r = 4 and n1=n2=100. We
repeated each computation 10 times for each value T , each with independent draws of wj , T tasks, and n1+n2 samples per

task, and plotted the matrix A matrix that achieved the smallest value of ρ(A,M) =
σ1(AM⊤

⊥)

σr(AM⊤)
among these 10 trials. Figure

4 shows that as the number of tasks increases, the finite-task approximation of β(x,x′) increasingly acts like an indicator for
whether x and x′ share the same ground-truth features, evidenced by A approaching M⊤M = [I4,04×12;012×4,012×12] .
Thus, A acts increasingly like a projection onto the row space of M as T increases.

To further assess the importance of adapting the heads to each task, Figure 5(Left) compares the representation learning
performance of the multi-task pretraining algorithm we study along with a modified version that learns only one shared head
across all tasks. In particular, W and a are updated simultaneously on each iteration by averaging the task-specific gradients.
Since this algorithm does not involve task-specific head adaptation prior to the update of the representation, it does not
induce a feature-learning-encouraging contrastive loss, and therefore does not lead to learning the ground-truth features. In
this case d = 16, r = 2,m = 8, n1 = n2 = 16, and νw = 0.001 (note increasing νw does not improve the performance of
single-head training).

Finally, Figure 5(Center) plots the dynamics of Mwj for four neuron weights wj during multi-task pretraining with T = 25,
r = 2, d = 8, m = 4 (and task-specific heads). The projections Mwj fan outwards from the origin and remain roughly
isotropic in the row space of M. Conversely, Figure 5(Right) shows that the projections of wj onto the first two rows of M⊥
contract towards the origin for each of the four neurons, as desired.

Extension to relaxed version of Assumption 2.1 and regression. We empirically verify that the special cases of the new,
weaker condition discussed above result in learning the ground-truth features. We also evaluate whether optimizing the loss
derived in the regression setting also leads to recovering the features. All cases consider T = ∞ for simplicity. In particular,
the settings we consider are:

51

Provable Multi-Task Representation Learning

0 200 400 600 800
Number of Iterations

10 1

100

101

102

m
ax

(W
M

)
m

in
(W

M
)

Importance of Task-Specific Heads

Single head
Task-specific heads

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
M1 wj

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

M
2

w
j

Ground-truth features during pretraining
t=1600
t=0

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
MT

, 1wj

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

M
T

,2
w

j

Spurious features during pretraining
t=1600
t=0

Figure 5. (Left) Training with a single head, i.e. a1 = a2 = ... = aT = a, fails to recover the ground-truth representation, as this does
not induce an appropriate contrastive loss. (Center) During multi-task pretraining with task-specific heads, the projection of four neurons
onto the r=2-dimensional ground-truth subspace fan outwards from the origin such that they remain large and isotropic in this space,
whereas (Right) their projections onto the spurious subspace contract towards the origin.

1. The standard hinge-loss classification setting with

β(x,x′) =

{
1 if sign(Mx) = sign(Mx′)

δ o/w
, (154)

for various choices of δ.

2. The standard hinge-loss classification setting with

β(x,x′) = 1− 2

π
arccos

(
cossim(Mx,Mx′)

)
.

3. The regression setting from Section E with

β(x,x′) = exp
(
cossim(Mx,Mx′)

)
− exp

(
−cossim(Mx,Mx′)

)
.

To focus on the role of β(x,x′), we run SGD with a batch size of 10 (x,x′) pairs on the loss L̃ for the classification cases,
and SGD with a batch size of 10 (x,x′) pairs on the loss L̃reg for the regression case. We set d = 10, r = 2, M = [I2,02×8],
and m = 6. In the regression case, we used 10 i.i.d. samples each round to approximate ΣW. We do not differentiate
through functions of W that arise from solving for the optimal a∗i (W)’s. We use the same hyperparameters in all cases
(learning rate = 0.005, regularization parameter = 0.1). We evaluate σ1(W

t(Id−M⊤M))
σr(WtM⊤M)

and σ1(W
tM⊤M)

σr(WtM⊤M)
every 5000

rounds of training over 20000 rounds. All values are means plus or minus standard deviation over 5 independent random
trials.

We can see that in all cases, Wt becomes approximately a rank-r matrix whose row space aligns with the row space of
M, and whose projection onto the row space of M is well-conditioned, confirming recovery of the ground-truth features.
As expected, the convergence is slower for larger values of δ in Case 1, since the loss L̃(W) puts lets of an incentive on
increasing the representation similarity of positive pairs ((x,x′) : sign(Mx) = sign(Mx′)) relative to the similarity of
negative pairs. Nevertheless, all values of δ result in a representation tending towards the ground-truth.

We can see that in all cases, Wt becomes approximately a rank-r matrix whose row space aligns with the row space of
M, and whose projection onto the row space of M is well-conditioned, confirming recovery of the ground-truth features.
As expected, the convergence is slower for larger values of δ in Case 1, since the loss L̃(W) puts lets of an incentive on
increasing the representation similarity of positive pairs ((x,x′) : sign(Mx) = sign(Mx′)) relative to the similarity of
negative pairs. Nevertheless, all values of δ result in a representation tending towards the ground-truth.

Separation between training with a fully-informative single task and multi-tasking. Finally, we empirically verify
the improved sample complexity of multi-tasking vs single-tasking in the same setting as Figure 1 (whose full version is

52

Provable Multi-Task Representation Learning

Table 1. Subspace learning error (σ1(W
t(Id−M⊤M))

σr(WtM⊤M)
) vs number of training iterations t. All values are means plus or minus standard

deviation over 5 independent random trials.

t = 0 t = 200 t = 400 t = 600 t = 800

(1) δ = 0 2.29± 0.72 0.784± 0.26 0.242± 0.089 0.0947± 0.029 0.796± 0.025
(1) δ = 0.1 2.29± 0.72 0.879± 0.29 0.308± 0.11 0.116± 0.031 0.0825± 0.018
(1) δ = 0.5 2.29± 0.72 1.35± 0.38 0.807± 0.23 0.450± 0.12 0.250± 0.60
(2) LINEAR TASKS 2.29± 0.72 0.323± 0.11 0.0761± 0.021 0.0665± 0.031 0.0581± 0.012
(3) REGRESSION 2.95± 0.89 0.382± 0.23 0.268± 0.080 0.218± 0.038 0.421± 0.266

Table 2. Condition number of Wt in ground-truth subspace (σ1(W
tM⊤M)

σr(WtM⊤M)
) vs number of training iterations t. All values are means plus

or minus standard deviation over 5 independent random trials. The closer the condition number is to 1, the better.

t = 0 t = 200 t = 400 t = 600 t = 800

(1) δ = 0 1.45± 0.28 1.37± 0.23 1.34± 0.22 1.30± 0.25 1.29± 0.33
(1) δ = 0.1 1.45± 0.28 1.38± 0.23 1.35± 0.30 1.30± 0.20 1.24± 0.22
(1) δ = 0.5 1.45± 0.28 1.40± 0.21 1.41± 0.14 1.34± 0.14 1.25± 0.12
(2) LINEAR TASKS 1.45± 0.28 1.43± 0.25 1.44± 0.24 1.45± 0.29 1.45± 0.29
(3) REGRESSION 1.83± 0.41 1.05± 0.041 1.07± 0.031 1.03± 0.011 1.11± 0.11

Figure 2 in this Appendix F) with T ∈ {1, 16}, but always using the full sparse parity task as the single training task in
the T = 1 case, unlike the figure in in the paper, in which tasks were drawn from Ts.p. in all cases. In each case we vary
n = n1 = n2, where n1 is the number of samples used per batch to compute the gradient with respect to the head a and
n2 is the number of samples used per batch compute the gradients with respect the neuron weights W and bias b. We use
d = 32, r = 3 and m = 16 neurons. All cases use Gaussian initialization. We alternate between updates of the head and
representation, as we did not observe any significant change in performance by running simultaneous updates of the head
and representation for the single-task case. Learning rates and regularization parameters were tuned separately for T = 1
and T = 16, resulting in (η = 0.01, λw = 0.05, λa = 0.5) for T = 1 and (η = 0.5, λw = 0.05, λa = 0.5) for T = 16. We
run 5 independent random trials for 800 iterations and plot means plus or minus standard deviations. As in Tables 1 and 2,
we evaluate the subspace learning error σ1(W

t(Id−M⊤M))
σr(WtM⊤M)

in Table 3 and the condition number of the learned representation

in the ground-truth subspace σ1(W
tM⊤M)

σr(WtM⊤M)
in Table 4. We can see that for all n, multi-tasking leads to a representation that

is much closer to a projection onto the ground-truth subspace, achieving 10− 100× smaller subspace learning error and
approximately 5× smaller condition number in the ground-truth subspace than single-task training on the full parity task.

Additional hyperparameters. Unless otherwise noted, we used λw = 0.05, λa = 0.5 and η = 0.1 (learning rate for both
ai and W). after tuning each parameter in the set {0.01, 0.05, 0.1, 0.5, 1}, separately for single task and multi-task cases,
unless r = 4. We tuned νw ∈ {0.001, 0.01, 0.1, 1}, and used νw = 0.01 for r ≤ 3, unless otherwise noted. For r = 4, we
found that setting λw = 0.1 and νw = 0.001 improved performance, but did not see improvement by changing the other
parameters, so kept them the same. We used a smaller learning rate of 0.001 for the bias in all cases, although we reset the
bias randomly before downstream evaluation.

53

Provable Multi-Task Representation Learning

Table 3. Subspace learning error (σ1(W
t(Id−M⊤M))

σr(WtM⊤M)
) vs number of training iterations t. All values are means plus or minus standard

deviation over 5 independent random trials.

t = 0 t = 200 t = 400 t = 600 t = 800

T = 1, n = 8 2.89± 0.36 2.86± 0.36 2.80± 0.39 2.81± 0.38 2.86± 0.37
T = 1, n = 64 2.89± 0.36 2.87± 0.37 2.81± 0.37 2.80± 0.37 2.84± 0.34
T = 1, n = 512 2.89± 0.36 2.86± 0.36 2.80± 0.37 2.79± 0.37 2.83± 0.35
T = 16, n = 8 2.89± 0.36 0.50± 0.33 0.27± 0.03 0.26± 0.02 0.27± 0.03
T = 16, n = 64 2.89± 0.36 0.23± 0.14 0.08± 0.01 0.08± 0.01 0.08± 0.01
T = 16, n = 512 2.89± 0.36 0.11± 0.07 0.03± 0.01 0.03± 0.01 0.03± 0.01

Table 4. Condition number of Wt in ground-truth subspace (σ1(W
tM⊤M)

σr(WtM⊤M)
) vs number of training iterations t. All values are means plus

or minus standard deviation over 5 independent random trials. The closer the condition number is to 1, the better.

t = 0 t = 200 t = 400 t = 600 t = 800

T = 1, n = 8 1.72± 0.25 1.91± 0.13 2.60± 0.36 3.94± 1.08 6.72± 2.81
T = 1, n = 64 1.72± 0.25 1.92± 0.13 2.59± 0.35 3.98± 1.08 6.70± 2.61
T = 1, n = 512 1.72± 0.25 1.92± 0.13 2.57± 0.36 3.93± 1.08 6.61± 2.63
T = 16, n = 8 1.72± 0.25 2.63± 1.89 1.31± 0.22 1.27± 0.18 1.27± 0.19
T = 16, n = 64 1.72± 0.25 3.38± 2.68 1.31± 0.28 1.25± 0.21 1.23± 0.18
T = 16, n = 512 1.72± 0.25 3.38± 2.69 1.32± 0.30 1.26± 0.23 1.24± 0.20

54

