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Abstract
Fourier analysis has been an instrumental tool
in the development of signal processing. This
leads us to wonder whether this framework could
similarly benefit generative modelling. In this pa-
per, we explore this question through the scope of
time series diffusion models. More specifically,
we analyze whether representing time series in the
frequency domain is a useful inductive bias for
score-based diffusion models. By starting from
the canonical SDE formulation of diffusion in
the time domain, we show that a dual diffusion
process occurs in the frequency domain with an
important nuance: Brownian motions are replaced
by what we call mirrored Brownian motions, char-
acterized by mirror symmetries among their com-
ponents. Building on this insight, we show how
to adapt the denoising score matching approach
to implement diffusion models in the frequency
domain. This results in frequency diffusion mod-
els, which we compare to canonical time diffusion
models. Our empirical evaluation on real-world
datasets, covering various domains like healthcare
and finance, shows that frequency diffusion mod-
els better capture the training distribution than
time diffusion models. We explain this obser-
vation by showing that time series from these
datasets tend to be more localized in the frequency
domain than in the time domain, which makes
them easier to model in the former case. All our
observations point towards impactful synergies
between Fourier analysis and diffusion models.

1. Introduction
Deep generative modelling leverages the inductive bias of
neural networks to learn complex, high-dimensional proba-
bility distributions from real-world datasets. Among other
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applications, generative models allow for generation of new
synthetic samples consistent with the distribution of the
training data, yet distinct from the actual data encountered
during training. Recently this field has seen tremendous
progress in various modalities including image (Karras et al.,
2020; Dhariwal & Nichol, 2021), audio (Kong et al., 2021;
Donahue et al., 2018), video (Rombach et al., 2022) and
text (Dieleman et al., 2022) generation, as well as address-
ing inverse problems such as in-painting (Lugmayr et al.,
2022) or super-resolution (Saharia et al., 2022). Moreover
deep generative models have started showing significant
potential in contributing to natural sciences, though protein
design (Watson et al., 2023), drug development (Xu et al.,
2022) and material synthesis (Zeni et al., 2023). However,
the application of these models to time series data has not
seen the same level of advancement (Gatta et al., 2022).
Some notable examples of time series generative models
include TimeGAN (Yoon et al., 2019), FourierFlow (Alaa
et al., 2021), and RCGAN (Esteban et al., 2017), yet this
area remains less explored compared to other applications.
While research on generative modeling for time series has
not progressed as quicky as in the static setting, it is an
equally important problem. For example, generative mod-
elling for time series is a promising avenue to reconciliate
privacy with the development of machine learning models,
notably in high-stakes domains such as healthcare, where
access to time series data is subject to strong regulations
by medical institutions (Miller & Tucker, 2009). Another
example is generating time series for data augmentation, in
order to increase the dataset size for some downstream tasks
or to address imbalance problems (Nikolaidis et al., 2019).

Diffusion Models. In recent years, diffusion models
(Hyvärinen & Dayan, 2005; Sohl-Dickstein et al., 2015;
Ho et al., 2020; Song et al., 2020) have emerged as one
of the most promising research avenues in deep generative
modelling, achieving state-of-the art results across many
generative modelling tasks (Dhariwal & Nichol, 2021; Sa-
haria et al., 2022). Diffusion models have been applied
to time series modelling, achieving promising results (Lin
et al., 2023). However, there is substantial room for devel-
opment and refinement in these early-stage applications.

Fourier Analysis. Fourier analysis is a remarkably pow-
erful tool in signal processing, compression and machine
learning (Körner, 2022). It has been shown to significantly
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improve state-of-the-art the performance of many deep
learning based time series analysis techniques (Yi et al.,
2023), with some recent applications in dataset distilla-
tion (Shin et al., 2023). In the context of deep generative
models, this is exemplified in (Alaa et al., 2021), where
the application of normalizing flows to Fourier representa-
tions yielded promising results. More recently, some work
by (Phillips et al., 2022) has been done on diffusion on
functional spaces, which include Fourier representations of
signals although the paper does not specifically focus on the
Fourier basis.

Motivation. Despite Fourier analysis’ widespread success,
its application to diffusion models for time series remains
largely unexplored. This paper seeks to fill this research gap,
by examining whether spectral representations can improve
diffusion models for time series modelling. Our focus is not
on achieving state-of-the-art results, but rather investigating
whether representing time series in the frequency domain is
a useful inductive bias for diffusion models.

Our contributions. (1) Formalizing frequency dif-
fusion. In Section 3, we show theoretically how to
translate SDE-based diffusion of time series to the fre-
quency domain. We demonstrate that the denoising
score matching recipe can be adapted by replacing
standard Brownian motions by what we call mirrored
Brownian motions, characterized by mirror symme-
tries in their components. (2) Comparing time and
frequency diffusion. In Section 4.1, we compare the
ability of the time and frequency score models to gen-
erate samples that are faithful to the training sets by
leveraging sliced Wasserstein distances. Through an
extensive analysis on 6 real-world datasets illustrating
fields like healthcare, finance, engineering and cli-
mate modelling, we demonstrate that frequency score
models consistently outperform the time score mod-
els. (3) Understanding why and when frequency
diffusion is preferable. In Section 4.2, we demon-
strate that the signals in all 6 datasets concentrate most
of their power spectrum on the low frequencies. We
hypothesize that this localization in the frequency do-
main explains the superior performances of frequency
diffusion models. In Section 4.3, we confirm this
hypothesis by artificially delocalizing the spectral rep-
resentation of real signals and showing that the gap
between time and frequency diffusion closes.

2. Background
Notations. We consider multivariate time series of fixed
size1 x ∈ RN×M , where N ∈ N is the number of time steps

1Padding over time can be used in cases where the datasets
contain time series of different lengths.

and M ∈ N is the number of features tracked over time.
Often, we will denote by dX = N ·M the total dimension of
the time series x. We shall use Greek letters for components
of the time series. In this way, xτ ∈ RM denotes the feature
vector at time τ ∈ [N ] and xτ,ν denotes the value of feature
ν ∈ [M ] at time τ . We denote by [K] := {0, 1, . . . ,K− 1}
the integers between 0 (included) and K ∈ N (excluded). To
avoid any confusion between time series steps and diffusion
steps, we shall use Latin letters for the diffusion process.
In this way, the diffusion process is described by a family
of time series {x(t) ∈ RdX}Tt=0 indexed by a continuous
diffusion variable t ∈ [0, T ]. Thanks to these notations, we
unambiguously interpret xτ (t) ∈ RM as the feature vector
at time step τ ∈ [N ] and at diffusion step t ∈ [0, T ]. We
shall detail below how this diffusion process is defined.

2.1. Score-based Generative Modeling with SDEs

In continuous-time diffusion modelling, one assumes access
to samples drawn from an unknown density pdata. The
objective of generative modelling is to obtain a tractable
approximation of this distribution.

Forward Diffusion. Score-based generative modeling with
stochastic differential equation (SDEs) (Song et al., 2020)
typically operates by first constructing a forward diffusion
process. In the case of time series, forward continuous
diffusion is described by the following SDE, with t ∈ [0, T ]:

dx = f(x, t)dt+G(t)dw, (1)

where f : RdX × [0, T ]→ RdX is the drift, w is a standard
Brownian motion in RdX , and G : [0, T ] → RN×N is the
diffusion matrix. We denote pt the probability density of
the solution x(t) of Equation (1) at time t ∈ [0, T ]. With the
slight abuse of notation from Song et al. (2020), we shall
abbreviate pt(x(t)) by pt(x). Together with the SDE, we
impose the initial condition p0 = pdata, which corresponds
to samples initially drawn from the data density pdata. In
practice, we consider f and G such that pdata is transported
to a final density pT close to an isotropic Gaussian.

Reverse Diffusion. The reverse diffusion process performs
the inverse transformation by transporting the isotropic
Gaussian density pT to the data density p0 = pdata. Hence,
applying reverse diffusion to samples drawn from the
isotropic Gaussian permits to sample from the unknown
density pdata. It was shown by Anderson (1982) that this
reverse diffusion satisfies the following SDE:

dx = b(x, t)dt+G(t)dŵ, (2)

where b(x, t) = f(x, t)−G(t)G(t)T∇x log pt(x), dt is a
negative infinitesimal time step, and ŵ is a Brownian time
increment with time going backwards from T to 0.

Denoising Score Matching. In order to run the reverse
diffusion process, one needs access to the score s(x, t) :=

2



Time Series Diffusion in the Frequency Domain

∇x log pt(x). In practice, the ground-truth density pt is
unknown. Denoising score matching circumvents this prob-
lem by estimating the ground-truth score with a function sθ∗

whose parameters θ∗ minimize the following score matching
objective computed from the data samples (Hyvärinen &
Dayan, 2005; Song & Ermon, 2019):

θ∗ = argmin
θ∈Θ

Et,x(0),x(t)
[
LSM(sθ, st|0, x, t)

]
(3)

LSM(sθ, st|0, x, t) := ∥sθ(x, t)− st|0(x, t)∥2 (4)

where ∥ · ∥ denotes the Frobenius norm, t ∼ U(0, T ),
x(0) ∼ p0(x), x(t) ∼ pt|0(x(t)|x(0)) with pt|0 denot-
ing the transition kernel from 0 to t, and st|0(x, t) :=
∇x(t) log pt|0(x(t)|x(0)). With sufficient model capacity,
the parameters θ∗ provide an approximation sθ∗ that is
equal to the score s for almost all x and t in the large data
limit (Vincent, 2011). Equipped with an approximation
of the score sθ∗ ≈ s, one can generate data by sampling
according to the solution defined by the reverse diffusion
process from Equation (2).

2.2. Discrete Fourier Transform

DFT. By considering a time series x = (x0, . . . , xN−1) ∈
RdX , the Discrete Fourier Transform (DFT), denoted as
x̃ = F [x], is defined as

x̃κ :=
1√
N

N−1∑
τ=0

xτ exp
(
−κ2πi

N
τ

)
(5)

for all κ ∈ [N ]. In the signal processing literature, each κ
corresponds to a harmonic of frequency ωκ := κ2π

N . For
this reason, the DFT x̃ is said to represent the time series
x in the frequency domain, as opposed to the time domain.
We also note that the DFT is complex-valued (x̃ ∈ CdX ).

Matrix Representation. We note that the DFT oper-
ator F is linear with respect to the time components
(x0, . . . , xN−1). It can therefore be expressed through a left
matrix multiplication x̃ = F [x] = Ux, where U ∈ CN×N

is defined as [U ]κτ := N−1/2 exp(−iωκτ). It can easily be
checked (see Appendix A.1) that the matrix U is unitary:
U∗U = UU∗ = IN , where U∗ is the conjugate transpose
of U and IN is the N × N identity matrix. This implies
that the DFT operator is invertible and that the original time
series can be reconstructed from its representation in the
frequency domain: x = F−1[x̃] := U∗x̃.

DFT of a Real-Valued Sequence. While the DFT x̃ is
defined in CdX , some of its components are made redundant
by the fact that x is a real-valued time-series. One can easily
check (see Appendix A.1) that this constraint imposes the
following mirror symmetry on the DFT for all κ ∈ [N ]:

x̃κ = x̃∗N−κ, (6)

where z∗ denotes the complex conjugate of z ∈ C and we
define x̃N := x̃0 for consistency. Through this symmetry,
we observe that the components x̃κ with κ ≤ ⌊N/2⌋
uniquely define the DFT of a real-valued time series. For
this reason, the frequencies beyond the Nyquist frequency
ωNyq := ω⌊N/2⌋ are redundant with respect to the lower
frequencies. In the frequency domain, one then needs only
to diffuse N real numbers extracted from the DFT and the
rest of x̃ can be deduced from Equation (6).

Signal Energy. An important quantity related to a time
series x is its total energy, which simply corresponds to
the squared Frobenius norm ∥x∥2 :=

∑N−1
τ=0

∑M
ν=1 |xτ,ν |2,

where | · | denotes the modulus of a complex number.
Through Parseval’s theorem, this energy can be evaluated by
computing the same norm for the DFT x̃ of x: ∥x∥2 = ∥x̃∥2.
We note that the total energy is obtained by summing over
all time steps or frequencies. To characterize how the en-
ergy is distributed over the time steps τ ∈ [N ], we use
the energy density defined as the squared Euclidean norm
∥xτ∥22 :=

∑M
ν=1 |xτ,ν |2. Similarly, the spectral energy den-

sity defined as ∥x̃κ∥22 describes how the signal energy is
distributed across the frequencies κ ∈ [N ].

Probability Density in the Complex Space. Adapting the
diffusion formalism to the frequency domain requires to
define a probability density for the complex-valued random
variable x̃ ∈ CdX . By following (Schreier & Scharf, 2010),
this density is written in terms of the real and imaginary
parts of the signal p̃(x̃) := p̃(ℜ[x̃],ℑ[x̃]). Similarly, the
score function follows a similar decomposition in terms of
the signal real and imaginary parts s̃(x̃) := ∇ℜ[x̃] log p̃(x̃)+
i · ∇ℑ[x̃] log p̃(x̃). We note that the gradient involved in the
definition of the scores is non-trivial when the constraint in
Equation (6) is enforced. In Appendix A.2, we establish a
formal definition in this setting by interpreting the complex
signals fulfilling this constraint as a submanifold in CdX .
This constraint implies that the score components follow an
analogous mirror symmetry: s̃κ = s̃∗N−κ for all κ ∈ [N ]. In
the following, we shall implicitly rely on this definition.

3. Diffusing in the Frequency Domain
In the previous section, we have described how the typical
diffusion formalism applies to time-series. We have also
described how the DFT x̃ = F [x] offers a full description of
the time series x in the frequency domain. The first step is to
define how time-based diffusion translates in the frequency
domain. Note that this is non-trivial as the DFT are complex-
valued x̃ ∈ CdX signals. To solve this, we shall assume that
the stochastic process in the time domain {x(t)}Tt=0, written
compactly as x, follows the diffusion process described in
Equation (1). By leveraging the matrix formulation of the
DFT x̃ = Ux, we will now derive diffusion SDEs in the
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frequency domain.

3.1. Diffusion SDEs

In order to derive the diffusion SDEs in the frequency do-
main, we shall simply apply the DFT operator to the forward
diffusion SDE in the time domain from Equation (1). We
note that this equation contains a standard Brownian motion
w. In the below lemma, we describe the DFT of w and
show that it contains two copies of a non-standard Brownian
motion related by the constraint from Equation (6). We refer
to this as a mirrored Brownian motion.

Lemma 3.1. (DFT of standard Brownian motion). Let w
be a standard Brownian motion on RdX with dX = N ·M ,
where N ∈ N+ is the number of time series steps and
M ∈ N+ is the number of features tracked over time. Then
v = Uw is a continuous stochastic process endowed with:
(1) Mirror Symmetry. For all κ ∈ [N ], vκ = v∗

N−κ.
(2) Real Brownian Motion. v0 is a (real) standard Brown-
ian motion on RM .
(3) Complex Brownian Motions. For all κ with 1 ≤ κ ≤
⌊N/2⌋, we can write vκ = (w̃1

κ + iw̃2
κ)/
√
2 where w̃1

κ and
w̃2

κ are independent standard Brownian motions on RM ,
except when N is even and κ = N/2, where vN/2 is a real
standard Brownian motion on RM .
(4) Independence. The stochastic processes {vκ}⌊N/2⌋

κ=0 are
mutually independent.
We call any stochastic process satisfying the above con-
straints a mirrored Brownian motion on CdX .

Proof. The proof is given in Appendix A.3.

Remark 3.2. Note that v is not strictly speaking a Brown-
ian motion, since it contains duplicate components due to
the mirror symmetry. However, our theoretical analysis in
Appendix A demonstrates that we can treat it as such by
restricting to a subset of non-redundant components.

We now leverage Lemma 3.1 to show that x̃ can be described
by diffusion SDEs in the frequency domain which involve
mirrored Brownian motions.

Proposition 3.3. (Diffusion process in frequency domain).
Let us assume that x is a diffusion process that is a solution
of Equation (1), with G(t) = g(t) IN . Then x̃ = F [x] is a
solution to the forward diffusion process defined by:

dx̃ = f̃(x̃, t)dt+ g(t)dṽ, (7)

where f̃(x̃, t) = Uf(U∗x̃, t) and ṽ is a mirrored Brownian
motion on CdX . The associated reverse diffusion process is
defined by:

dx̃ = b̃(x̃, t)dt+ g(t)dv̆ (8)

where b̃(x̃, t) = f̃(x̃, t) − g2(t)Λ2s̃(x̃, t),
Λ ∈ RN×N is a diagonal matrix such that

[Λ]κ,κ =

{
1 if κ = 0, or N is even and κ = N/2
1√
2

otherwise
,

dt is a negative infinitesimal time step, and v̆ is a mirrored
Brownian motion on CdX with time going from T to 0.

Proof. The proof is given in Appendix A.3.

Proposition 3.3 gives us a recipe to implement diffusion
in the frequency domain. It guarantees that the formalism
introduced by Song et al. (2020) extends to this setting with
one important difference: the Brownian motion must be
replaced by a mirrored Brownian motion. Ignoring this
prescription by taking ṽ to be a Brownian motion on CdX

could lead to unintended consequences, such as generating
complex-valued time series x ∈ CdX \ RdX .

3.2. Denoising Score Matching

The reverse diffusion process given in Equation (8) provides
an explicit way to samples time-series in the frequency do-
main provided we can compute b̃(x̃, t), which involves the
unknown score s̃. Like in the time domain, and motivated by
Equation (8), we build an approximation of the score with
a function s̃θ̃∗ , whose parameters θ̃∗ minimize the score
matching objective:

θ̃∗ = argmin
θ̃∈Θ

Et,x̃(0),x̃(t)
[
LSM

(
s̃θ̃,Λ

2s̃t|0, x̃, t
)]

(9)

with t ∼ U(0, T ), x̃(0) ∼ p̃0(x̃), x̃(t) ∼ p̃t|0(x̃(t)|x̃(0))
and Λ is the diagonal matrix defined in Proposition 3.3. In
practice, this objective is evaluated by first obtaining fre-
quency representations of time-series, and then sampling
from p̃t|0 using Equation (7). Having trained s̃θ̃∗ , the back-
ward process and s̃θ̃∗ permit to draw samples from p̃0. It
then suffices to apply the inverse DFT F−1 to map the
resulting complex-valued signals back into the time domain.

One important question remains at this stage. How does
training a score in the frequency domain allow to generate
DFT of time series sampled from pdata? In other words,
how does minimizing the score matching in Equation (9)
imply that p̃0 ≈ p̃data? To answer this question, a key ob-
servation is that we can associate an auxiliary score s′

θ̃
in

the time domain to the score s̃θ̃ by applying an inverse DFT
F−1. Below, we show that minimizing the score matching
loss from Equation (9) for the score s̃θ̃ is equivalent to min-
imizing the score matching loss from Equation (3) for the
auxiliary score s′

θ̃
. This important observation connects the

reverse diffusion process in the frequency domain described
by Equation (8) with a reverse diffusion process in the time
domain following Equation (2).
Proposition 3.4. (Score matching equivalence). Consider
a score s̃θ̃ : CdX × [0, T ]→ CdX defined in the frequency
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domain and satisfying the mirror symmetry [s̃θ̃]κ = [s̃∗
θ̃
]N−κ

for all κ ∈ [N ]. Let us define an auxiliary score s′
θ̃
: RdX ×

[0, T ] → RdX as (x, t) 7→ s′
θ̃
(x, t) = U∗s̃θ̃(Ux, t) in the

time domain. The score matching loss in the frequency
domain is equivalent to the score matching loss for the
auxiliary score in the time domain:

LSM

(
s̃θ̃,Λ

2s̃t|0, x̃, t
)
= LSM

(
s′
θ̃
, st|0, x, t

)
(10)

where s̃t|0(x̃, t) = ∇x̃(t) log p̃t|0(x̃(t)|x̃(0)) , st|0(x, t) =
∇x(t) log pt|0(x(t)|x(0)), and Λ is the diagonal matrix in
Proposition 3.3.

Proof. The proof is given in Appendix A.4.

Propositions 3.3 and 3.4 provide an explicit way to translate
diffusion in the time domain to diffusion in the frequency
domain. We note that attempting to solve Equations (3)
and (9) in the finite-sample regime yields a local minimum
solution in practice. Hence, there is no guarantee that train-
ing a score model in the frequency domain will converge to
an auxiliary score s′

θ̃∗ = sθ∗ identical to the one obtained
by training the score model in the time domain. In partic-
ular, having a score function s̃θ defined in the frequency
domain is an important inductive bias, which is likely to
alter the training dynamic. Through our experiments in the
next section, we study the effect of this inductive bias on
the resulting diffusion processes.

Take-away 1. Diffusion in the frequency domain can
be implemented by replacing the standard Brownian
motions with mirrored Brownian motions in the diffu-
sion SDEs. The associated score can be optimized by
minimizing a denoising score matching loss.

4. Comparing Time and Frequency Diffusion
In this section, we empirically analyze the effect of per-
forming time series diffusion in the frequency domain 2.
In Section 4.1, we show that frequency diffusion models
better capture their training distribution than time models.
In Section 4.2, we argue that these differences of perfor-
mance can be attributed the localization of the time series
in the frequency domain. Finally, in Section 4.3, we arti-
ficially create settings where time models outperform the
frequency models in order to confirm this hypothesis. The
code necessary to reproduce the results, along with detailed
instructions, is provided as a supplementary material.

Data. To illustrate the breadth of time series applications,
we work with 6 different datasets described in Table 1. We

2The code is publicly available at the following
links: https://github.com/JonathanCrabbe/
FourierDiffusion https://github.com/
vanderschaarlab/FourierDiffusion

observe that these datasets cover many use-cases (healthcare,
finance, engineering and climate modelling), sample sizes,
sequence lengths N and number of features tracked over
time M . All the datasets are standardized before being fed
to models. We also split the datasets into a training set
Dtrain and a validation set Dval. We provide more details
on the datasets in Appendix B.1.

Models. For each dataset, we parametrize the time score
model sθ and the frequency score model s̃θ̃ as transformer
encoders with 10 attention and MLP layers, each with 12
heads and dimension dmodel = 72. Both models have
learnable positional encoding as well as diffusion time t
encoding through random Fourier features composed with
a learnable dense layer. This results in models with 3.2M
parameters. We use a VP-SDE with linear noise schedul-
ing and βmin = 0.1 and βmax = 20, as in (Song et al.,
2020). The score models are trained with the denoising
score-matching loss, as defined in Section 3. All the mod-
els are trained for 200 epochs with batch size 64, AdamW
optimizer and cosine learning rate scheduling (20 warmup
epochs, lrmax = 10−3). The selected model is the one
achieving the lowest validation loss.

Time and Frequency. Crucially, the only difference be-
tween the time and the fequency diffusion models is the
domain in which their input time series are represented.
Since all datasets are expressed in the time domain, they
can directly be fed to the time diffusion model sθ. When
it comes to the frequency diffusion model s̃θ̃, the data is
first mapped to the frequency domain by applying a DFT
F on each time series. In the time domain, the forward and
reverse diffusion obey the SDEs in Equations (1) and (2).
In the frequency domain, the forward and reverse diffusion
obey the modified SDEs in Equations (7) and (8). The de-
noised samples x̃(0) obtained in the frequency domain can
be pulled back to the time domain by applying an inverse
DFT x̃(0) 7→ F−1[x̃(0)]. In the following, we shall denote
by Stime ⊂ RdX and Sfreq ⊂ RdX the time representation
of the samples generated by the time and frequency mod-
els. Similarly, we shall denote by S̃time := F [Stime] and
S̃freq := F [Sfreq] the frequency representations of these
time series. We sample |Stime| = |Sfreq| = 10, 000 sam-
ples for each model by applying T = 1, 000 diffusion time
steps.

4.1. Which Samples Better Capture the Distribution?

Methodology. We are interested in the faithfulness of the
samples generated by the time and frequency diffusion mod-
els. Ideally, this faithfulness should be evaluated by comput-
ing the Wasserstein distance between the true distribution
and the distribution spanned by our diffusion models. How-
ever, this is impossible since the exact computation of the
Wasserstein distance in intractable in input spaces of large

5

https://github.com/JonathanCrabbe/FourierDiffusion
https://github.com/JonathanCrabbe/FourierDiffusion
https://github.com/vanderschaarlab/FourierDiffusion
https://github.com/vanderschaarlab/FourierDiffusion


Time Series Diffusion in the Frequency Domain

Table 1. Various datasets used in our experiments and some of their properties.
Dataset Reference Field # Samples # Steps N # Features M
ECG (Kachuee et al., 2018) Healthcare 87,553 187 1
MIMIC-III (Johnson et al., 2016) 19,155 24 40
NASDAQ-2019 (Onyshchak, 2020) Finance 4,827 252 5
NASA-Charge (Saha & Goebel, 2007) Engineering 2,396 251 4
NASA-Discharge 1,755 134 5
US-Droughts (Minixhofer, 2021) Climate 2,797 365 13

Table 2. Sliced Wasserstein distances (↓) evaluated in the time domain (SW (Dtrain,Stime), SW (Dtrain,Sfreq)) and in the frequency
domain (SW (D̃train, S̃time), SW (D̃train, S̃freq)) on the various datasets. For each distance, we report its mean ± 2 standard errors.

Dataset Metric Domain Diffusion Domain
Frequency Time

ECG Frequency 0.012 ± 0.000 0.020 ± 0.000
Time 0.015 ± 0.000 0.021 ± 0.000

MIMIC-III Frequency 0.144 ± 0.004 0.206 ± 0.006
Time 0.152 ± 0.004 0.211 ± 0.006

NASDAQ-2019 Frequency 45.812 ± 2.096 64.056 ± 3.040
Time 43.602 ± 2.044 60.512 ± 2.960

NASA-Charge Frequency 0.211 ± 0.008 0.27 ± 0.006
Time 0.229 ± 0.008 0.316 ± 0.008

NASA-Discharge Frequency 1.999 ± 0.084 2.974 ± 0.134
Time 2.028 ± 0.082 2.942 ± 0.134

US-Droughts Frequency 0.633 ± 0.018 2.849 ± 0.090
Time 0.738 ± 0.020 2.913 ± 0.092

dimension dX ≫ 1. In the case of images, (Heusel et al.,
2017) mitigates these problems by mapping all the images
in a lower dimensional representation space (the activation
of the penultimate layer of an Inception-V3 model). This
crucially relies on the fact that the Inception-V3 provides
high-quality representations of images. Unfortunately, such
a general representation of time series does not exist in prac-
tice. Hence, our evaluation needs to be performed in the
input space RdX directly. For this reason, we shall rely
on the sliced Wasserstein distance introduced by (Bonneel
et al., 2015), which has similar properties to the Wasserstein
distance and can be efficiently estimated in high dimension
spaces. With a slight abuse of notation, we shall denote by
SW (S1,S2) the sliced Wasserstein distances between the
empirical distributions corresponding to the samples S1 and
S2. Its detailed definition is provided in Appendix B.2.

Analysis. The sliced Wasserstein distances are reported in
Table 2. Interestingly, we observe that the frequency diffu-
sion models consistently outperform the time diffusion mod-
els for all datasets both in the time and the frequency domain.
In Appendix B.4, we show that using marginal Wasserstein
distances instead of sliced Wasserstein distances essentially
leads to the same conclusion. In order to verify that our
observations are not specific to transformer backbones, we
reproduce the same experiment with LSTM backbones in

Appendix D and obtain similar results showing the superior
performance of frequency diffusion models. While this ob-
servation already suggests the benefits of diffusing in the
frequency domain rather than in the time domain, it is impor-
tant to understand how these performance gains emerge. For
this, we need to gain a better understanding of the training
distributions, which is the object of next section.

4.2. How to Explain the Differences?

Signal energy analysis. Before formulating an hypothesis
as to why the frequency models are better, it is helpful to
gain a better understanding about the training distribution
Dtrain. To that end, we leverage the energy and spectral
densities related to the time series, described in Section 2.
These densities are represented in Figure 1, where we have
averaged the densities over all time series in Dtrain. By
analyzing Figure 1b, we make a key observation: for all
datasets, most of the time series energy in the frequency
domain is localized on the frequency ω0 = 0 also known
as the fundamental frequency. Furthermore, we observe
that the energy quickly decays as the frequency increases.
This observation suggests that the low frequencies capture
most of the time series information. This is in stark contrast
with the energy distribution over time in Figure 1a, which
is more uniform over time for all the datasets. This asym-
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Figure 1. Localization of time series in the time and frequency domains. Time series are more localized in the frequency domain.
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Figure 2. By evaluating our delocalization metrics in the time do-
main (∆time) and the frequency domain (∆freq), we quantitatively
confirm that all the datasets are significantly more localized in the
frequency domain. All the metrics are averaged over Dtrain, their
mean is reported with a 95% confidence interval.

metry between the time series spectral localization and their
temporal delocalization is a promising candidate to explain
the superior performances of frequency diffusion. We now
make this observation more quantitative.

Quantitative Signal Localization. In order to measure how
delocalized a time series x ∈ RdX is in the time domain,
we shall use the delocalization metrics introduced by (Nam,
2013):

∆time(x) := min
τ∈[N ]

1

∥x∥2
∑

τ ′∈[N ]

dcyc(τ, τ
′)∥xτ ′∥22, (11)

where dcyc : [N ]2 → [N ] is the cyclic distance defined as
dcyc(τ, τ

′) = min(|τ − τ ′|, N − |τ − τ ′|), ∥ · ∥ denotes

the Frobenius norm and ∥ · ∥2 the Euclidean norm. Simi-
larly, we can compute the delocalization in the frequency
domain ∆freq by replacing x 7→ x̃ and τ, τ ′ 7→ κ, κ′ in
Equation (11). We report these delocalization metrics for
each dataset in Figure 2. This quantitative analysis confirms
our previous observations: the time series in all the datasets
appear significantly more localized in the frequency domain.
Interestingly, we never observe a time series that is localized
in both the frequency and time domain simultaneously. This
is in agreement with the uncertainty principle from (Nam,
2013), which echoes the foundational work of (Heisenberg,
1927). This verification is made in Appendix B.4.

A Localization Explanation. Based on the previous obser-
vation, we postulate that higher localization of the time se-
ries in the frequency domain contributes to the superior per-
formance of frequency diffusion models. While we will test
this hypothesis in the next section, it is useful to discuss the
intuition behind it first. Due to the frequency localization,
the frequency score model is presented with a representation
of the time series where most of the relevant information is
aligned with few components of the model’s input (i.e. the
lower frequencies, especially the fundamental). This is in
contrast with the time model, which is presented with an
input where all the components matter equally. It follows
that the frequency model does not need to learn a good dis-
tribution over all frequencies in order to generate samples of
high quality, provided the lower frequency distributions are
properly learned. The time model, on the other hand, needs
to model all the time steps accurately in order to generate
high-quality samples. If this intuition is correct, it would
imply that delocalizing the signal in the frequency domain
should reduce the gap of performance between time and
frequency models. This is analyzed in the next section.
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Figure 3. Sliced Wasserstein distances of time and frequency models (blue) and localization metrics in time and frequency domains (red)
when smoothing the spectral representations of the time series with Gaussian kernels of variable width. Increasing the kernel width
removes the localization in the frequency domain and increases the localization in the time domain. Coincidentally, the time diffusion
model becomes better than the frequency diffusion model.

4.3. Should we Always Diffuse in the Frequency
Domain?

Removing Spectral Localization. We would like to assess
whether the localization of these signals in the frequency
domain contribute to explain the superior performances of
frequency diffusion models over time diffusion models. To
test this hypothesis, we intervene on a given dataset with the
objective of varying the localization of frequency and time
representations. With this in mind, it is useful to start from
a dataset where the imbalance between time and frequency
localization is not severe. By looking at Figure 2, it is clear
that the ECG dataset is the best candidate. In order to grad-
ually remove the spectral localization from the ECG dataset
DECG, we convolve the time series x in the frequency do-
main with Gaussians of increasing kernel width σ ∈ R+ and
define xσ := F−1 [F [x] ⋆ gσ], where ⋆ denotes the convo-
lution between two signals and gσκ := Z−1 exp[−κ2/(2σ2)]
for all κ ∈ [N ] is a Gaussian kernel with normalization
Z =

∑N
κ=1 exp[−κ2/(2σ2)]. This results in a family of

corrupted datasets Dσ
ECG, where the localization in the fre-

quency domain decreases as σ increases. This is indeed
what we observe in Figure 3 with the red curves. Coinci-
dentally, the delocalization decreases in the time domain, in
agreement with the uncertainty principle. The two curves
cross at σ ≈ 2, beyond which the time series are more local-
ized in the time domain. Let us now analyze how the model
performances evolve with different values of σ.

Analysis. We train time and frequency diffusion models on
the datasets Dσ

ECG for σ ∈ {0, 5, 7, 10, 20}, where σ = 0
corresponds to the original ECG dataset: Dσ=0

ECG = DECG.
As in Section 4.1, we measure the quality of 10, 000 sam-
ples S produced by these models with the Wasserstein dis-
tances SW (Dσ

ECG,S) in Figure 3a and SW (D̃σ
ECG, S̃) in

Figure 3b. By inspecting the blue curves from these fig-
ures, we notice that decreasing the frequency closes the
gap between the time and the frequency models. Moreover,
the two curves cross around at σ ≈ 7, beyond which the
time model outperforms the frequency model. This con-
firms our hypothesis that the localization (at least) partially
explains the better performance of the frequency diffusion
model. Similar results can be obtained with other datasets,
as discussed in Appendix B.4.

A Cautionary Remark. Before concluding, we would like
to incorporate a bit of nuance in our analysis. While the
above results suggest that localization is an important factor
to explain the superior performance of frequency diffusion
models, we do not claim that this is the only explanation.
There are essentially two things that suggest that this only
partially explains the observations from Section 4.1. (1) In
Figure 3, the blue curves and the red curves don’t cross
for the same value of σ (i.e. the red curves cross at σ ≈ 2
and the blue curves at σ ≈ 7). Hence, the time model
requires time series that are substantially more localized
in the time domain in order to outperform the frequency
model. (2) In the limit σ → +∞, the time series become
constant in the frequency domain. While this corresponds to
a minimal localization in the frequency model, this should
also be very easy for a frequency diffusion model to learn.
Hence, decreasing the localization of the time series in a
given domain does not necessarily imply that the resulting
time series are more difficult to model in that domain.

Take-away 2. For all datasets in this paper, diffusing
in the frequency domain yields better performances
than in the time domain. A promising explanation for
this is that time series from these datasets are substan-
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tially more localized in their spectral representation
than in their temporal representation.

5. Discussion
In this work, we have improved the understanding of how
diffusion models should be used with time series. We con-
structed a theoretical framework that extends the score-
based SDE formulation of diffusion to complex-valued
times series representations in the frequency domain. We
have then demonstrated empirically that implementing time
series diffusion in the frequency domain consistently outper-
forms the canonical diffusion in the time domain. Finally,
we showed that the spectral localization of the time series
plays a significant role to explain this phenomenon. There
is a number of interesting ways to extend our work.

Time Localized Datasets. While all 6 datasets we have
studied appear substantially more localized in their spectral
representation, we do not claim that is is a universal prop-
erty of real-world time series. In particular, it would be of
interest to survey a large amount of time series datasets to
determine the extent to which this phenomenon occurs.

Multiresolution Analysis. It may be fruitful to represent
time series at different resolutions to facilitate generative
modeling. A multiresolution representation of time series
can be obtained for example by computing a wavelet trans-
form (Mallat, 1999) of these time series. Adapting the
theory from Section 3 to wavelets in order to represent time
series at multiple resolutions could represent an interesting
avenue for future work.

Latent Diffusion. Latent diffusion has emerged as a fruitful
direction of research in the diffusion literature (Rombach
et al., 2022). A promising direction would be to study how
spectral representations of time series can be incorporated
to their latent representations and whether this benefits the
quality of the generated samples. We leave these insightful
research directions for future work.
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Zeni, C., Pinsler, R., Zügner, D., Fowler, A., Horton, M.,
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A. Mathematical details
A.1. DFT properties

Proposition A.1 (Unitarity of the DFT operator). The DFT matrix U ∈ CN×N with elements [U ]κτ := N−1/2 exp(−iωκτ)
with ωκ := κ2π

N is unitary.

Proof. Let U∗ denote the conjugate transpose of U . For any κ and τ in [N ], we have:

[UU∗]κτ =

N−1∑
β=0

[U ]κβ [U
∗]βτ

=
1

N

N−1∑
β=0

exp(−iωκβ) exp(iωβτ)

=
1

N

N−1∑
β=0

exp(−iωκ−τβ)

Hence, if κ = τ , we have [UU∗]κτ = 1, otherwise [UU∗]κτ = 0, since exp(−iωκ−τN) = 1. This is equivalent to
UU∗ = IN , i.e. U is unitary.

Proposition A.2. The DFT x̃ = F [x] = Ux of a real-valued time series x ∈ RdX verifies the following mirror symmetry
for all κ ∈ [N ]:

x̃κ = x̃∗N−κ.

Proof. Let κ and τ be in [N ]. We first note that exp(iωN−κτ) = exp(i(ωN − ωκ)τ) = exp(−iωκτ). Hence,

x̃∗N−κ =

N−1∑
τ=0

[U ]∗N−κ,τxτ (x is real valued)

= N−1/2
N−1∑
τ=0

exp(iωN−κτ)xτ

= N−1/2
N−1∑
τ=0

exp(−iωκτ)xτ

=

N−1∑
τ=0

[U ]κ,τxτ

= x̃κ

A.2. Densities and scores for constrained signals

As we have mentioned in Section 2, the redundancy between certain components of the DFT x̃ ∈ CdX of x expressed
by Equation (6) needs to be taken into account if we wish to define a density p̃ for the time series distribution in the
frequency domain. In particular, this redundancy implies that the density is really defined on a submanifold CdX

constr := {x̃ =
(x̃0, . . . , x̃N−1) ∈ CdX | x̃κ = x̃∗

N−κ∀κ ∈ [N ]} of complex signals fulfilling the constraint. We can define a coordinate
chart φ : CdX

constr → RdX on this submanifold by extracting the unconstrained part of a DFT x̃. This operator simply
concatenates the relevant real and imaginary parts of the DFT and is defined as follows for all x̃ ∈ CdX

constr:

φ[x̃] =

{
(ℜ[x̃κ])

N/2
κ=0 ⊕ (ℑ[x̃κ])N/2−1

κ=1 if N ∈ 2N
(ℜ[x̃κ])

⌊N/2⌋
κ=0 ⊕ (ℑ[x̃κ])

⌊N/2⌋
κ=1 else,

(12)
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where v1 ⊕ v2 denotes the concatenation of two vectors v1 ∈ Rd1 and v2 ∈ Rd2 , with d1, d2 ∈ N. Due to Equation (6), one
can unambiguously reconstruct x̃ ∈ CdX

constr from φ[x̃]. Hence, the coordinate chart admits an inverse φ−1 : RdX → CdX
constr

defined as follows for all z = (z0, . . . , zN−1) ∈ RdX :

φ−1[z] =

{
(z0)⊕ (zκ + i · zN/2+κ)

N/2−1
κ=1 ⊕ (zN/2)⊕ (zN/2−κ − i · zN−κ)

N/2−1
κ=1 if N ∈ 2N

(z0)⊕ (zκ + i · z⌊N/2⌋+κ)
⌊N/2⌋
κ=1 ⊕ (z⌈N/2⌉−κ − i · zN−κ)

⌊N/2⌋
κ=1 else.

(13)

With this coordinate chart, it becomes possible to rigorously define the density p̃ : CdX
constr → R+. One simply defines a

probability density p̃φ : RdX → R+ over the real vector space RdX on which the coordinate chart is defined and pull it back
to the manifold of constrained signals p̃ := p̃φ ◦ φ. This indeed defines a density that depends on the real and imaginary
parts of the frequency representations x̃ ∈ CdX

constr of time series, as announced in Section 2.

Finally, it remains to rigorously define the score s̃ : CdX
constr × [0, T ] → CdX in the frequency domain. This can be

done by starting from the real score s̃φ : RdX × [0, T ] → RdX that is well-defined for all z ∈ RdX and t ∈ [0, T ] as
s̃φ(z, t) = ∇z log p̃φ,t(z). Again, one can expand this vector field to the constrained manifold by defining for all x̃ ∈ CdX

constr

and all t ∈ [0, T ]:

s̃(x̃, t) := φ−1[s̃φ(φ(x̃), t)]. (14)

This indeed defines a vector field involving partial derivatives of the log density with respect to the real and imaginary parts
of the frequency representations x̃ ∈ CdX

constr of time series and respects the mirror symmetry by virtue of Equation (13).
Everything is then consistent with the discussion from Section 2.

A.3. Diffusion SDEs in the frequency domain

Lemma 3.1. (DFT of standard Brownian motion). Let w be a standard Brownian motion on RdX with dX = N ·M , where
N ∈ N+ is the number of time series steps and M ∈ N+ is the number of features tracked over time. Then v = Uw is a
continuous stochastic process endowed with:
(1) Mirror Symmetry. For all κ ∈ [N ], vκ = v∗

N−κ.
(2) Real Brownian Motion. v0 is a (real) standard Brownian motion on RM .
(3) Complex Brownian Motions. For all κ with 1 ≤ κ ≤ ⌊N/2⌋, we can write vκ = (w̃1

κ + iw̃2
κ)/
√
2 where w̃1

κ and w̃2
κ

are independent standard Brownian motions on RM , except when N is even and κ = N/2, where vN/2 is a real standard
Brownian motion on RM .
(4) Independence. The stochastic processes {vκ}⌊N/2⌋

κ=0 are mutually independent.
We call any stochastic process satisfying the above constraints a mirrored Brownian motion on CdX .

Proof. (1) Mirror Symmetry. This point directly follows from the symmetry of the DFT, proved in Proposition A.2.

In what follows, we consider without loss of generality the case M = 1, since the cases M > 1 can be handled similarly by
flattening matrices into vectors and using the same arguments as below. Let us first decompose U into its real and imaginary
parts, i.e. U = Ure+ iUim, where Ure and Uim are in RN×N . Note that these two matrices are both symmetric. Computing
the distribution of the components of v will require the knowledge of covariance matrices, which will depend on U2

re, U2
im

and UreUim. For any κ and τ in [N ],

[U2
re]κ,τ =

1

N

N−1∑
γ=0

cos(
2π

N
κγ) cos(

2π

N
τγ)

=
1

2N

N−1∑
γ=0

(
cos(

2π

N
(κ+ τ)γ) + cos(

2π

N
(κ− τ)γ)

)
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Similarly,

[U2
im]κ,τ =

1

N

N−1∑
γ=0

sin(
2π

N
κγ) sin(

2π

N
τγ)

=
1

2N

N−1∑
γ=0

(
cos(

2π

N
(κ− τ)γ)− cos(

2π

N
(κ+ τ)γ)

)
To compute these sums, we consider the situations where:

• N |κ− τ : this is equivalent to κ = τ , since −(N − 1) ≤ κ− τ ≤ N − 1

• N |κ+ τ : this is equivalent to κ = τ = 0 or κ+ τ = N , since 0 ≤ κ+ τ ≤ 2(N − 1)

Hence, if N is even:

[U2
re]κ,τ =


1 if κ = τ = 0 or κ = τ = N

2
1
2 if κ /∈ {0, N/2} and κ = τ or κ = N − τ

0 otherwise
and [U2

im]κ,τ =


0 if κ = τ = 0 or κ = τ = N

2
1
2 if κ /∈ {0, N/2} and κ = τ

− 1
2 if κ ̸= N/2 and κ = N − τ

0 otherwise

(15)

If N is odd:

[U2
re]κ,τ =


1 if κ = τ = 0
1
2 if κ ̸= 0 and κ = τ , or κ = N − τ

0 otherwise
and [U2

im]κ,τ =


0 if κ = τ = 0
1
2 if κ ̸= 0 and κ = τ

− 1
2 if κ = N − τ

0 otherwise

(16)

Finally, we compute UreUim:

[UreUim]κ,τ =
1

N

N−1∑
γ=0

cos(
2π

N
κγ) sin(

2π

N
τγ)

=
1

2N

N−1∑
γ=0

(
sin(

2π

N
(τ − κ)γ) + sin(

2π

N
(κ+ τ)γ)

)
= 0

Hence, UreUim = 0N and similarly UimUre = 0N by taking the transpose and using the symmetry of Ure and Uim. We

can now characterize the distribution followed by the stochastic process v. We first write Ucol =

(
Ure

Uim

)
, and then notice

that v can be investigated through the lens of its flattened version vflat = Ucolw, which is a stochastic process in R2N .

(2) Real Brownian Motion. First, v0 is real-valued, by using (1) Mirror Symmetry. We then have the following:

• v0(0) = 0 almost surely: this stems from w(0) = 0 almost surely, since w is a multivariate standard Brownian motion
and v = Uw.

• Continuity of t→ v0(t) almost surely: w satisfies the continuity property and the DFT operator (seen as a complex
operator) is linear, hence v0 is also continuous with respect to t almost surely.

• Stationary and independent increments: this follows from the linearity of the DFT operator and w being a Brownian
motion.
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• For any t, s ≥ 0, v0(t+ s)− v0(s) ∼ N (0, t): to see this, we notice that v0(t+ s)− v0(s) is Gaussian3 since it is a
linear transform of w(t+ s)−w(s). Moreover, its mean and its variance are given by:

E
[
v0(t+ s)− v0(s)

]
=
[
UcolE[w(t+ s)−w(s)]

]
0

= 0

Var(v0(t+ s)− v0(s)) =
[
UcolCov

(
w(t+ s)−w(s),w(t+ s)−w(s)

)
UT
col)

]
0,0

= t[UcolU
T
col]0,0

= t[U2
re]0,0

= t

Hence, we have shown that v0 is a real Brownian motion.

(3) Complex Brownian Motions. Let 1 ≤ κ < ⌊N/2⌋. Then, ℜ(vκ) and ℑ(vκ) follow the first three properties of a
Brownian motion, using the same arguments as above. For the last point, we first characterize the distribution of ℜ(vκ) and
ℑ(vκ), and then show that they are independent.

Distribution of ℜ(vκ).
√
2ℜ(vκ) is a standard Brownian motion in R: For any t, s ≥ 0, ℜ(vκ)(t + s) − ℜ(vκ)(s) is

Gaussian since it is a linear transform of w(t+ s)−w(s) which is a Gaussian vector. We can compute its mean and its
variance:

E
[
ℜ(vκ)(t+ s)−ℜ(vκ)(s)

]
=
[
UcolE[w(t+ s)−w(s)]

]
κ

= 0

Var
(
ℜ(vκ)(t+ s)−ℜ(vκ)(s)

)
=
[
UcolCov

(
w(t+ s)−w(s),w(t+ s)−w(s)

)
UT
col)

]
κ,κ

= t[UcolU
T
col]κ,κ

= t[U2
re]κ,κ

=
1

2
t

Distribution of ℑ(vκ). Similarly, we can prove with the same arguments that
√
2ℑ(vκ) is a standard Brownian motion in R.

Independence of ℜ(vκ) and ℑ(vκ). Let k and m be two strictly positive integers, and let (t1, ..., tk) ∈ (R∗
+)

k

and (t′1, ..., t
′
m) ∈ (R∗

+)
m. We need to show that the vectors vre

κ =
(
ℜ(vκ)(t1), ...,ℜ(vκ)(tk)

)
and vim

κ =(
ℑ(vκ)(t

′
1), ...,ℑ(vκ)(t

′
m)

)
are independent. First, the concatenation of vre

κ and vim
κ can be expressed as a linear trans-

form of (w(t1), ...,w(tk),w(t′1), ...,w(t′m)), which is a Gaussian vector since w is a Brownian motion. Consequently,
(vre

κ ,vim
κ ) is also a Gaussian vector. Now, let l ∈ {1, ..., k} and n ∈ {1, ...,m}. Then,

Cov
(
ℜ(vκ)(tl),ℑ(vκ)(t

′
n)
)
=
[
UreCov

(
w(tl),w(t′n)

)
Uim

]
κ,κ

= min(tl, t
′
n)[UreUim]κ,κ

= 0

Given this covariance structure and the fact that (vre
κ ,vim

κ ) is a Gaussian vector, we have vre
κ ⊥⊥ vim

κ . Since this holds true
for any choice of (t1, ..., tk) ∈ R∗

+
k and (t′1, ..., t

′
m) ∈ R∗

+
m, we conclude that ℜ(vκ) ⊥⊥ ℑ(vκ). The case k = ⌊N2 ⌋ can be

handled using the same arguments, by distinguishing the cases N odd and N even.

(4) Independence. The mutual independence of the stochastic processes {ṽκ}⌊N/2⌋
κ=0 follows from the structure of U2

re and
U2
im. Indeed, for any m and n such that m ̸= n, 0 ≤ m ≤ ⌊N2 ⌋, and 0 ≤ n ≤ ⌊N2 ⌋, we have [U2

re]m,n = [U2
im]m,n =

[UreUim]m,n = 0. We can then apply the same argument as in 3) of (3) Complex Brownian Motions to obtain the mutual
independence of the stochastic processes {ṽκ}⌊N/2⌋

κ=0 .
3Note that a random variable almost surely equal to 0 can be seen as a degenerate Gaussian with mean 0 and variance 0.
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Proposition 3.3. (Diffusion process in frequency domain). Let us assume that x is a diffusion process that is a solution of
Equation (1), with G(t) = g(t) IN . Then x̃ = F [x] is a solution to the forward diffusion process defined by:

dx̃ = f̃(x̃, t)dt+ g(t)dṽ, (7)

where f̃(x̃, t) = Uf(U∗x̃, t) and ṽ is a mirrored Brownian motion on CdX . The associated reverse diffusion process is
defined by:

dx̃ = b̃(x̃, t)dt+ g(t)dv̆ (8)

where b̃(x̃, t) = f̃(x̃, t) − g2(t)Λ2s̃(x̃, t), Λ ∈ RN×N is a diagonal matrix such that

[Λ]κ,κ =

{
1 if κ = 0, or N is even and κ = N/2
1√
2

otherwise
, dt is a negative infinitesimal time step, and v̆ is a mir-

rored Brownian motion on CdX with time going from T to 0.

Proof. Forward SDE. Since x̃ = Ux, we can apply the multivariate Itô’s lemma (Eq. 8.3, (Kloeden et al., 1992)), and obtain
a forward SDE for x̃:

dx̃ = Uf(x, t)dt+ g(t)Udw′ (17)

where we have implicitly used the fact that G(t) = g(t)IN and U commute. By Lemma 3.1, ṽ = Uw′ is a mirrored
Brownian motion on CdX , which gives the result.

Reverse SDE. In order to derive the reverse SDE for x̃, we follow three steps: (1) we write a forward SDE for which the
truncation φ[x̃] is a solution ; (2) we write its associated reverse-time SDE (Anderson, 1982) and (3) we derive the full
reverse SDE for the stochastic process x̃.

Step 1: From Equation (17) and using Lemma 3.1, we can extract the following forward SDE for φ[x̃], which is defined in
Equation (12) :

dφ[x̃] = φ
[
Uf(U∗φ−1(φ[x̃]), t)

]
dt+ g(t)Λdw̆ (18)

where:

• φ−1 : RdX → CdX satisfies φ−1(φ[Uy]) = Uy for all y ∈ RdX as defined in Equation (13).

• Λ ∈ RN×N is a diagonal matrix such that [Λ]κ,κ =

{
1 if κ = 0, or N is even and κ = N/2
1√
2

otherwise
,

• w̆ is a stochastic process in RdX which satisfies Λw̆ = φ[Uw′]. The above point, together with Lemma 3.1), then
implies that w̆ is in fact a standard multivariate Brownian motion.

Step 2: The associated reverse-time SDE (Anderson, 1982) is given by:

dφ[x̃] =
{
φ
[
Uf(U∗φ−1(φ[x̃]), t)

]
− g(t)2ΛΛT∇φ[x̃] log p̃t(φ[x̃])

}
dt+ g(t)Λdŵ (19)

where ŵ is a standard Brownian motion on RdX .

Step 3: Since φ−1(φ[x̃]) = x̃, we can recover the reverse-time SDE followed by x̃ by applying the operator φ−1 to φ[x̃],
and using the Itô’s lemma:

dx̃ =
{
φ−1(φ

[
Uf(U∗φ−1(φ[x̃]), t)

]
)− g(t)2φ−1

(
Λ2∇φ[x̃] log p̃t(φ[x̃])

)}
dt+ g(t)φ−1(Λ)dŵ (20)

where we have exploited the fact that φ−1 is linear, and with the slight abuse of notation φ−1(Λ) ∈ CN×N , which is the
matrix obtained by applying φ−1 to the columns of Λ. Using the definition of φ−1, Equation (20) can further be simplified
into:

dx̃ =
{
Uf(U∗x̃, t)− g(t)2φ−1

(
Λ2∇φ[x̃] log p̃t(φ[x̃])

)}
dt+ g(t)dv̆ (21)

where v̆ = φ−1(Λ)ŵ = φ−1(Λŵ) is a mirrored Brownian motion. Finally, notice that for any y ∈ RdX , we have
φ−1(Λ2y) = Λ2φ−1(y), which follows from the definition of φ−1. Hence, Equation (21) is equivalent to:

dx̃ =
{
Uf(U∗x̃, t)− g(t)2Λ2s̃(x̃, t)

}
dt+ g(t)dv̆ (22)
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where s̃(x̃, t) has been defined in Equation (14).

A.4. Denoising score matching in the frequency domain

Proposition 3.4. (Score matching equivalence). Consider a score s̃θ̃ : CdX × [0, T ]→ CdX defined in the frequency domain
and satisfying the mirror symmetry [s̃θ̃]κ = [s̃∗

θ̃
]N−κ for all κ ∈ [N ]. Let us define an auxiliary score s′

θ̃
: RdX × [0, T ]→

RdX as (x, t) 7→ s′
θ̃
(x, t) = U∗s̃θ̃(Ux, t) in the time domain. The score matching loss in the frequency domain is equivalent

to the score matching loss for the auxiliary score in the time domain:

LSM

(
s̃θ̃,Λ

2s̃t|0, x̃, t
)
= LSM

(
s′
θ̃
, st|0, x, t

)
(10)

where s̃t|0(x̃, t) = ∇x̃(t) log p̃t|0(x̃(t)|x̃(0)) , st|0(x, t) = ∇x(t) log pt|0(x(t)|x(0)), and Λ is the diagonal matrix in Proposi-
tion 3.3.

Proof. Let Λ ∈ RN×N be the diagonal matrix such that [Λ]κ,κ =

{
1 if κ = 0, or N is even and κ = N/2
1√
2

otherwise

Step 1: We first express the score of x with respect to the score of the truncation φ[x̃].

By definition of φ−1 in Equation (13), we have x = U∗φ−1(φ[x̃]). Hence, we can write, using the change of variable
formula:

pt|0(x(t)|x(0)) = C · p̃t|0
(
φ[x̃(t)]|φ[x̃(0)]

)
(23)

where C is a constant which does not depend on x, since x 7→ φ[Ux] is linear. Moreover, let us write x 7→ φ[Ux] in matrix

form, i.e. ∀x ∈ RdX , φ[Ux] = V Ucolx = Qx, where V ∈ RN×2N , Ucol =

(
Ure

Uim

)
and Q is an invertible matrix in RN×N .

For the rest of the proof, we shall build on the below results:

Result 1. QQT = Λ2. To see this, write QQT = V UcolU
T
colV

T . The matrix UcolU
T
col is equal to

(
U2
re 0N

0N U2
im

)
(cf.

the proof to Lemma 3.1), while the multiplication by V , on the left and on the right of UcolU
T
col, extracts the submatrix

corresponding to the indices represented by the truncature φ. Hence, V UcolU
T
colV

T = Λ2.

Result 2. For any x ∈ RdX , we have QT x = U∗φ−1[Λ2x]. To see this, notice that Result 1 implies that QT x = Q−1Λ2x =
U∗φ−1[Λ2x] for all x ∈ RdX .

Equipped with these results, we can now complete the rest of the proof. First, we have:

∇x(t) log pt|0(x(t)|x(0)) = ∇x(t) log p̃t|0
(
φ[x̃(t)]|φ[x̃(0)]

)
(24)

= QT∇φ[x̃(t)] log p̃t|0(φ[x̃(t)]|φ[x̃(0)]) (Chain rule) (25)

Step 2: We then obtain:

LSM

(
s′
θ̃
, st|0, x, t

)
:= ∥s′

θ̃
(x, t)−∇x(t) log pt|0(x(t)|x(0))∥2

= ∥Us′
θ̃
(x, t)− U∇x(t) log pt|0(x(t)|x(0))∥2 (Parseval identity)

= ∥s̃θ̃(x̃, t)− UQT∇φ[x̃(t)] log p̃t|0(φ[x̃(t)]|φ[x̃(0)])∥2 (Equation (25))

= ∥s̃θ̃(x̃, t)− UU∗φ−1[Λ2∇φ[x̃(t)] log p̃t|0(φ[x̃(t)]|φ[x̃(0)]]∥2 (Result 2)

= ∥s̃θ̃(x̃, t)− Λ2φ−1[∇φ[x̃(t)] log p̃t|0(φ[x̃(t)]|φ[x̃(0)]]∥2 (Proposition A.1 & Definition of φ−1)

= ∥s̃θ̃(x̃, t)− Λ2s̃t|0(x̃, t)∥2 (Equation (14))

= LSM

(
s̃θ̃,Λ

2s̃t|0, x̃, t
)
.
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B. Empirical details
Compute resources. All the models were trained and used for sampling on a single machine equipped with a 18-Core Intel
Core i9-10980XE CPU, a NVIDIA RTX A4000 GPU and a NVIDIA GeForce RTX 3080.

B.1. Details on datasets

In this subsection, we give detailed information about the 6 datasets used throughout our experiments and the preprocessing
steps for each of them.

ECG. We use two collections of heartbeat signals, from the MIT-BIH Arrhythmia Dataset and the PTB Diagnostic ECG
Database (Kachuee et al., 2018). No preprocessing was performed on this dataset.

MIMIC-III. MIMIC-III (Johnson et al., 2016) is a database consisting of deidentified records for patients who were in
critical unit care units. Preprocessing. We use the ”vitals labs” table of the database, which corresponds to time-varying vitals
and labs. We extract the rows of the dataset which correspond to the first 24 hours of stay by using MIMIC-Extract (Wang
et al., 2020). The features are then standardized across all times and patients. We also perform imputation to handle missing
values in the dataset. To do so, we consider the mean features (average measurement over 1 hour). For each patient, and
missing value, we propagate the last observation forward if this is possible. If not, we fill the missing value with the mean
value for the patient (which is computed over the whole stay). If no mean value is available, we fill the entry with 0.

NASDAQ-2019. This dataset (Onyshchak, 2020) contains daily prices for tickers trading on NASDAQ, and contains prices
for up to 1st of April 2020. Preprocessing. We considered one year of daily prices from 1st of January 2019 to 1st of January
2020. Each sample corresponds to one stock, and we remove the stocks which are not active in this whole time interval, or
contain missing values.

NASA battery. The NASA battery dataset (Saha & Goebel, 2007) consists of profiles for Li-on batteries, under charge and
discharge. Preprocessing. For both the charge and discharge datasets, we bin the time values (bins of size 10 for Charge, 15
for Discharge) and compute the mean of each feature inside each bin.

US-Droughts. This dataset (Minixhofer, 2021) consists of drought levels in different US counties, from 2000 to 2020.
Preprocessing. We consider one year of history, from 1st of January 2011 to 1st of January 2012, and drop the columns with
missing values.

B.2. Details on evaluation

Sliced Wasserstein Distances. The sliced Wasserstein distance (Bonneel et al., 2015) is a metric which can handle
high-dimensional distributions. It is motivated by the fact that the Wasserstein distance is easy to compute when comparing
two one-dimensional distributions. The idea of the sliced Wasserstein distance is to map the high-dimensional distributions
of interest to one-dimensional distributions, by considering random projections on vectors of the unit sphere. For two
distributions µ1 and µ2, it can be written as:

SWp(µ1, µ2) :=

∫
Sd−1

Wp(Pu#µ1, Pu#µ2)du (26)

where Sd−1 is the unit sphere in dimension d, Pu(x) = u · x denotes the projection of x on u, Pu#µ is the push-forward
of µ by Pu, and Wp is the Wasserstein distance of order p. To estimate this quantity in practice, we sample n = 10, 000
random vectors {ui|i ∈ [n]} which follow a uniform distribution in Sd−1 and consider p = 2. Hence, we can approximate
SW p by the Monte-carlo estimator:

ˆSW p(µ1, µ2) =
1

n

n∑
i=1

Wp(Pui
#µ1, Pui

#µ2) (27)

Marginal Wasserstein Distances. In addition to the sliced Wasserstein distance, we also consider the marginal Wasserstein
distance. For any j ∈ {1, ..., d}, the j-th marginal Wasserstein distance is defined as:

MWp
(j)(µ1, µ2) = Wp(Pej#µ1, Pej#µ2) (28)
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where ej is the j-th vector of the standard basis of Rd. Throughout our experiments in Section 4, we compute the Wasserstein
distances with respect to Dtrain and D̃train.

B.3. Computational cost

Since the Discrete Fourier Transform (DFT) is a bijection, and by virtue of the mirror symmetry from Equation (6), the
frequency representation of a time series has the same number of real independent components as its time representation. As
a consequence, the diffusion in the frequency domain can be performed without any additional cost by restricting to these
independent components, while keeping in mind that other components can be deduced from the mirror symmetry.

We now make this more precise. Due to the mirror symmetry in the frequency representation x̃ ∈ CdX of a time series
x ∈ Rd, one can define a coordinate chart φ that extracts a subset of non-redundant real components of x̃. This map is
defined as (see also Equation (12) for the same definition used in a different context):

φ[x̃] =

{
(ℜ[x̃κ])

N/2
κ=0 ⊕ (ℑ[x̃κ])

N/2−1
κ=1 if N is even

(ℜ[x̃κ])
⌊N/2⌋
κ=0 ⊕ (ℑ[x̃κ])

⌊N/2⌋
κ=1 else,

where v1 ⊕ v2 denotes the concatenation of two vectors v1 ∈ Rd1 and v2 ∈ Rd2 , with d1, d2 ∈ N. As we can see, this
map truncates the full frequency representation by extracting half of the real components in x̃ ∈ CdX . We deduce that this
maps to RdX and, therefore, φ[x̃] has the same number of real components as x. By virtue of the mirror symmetry, x̃ can be
reconstructed from φ[x̃] by applying the inverse map

φ−1[z] =

{
(z0)⊕ (zκ + i · zN/2+κ)

N/2−1
κ=1 ⊕ (zN/2)⊕ (zN/2−κ − i · zN−κ)

N/2−1
κ=1 if N is even

(z0)⊕ (zκ + i · z⌊N/2⌋+κ)
⌊N/2⌋
κ=1 ⊕ (z⌈N/2⌉−κ − i · zN−κ)

⌊N/2⌋
κ=1 else.

One can check that the mirror symmetry permits to reconstruct the initial frequency representation via x̃ = φ−1 ◦ φ[x̃].
By exploiting this truncation with the coordinate chart φ, the implementation of frequency diffusion can be described as
follows:

1. Bring the training time series Dtrain ⊂ RdX to the frequency domain by computing the DFT of each time series
D̃train ← F [Dtrain] ⊂ CdX .

2. Perform a truncation of the frequency representation to extract non-redundant components D̃φ
train ← φ(D̃train) ⊂ RdX .

3. Train a frequency diffusion model by using denoising score matching on D̃φ
train, using the diffusion process defined in

Equation (7) and Equation (8).

4. Generate truncated samples S̃φfreq ⊂ RdX with the learned score model.

5. Compute the full frequency representation of these samples by using the inverse coordinate chart: S̃freq ←
φ−1(S̃φfreq) ⊂ CdX .

6. Optional: Bring these time series back to the time domain by computing their inverse DFT Sfreq ← F−1[S̃freq] ⊂ RdX .

In Appendix A, we provide a detailed description on how this practical implementation relates to the theoretical discussion in
Section 3. Since this implementation performs the frequency diffusion in RdX , we deduce that it does not lead to additional
computational costs compared to diffusing in the time domain (computing the DFT and its inverse using the Fast Fourier
transform takes a negligeable amount of time compared to training / sampling from the diffusion model).

For transparency, we have also timed the training time of a few diffusion models trained in the time and frequency domain.
These results are reported in Table 3. As we can observe, the computational times of the time and frequency models are
similar.
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Table 3. Training times for time domain and frequency domain models

Dataset Training time
Time domain model Frequency domain model

MIMIC-III 30m 2s 30m 13s
Nasa-Charge 44m 51s 43m 45s
US-Droughts 2h 1m 30s 2h 1m 33s

B.4. Additional plots

Sliced Wasserstein Distances. In Figure 4, we show the distribution of the sliced Wasserstein distances over all slices. In
addition, we have included the average sliced Wasserstein distances obtained with 2 baselines. The first baseline is simply
the Wasserstein distance between the training set and a set of sample only containing identical copies the average sample
SW (Dtrain,Smean), where Smean = {EX∼U(Dtrain

)[X]}. It represents the performance of a dummy generator that only
generates the average time series and is denoted by mean in Figure 4. The second baseline is the Wasserstein distance
between two random splits of the training set SW (D1/2

train,D
2/2
train), where Dtrain = D1/2

train

⊔D2/2
train is a decomposition

of the training set into two disjoint random splits of equal size |D1/2
train| = |D

2/2
train|. It represents the distance between

two samples from the ground-truth distribution and is denoted by self in Figure 4. As we can observe, both the time and
frequency diffusion models substantially outperform the mean baseline (as expected) and perform on par with the self
baseline. This indicates that the models learned a good approximation of the real distribution. Furthermore, we notice that
the frequency diffusion models tend to have smaller quantiles than the time diffusion models. This confirms that frequency
diffusion models outperform the time diffusion models, as discussed in Section 4.

Marginal Wasserstein Distances. In Figure 5, we show the distribution of the marginal Wasserstein distances over all
slices. In addition, we have included the average marginal Wasserstein distances obtained with the 2 baselines defined in
the previous paragraph. Again, both the time and frequency diffusion models tend to outperform the mean baseline (as
expected) and perform on par with the self baseline. Furthermore, we notice that the frequency diffusion models tend to
have smaller quantiles than the time diffusion models. This is consistent with the observations made in the above paragraph.

Per-Sample Localization. In Figure 6, we observe the distribution of our localization metrics ∆time and ∆sigma for each
sample and each dataset from Section 4. We notice that most samples are located below the y = x axis, which confirms the
fact that most samples are more localized in the frequency domain. Interestingly, we also observe that none of the samples is
located close to the origin. This confirms the uncertainty theorem from (Nam, 2013).

Empirical Evidence for Localization Claim. We repeat the same experiment as in Section 4.3 with the datasets which
have the least extreme imbalance in time and frequency localization, namely MIMIC-III, Nasa-Charge and US-Droughts. In
this experiment, we increase the delocalization of the frequency representations of the original samples by convolving them
with several Gaussian kernels with various widths.

We report these results in Figure 7. These results show that increasing the delocalization of the frequency representations
decreases the delocalization in the time domain (in agreement with the uncertainty principle from (Nam, 2013)). For
MIMIC-III and US-Droughts, this leads to better time diffusion models, compared to their frequency counterparts. This
observation directly mirrors the conclusion given in the case of the ECG example in Section 4.3. It is worth noting that in
the case of the Nasa-Charge dataset, the frequency diffusion model is better than the time diffusion model for the different
levels of smoothing considered. This corroborates the cautionary remark included in Section 4.3: while localization is a key
element which can explain the superior performance of frequency diffusion models, it may not be the only explanation for
this phenomenon.
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Figure 4. Sliced Wasserstein distances of time and frequency diffusion models.
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(b) MIMIC-III.
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(d) NASA-Charge.
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Figure 5. Marginal Wasserstein distances of time and frequency diffusion models.
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Figure 6. Localization metrics ∆time and ∆freq for all the samples of all datasets. We observe that no sample has a high localization (i.e.
low ∆) in the time and frequency domain simultaneously.

Figure 7. Additional results on the links between performance and localization.
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C. Other Distance Metric
While the experimental results in Section 4 were reported with Sliced Wasserstein distances (see Appendix B.2 for details),
which permits to quantify the distance between two probability distributions, more specialized metrics exist for time
series. Indeed, the dynamic time warping (DTW) distance (Müller, 2007) permits to compare the dissimilarity DTW(x,x′)
between two time series x,x′ ∈ RdX . While this metric is not designed to compare two distributions of time series, it
can be aggregated over all the pairs of time series we wish to compare. In our case, we want to compare the training set
Dtrain ⊂ RdX with the samples S ⊂ RdX generated by a diffusion model:

DTW :=
1

|Dtrain|
∑

x∈Dtrain

1

|S|
∑
x′∈S

DTW(x,x′)

A clear limitation of this metric is that it needs to be evaluated on all possible pairs, which typically represents O(108) pairs
when we generate 10000 samples for a dataset of comparable size. This is prohibitively expensive for some of our datasets
where time series have many time steps (for instance, this metric would take ∼ 7.9 days to evaluate on the NASA dataset).
To make the computation time tractable, we resort to a Monte Carlo evaluation by sampling uniformly each pair of samples:

D̂TW := Ex∼U(Dtrain),x′∼U(S) [DTW(x,x′)] .

For each diffusion model and each dataset, we compute this mean on 1000 such random pairs of samples. We report the
results in Table 4 (computed mean ± 2 standard errors).

Table 4. Comparison of Frequency and Time Diffusion D̂TW across the different datasets

Dataset Frequency Diffusion D̂TW (↓) Time Diffusion D̂TW (↓)
ECG 1.166± 0.034 1.179± 0.036
MIMIC-III 35.828± 0.578 36.136± 0.76
NASA-Charge 8.203± 1.04 11.556± 0.954
NASA-Discharge 138.993± 6.71 175.405± 8.656
NASDAQ-2019 1857.703± 254.372 2236.094± 262.882
US-Droughts 274.9± 5.206 399.342± 12.794

These results lead to the same conclusions as the one stated in Section 4: frequency diffusion models outperform time
diffusion models. We note that these metrics are considerably more computationally expensive than the Wasserstein metrics.
Indeed, the computation of these metrics typically takes several minutes, while the sliced Wasserstein distances can be
computed in a few seconds.

D. Alternative Backbone
LSTM Models. For each dataset, we try an alternative parametrization of the time score model sθ and the frequency score
model s̃θ̃ as LSTM encoders with 10 layers, each with dimension dmodel = 72. Both models have diffusion time t encoding
through random Fourier features composed with a learnable dense layer. This results in models with 427k parameters. The
data is noised by using a VP-SDE, as in (Song et al., 2020). The score models are trained with the denoising score-matching
loss, as defined in Section 3. All the models are trained for 200 epochs with batch size 64, AdamW optimizer and cosine
learning rate scheduling (20 warmup epochs, lrmax = 10−3). The selected model achieves the lowest validation loss.

Sliced Wasserstein Distances. In Figure 8, we show the distribution of the sliced Wasserstein distances over all slices for
the LSTM models. In addition, we have included the average sliced Wasserstein distances obtained with 2 baselines defined
in Appendix B.4. As observed for the transformer models, both the time and frequency diffusion models substantially
outperform the mean baseline (as expected) and perform on par with the self baseline. This indicates that the models
learned a good approximation of the real distribution. Furthermore, we notice that the frequency diffusion models tend to
have smaller quantiles than the time diffusion models. This confirms that frequency diffusion models outperform the time
diffusion models, as observed for the transformer models in Section 4. We note that the Nasa-Charge and the NASDAQ-2019
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Figure 8. Sliced Wasserstein distances of time and frequency LSTM models.
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are absent from Figure 8. This is because we did not manage to obtain diffusion models performing better than the mean
baseline for these datasets, hence leading to non informative comparisons between models with poor performances.

Other Attempts. In order to minimize the inductive bias in our models, we also tried to train diffusion models with simple
feed-forward neural networks. Unfortunately, this attempt was unsuccessful and resulted in models performing worse than
the mean baseline in each case. This emphasizes the value of incorporating inductive biases in time series diffusion models.

E. Comparison with TimeGAN
We compare the performance of our diffusion models with TimeGAN models (Yoon et al., 2019), which are Generative
Adversarial Networks specifically designed for time series data. Following Section 4.1 in our paper, we report the sliced
Wasserstein distances of the samples generated by TimeGAN models (trained with the hyperparameters used by the authors)
and compare them to our diffusion models. We report in Table 5 the distance as its mean ± 2 standard errors.

Table 5. Comparison with TimeGAN
Dataset TimeGAN Wasserstein (↓) Frequency Diffusion Wasserstein (↓) Time Diffusion Wasserstein (↓)
ECG 0.72± 0.031 0.015 ± 0.000 0.021 ± 0.000
MIMIC-III 0.88± 0.0071 0.152 ± 0.004 0.211 ± 0.006
NASDAQ-2019 89± 4.25 43.602 ± 2.044 60.512 ± 2.960
Nasa-Charge 1.9± 0.087 0.229 ± 0.008 0.316 ± 0.008
Nasa-Discharge 10.0± 0.47 2.028 ± 0.082 2.942 ± 0.134
US-Droughts 23.0± 1.0 0.738 ± 0.020 2.913 ± 0.092

As we can observe, the diffusion models significantly outperform GANs, even after performing a grid search for TimeGAN
for a few datasets. Hence, the differences can be attributed to the type of generative model used (i.e., diffusion vs GAN)
rather than its architecture. This further reinforces our motivation to focus on diffusion models, which seem to offer better
performances.

F. Forecasting Use Case
The diffusion models we study in this work approximate a joint distribution P (x0, ...,xN−1). We note that modelling the
joint distribution permits to derive other quantities, such as conditionals. For example, given a partition I ⊔ J = [N ], we
can infer P (xI |xJ) from the joint distribution, where xI denotes the restriction of x ∈ RdX to the indices in the set I . We
can then use the infered conditionals for practical tasks, such as forecasting.

Motivated by this insight, we conducted an additional experiment to illustrate the use of our frequency diffusion models for
forecasting, in a data augmentation setting. For each of the datasets investigated in our manuscript, we use the synthetic
time series S generated by the diffusion model trained in the frequency domain and augment the training set Dtrain with S
to obtain the augmented dataset Daug = Dtrain ∪ S .

The forecasting task requires the definition of a forecast window, which is the number of time steps for which we would
like to predict the values of the time series. Let N be the sequence length of the samples in Dtrain, M be the number of
features, and W be the size of the forecast window. For the ECG dataset, we let W = N

2 (because the electrocardiograms
are zero-padded in the last time steps, which makes the forecasting task too easy if we use a small W ). For the other datasets,
we let W = N

4 . We split every time series x of sequence length N present in the training set into an observable part x[N−W ]

(which will be used as input to our forecasting model) and a target x[N ]\[N−W ] (to be predicted by the forecasting model).

We train a forecasting model by using an LSTM backbone, with 2 layers and a hidden dimension of 256. The last hidden
state of the LSTM is used as input to a linear layer of output size W ×M , whose output is reshaped to obtain time series of
dimension (W,M). The forecasting models are trained for 50 epochs, and we use early stopping based on a validation set,
with a train/validation set ratio of 0.8. We then evaluate the forecasting performance by computing the test Mean Absolute
Error (MAE) (the test set being held-out time series from the original datasets that are not observed by the diffusion model).
We report the results in Table 6 (mean ± 2 × standard errors for 5 seeds).

The results show the potential of diffusion-based generative modelling in a data augmentation scenario, as we improve
forecasting performance for half the datasets by augmenting Dtrain with time series generated by the diffusion model.
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Table 6. Forecasting performance for different datasets when training on Dtrain and Daug.
Dataset Train on DtrainTest MAE (↓) Train on DaugTest MAE (↓)
ECG 0.046± 0.0039 0.035± 0.0009
MIMIC-III 0.186± 0.001 0.179± 0.001
NASDAQ-2019 3.058± 0.65 2.614± 0.20
Nasa-Charge 0.019± 0.001 0.033± 0.002
Nasa-Discharge 0.21± 0.02 0.28± 0.02
US-Droughts 0.60± 0.02 0.76± 0.01

G. Sample Visualization
In Figures 9 to 13, we visualize a few examples generated by each diffusion model, along with ground-truth training
examples. We do not include samples from the MIMIC-III dataset in accordance with the dataset licence. We observe
that the frequency diffusion models generate samples that are substantially less noisy than than the ones generated by time
diffusion models. All the generated samples resemble training samples, with the only exception of the NASDAQ-2019
dataset. The models appear to be struggling with the high correlation between the different features.

27



Time Series Diffusion in the Frequency Domain

0 25 50 75 100 125 150 175

0.0

0.2

0.4

0.6

0.8

1.0

Training samples
Feature 0

0 25 50 75 100 125 150 175

0.0

0.2

0.4

0.6

0.8

1.0

Generated samples (Frequency domain model)
Feature 0

0 25 50 75 100 125 150 175

0.0

0.2

0.4

0.6

0.8

1.0

Generated samples (Time domain model)
Feature 0

0 25 50 75 100 125 150 175

0.0

0.2

0.4

0.6

0.8

1.0
Feature 0

0 25 50 75 100 125 150 175

0.0

0.2

0.4

0.6

0.8

1.0 Feature 0

0 25 50 75 100 125 150 175

0.0

0.2

0.4

0.6

0.8

1.0 Feature 0

0 25 50 75 100 125 150 175

0.0

0.2

0.4

0.6

0.8

1.0
Feature 0

0 25 50 75 100 125 150 175

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Feature 0

0 25 50 75 100 125 150 175

0.0

0.2

0.4

0.6

0.8

1.0 Feature 0

0 25 50 75 100 125 150 175

0.0

0.2

0.4

0.6

0.8

1.0
Feature 0

0 25 50 75 100 125 150 175

0.0

0.2

0.4

0.6

0.8

1.0 Feature 0

0 25 50 75 100 125 150 175

0.0

0.2

0.4

0.6

0.8

1.0 Feature 0

0 25 50 75 100 125 150 175

0.0

0.2

0.4

0.6

0.8

1.0
Feature 0

0 25 50 75 100 125 150 175

0.0

0.2

0.4

0.6

0.8

Feature 0

0 25 50 75 100 125 150 175

0.0

0.2

0.4

0.6

0.8

1.0

Feature 0

Figure 9. Samples for the ECG dataset. The y axis corresponds to the different features, while the x axis corresponds to the different time
steps.
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Figure 10. Samples for the NASA-Charge dataset. The y axis corresponds to the different features, while the x axis corresponds to the
different time steps.
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Figure 11. Samples for the NASA-Discharge dataset. The y axis corresponds to the different features, while the x axis corresponds to the
different time steps.
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Figure 12. Samples for the NASDAQ-2019 dataset. The y axis corresponds to the different features, while the x axis corresponds to the
different time steps.
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Figure 13. Samples for the US-Droughts dataset, represented as heatmaps. The y axis corresponds to the different features, while the x
axis corresponds to the different time steps.
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