
Asymptotics of Feature Learning in Two-layer Networks after One Gradient-step

Hugo Cui 1 Luca Pesce 2 Yatin Dandi 1 2 Florent Krzakala 2 Yue M. Lu 3 Lenka Zdeborová 1 Bruno Loureiro 4

Abstract
In this manuscript, we investigate the problem
of how two-layer neural networks learn features
from data, and improve over the kernel regime,
after being trained with a single gradient descent
step. Leveraging the insight from (Ba et al., 2022),
we model the trained network by a spiked Ran-
dom Features (sRF) model. Further building on
recent progress on Gaussian universality (Dandi
et al., 2023), we provide an exact asymptotic de-
scription of the generalization error of the sRF in
the high-dimensional limit where the number of
samples, the width, and the input dimension grow
at a proportional rate. The resulting characteriza-
tion for sRFs also captures closely the learning
curves of the original network model. This en-
ables us to understand how adapting to the data
is crucial for the network to efficiently learn non-
linear functions in the direction of the gradient –
where at initialization it can only express linear
functions in this regime.

1. Introduction
A common deep learning intuition behind the unreasonable
effectiveness of neural networks is their capacity to effec-
tively adapt to the training data which makes them superior
to kernel methods. While kernel methods and their finite
width approximations are known to be data-hungry (see
e.g. (Adlam et al., 2023)), neural networks have proven
themselves to be flexible and efficient in practice. Their
adaptivity and capacity to learn features from data are be-
hind the success in efficiently solving problems from image
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classification to text generation. A large part of our current
theoretical understanding of neural networks stems from
the investigation of their lazy regime where features are not
learned during training. This includes a set of works that fall
under the umbrella of Gaussian processes (Neal, 1996; Lee
et al., 2018), the Neural Tangent Kernel (NTK) (Jacot et al.,
2018) and the Lazy regime (Chizat et al., 2019). A cru-
cial question in the theoretical machine learning community
is thus to characterize the advantages of two-layer neural
networks beyond these convex optimization approaches.

Different theoretical works have offered sharp separation
results between kernel and feature learning regimes (see e.g.
(Ghorbani et al., 2019; Refinetti et al., 2021b; Damian et al.,
2022; Abbe et al., 2023; Shi et al., 2022)). In particular, (Ba
et al., 2022; Damian et al., 2022), and later (Dandi et al.,
2023), discussed the advantage of neural networks when
training with only one single step of large-batch gradient
descent with a large learning rate. Specifically, (Ba et al.,
2022) highlighted that the weight matrix after the first train-
ing step can be decomposed in a bulk plus a rank-one spike,
effectively mapping the learned features to a spiked Random
Features model (sRF), defined in eq. 6). This observation has
fueled many further studies on the effect of spiked structure,
see e.g. (Damian et al., 2022; Dandi et al., 2023; Ba et al.,
2024; Mousavi-Hosseini et al., 2023; Moniri et al., 2023).

In this paper, we follow this line of work and provide an
exact high-dimensional description of the test error achieved
by a sRF, which we use to model a two-layer network after
a single, large, gradient step. Our work provides a sharp
asymptotic treatment of a setting where feature learning is
modeled in a non-perturbative, high-dimensional regime,
with a model able to express non-linear functions beyond
polynomials. This analysis quantitatively illustrates the
benefits of feature learning over the lazy regime.

Our main contributions in this paper are the following:

• Exact asymptotics for sRF – We provide a sharp asymp-
totic characterization of the test error, alongside a set of
summary statistics, for a sRF. We discuss analytically, and
provide numerical support, why sRFs constitute good ap-
proximations for two-layer neural networks with first layer
weights trained with a large learning rate gradient step. The
derivation leverages the (non-rigorous) replica method from
statistical physics (Parisi, 1979; 1983), and provides a set of
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scalar self-consistent equations for the generalization error.
• Conditional Gaussian Equivalence – Building upon
(Dandi et al., 2023), we show (and provide strong numerical
evidence to support) that the learning properties of the
sRF model are asymptotically equivalent to a simple
conditional Gaussian model in the high-dimensional
proportional regime. The conditional Gaussian distribution
is characterized by the projections of the input data on
the spike in the weight matrix. This mapping constitutes
the extension of related theoretical results that unveiled a
similar Gaussian equivalence property for the training and
generalization error for non-spiked vanilla RFs (Goldt et al.,
2022; 2020; Gerace et al., 2020; Hu & Lu, 2022; Dhifallah
& Lu, 2020; Mei & Montanari, 2022; Cui et al., 2023;
Schröder et al., 2023; Bosch et al., 2023; Dandi et al., 2024).
• Feature learning – We provide an extensive discussion
on how feature learning leads to a drastic improvement in
the generalization performance over random features in a
data-limited regime, demonstrating a clear and quantitative
separation with respect to kernel method and random
feature models. In particular, we derive both upper and
lower bounds on the generalization error and discuss under
which conditions they are tight.

The code used in the present work is available here.

2. Setting, Motivation and Related Work
Setting — We study fully-connected two-layer networks

fW,a(x) =
1
√
p

p∑
i=1

aiσ(w
⊤
i x) , (1)

and their capacity to learn a single-index target function of
isotropic Gaussian covariates:

f⋆(x) = σ⋆(θ
⊤
x/

√
d), x ∼ N (0, Id) (2)

from finite batch D = {(xµ, yµ)nµ=1} of n independently
drawn training samples. While we do not consider bias
terms for conciseness, we discuss in Appendix C how such
terms can be treated. We further assume the activation σ to
be odd. We consider a layer-wise training procedure where
the first layer weights W ∈ Rp×d are trained for a single
gradient step:

w
(1)
i = w

(0)
i − ηgi (3)

gi =
1

√
pn0

n0∑
µ=1

(yµ − fW (0),a(0)(xµ))a
(0)
i σ′(w

(0)⊤
i xµ)xµ

on a subset D0 ⊂ D of size n0, where (W (0),a(0)) denote
the initial weights and η>0 the learning rate. For simplicity,
we assume a(0) = 1p/√p (uniform initialization) and w

(0)
i

with unit norm ∥w(0)
i ∥= 1 and weak correlation w

(0)
i ·

w
(0)
j = Od(polylog(d)/

√
d) for i ̸= j (e.g. uniformly drawn

from the unit sphere Sd−1). Finally, we assume that the
second layer initialization is not informed, in the sense
that its overlap with the target weights θ is asymptotically
small, a(0) · θ/√p = Od(1/

√
d). Given the updated weights

W (1), we train the read-out layer on the remaining data
D1=D \ D0:

âλ=argmin
a∈Rp

1

2

n1∑
µ=1

(
yµ − fW (1),a(x

µ)
)2

+
λ

2
∥a∥2. (4)

with λ ∈ R+ being a regularization parameter. Note that the
layer-wise training procedure considered here is commonly
studied in the theoretical machine learning literature (Ba
et al., 2022; Damian et al., 2022; Abbe et al., 2023; Berthier
et al., 2023; Dandi et al., 2023; Moniri et al., 2023) due to
its mathematical tractability.

Our main goal in the following is to describe the generaliza-
tion error:

ϵg = ED,x

(
f⋆(x)− fW (1),âλ

(x)
)2
. (5)

in the high-dimensional proportional limit where
n0, n1, d, p, η → ∞ at fixed ratios α0 = n0/d,
α=n1/d, β=p/d, η̃=η/d.

Motivation — Driven by the lazy-training regime of
learning of large-width networks (Chizat et al., 2019), a
large body of literature has been dedicated to the particular
case where the first layer weights are fixed at initialization
W (0) (η = 0), also known as the Random Features (RF)
model (Rahimi & Recht, 2007). In particular, (Ghorbani
et al., 2019; 2020; Mei et al., 2022) have shown that with
n1 = Θd(d) samples fW (0),âλ

can only approximate, at
best, a linear function of xµ, with the non-linear part play-
ing a role akin to additive label noise. This is a strong limita-
tion: RF network requires polynomials number of data and
neurons to fit a simple polynomial (Mei et al., 2022; Xiao
et al., 2022). It is one of our motivations here to discuss
how, with a single gradient step, these limitations are lifted.

Behind the scenes in this effective linearity of random fea-
tures is a Gaussian Equivalent Principle (GEP) (Goldt et al.,
2022; Mei & Montanari, 2022; Hu & Lu, 2022; Monta-
nari & Saeed, 2022; Dandi et al., 2024), which states that
in this regime the random feature map φ = σ(W (0)x) is
statistically equivalent to a rescaled stochastic linear map
φg(x) ≍ µ01+µ1W

(0)x+µ⋆z, with z ∼ N (0, Ip). This
surprising universality result allows to go beyond lower
bounds for the generalization performance, making the prob-
lem amenable to a tight high-dimensional characterization
of all relevant statistics in these models (Mei & Montanari,
2022; Gerace et al., 2020; Dhifallah & Lu, 2020).

Fig. 1 illustrates this fundamental limitation of
RF models contrasted with the function f(xθ) =

2
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Figure 1. Numerical estimation of the function f(xθ) =
Ex[fW (1),âλ |θ⊤x/

√
d = xθ] implemented by the trained net-

work (1) in the direction spanned by the weights θ of the tar-
get function. The activations are σ = σ⋆ = tanh, and simula-
tions were run in dimensions d = p = 2000, for a learning rate
η = 2.5p, and a readout regularization λ = 0.01. The readout
was trained with n1 = 2d samples. Different colors corresponds
to different sample complexities α0 ≡ n0/d used to implement the
gradient step on the first layer weights, with α0 = 0 corresponding
to not implementing the step.

Ex[fW (1),â)λ(x)|θ⊤x/
√
d = xθ], along the direction of the

target θ, implemented by the network fW (1),a trained with
a single gradient step (eq. (3)). Varying the amounts of data
n0=α0d used in the first gradient step, the function f(xθ)
moves from a linear approximation of σ⋆ in the RF limit
(α0=0), to an accurate non-linear one (α0=2.5).

Learning a non-linear approximation of σ⋆ in the high-
dimensional proportional regime therefore requires learning
features. (Ba et al., 2022) have proven that with η = Θd(1),
the GEP holds even after a few gradient steps, corroborat-
ing a fact empirically observed by (Loureiro et al., 2021b).
Indeed, they have shown that η = Θd(d) is sufficient to go
beyond a linear approximation of f⋆ in this regime. (Moniri
et al., 2023) considered intermediate scalings of step-size
η = Θd(d

s) for 1/2< s< 1, which allows the network to
fit target functions along θ having finite degree, providing
a precise characterization of the train and test errors. In
this intermediate regime, the feature matrix can be approxi-
mated through a finite number of spikes corresponding to
increasing degree of functions along θ. Instead, we consider
the full scaling of η = Θd(d), where such a finite-spike ap-
proximation is insufficient and the network can fit arbitrary
functions along θ, and provide an approximate characteri-
zation through the lens of sRF models. (Dandi et al., 2023)
proved that even if the target depends on multiple direc-
tions (multi-index model), only a (non-linear) function of
a single direction θ can be learned with a single gradient
step and η = Θd(d). This observation justifies the focus on

single-index functions (2) on the regime of interest.

Further related works – Random features were first
introduced as a computationally efficient approximation
to kernel methods (Rahimi & Recht, 2007). Recently, they
have enjoyed renewed interest also as models of two-layer
neural networks in the lazy regime. Tight asymptotics for
the random features model have been derived by (Goldt
et al., 2020; 2022; Gerace et al., 2020; Mei & Montanari,
2022; Hu & Lu, 2022; Dhifallah & Lu, 2020) in the
two-layer case, and were extended to deep networks in
(Schröder et al., 2023; Schröder et al., 2024; Bosch et al.,
2023) in the deep case. Importantly, with the exception of
(Gerace et al., 2020) who considered rotationally invariant
weights and (Zavatone-Veth & Pehlevan, 2023) for the case
of deep linear random features, all these works assumed
unstructured weights. In sharp contrast, gradient-trained
neural networks have fundamentally structured weights.
In the present manuscript, we consider such a case, by
analyzing sRF models, for which the weights are given by
a bulk random matrix plus a rank-one spike.

Feature learning regime – Perturbative feature learning
corrections to the large-width lazy regime have been
extensively studied in the literature (Yaida, 2020; Hanin &
Nica, 2020; Dyer & Gur-Ari, 2020; Seroussi et al., 2023;
Naveh & Ringel, 2021). Our work radically contrasts
with this line, since we account for feature learning in
the first step, non-perturbatively (note the gradient in (3)
has a norm comparable with the initial weights). Beyond
the lazy regime, a major recent development has been
the understanding that the training dynamics of two-layer
neural networks with small learning rates can be mapped to
a Wasserstein gradient flow, known as the mean-field regime
(Mei et al., 2018; Chizat & Bach, 2018; Rotskoff & Vanden-
Eijnden, 2022; Sirignano & Spiliopoulos, 2020; Bordelon &
Pehlevan, 2024). Over the past few years, this flow was in-
vestigated under different classes of generative data models,
such as staircase functions (Abbe et al., 2021; 2022; 2023),
single-index (Berthier et al., 2023; Arnaboldi et al., 2023a)
and multi-index models (Arnaboldi et al., 2023b), symmet-
ric targets (Hajjar & Chizat, 2022) and Gaussian mixture
models (Refinetti et al., 2021a; Ben Arous et al., 2022).

3. Main Technical Results
Our main technical results are a tight asymptotic charac-
terization of the test error achieved by sRFs (defined in
6), which we argue provide good models for two-layer
networks trained with a single large gradient step followed
by a ridge regression on the readout weights. We provide
compelling numerical support that this theoretical char-
acterization captures very closely the learning curves of
two-layer networks trained following the protocol (3), and
that sRF thus provide a valuable analytical playground
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to understand the learning and behaviour of the latter.
These results are enabled through the expression of the
parameters of an equivalent sRF model in terms of the
training parameters of the original network in subsection
3.1, which can in turn be mapped to an equivalent Gaussian
model in subsection 3.2. Subsection 3.3 finally states the
tight asymptotic characterization of the test error.

3.1. Asymptotics of the first layer weights after one
(large) gradient step

The first step is to derive an explicit asymptotic expression
for the hidden-layer weights W (1) after one (large) gradient
step. In the following, we show that the learning problem in-
troduced in Section 2 can be modelled by a spiked Random
Features model, which we first define.

Definition 3.1 (sRF model). We define a spiked Random
Features (sRF) model with bulk variance c, spike strength r
as the two-layer neural network

gF,a(x) =
1
√
p
a⊤σ (Fx) (6)

with trainable readout a and frozen random first layer
weights:

F =W + r
uv⊤
√
d
. (7)

where W is a random matrix with rows independently sam-
pled from Sd−1(

√
c), and u,v ∈ Sd−1(

√
d). We further

say that a sRF has alignment γ with θ when v is uniformly
sampled uniformly sampled among vectors with norm

√
d

satisfying v⊤θ/d = γ.

As discussed above, after a large gradient step, the first layer
weights W (1) take the form (Ba et al., 2022; Dandi et al.,
2023):

W (1) =W (0) +∆+ r
ǔv̌⊤
√
d
, (8)

where the precise expressions of ∆, ǔ, v̌ are detailed in Ap-
pendix A. It has thus developed spikes ǔ and v̌ that corre-
lated to the target weights θ, while the bulk, originallyW (0),
also gets modified by an additional term ∆ and displays as
a consequence a rescaled variance. These changes make
it reasonable to model the two-layer neural network with
a sRF with matching parameters c, r, γ. The expression of
these parameters depend on the specifications η̃, α0, β, σ, σ⋆
of the network and training protocol. Expliciting these ex-
pressions is the object of the following result.

Result 3.1 (Equivalent sRF model). Consider two-layer
networks with first-layer weights trained with a single
gradient step of learning rate η from initial conditions
a(0) = 1p/√p and w

(0)
i with unit norm ∥w(0)

i ∥= 1 and

weak correlation w
(0)
i · w(0)

j = Od(1/
√
d) for i ̸= j

(eq. (3)). In the asymptotic limit n0, n, d, p → ∞, with
α0 = n0/d, α = n/d, β = p/d, η̃ = η/d = Θd(1), the quanti-
ties c = 1/pd∥W0+∆∥2, r = ∥ǔ∥∥v̌∥/

√
pd, γ = θ⊤v̌/∥v̌∥∥θ∥

(8) concentrated to the values

c = 1 +
η̃2ȟ21h

⋆
2

α0β2
(9)

r =
η̃h1
β

(
h⋆2
α0

+ h⋆21

)1/2

(10)

γ =
h⋆1(

h⋆
2

α0
+ h⋆21

)1/2
(11)

where:

h1 = Ez[zσ(z)], h⋆1 = Ez[zσ⋆(z)],
ȟ21 = Ez[(σ′(z)− h1)

2], h⋆2 = Ez[σ⋆(z)2], (12)

with z ∼ N (0, 1). These parameters c, r, γ specify an
equivalent sRF, which we take as a model of the network
after one gradient step.

The derivation of Result (3.1) is detailed in Appendix A.
One may wonder what are the sources of approximation
when modeling two-layer networks after a gradient step (3)
by a sRF 6. In considering the equivalent sRF, one is effec-
tively modeling the bulk term ∆ in (8) by a random matrix
with independent rows sampled from the sphere, with match-
ing norm. This approximation is reasonable in view of the
results of (Dandi et al., 2023) (Lemma 12), who rigorously
establish the asymptotic near-orthogonality of the rows of
∆, and that they have vanishing overlap with θ. We are,
on the other hand, ignoring possible non-trivial structures
in the row covariance of ∆. However, as we shall discuss
later, for all probed usual activation functions and setups,
the sRF provides a quantitatively close approximation. Let
us further stress that beyond being approximations of two-
layer networks after a gradient step, sRF models constitute
an important and natural generalization of the celebrated
and extensively probed RF models (Rahimi & Recht, 2007;
Gerace et al., 2020; Mei & Montanari, 2022; Hu & Lu,
2022), which crucially allow to learn non-linear functions –
where RFs can only express linear functions. They hence
are also models of standalone interest. Finally, note that
above we have assumed a uniform initialization for the read-
out layer. This can be relaxed in the equivalence above, for
instance for a(0) taking a finite number of values, leading to
a finite-rank term instead of a single spike. The emergence
or usefulness of low-rank structures in network weights has
been observed and discussed in numerous empirical and
theoretical works, e.g. (Hu et al., 2021; Allen-Zhu & Li,
2022; Wang et al., 2022).
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3.2. Conditional Gaussian equivalence

The sharp characterization of the test performance, which
we state in Result 3.3 in the following subsection, is enabled
by further mapping the sRF model to an exactly solvable
(conditional) Gaussian model. We adapt the rigorous result
in (Dandi et al., 2023) (Theorem 4, second point) by con-
structing explicitly the equivalent stochastic feature map,
that we believe is of independent interest.

Result 3.2 (Conditional Gaussian Equivalence). Consider
the sRF model with weights F =W + ruv⊤/

√
d, with u =

1p and parameters c, r, γ, and the corresponding feature
map given by

φ(x) = σ (Fx) (13)

Define the equivalent stochastic feature map

φg(x)
d
= µ0(κ)1p + µ1(κ)Wx+ µ2(κ)N (0, Ip), (14)

where κ ≡ v⊤x/
√
d. We introduced the coefficients

µ0(κ), µ1(κ), µ2(κ) defined as

µ0(κ) = Ez σ(z + rκ),

µ1(κ) =
1

c
Ez zσ(z + rκ),

µ2(κ) =
√

Ez σ2(z + rκ)− c(µ1(κ))2 − (µ0(κ))2,
(15)

with expectations bearing over z ∼ N (0, c). The test error
ϵg achieved by ridge regression

âλ = argmin
a∈Rp

1

2

n1∑
µ=1

(
yµ − 1

√
p
a⊤ϕ(x)

)2

+
λ

2
∥a∥2. (16)

is asymptotically identical for ϕ = φ and ϕ = φg .

Result 3.2 extends the similar linearizations provided e.g.
in (Goldt et al., 2020; Hu & Lu, 2022; Cui et al., 2023) for
unstructured RFs to sRFs (7). Informally, the quantity κ in
the stochastic feature map (14) represents the projection of
the input on the spike defining the sRF κ = x⊤v/

√
d. The

equivalent network 1/
√
da⊤φg(x) obtained by replacing φ

by the equivalent φg is a linear combination of terms such as
µ0(κ), µ1(κ)κ, µ1(κ)a

⊤W (Π⊥x), plus noise. On an intu-
itive level, this makes it apparent that sRFs can thus express
non-linear functions of the component κ along the spike v,
but only linear functions of the component Π⊥x orthogonal
thereto. This feature learning correction to the linear regime
is visually exemplified in Fig. 1. In the next subsection,
we make this discussion more quantitative by providing a
tight asymptotic characterization of the test error achieved
by two-layer networks trained with a single large gradient
step followed by a ridge regression on the readout weights.

3.3. Tight asymptotic characterization of the test error

Finally, we leverage on the sequential mappings of Re-
sult 3.1 and Result 3.2 to offer sharp asymptotic guarantees
on the test error achieved after training the readout weights
using eq. (4).
Assumption 3.2. Denote by {ei}pi=1 ({fi}di=1) the left
(resp. right) singular vectors ofW . We further note {λℓi}

p
i=1

the squared singular values of W . The squared singular
values {λℓi}

p
i=1 and the projection of the teacher vector θ

and the spike v on the eigenvectors {f⊤
i v}i,ℓ,{f⊤

i Π⊥θ}i,ℓ
are assumed to admit a well-defined joint distribution ν as
d→ ∞.

1

p

min(p,d)∑
i=1

δ (λi−ϱ)δ
(
f⊤
i v−τ

)
δ
(
f⊤
i Π⊥θ−π

)
d→∞−−−→ν(ϱ, τ, π).

Result 3.3 (Test error asymptotics). Consider the ERM
problem associated with the training of the readout weights
a of the equivalent sRF model defined by Result 3.1 (namely
replacing the network fW (1)a by the equivalent sRF gF,a
in (4)) , and assume 3.2 to hold. Define Π⊥ ≡ Id − vv⊤/d
the projection to the subspace orthogonal to the spike v. In
the asymptotic limit d, p, n→ ∞ with α = n/d, β = p/d =
Θd(1), the summary statistics

q1 =
â⊤WΠ⊥W⊤â

p
, q2 =

â⊤â

p
,

m =
1⊤
p â√
p
, ζ =

â⊤Wv√
dp

,

ψ =
â⊤WΠ⊥θ√

dp
, ρ2 =

θ⊤Π⊥θ

d
(17)

concentrate in probability to the solutions of the system of
equations

q1 =
∫
dν(ϱ, τ, π)ϱ

(q̂1ϱ+q̂2+ζ̂2ϱτ2+ψ̂2ϱπ2)
(λ+V̂1ϱ+V̂2)

2

−βζ̂2 I(V̂1,V̂2)
2

(1−βV̂1I(V̂1,V̂2))
2

−ζ̂2
∫
dν(ϱ,τ,π) τ2ϱ2

(λ+V̂1ϱ+V̂2)2

[
(1−βV̂1I(V̂1,V̂2))

2−1
]

(1−βV̂1I(V̂1,V̂2))
2

q2 =
∫
dν(ϱ, τ, π)

(q̂1ϱ+q̂2+ζ̂2ϱτ2+ψ̂2ϱπ2)
(λ+V̂1ϱ+V̂2)

2

−ζ̂2
∫
dν(ϱ, τ, π) τ2ϱ

(λ+V̂1ϱ+V̂2)2

[
1− 1

(1−βV̂1I(V̂1,V̂2))
2

]
V1 =

∫
dν(ϱ, τ, π)ϱ 1

λ+V̂1ϱ+V̂2

V2 =
∫
dν(ϱ, τ, π) 1

λ+V̂1ϱ+V̂2

m = 1

Eκ

[
µ0(κ)2

1+V (κ)

]Eκ,y [µ0(κ)(σ⋆(κ,y)−µ1(κ)κζ)
1+V (κ)

]
ζ = ζ̂

√
β
∫
dν(ϱ, τ, π)ϱτ2 1

λ+V̂1ϱ+V̂2

+β
3/2ζ̂V̂1

I(V̂1,V̂2)
2

1−βV̂1I(V̂1,V̂2)

ψ = ψ̂
√
β
∫
dν(ϱ, τ, π)ϱπ2 1

λ+V̂1ϱ+V̂2

(18)
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V̂1 = α
βEκ

ρµ1(κ)
2

1+V (κ)

q̂1 = α
βEκ,yµ1(κ)

2 b(κ,y)
2+ρq(κ)−µ1(κ)

2ψ2

(1+V (κ))
2

V̂2 = α
βEκ

ρµ2(κ)
2

1+V (κ)

q̂2 = α
βEκ,yµ2(κ)

2 b(κ,y)
2+ρq(κ)−µ1(κ)

2ψ2

(1+V (κ))
2

ζ̂ = α√
β
Eκ,yκµ1(κ)

b(κ,y)
1+V (κ)

ψ̂ = α√
β
Eκ,y yµ1(κ)b(κ,y)+ψµ1(κ)

2

1+V (κ)

(19)

and

ρ2 = 1− γ2. (20)

We introduced the shorthands

b(y, κ) ≡ σ⋆(γκ+
√
1− γ2y)− µ0(κ)m

− κµ1(κ)ζ−µ1(κ)ψy (21)

V (κ) ≡ µ1(κ)
2V1 + µ2(κ)

2V2 (22)

q(κ) ≡ µ1(κ)
2q1 + µ2(κ)

2q2, (23)

I(V̂1, V̂2) =

∫
dν(ϱ, τ, π)

τ2ϱ

V̂1ϱ+ V̂2 + λ
(24)

In (18), the expectations over κ, y bear over standard Gaus-
sian variables. We remind that the quantities r, c, γ are
characterized in Result 3.1.
Finally, the test error (5) admits the sharp characterization

ϵg=Eκ,y

[(
σ⋆(γκ+

√
1−γ2y)− µ0(κ)m− µ1(κ)κζ

− µ1(κ)ψ√
ρ

y

)2

+q(κ)− µ1(κ)
2ψ2

ρ

]
(25)

where expectations bear over standard Gaussian variables.

Result 3.3 thus rephrases the high-dimensional learning
problem (4) in terms of a finite set of scalar summary statis-
tics which can be efficiently evaluated, yielding excellent
agreement with finite d numerical simulations, see Figs. 2-6.
We emphasize that while the solid lines indicate the theoret-
ical characterization of the test error achieved by the sRF,
the numerical experiments were performed for the original
two-layer network setting. The good agreement thus fur-
ther supports that sRFs constitute good models of the latter.
While we state Result 3.3 for the square loss and ℓ2 regular-
ization for clarity, we provide a sharp characterization for
any generic convex loss ℓ in Appendix C.

As we discuss in further detail in Appendix C, the deriva-
tion of the result using the replica method is sizeably more
involved than that for unspiked RF models, as reported in
(Gerace et al., 2020). Unlike the classic Gaussian equiva-
lence which holds for vanilla RFs, Result 3.3 is conditioned
on the variable κ, which needs to be handled specifically

in the computation, borrowing ideas from the superstatis-
tical approach of (Adomaityte et al., 2023a), see also the
discussion between equations (94) and (95) in Appendix C.
Another difficulty lies in the treatment of the spike, absent
in classic random features, which necessitates the track-
ing and non-standard asymptotic control of more summary
statistics. Finally, while we have used the (non-rigorous)
replica method to derive these equations, an interesting av-
enue of future research is to provide a rigorous probabilistic
proof. A possible way to address the problem is to apply
Gordon’s Gaussian min-max inequalities (Gordon, 1988;
Thrampoulidis et al., 2014; Stojnic, 2013a;b)), – and extend
the approach of (Mignacco et al., 2020) for binary Gaus-
sian mixtures to the infinite mixture the equivalent that the
feature distribution (14) is formally equivalent to–; and gen-
eralize the approach used for pure random features (Hu &
Lu, 2022; Loureiro et al., 2021a). This is, however, beyond
the scope of this manuscript.

Finally, our results also allow to sharply characterize the
Stieltjes transform (and thus the spectrum) of the empirical
features covariance 1/nφ(X)Tφ(X), denoting X ∈ Rn×d
the matrix with rows {xµ}nµ=1. This analysis is presented
in detail in Appendix F, and reveals an intimate connection
between the Stieltjes transform and the summary statistic
V2 in (116). This result complements the spectral analysis
of (Moniri et al., 2023) for step sizes η = Θd(d

s) for 1/2 <
s < 1. In a close setting, (Wang et al., 2022) cover the s =
1/2 case, analyzing the conjugate kernel of deep network
features for spiked data. Finally, the works of (Guionnet
et al., 2023; Feldman, 2023) analyze the spectrum of related
non-linear spiked Wigner matrices.

4. Discussion of Main Results
While the self-consistent equations in Result 3.3 might ap-
pear cumbersome, they offer valuable insight into the mech-
anism behind feature learning in two-layer neural networks
trained with gradient descent. In this section, we discuss
and highlight some of these insights.

4.1. Spiked Random Features vs Random Features

The asymptotic characterization 3.3 encompasses, as a
special case, usual RFs (when setting the spike strength r to
zero). More precisely, for zero spike strength r = 0 in (7),
sRFs coincide with RFs, as the coefficients (15) lose their
κ dependence, reducing to usual Hermite coefficients. The
equivalent feature map φg then reduces to the Gaussian
equivalent feature map employed in e.g. (Goldt et al., 2020;
Hu & Lu, 2022; Schröder et al., 2023). Importantly, while
the equivalent feature map for unspiked RFs is linear in the
input x, the equivalent feature map φg (14) of Result 3.2
is non-linear in the component κ of the input x.
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Figure 2. Crosses: numerical evaluation of the test error achieved
by a two-layer network whose first layer has been trained following
the protocol detailed in section 2, with learning rate η̃ = 1, readout
regularization λ = 0.01 and activation σ = tanh. The target is a
single index model with tanh activation. Numerical experiments
were performed in d = 3000. All points were averaged over
5 instances. Different colours represent different initial sample
complexities α0 = n0/d used for the first gradient step. Solid lines:
theoretical characterization of Result 3.3 for the equivalent sRFs.

sRF models, which provide good models for two-layer net-
works after a single large gradient step, offer an ideal play-
ground to test the intertwined influence of the spike/target
correlation and the test performance of the model. Fig. 5
presents the learning curves of (s)RFs for varying spike
strengths r. As is intuitive, larger spikes allow the sRF
to more easily express non-linear function in the direction
of the spike, and thus lead to relatively smaller test errors.
Furthermore, note that even rather small spike strengths
r = 0.2 already yield test errors which are sizably lower
than vanilla (unspiked) RFs (r = 0), hinting at the quali-
tative difference between sRF and RF models discussed in
section 2 and Fig. 1. The plot shows a compelling agree-
ment between the theoretical predictions (continuous line)
and numerical simulations. Fig. 6 represents the theoretical
closed-form expression for the test error (25) for different
values of the spike/target alignment γ, for a single-index
target sign(θ⊤x), with good agreement with numerical ex-
periments. Higher alignments γ lead to overall lower test
errors escaping the linear curse of Gaussian models.

4.2. Beating kernels in a single step

A key parameter in our formulas is γ = v⊤θ/d ∈ [0, 1],
the correlation between the effective gradient spike and the
target weights. From its asymptotic expression eq. 9 in
Result 3.1, this is an increasing function of α0 = n0/d, the
number of samples in the first step. As shown in Fig. 2 for
σ = σ⋆ = tanh, larger sample complexities in the repre-

0.5 1.0 1.5 2.0 2.5 3.0

10 1

100

g

0 = 0.0
0 = 5
0 = 10
0 = 20

Figure 3. Crosses: Test error achieved by a two-layer network
after a single gradient step with learning rate η̃ = 3, readout
regularization λ = 0.1 and activation σ = tanh. The target is a
single index model with sine activation. Numerical experiments
were performed in d = 2000. All points were averaged over
5 instances. Different colours represent different initial sample
complexities α0 = n0/d used for the first gradient step, with
α0 = 0 corresponding to an untrained first layer. Solid lines:
theoretical characterization of Result 3.3 for the equivalent sRFs.
The dashed black line represents the lowest achievable MSE for
kernel/linear methods, namely h⋆

2 − (h⋆
1)

2 (Ba et al., 2022).

sentation learning step α0 allow for better feature learning
when implementing a gradient step on the first layer, en-
abling a lower test error after the readout layer is retrained.
As expected, the lowest error is achieved when α0 → ∞, in
which case the spike v is perfectly aligned with the target
weights θ and γ = 1, as can be seen from (9).

Fig. 3 presents similar curves for another target activation
σ⋆ = sin, including the test error achieved by the network
at initialization (α0 = 0), which corresponds to a usual RF
model. The latter is well above the lowest Mean Squared
Error (MSE) achievable by a linear estimator (plotted as a
dashed black line), namely the projection of the teacher func-
tion on Hermite polynomials ∥P>1f⋆∥22. This performance
corresponds to the kernel one when the number of samples
scales proportionally with the input dimension (Ghorbani
et al., 2020); using the notations of Result 3.1 the best lin-
ear MSE is readily written as h⋆2 − (h⋆1)

2. Note that this
value also lower-bounds the MSE achieved by the NTK, see
Proposition 1 of (Ba et al., 2022). In sharp contrast, net-
works with trained first layers (α0 > 0) can learn non-linear
functions of the inputs and outperform this baseline.

4.3. What can be learned with a single step?

While training a two-layer network with large gradient steps
allows it to escape the linear limitations of, e.g. RF mod-
els, it generically only learns the target up to small test
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Figure 4. (c = 1, r = 0.9 and γ = 1) Illustration of the functions
realizing the upper bound (26) (orange) and lower bound (27)
(blue), for σ = tanh, for a target σ⋆ = sin (dashed black).

error, yet not perfectly. Further insight can be extracted
from the theoretical characterization of the corresponding
sRF. In fact, a closer examination of the sharp asymptotic
expression (25) for ϵg in Result 3.3 reveals that even for
large initial batches α0 → ∞ (and thus perfect spike/target
alignments γ = 1), at fixed learning rate strength η̃ and
sample complexity α > 0, the test error optimized over the
regularization λ is upper bounded as

inf
λ≥0

ϵg ≤ inf
b1

Eκ
[
σ⋆(κ)− b1µ0(κ)

]2
, (26)

and lower bounded by:

inf
λ≥0

ϵg≥ inf
b1,b2

Eκ
[
σ⋆(κ)− b1µ0(κ)− b2µ1(κ)κ

]2
. (27)

The upper bound (26) is the equivalent of Lemma 6 of (Ba
et al., 2022) in our case of uniform readout initialization
a(0) = 1p/√p, and is achieved for λ → ∞, as we show in
App. E. The lower bound (27), however, shows that the
test error cannot be lower than the Gaussian-weighted L2

distance between the target function σ⋆ and span(µ0, µ̃1),
where µ̃1(κ) ≡ κµ1(κ), and the best approximation would
be reached for the projection of the target thereon. Fig. 4
illustrates what functions realize the upper (26) and lower
bounds (27), and how they compare with the target σ⋆. Fi-
nally, note that in the vanilla RF limit r = 0, the functions
µ0(κ), µ1(κ) reduce to constants independent of κ, con-
straining the class of functions that can be learned to that of
linear functions.

Finally, let us mention that while this discussion was made
at fixed learning rate η̃ for clarity, the latter is in practice a
tunable hyper-parameter, and the functions µ0, µ1 depend
thereupon via the spike strength r (15). One can thus refine
– and lower– the bounds (26) and (27) over the functions
µ0, µ1, which can take values in the realizable set M =

0.5 1.0 1.5 2.0 2.5 3.0

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

g

r = 0.0
r = 0.2
r = 0.5
r = 1.0

Figure 5. Test error for a sRF with σ = sin activation, learn-
ing from a single-index model sign(θ⊤x/

√
d), with regularization

λ = 0.1. Solid lines: theoretical characterization of Result 3.3.
Crosses: numerical simulations in dimensions d = p = 2000.
Each point is averaged over 10 instances of the problem. Different
colours correspond to different spike strengths r (7), with r = 0
corresponding to the vanilla RF model.

{(µ0(r), µ1(r)}r≥0 (emphasizing the dependence on r via
equation (75)) as η̃ is varied:

inf
λ≥0,η̃≥0

ϵg ≤ inf
b1∈R,ν0∈M

Eκ
[
σ⋆(κ)− b1ν0(κ)

]2
, (28)

inf
λ≥0,η̃≥0

ϵg ≥ inf
b1,b2∈R,

(ν0,ν1)∈M

Eκ
[
σ⋆(κ)− b1ν0(κ)− b2ν1(κ)κ

]2
.

In other words, by tuning the learning rate η̃ – and thus
the spike strength r–, one gains the freedom to choose the
”best” subspace span(µ0(r), µ1(r)), i.e. the one allowing
to approximate the target σ⋆ best. Finally, as discussed in
(Ba et al., 2022), observe that for σ = σ⋆ = erf , the upper
bound in (28) is zero provided one tunes the learning rate
to η̃ =

√
3β/h1, and perfect learning is therefore achievable.

Let us emphasize that this discussion formally holds for the
equivalent sRF model; we however expect it to hold, at least
qualitatively, also for the original two-layer networks.

4.4. More variability means better feature learning

The discussion of subsection 4.3 thus affords an insightful
perspective on the learning of sRF models in terms of
approximating the target activation σ⋆ in a two-dimensional
functional space. Interestingly, introducing variability in
the readout layer at initialization leads to an even richer
functional basis, and hence greater expressivity of the
network. As we further discuss in Appendix D, when a(0)

is no longer proportional to 1p, but is rather initialized
from a distribution over a finite vocabulary V of size
|V | > 1–e.g. V = {−1, 0,+1}– the equivalent feature
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map of the associated sRF takes the form:

φg(x)=


µ0(u1κ)

µ0(u2κ)

...
µ0(upκ)

+


µ1(u1κ)

µ1(u2κ)

...
µ1(upκ)

⊙Wx+


µ2(u1κ)

µ2(u2κ)

...
µ2(upκ)

⊙ξ

(29)

where ⊙ denotes element-wise multiplication,
ξ ∼ N (0, Ip), and u ̸∝ 1p has entries which can now take
a finite number of different values. The coefficients of
the equivalent map (29) are thus neuron-dependent and
thus afford a richer functional basis {µ0(ω·), µ̃1(ω·)}ω∈V ,
thereby allowing the network to express a larger class
of functions. As a matter of fact, the functional space
spanned by these functions is generically of dimension
2|V | for non-uniform readout initializations a(0), compared
to just 2 in the uniform readout case. A sharp asymptotic
characterization of the test error for the case of non-uniform
readout initialization with finite vocabulary is further
provided in Appendix D.

We briefly discuss the limiting case of interest
λ, α0, η̃ → ∞, for which the equivalent feature map φg(x)
(29) reduces to its first term (µ0(uiκ))

p
i=1. Further, observe

that µ0(uiκ) can be viewed as a one-dimensional neuron act-
ing on the one-dimensional input variable κ with a random
weight ui. Standard results on approximation errors for ran-
dom feature mappings of finite-dimensional inputs (Rahimi
& Recht, 2007) imply that a large class of functions can be
approximated from the network features φg(x), provided
the vocabulary size |V | is large enough. Similar random
features approximations have been leveraged in (Ba et al.,
2022; 2024; Damian et al., 2022). The equivalent feature
map (29) provides an intuitive picture on how such random
feature mappings of low-dimensional inputs can naturally
emerge in the setting of the learning of a two-layer network.

Finally, note that the bounds (26) and (27) can be read-
ily generalised to non-uniform readout initializations, pro-
vided one replaces in the discussion of subsection 4.3 the
two-dimensional functional basis span(µ0, µ̃1) in the case
of uniform initialization by the richer functional space
span({µ0(ω·), µ̃1(ω·)}ω∈V ) for non-uniform initialization.
For instance, the lower bound (27) thus involves in the
non-uniform case the distance between the target σ⋆ and
span({µ0(ω·), µ̃1(ω·)}ω∈V ).

Conclusion
We provided a tight asymptotic description of the learning
of spiked random features models, which we show provides
a quantitative approximation for a two-layer neural network
after training its first layer with a large, single, gradient
step, in the limit where the number of samples, the hid-
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Figure 6. Test error for a sRF with σ = tanh activation, learning
from a single-index model tanh(θ⊤x/

√
d), with regularization

λ = 0.1. Solid lines: theoretical characterization of Result 3.3.
Crosses : numerical simulations in dimensions d = p = 2000.
Each point is averaged over 10 instances of the problem. Different
colours correspond to different overlaps γ ≡ θ⊤v/d between the
target weights θ and the spike v.

den layer width, and the input dimension are proportionally
large. Our results sharply characterize the corresponding
feature map, and how it achieves a test error which non-
perturbatively improves over the kernel regime. Crucially,
the sRF can efficiently approximate non-linear functions
–beyond polynomials– in the direction of the gradient – size-
ably improving upon RFs (modeling the network at initial-
ization), which can only express linear functions. We further
discuss bounds for the test error and which functions are
learnable after a single gradient step. Finally, extensive
numerical support is provided to illustrate our findings.

We believe the present work opens exciting research av-
enues, paving the way towards a tight theoretical under-
standing of feature learning in gradient-trained networks.
Prominent among these research directions is the extension
of our results to readout initialization with generic (not nec-
essarily finite) support. to a finite number of gradient steps,
and ultimately fully trained networks.
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borová, L. Universality laws for gaussian mixtures in
generalized linear models. Advances in Neural Informa-
tion Processing Systems, 36, 2024.

Dhifallah, O. and Lu, Y. M. A precise performance anal-
ysis of learning with random features. arXiv preprint
arXiv:2008.11904, 2020.

Dyer, E. and Gur-Ari, G. Asymptotics of wide networks
from feynman diagrams. In International Conference on
Learning Representations, 2020.

Feldman, M. J. Spectral properties of elementwise-
transformed spiked matrices. arXiv preprint
arXiv:2311.02040, 2023.

Gerace, F., Loureiro, B., Krzakala, F., Mezard, M., and Zde-
borova, L. Generalisation error in learning with random
features and the hidden manifold model. In Proceed-
ings of the 37th International Conference on Machine
Learning, pp. 3452–3462, 2020.

Ghorbani, B., Mei, S., Misiakiewicz, T., and Montanari, A.
Limitations of lazy training of two-layers neural network.
In Advances in Neural Information Processing Systems,
volume 32, 2019.

Ghorbani, B., Mei, S., Misiakiewicz, T., and Montanari, A.
When do neural networks outperform kernel methods?
In Advances in Neural Information Processing Systems,
volume 33, pp. 14820–14830, 2020.
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A. Derivation of Result 3.1
This Appendix details the derivation of Result 3.1, which provides tight asymptotic formulae (9) for the parameters of the
sRF associated to a two-layer neural network trained with a large gradient step.

A.1. First layer weights after one gradient step –

After one large gradient step, the weights W (1) can be decomposed as a bulk plus a spike in the following way:

W (1) =W (0) +∆+
ǔv̌⊤
√
p
, (30)

where

ǔ = ηh1a
(0), (31)

v̌ =
1

n0

n0∑
µ=1

f⋆(x
µ)xµ, (32)

and

∆ =W (0) +
η

n0
√
p
diag(a(0))

 n0∑
µ=1

σ̌(W (0)xµ)f⋆(x
µ)xµ

 . (33)

We noted h1 the first Hermite coefficient of the student activation σ and σ̌(·) = σ′(·)− h1. As discussed in (Ba et al., 2022;
Dandi et al., 2024), the bulk ∆ behaves as an effective noise which rescales the initial weights W (0); we refer to Sec. B.6 of
(Dandi et al., 2023) for additional rigorous characterization of the bulk ∆. To connect to the convention used below (7)
of normalized u = 1p, ∥v∥=

√
d, and a single bulk W , one thus needs to assess the asymptotic limits of r = ∥ǔ∥∥v̌∥/

√
pd,

c = 1/
√
d∥W (0) +∆∥ and γ = v̌⊤θ/∥v̌∥. This program is carried out in the following subsection.

A.2. Spike scale

We first focus on the scale of the spike r. We remind here the convention to assume normalized spike vectors, i.e.
∥u∥= ∥v∥=

√
d. Comparing to (31), it follows that

r =
1√
pd

∥∥∥ηh1a(0)∥∥∥×
∥∥∥∥∥∥ 1

n0

n0∑
µ=1

f⋆(x
µ)xµ

∥∥∥∥∥∥ . (34)

Remembering that a(0) = 1p/√p, it follows that ∥∥∥ηh1a(0)
∥∥∥ = dη̃h1. (35)

We now turn to the second term. As a mean of independent vectors, it concentrates in probability. We thus compute the
expectation of the squared norm:

ED0

∥∥∥∥∥∥ 1

n0

n0∑
µ=1

f⋆(x
µ)xµ

∥∥∥∥∥∥
2

=
1

n0

d∑
i=1

Ex[f⋆(x)
2x2i ] +

(n0 − 1)

n0

d∑
i=1

Ex[f⋆(x)xi]2 (36)

Note that θ⊤x/
√
d and xi have asymptotically vanishing correlation. To leading order, therefore

Ex[f⋆(x)
2x2i ] = Ez[σ⋆(z)2] +Od(1/

√
d) = h⋆2 (37)

Ex[f⋆(x)xi] = Ez[σ′
⋆(z)]

θi√
d
= h⋆1

θi√
d

(38)
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Therefore

ED0

∥∥∥∥∥∥ 1

n0

n0∑
µ=1

f⋆(x
µ)xµ

∥∥∥∥∥∥
2

=
dh⋆2
n0

+
(n0 − 1)h⋆21

n0
=
h⋆2
α0

+ h⋆21 . (39)

Thus

r =
η̃h1√
β

(
h⋆2
α0

+ h⋆21

)1/2

. (40)

A.3. Spike/target alignment

We now turn to the spike/target alignment, defined as the overlap between the (normalized) target weights θ and spike v.

γ =
θ⊤v

√
d

d∥v∥
=

1
n0

n0∑
µ=1

σ⋆(z
µ)zµ∥∥∥∥∥ 1

n0

n0∑
µ=1

f⋆(xµ)xµ

∥∥∥∥∥
. (41)

We noted zµ ≡ θ⊤xµ/
√
d. The numerator converges by the law of large numbers to h⋆1, while the numerator was computed

in the previous subsection. All in all, we reach

γ =
h⋆1(

h⋆
2

α0
+ h⋆21

)1/2
(42)

A.4. Bulk norm

By symmetry, all rows of the bulk ∆ (33) asymptotically share the same norm c∆. The norm of a row w of W =W (0) +∆
thus has asymptotic norm

∥wi∥=
√

1 + c2∆ + 2cW∆ (43)

where

c∆ =

∥∥∥∥∥∥ η

n0p

 n0∑
µ=1

σ̌(w(0)⊤xµ)f⋆(x
µ)xµ

∥∥∥∥∥∥ (44)

cW∆ =
η

n0p

 n0∑
µ=1

σ̌(w(0)⊤xµ)f⋆(x
µ)w(0)⊤xµ

 , (45)

where with a slight abuse of notation we dropped the row index i, since all rows are equivalent.

ED0 [c
2
∆] =

η2

n0p2

d∑
i=1

Ex[σ̌(w(0)⊤x)2σ⋆(θ
⊤
x/

√
d)2x2i ] +

(n0 − 1)η2

n0p2

d∑
i=1

Ex[σ̌(w(0)⊤x)σ⋆(θ
⊤
x/

√
d)xi]

2 (46)

Because w(0)⊤x, θ⊤x/
√
d, xi all have asymptotically vanishing Θd(1/

√
d) correlations, the first summand reads to leading

order

Ex[σ̌(w(0)⊤x)2σ⋆(θ
⊤
x/

√
d)2x2i ] = ȟ21h

⋆
2 (47)

The second summand reads, using Stein’s lemma

Ex[σ̌(w(0)⊤x)σ⋆(θ
⊤
x/

√
d)xi] = w

(0)
i Ex[σ̌′(w(0)⊤x)σ⋆(θ

⊤
x/

√
d)] +

θi√
d
Ex[σ̌(w(0)⊤x)σ′

⋆(θ
⊤
x/

√
d)]

= Θd(1/d) (48)
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We used

Ez[σ̌(z)] = Ez[σ̌′(z)] = 0 (49)

respectively by definition of σ̌ and because σ is odd. Thus

ED0
[c2∆] =

η2ȟ21h2d

n0p2
+Θd(1/d) =

η̃2ȟ21h
⋆
2

α0β2
+ od(1). (50)

The cross-term c∆W can similarly be computed as

cW∆ =
η

p
Ex[σ̌(w(0)⊤x)σ⋆(θ

⊤
x/

√
d)w(0)⊤x] (51)

Again because all variables in the expectation are weakly correlated, and because the average of σ̌ is zero, we have that cW∆

is vanishing to leading order.

cW∆ = od(1) (52)

Finally, we thus have

c = 1 +
η̃2ȟ21h

⋆
2

α0β2
(53)

A.5. Summary of the mapping

In summary, we have derived the asymptotic formulae for the equivalent sRF:

c = 1 +
η̃2ȟ21h

⋆
2

α0β2
(54)

r =
η̃h1√
β

(
h⋆2
α0

+ h⋆21

)1/2

, (55)

γ =
h⋆1(

h⋆
2

α0
+ h⋆21

)1/2
, (56)

which recovers equation (9) of Result 3.1.

B. Derivation of Result 3.2
In this section we detail the heuristic derivation of Result 3.2, which shows the asymptotic equivalence of the sRF feature
map (13) with the conditional feature map (14). This mapping is at the core of the exact asymptotic description detailed in
the next appendix.
We first remark that, since the data is Gaussian, x ∼ N (0, Id), we can decompose it as

x = κ+ x⊥, (57)

where κ ≡ v⊤x/
√
d ∼ N (0, 1) and we noted x⊥ ≡ Π⊥x the component orthogonal to the spike, with Gaussian statistics

x⊥ ∼ N (0,Π⊥). The sRF feature map (13) thus reads

φ(x) = σ

(
κ1p + κ

Wv√
d
+Wx⊥

)
(58)

Conditioning on the projection κ along the spike, this corresponds to a RF feature map with random biases κ1p + κWv/
√
d.

One can compute the population mean and covariance of φx along the exact same lines as e.g. (Cui et al., 2023), leading to

Ex[φ(x)i] = κ̃0i . (59)

Covx[φ(x)i, φ(x)j ] = κ̃1i κ̃
1
j (W )⊤i Π

⊥(W )j + δij(κ
∗
i )

2. (60)
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where

κ̃0i ≡ Ez[σ(κ+ (W )
⊤
i v/

√
d+ z)] (61)

κ̃1i ≡ Ez[zσ(κ+ (W )
⊤
i v/

√
d+ z)] (62)

κ̃∗i =
√
Ez[σ(κ+ (W )

⊤
i v/

√
d+ z)2]− (κ̃1i )

2 − (κ̃0i )
2 (63)

In other words, the features φ(x) share the same second order statistics as the noisy features

φg(x)i ≡ κ̃0i + κ̃1i (W )⊤i x
⊥ + κ̃∗i ξi (64)

where ξi ∼ N (0, 1) is a stochastic noise. Note that in the definition of the κ0,1,∗i coefficients (61), (W )⊤i v/
√
d = Θd(1/

√
d),

so one can expand them as

κ̃0i ≡ Ez[σ(κ+ z)]︸ ︷︷ ︸
µ0(κ)

+(W )
⊤
i v/

√
dµ1(κ) (65)

κ̃1i ≡ Ez[zσ(κ+ z)]︸ ︷︷ ︸
µ1(κ)

+(W )
⊤
i v/

√
dEz[zσ′(κ+ z)︸ ︷︷ ︸

≡µ3(κ)

] (66)

κ̃∗i =
√
Ez[σ(κ+ z)2]− (κ1)2 − (κ0)2︸ ︷︷ ︸

µ2(κ)

+Od(1/
√
d) (67)

So

φg(x)i ≡ µ0(κ) + µ1(κ)(W )⊤i x+ (68)

+ µ3(κ)×
(W )⊤i v√

d
× (W )ix

⊥ + µ2(κ)ξi + ξiΘd(1/
√
d) (69)

Finally, note that the µ3(κ) term is subleading compared to the second term, and should be asymptotically unconsequential
for the learning, and can thus be safely neglected. By the same token, the last term is a subleading correction to the noise
term and can be neglected. Therefore, one finally reaches

φg(x) ≡ µ0(κ)1p + µ1(κ)W
⊤x+ µ2(κ)ξ (70)

which recovers (14) in Result 3.2.

C. Derivation of Result 3.3
In this Appendix, we detail the derivation of Result 3.3. The derivation leverages the replica method from statistical
physics (Parisi, 1979; 1983) in its replica-symmetric formulation, in conjunction with Result 3.2. On a technical level,
the derivation builds upon the formal equivalence between the distribution of the equivalent features φg(x) (14) with a
mixture of Gaussians with infinitely many κ−indexed clusters, similarly to the superstatistical approach of (Adomaityte
et al., 2023a;b) in another setting.

First observe that for any test function ϕ(â) of the minimizer â of (4),

ϕ(â) = lim
ω→∞

ED
1

Z

∫
daϕ(a)e−ωRλ[a], (71)

where we remind that R[a] denotes the empirical risk (4), and we denoted

Z ≡
∫
dae−ωRλ[a] (72)

the normalization factor, also known as the partition function in statistical physics. It is therefore important to the generating
function associated with the measure (71), namely E lnZ. Such computations can be addressed using the replica method
from statistical physics (Parisi, 1979; 1983), leveraging the identity

lnZ = lim
s→0

Zs − 1

s
. (73)

The backbone of the derivation thus lies in the computation of EZs.
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C.1. Reminder of setting and notations

Because of Result 3.2, we take as a starting point that one can assume the sRF features z = φ(x) (13) are distributed as

z = µ0(κ)1p + µ1(κ)Wx+ µ2(κ)ξ

= µ0(κ)1p + 1/
√
dµ1(κ)κWv + µ1(κ)WΠ⊥x+ µ2(κ)ξ (74)

where κ ≡ v⊤z√
d

∼ N (0, 1),u = 1d,x ∼ N (0, Id), ξ ∼ N (0, Ip). We remind that

µ0(κ) = Ew σ(w + rκ) (75)

µ1(κ) =
1

c
Ew wσ(w + rκ) (76)

µ2(κ) =
√
Ew σ2(w + rκ)− c(µ1(κ))2 − (µ0(κ))2, (77)

where expectations bear over w ∼ N (0, c). Finally, we consider a generic target function

f⋆(x) = σ⋆(κ, θ
⊤
Π

⊥
x/

√
d). (78)

Note that single-index models considered in the main text constitute a special case of this family of functions, which we
consider here for generality. We look at the empirical risk minimization over a of

R[a] =

n∑
µ=1

ℓ(f⋆(x
µ), a⊤

z
µ/√p) + g(a), (79)

for generic convex loss ℓ and ℓ2 regularizer g(·) = λ/2∥·∥2. We shall provide a detailed derivation in this generic case and
only specialize to the particular case of square loss addressed in Result 3.3 at the end of the derivation.

C.2. Replica computation

The replicated partition function reads

Zs =

∫ s∏
r=1

dare
−ωg(ar)

Ex
s∏
r=1

e−ωℓ(f⋆(x),a
⊤
r z/√p)

︸ ︷︷ ︸
(⋆)


n

(80)

We now expand (⋆).

(⋆) = Eκ,x⊥,ξ

s∏
r=1

e−ωℓ(σ⋆(κ,λ⋆),µ0(κ)mr+µ1(κ)κζr+µ1(κ)gr+µ2(κ)hr) (81)

We defined the summary statistics

mr =
a⊤
r 1p√
p
, ζr =

a⊤
r Wv√
dp

, q1rr′ =
a⊤
r Ωar′

p
, q2rr′ =

a⊤
r ar′

p
, (82)

and local fields

gr =
a⊤
r WΠ⊥x
√
p

, hr =
a⊤
r ξ√
p
, λ⋆ =

θ⊤Π⊥x√
d

(83)

where

Ω =WΠ⊥W⊤. (84)
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One can then rewrite (⋆) more compactly as

(⋆) = Eκ

Eλ⋆,{λr}s
r=1

e
−ω

s∑
r=1

ℓ(σ⋆(κ,λ⋆),µ0(κ)mr+µ1(κ)κζr+λr)

 (85)

where the fields λ⋆, λr are Gaussian with statistics

⟨λrλr′⟩ = µ1(κ)
2q1rr′ + µ2(κ)

2q2rr′

⟨λ2⋆⟩ =
θ⊤Π⊥θ

d
≡ ρ

⟨λrλ⋆⟩ = µ1(κ)
a⊤
r WΠ⊥θ√

pd
≡ µ1(κ)ψr (86)

Introducing Dirac’s deltas in their Fourier form to enforce the definitions of the summary statistics mr, ζr, q
1,2
rr′ , ψr, the

replicated partition function then reads

Zs =

∫ s∏
r=1

dmrdm̂rdζrdζ̂rdψrdψ̂r
∏
r,r′

dq1rr′dq̂
1
rr′dq

2
rr′dq̂

2
rr′ e

−√
p
∑
r
mrm̂r−

√
dp

∑
r
(ζr ζ̂r+ψrψ̂r)−p

∑
a≤b

(q1
rr′ q̂

1
rr′+q

2
rr′ q̂

2
rr′ )︸ ︷︷ ︸

esωpΨt∫ ∏
r

dare
−ω

∑
r
g(ar)

e
+

s∑
r=1

a⊤
r (m̂r1p+ζ̂rWv+ψ̂rWΠ⊥θ)+

∑
r≤r′

(q̂1
rr′w

⊤
r Ωwr′+q̂

2
rr′w

⊤
r wb)

︸ ︷︷ ︸
esωpΨwEκ

Eλ⋆,{λr}s
r=1

e
−ω

s∑
r=1

ℓ(σ⋆(κ,λ⋆),µ0(κ)m
a+µ1(κ)κζ

a+λr)



n

︸ ︷︷ ︸
eα/βsωpΨy

(87)

We will refer to these three terms respectively as the trace, entropic, and energetic terms. Note that all terms in the exponents
are a priori Θd(d), thus large. It is therefore possible to compute the integral over the summary statistics mr, ζr, q

1,2
rr′ , ψr

and respective conjugate variables using Laplace’s method, thereby reducing the problem to finding the extremum of
sΨt + sΨw + αsΨy .

C.3. Replica symmetric ansatz

The extremization remains challenging on several levels, notably because it involves s2 + 5s variables, and the replica
method requires to take the limit s → 0. To make the problem tractable, we will seek the extremum assuming it has the
replica-symmetric form

∀1 ≤ r, r′ ≤ s, qιrr′ = δrr′(r
ι − qι) + qι

∀1 ≤ r ≤ s, mr = m

∀1 ≤ r ≤ s, ζr = ζ

∀1 ≤ r ≤ s, ψr = ψ (88)

for ι = 1, 2, and similarly for the hat variables:

∀1 ≤ r, r′ ≤ s, q̂ιab = δab(−
1

2
r̂ι − q̂ι) + q̂ι

∀1 ≤ r ≤ s, m̂r = m̂

∀1 ≤ r ≤ s, ζ̂r = ζ̂

∀1 ≤ r ≤ s, ψ̂r = ψ̂ (89)

Like in e.g. (Loureiro et al., 2021a), we also introduce the variance order parameters

Vι = rι − qι, V̂ι = r̂ι + q̂ι. (90)
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C.4. Computing the free energy

Entropic term The computation of the entropic term follows from the derivation of (Aubin et al., 2020), with but minor
changes. The entropic term thus reads,

pωΨw = Eξ ln

∫
dae

−ωg(a)− 1
2a

⊤(V̂1Ω+V̂2Ip)a+a⊤
(
m̂1p+ζ̂Wv+ψ̂WΠ⊥ζ+(q̂1Ω+q̂2Ip)

1/2
ξ
)

(91)

In the ω → ∞ limit, rescaling the conjugate statistics as

q̂ι → ω2q̂ι, m̂, V̂ι, ζ̂, ψ̂ → ωm̂, ωV̂ι, ωζ̂, ωψ̂, (92)

the entropic potential can finally be rewritten in the ω → ∞ limit as

Ψw = −EξMg(ξ) (93)

where we define the Moreau envelope

Mg(ξ) = inf
a

{
g(a) +

1

2
a⊤(V̂1Ω+ V̂2Ip)a− a⊤

(
m̂1p + ζ̂Wv + ψ̂WΠ⊥θ +

(
q̂1Ω+ q̂2Ip

)1/2
ξ
)}

(94)

For the case g = λ/2∥·∥2, this simplifies to

Ψw =
1

2p
Tr

[(
m̂21p1

⊤
p + ζ̂2Wvv⊤W⊤ + ψ̂2WΠ⊥θθ⊤Π⊥W⊤ + q̂1Ω+ q̂2Id

)(
V̂1Ω+ V̂2Id + λId

)−1
]
. (95)

We neglected cross-terms of the form 1pv
⊤W⊤,1pθ

⊤Π⊤W⊤,Wvθ⊤Π⊤W⊤ in the numerator, which are expected to be
asymptotically subleading. For example, one expects

1

p
Tr

[
1pv

⊤W⊤
(
V̂1Ω+ V̂2Id + λId

)−1
]
=

1

p
v⊤W⊤

S−1 +
V̂1
d

S−1Wvv⊤W⊤S−1

1− V̂1

d Tr
[
Wvv⊤W⊤S−1

]
1p

= Od(1/
√
d), (96)

where we introduced the shorthand S = V̂1WW⊤ + V̂2Ip + λIp and used the Sherman-Morrison lemma. The last scaling
follows from the fact that since the vectors Wv,1p are weakly correlated, their scalar product –with the uncorrelated matrix
S−1 in the middle– should be v⊤W⊤S−11p = Od(1/

√
d). A similar reasoning holds for the other cross-terms.

Energetic term The energetic term is the same as for a Gaussian mixture computation as in e.g. (Mignacco et al., 2020;
Loureiro et al., 2021c; Pesce et al., 2023; Cui & Zdeborová, 2024) for Gaussian mixture distributions, with the Eκ playing
the role of the sum over clusters. In other words, the equivalent feature map (14) is formally equivalent to an infinite mixture
of Gaussian clusters indexed by the projection κ on the spike v. Note that the formal equivalence to infinite Gaussian
mixtures was already studied in (Adomaityte et al., 2023a;b), in the context of learning from heavy-tailed data. Exploiting
this formal equivalence, the expectation over {λa} can be carried out and give a Moreau envelope in the ω → ∞ limit,
yielding

Ψy = −Eκ,ξ,yM(ξ, κ, y) (97)

where ξ ∼ N (0, 1) and

M(ξ, κ, y) = inf
x

{
1

2V (κ)
(x− µ1(κ)ψy −

√
ρq(κ)− µ1(κ)2ψ2ξ)2 + ℓ(σ⋆(κ, y), µ0(κ)m+ µ1(κ)κζ + x)

}
(98)

we noted

q(κ) = µ1(κ)
2q1 + µ2(κ)

2q2, V (κ) = µ1(κ)
2V1 + µ2(κ)

2V2. (99)

In (97), all expectations bear over zero-mean, unit variance Gaussian variables. Note that q(κ), V (κ) are the exact equivalents
of qk, Vk in e.g. (Loureiro et al., 2021c) or (Cui & Zdeborová, 2024), i.e. the overlaps associated to cluster index κ. As
previously mentioned, the equivalent map (14) formally coincides with an infinite Gaussian mixture, with κ indexing the
cluster.
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Trace term Note that in contrast to e.g. (Mignacco et al., 2020; Loureiro et al., 2021c; Cui & Zdeborová, 2024), in the
trace term Ψt, the m̂m term is multiplied by

√
d instead of d. This is due to the fact that the cluster centroids, whose role is

here played by u = 1p, is of norm
√
d, whereas (Mignacco et al., 2020)(Loureiro et al., 2021c) consider Gaussian clusters

separated by centroids of norm Θd(1). The computation of the trace term however follows identical steps as e.g. (Loureiro
et al., 2021a), yielding

Ψt = −1

2
(V̂1q1 − q̂1V1)−

1

2
(V̂2q2 − q̂2V2) +

1√
d
mm̂+

1√
β
ψψ̂ +

1√
β
ζζ̂

= −1

2
(V̂1q1 − q̂1V1)−

1

2
(V̂2q2 − q̂2V2) +

1√
β
ψψ̂ +

1√
β
ζζ̂ (100)

Comparing to (Loureiro et al., 2021c), the m̂m term in the free energy is thus vanishing asymptotically.

Free energy Putting everything together, the free energy is

f = extr
qι,Vι,m,ψ,ζ,q̂ι,V̂ι,m̂,ψ̂,ζ̂

{
− 1

2
(V̂1q1 − q̂1V1)−

1

2
(V̂2q2 − q̂2V2) +

1√
β
ψψ̂ +

1√
β
ζζ̂

− 1

2p
Tr

[(
m̂21p1

⊤
p + ζ̂2Wvv⊤W⊤ + ψ̂2WΠ⊥θθ⊤Π⊥W⊤ + q̂1Ω+ q̂2Id

)(
V̂1Ω+ V̂2Id + λId

)−1
]

+
α

β
Eκ,ξM(ξ, κ)

}
(101)

The free energy can be simplified, noting that the zero-gradient (saddle-point) condition on m̂ can be written as

0
!
= m̂Tr

[
1p1

⊤
p

(
V̂1Ω+ V̂2Id + λId

)−1
]
, (102)

which imposes m̂ = 0. The free energy now simplifies to

f = extr
qι,Vι,m,ψ,ζ,q̂ι,V̂ι,ψ̂,ζ̂

{
− 1

2
(V̂1q1 − q̂1V1)−

1

2
(V̂2q2 − q̂2V2) +

1√
β
ψψ̂ +

1√
β
ζζ̂

− 1

2p
Tr

[(
ζ̂2Wvv⊤W⊤ + ψ̂2WΠ⊥θθ⊤Π⊥W⊤ + q̂1Ω+ q̂2Id

)(
V̂1Ω+ V̂2Id + λId

)−1
]

+
α

β
Eκ,ξM(ξ, κ)

}
(103)

Let us massage the expression in the trace further, by explicitly replacing Ω by its definition, namely Ω = WW⊤ −
1/dWvv⊤W⊤. The term in the trace then becomes

(a)≡1

p
Tr

[(
(ζ̂2−q̂1/d)Wvv⊤W⊤+ ψ̂2WΠ⊥θθ⊤Π⊥W⊤+q̂1WW⊤+q̂2Id

)(
V̂1WW⊤−V̂1/dWvv⊤W + V̂2Id + λId

)−1
]

(104)

The q̂1/d in the numerator can be safely neglected as a small correction to ζ̂2. On the other hand, one has to take care of the
spike in the denominator using the Sherman-Morrison lemma. Using the shorthand

S ≡ V̂1WW⊤ + V̂2Ip + λIp (105)

one can write the denominator as

(S − V̂1/dWvv⊤W⊤)−1 = S−1 +
V̂1
d

S−1Wvv⊤W⊤S−1

1− V̂1

d Tr
[
Wvv⊤W⊤S−1

] . (106)
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The trace term (a) thus decomposes as

(a) =
1

p
Tr

[(
ζ̂2Wvv⊤W⊤ + ψ̂2WΠ⊥θθ⊤Π⊥W⊤ + q̂1WW⊤ + q̂2Ip

)
S−1

]

+
V̂1
pd

Tr

[(
ζ̂2Wvv⊤W⊤ + ψ̂2WΠ⊥θθ⊤Π⊥W⊤ + q̂1WW⊤ + q̂2Ip

)
S−1Wvv⊤W⊤S−1

]
1− V̂1

d Tr
[
Wvv⊤W⊤S−1

]︸ ︷︷ ︸
(b)

(107)

We turn to the simplification of the numerator of (b), sequentially examining each of the three terms composing it. First,

ψ̂2WΠ⊥θθ⊤Π⊥W⊤S−1Wvv⊤W⊤S−1 = ψ̂2
(
(Π⊥θ)⊤W⊤S−1Wv

)2
= Od(d), (108)

where we used that Π⊥θ, v are orthogonal, so the squared scalar product of these vectors, with the uncorrelated matrix in
between, should be asymptotically at most Od(

√
d). Turning to the second term:

q̂1WW⊤S−1Wvv⊤W⊤S−1 = q̂1∥W⊤S−1Wv∥2= Od(d). (109)

Finally

ζ̂2Wvv⊤W⊤S−1Wvv⊤W⊤S−1 = ζ̂2
(
v⊤W⊤S−1Wv

)2
= Θd(d

2). (110)

In short, only the third term yields a Θd(1) contribution in (b), i.e.

(b) = od(1) +
ζ̂2V̂1
pd

Tr
[
Wvv⊤W⊤S−1

]2
1− V̂1

d Tr
[
Wvv⊤W⊤S−1

] (111)

Finally, the (a) term can be written be written in fully asymptotic form, by introducing the limiting distribution ν(ϱ, τπ) of
Assumption 3.2:

(a) =

∫
dν(ϱ, τ, π)

ζ̂2τ2ϱ+ ψ̂2ϱπ2 + q̂1ϱ+ q̂2

V̂1ϱ+ V̂2 + λ
+ βζ̂2V̂1

(∫
dν(ϱ, τ, π) τ2ϱ

V̂1ϱ+V̂2+λ

)2
1− βV̂1

∫
dν(ϱ, τ, π) τ2ϱ

V̂1ϱ+V̂2+λ

, (112)

thereby yielding the expression for the free energy

f = extr
qι,Vι,m,ψ,ζ,q̂ι,V̂ι,ψ̂,ζ̂

{
− 1

2
(V̂1q1 − q̂1V1)−

1

2
(V̂2q2 − q̂2V2) +

1√
β
ψψ̂ +

1√
β
ζζ̂ +

α

β
Eκ,ξM(ξ, κ)

− 1

2

∫
dν(ϱ, τ, π)

ζ̂2τ2ϱ+ ψ̂2ϱπ2 + q̂1ϱ+ q̂2

V̂1ϱ+ V̂2 + λ
− β

ζ̂2V̂1
2

(∫
dν(ϱ, τ, π) τ2ϱ

V̂1ϱ+V̂2+λ

)2
1− βV̂1

∫
dν(ϱ, τ, π) τ2ϱ

V̂1ϱ+V̂2+λ

}
(113)

Comments on the limiting density ν Let us briefly comment on the form of the limiting distribution ν. To build
intuition, let us further relax in this paragraph only the strict normalization on the norm of the rows of W , and assume
the rows are independently sampled from N (0, cId). Finally, by the same token, let us assume v ∼ N (0, Id) and
θ
d
= γv +N (0, (1− γ2)Id), so that they are Gaussian vectors with standard deviation

√
d and average overlap γ. Note that

relaxing the spherical constraint on all vectors, and allowing them to be sampled from Gaussian distributions with matching
statistics, is expected to lead to an asymptotically equivalent problem, and is only considered in this paragraph to ease the
discussion. In this setting, it is straightforward to see that the measure ν decomposes as the simple product measure

ν = c⊗ µβMP × ν̌ (114)

where µβMP denotes the Marcenko-Pastur density with aspect ratio β, and the notation a ⊗ µ denotes the pushforward
(a⊗µ)(λ) = µ(aλ). We denoted ν̌ the joint distribution of the random variables x, y−γx for x, y ∼ N (0, 1) independently.
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C.5. Saddle-point equations

We explicit the saddle-point equations associated to the optimization problem (113). Define x⋆ as the minimizer of the
Moreau envelope, and the proximal

prox(y, κ, ξ) =
1

V (κ)
(x⋆ − µ1(κ)ψy −

√
ρq(κ)− ψ2µ1(κ)2ξ). (115)

The saddle-point equations read

q1 =
∫
dν(ϱ, τ, π)ϱ

(q̂1ϱ+q̂2+ζ̂2ϱτ2+ψ̂2ϱπ2)
(λ+V̂1ϱ+V̂2)

2

−βζ̂2

(∫
dν(ϱ,τ,π) τ2ϱ

V̂1ϱ+V̂2+λ

)2

+ 1
β

∫
dν(ϱ,τ,π) τ2ϱ2

(λ+V̂1ϱ+V̂2)2

[(
1−βV̂1

∫
dν(ϱ,τ,π) τ2ϱ

V̂1ϱ+V̂2+λ

)2

−1

]
(
1−βV̂1

∫
dν(ϱ,τ,π) τ2ϱ

V̂1ϱ+V̂2+λ

)2

q2 =
∫
dν(ϱ, τ, π)

(q̂1ϱ+q̂2+ζ̂2ϱτ2+ψ̂2ϱπ2)
(λ+V̂1ϱ+V̂2)

2 − ζ̂2
∫
dν(ϱ, τ, π) τ2ϱ

(λ+V̂1ϱ+V̂2)2

1− 1(
1−βV̂1

∫
dν(ϱ,τ,π) τ2ϱ

V̂1ϱ+V̂2+λ

)2


V1 =

∫
dν(ϱ, τ, π)ϱ 1

λ+V̂1ϱ+V̂2

V2 =
∫
dν(ϱ, τ, π) 1

λ+V̂1ϱ+V̂2

m = inf
m
Eκ,y,ξM

ζ = ζ̂
√
β
∫
dν(ϱ, τ, π)ϱτ2 1

λ+V̂1ϱ+V̂2
+ β

3/2ζ̂V̂1

(∫
dν(ϱ,τ,π) τ2ϱ

V̂1ϱ+V̂2+λ

)2

1−βV̂1

∫
dν(ϱ,τ,π) τ2ϱ

V̂1ϱ+V̂2+λ

ψ = ψ̂
√
β
∫
dν(ϱ, τ, π)ϱπ2 1

λ+V̂1ϱ+V̂2

(116)

V̂1 = −α
βEκ,y,ξ

ρµ1(κ)
2√

ρq(κ)−ψ2µ1(κ)2
prox(y, κ, ξ)

q̂1 = α
βEκ,y.ξµ1(κ)

2prox(y, κ, ξ)2

V̂2 = −α
βEκ,y,ξ

ρµ2(κ)
2√

ρq(κ)−ψ2µ1(κ)2
prox(y, κ, ξ)

q̂2 = α
βEκ,y.ξµ2(κ)

2prox(y, κ, ξ)2

ζ̂ = − α√
β
Eκ,y,ξκµ1(κ)ℓ

′(σ⋆(κ, y), µ0(κ)m+ µ1(κ)κζ + x⋆)

ψ̂ = α√
β
Eκ,y,ξ

(
µ1(κ)y − ψµ1(κ)

2

ρq(κ)−ψ2µ1(κ)2
ξ
)
prox(y, κ, ξ)

(117)

C.6. Saddle point equations for the square loss

These expressions simplify for the square loss. Define the minimizer x⋆ of the Moreau envelope for ℓ(y, z) = 1/2(y − z)2:

x⋆(κ, ξ) =
V (κ)

(
σ⋆(κ, y)− µ0(κ)m− µ1(κ)κζ − µ1(κ)ψ

)
+
√
ρq(κ)− µ1(κ)2ψ2ξ + µ1(κ)ψy

1 + V (κ)
. (118)

The saddle point for m admits a compact closed form expression. Writing the saddle point equation for m indeed imposes
that

0 = ∂mEκ,ξM(ξ, κ)

= Eκ,ξ

µ0(κ)

(
f⋆(κ)− µ0(κ)m−

V (κ)f⋆(κ)− V (κ)µ0(κ)m+
√
q(κ)ξ

1 + V (κ)

) , (119)

from which it follows that

mEκ

[
µ0(κ)

2

1 + V (κ)

]
= Eκ

[
µ0(κ)f⋆(κ)

1 + V (κ)

]
, (120)
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i.e.

m =
Eκ
[
µ0(κ)f⋆(κ)
1+V (κ)

]
Eκ
[
µ0(κ)2

1+V (κ)

] (121)

The saddle-point equations thus read

q1 =
∫
dν(ϱ, τ, π)ϱ

(q̂1ϱ+q̂2+ζ̂2ϱτ2+ψ̂2ϱπ2)
(λ+V̂1ϱ+V̂2)

2

−βζ̂2

(∫
dν(ϱ,τ,π) τ2ϱ

V̂1ϱ+V̂2+λ

)2

+ 1
β

∫
dν(ϱ,τ,π) τ2ϱ2

(λ+V̂1ϱ+V̂2)2

[(
1−βV̂1

∫
dν(ϱ,τ,π) τ2ϱ

V̂1ϱ+V̂2+λ

)2

−1

]
(
1−βV̂1

∫
dν(ϱ,τ,π) τ2ϱ

V̂1ϱ+V̂2+λ

)2

q2 =
∫
dν(ϱ, τ, π)

(q̂1ϱ+q̂2+ζ̂2ϱτ2+ψ̂2ϱπ2)
(λ+V̂1ϱ+V̂2)

2 − ζ̂2
∫
dν(ϱ, τ, π) τ2ϱ

(λ+V̂1ϱ+V̂2)2

1− 1(
1−βV̂1

∫
dν(ϱ,τ,π) τ2ϱ

V̂1ϱ+V̂2+λ

)2


V1 =

∫
dν(ϱ, τ, π)ϱ 1

λ+V̂1ϱ+V̂2

V2 =
∫
dν(ϱ, τ, π) 1

λ+V̂1ϱ+V̂2

m = 1

Eκ

[
µ0(κ)2

1+V (κ)

]Eκ,y [µ0(κ)(σ⋆(κ,y)−µ1(κ)κζ)
1+V (κ)

]

ζ = ζ̂
√
β
∫
dν(ϱ, τ, π)ϱτ2 1

λ+V̂1ϱ+V̂2
+ β

3/2ζ̂V̂1

(∫
dν(ϱ,τ,π) τ2ϱ

V̂1ϱ+V̂2+λ

)2

1−βV̂1

∫
dν(ϱ,τ,π) τ2ϱ

V̂1ϱ+V̂2+λ

ψ = ψ̂
√
β
∫
dν(ϱ, τ, π)ϱπ2 1

λ+V̂1ϱ+V̂2

(122)

V̂1 = α
βEκ

ρµ1(κ)
2

1+V (κ)

q̂1 = α
βEκ,yµ1(κ)

2 b(κ,y)
2+q(κ)−µ1(κ)

2ψ2

(1+V (κ))
2

V̂2 = α
βEκ

ρµ2(κ)
2

1+V (κ)

q̂2 = α
βEκ,yµ2(κ)

2 b(κ,y)
2+q(κ)−µ1(κ)

2ψ2

(1+V (κ))
2

ζ̂ = α√
β
Eκ,yκµ1(κ)

b(κ,y)
1+V (κ)

ψ̂ = α√
β

√
βEκ,y yµ1(κ)b(κ,y)+ψµ1(κ)

2

1+V (κ)

, (123)

which recovers equations (116) from Result 3.3.

C.7. Test error

We conclude this Appendix by deriving the sharp asymptotic characterization for the test error. Using once more Result 3.2,
the test error reads

ϵg = Ex
(
σ⋆(κ, θ

⊤
Π

⊥
x/

√
d)− â

⊤
φ

g
(x)/√p

)2
= Ex,ξ

(
σ⋆(κ, θ

⊤
Π

⊥
x/

√
d)− µ0(κ)

â⊤1p√
p

− µ1(κ)κ
â⊤Wv√

dp
− µ1(κ)

â⊤WΠ⊥x
√
p

− µ2(κ)ξ

)2

= Eκ,y,z
(
σ⋆(κ, y)− µ0(κ)m− µ1(κ)ζ − z

)2
(124)

with

y, z ∼ N

[
0,

(
ρ µ1(κ)ψ

µ1(κ)ψ q(κ)

)]
. (125)
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The expression thus simplifies to

ϵg = Eκ,y

(σ⋆(κ, y)− µ0(κ)m− µ1(κ)κζ −
µ1(κ)ψ√

ρ
y

)2

+ q(κ)− µ1(κ)
2ψ2

ρ

 (126)

where all expectations now bear on unit variance zero mean Gaussian variables.

C.8. Additional discussion

Before closing the present Appendix, we provide in this subsection further discussion of the results and highlight possible
extensions.

Bias– Let us briefly sketch in this subsection how bias terms may be incorporated into the analysis. Consider the two-layer
neural network

fW,a,b(x) =
1
√
p

p∑
i=1

aiσ(w
⊤
i x+ b), (127)

where b ∈ R is a bias that acts uniformly on all hidden-layer neurons. Then, conditional on b, the equivalent feature map
still is of the form (14), with coefficients

µ0(κ, b) = Ez σ(z + rκ+ b)

µ1(κ, b) =
1

c
Ez zσ(z + rκ+ b)

µ2(κ, b) =
√
Ez σ2(z + rκ+ b)− c(µ1(κ))2 − (µ0(κ))2.

(128)

The analysis of the present Appendix still goes through, by treating b as an additional network parameter to be replicated
over. In fact, the only difference in introducing b appears at the level of the Moreau envelope M, in which all the µ0,1,2(κ)
coefficients are replaced by µ0,1,2(κ+ b). Finally, the corresponding saddle-point equation on b should impose ∂bM = 0,
thereby imposing the value of the learned bias b̂. This allows to improve the lower-bound (27) as

ϵg ≥ inf
b1,b2,b

Eκ

[(
σ⋆(κ)− µ0(κ, b)b1 − µ1(κ, b)κb2

)2]
. (129)

In other words, the bias allows an extra degree of freedom in the functional basis expressible by the network, thus allowing
additional expressivity. We have addressed the case of uniform bias. While the case of generic non-uniform bias is
unfortunately not presently in the reach of the techniques of this manuscript, the case where the components are untrained,
but can take finitely many values, can be analyzed along similar lines as the case of non-uniform u. We briefly discuss this
in Appendix D.

Larger rank spikes– Let us now discuss the case where instead of a spike 1pv
⊤/

√
d, we have a larger rank term 1p×kv

⊤/
√
d,

with k = Θd(1) and where v ∈ Rk×d is now a low-rank matrix instead of a vector. The equivalence of result 3.2 can be
readily adapted as follows. Naming v1, ..., vk ∈ Rd the k columns of v, and conditioning on κ1, ..., κk the k projections
of the data along these directions, the equivalent feature map (14) retains the same expression, with the coefficient
µ′
0,1,2(κ1, ..., κk) = µ0,1,2(κ1 + ...+ κk) now becoming multivariate.

Noisy target– Finally, let us mention how one may adapt the analysis to a noisy target function f⋆(x) +N (0, 1). The only
point where this intervenes is during the evaluation of the energetic potential Ψy , which is identical to e.g. (Loureiro et al.,
2021b), Appendix A. The only effect is to change the distribution of the variable y in the expectation over the Moreau
envelope, and we refer the interested reader to e.g. (Loureiro et al., 2021b) for a full expression.

Effect of network width– What is the effect of the network width, as measured by β? On the one hand, large networks result
in smaller spike strength r, as can be observed from Result 3.1. On the other hand, it also allows for more overparametrization.
The asymptotic characterization of Result 3.3 allows to probe this question. Fig. 7 shows that larger networks tend to achieve
lower overall test error.
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Figure 7. σ = tanh, σ⋆ = sin, α0 = 1.5, α = 1.2, λ = 0.1 Test error as a function of the network width β, as predicted by the theoretical
characterization of Result 3.3 (blue) or measure in numerical simulations in d = 5000 (red); error bars represent one standard deviation
over 20 trials.

D. Non-Uniform Readout Initialization
D.1. Setting

In this Appendix, we briefly discuss the case where the readout layer is not initialized as a vector with equal components,
a(0) = 1p/√p, but the case where the components of a(0) can take values in a finite vocabulary V , for instance {−1, 0,+1}.
We further assume the fraction of all letters are asymptotically finite (i.e. the number of occurences of a letter σ ∈ V in a(0),
divided by d, tends to a well-defined finite value as d→ ∞). For simplicity, we provide a sketch of the derivation directly
for the sRF model (7), and do not explicit for conciseness the mapping from the gradient-trained network thereto, which
follows identical steps from the mapping detailed in Appendix A. More precisely, we consider directly a sRF with weights

W +
uv⊤√
d
. (130)

In contrast to the main text, we thus do not assume u ∝ 1p. We further also allow the norm of the rows of W to take
different values c(ui)

1/2 depending on the value taken by the component of u with the corresponding index. This assumption
originates from the form of the ∆ matrix (33), which exhibits such row-wise norm variations matching that of a(0) (thus u
in the equivalent sRF). Finally, for simplicity and not to complicate the formulae, we assume perfect alignment with the
target γ = 1, and assume aspect ratio p = d, i.e. β = 1. The generic case 0 ≤ γ ≤ 1 can be derived following identical
steps to Appendix C.

D.2. Sketch of derivation

For non-uniform u, an equivalent feature map can be obtained along the same lines as for 3.2, as detailed in Appendix B.
The sRF feature map has an asymptotically equivalent test error as the equivalent feature map

φg(x) =
∑
σ∈V

µσ0 (κ)1σ + µσ1 (κ)ΠσWx+ µσ2 (κ)Πσξ (131)

where

1σ = (δui,σ)
d
i=1 Πσ = diag(1σ) ∈ Rd×d (132)

25



Asymptotics of Feature Learning in Two-layer Networks after One Gradient-step

and (z ∼ N (0, 1) in the following)

µτ0(κ) = Ez∼N (0,c(τ))[σ(z + τκ)] (133)

µτ1(κ) =
1

c(τ)
Ez∼N (0,c(τ))[zσ(z + τκ)] (134)

µτ0(κ) =
√

Ez[σ(z + τκ)2]− µτ0(κ)
2 − c(τ)µτ1(κ)

2 (135)

Note ΠσΠτ = δστΠσ . Building on this equivalent map, the test error can by asymptotically characterized using the replica
method, following the same lines as Appendix C. Like in Appendix C, we need to compute

(a) = Ez,ξ
s∏

a=1

e
−ωℓ(σ⋆(κ),

∑
σ
µσ
0 (κ)m

a
σ+µ

σ
1 (κ)κζ

a
σ+µ

σ
1 (κ)g

a
σ+µ

σ
2 (κ)h

a
σ)

(136)

We defined the order parameters and local fields

ma
σ =

a⊤a 1σ√
d

ζaσ =
a⊤a ΠσWv

d
gaσ =

a⊤a ΠσWΠ⊥x√
d

haσ =
a⊤a Πσξ√

d
(137)

Again, let us introduce the self-overlaps

(q1στ )ab =
a⊤a Ωστab

d
(q2σ)ab =

a⊤a Πσab
d

(138)

where we denoted

Ωστ = ΠσWΠW⊤Πτ (139)

One can then rewrite (a) more compactly as

(a) = Eκ

E{λa}s
a=1

e
−ω

s∑
a=1

ℓ(σ⋆(κ),m
a(κ)+λa)

 (140)

where the fields λa are Gaussian with covariance

⟨λaλb⟩ = qab(κ) (141)

where

q(κ)ab =
∑
στ

µσ1 (κ)µ
τ
1(κ)q

1
στ,ab +

∑
σ

µσ2 (κ)
2q2σ,ab (142)

ma(κ) =
∑
σ∈V

(µσ0 (κ)m
a
σ(κ) + µσ1 (κ)κζ

a
σ(κ)) (143)

We again use the RS ansatz form

∀σ, τ ∈ V, ∀1 ≤ r, r′ ≤ s, (qιστ )rr′ = δrr′(r
ι
στ − qιστ ) + qιστ

∀σ ∈ V, ∀1 ≤ r ≤ s, (mσ)r = mσ

∀σ ∈ V, ∀1 ≤ r ≤ s, (ζσ)r = ζσ (144)

for ι = 1, 2, and similarly for the hat variables:

∀σ, τ ∈ V, ∀1 ≤ r, r′ ≤ s, (q̂ιστ )rr′ = δab(−
1

2
r̂ιστ − q̂ιστ ) + q̂ιστ

∀σ ∈ V, ∀1 ≤ r ≤ s, (m̂σ)r = m̂σ

∀σ ∈ V, ∀1 ≤ r ≤ s, (ζ̂σ)r = ζ̂σ (145)
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Finally, denoting

q(κ) =
∑
στ

µσ1 (κ)µ
τ
1(κ)q

1
στ +

∑
σ

µσ2 (κ)
2q2σ (146)

V (κ) =
∑
στ

µσ1 (κ)µ
τ
1(κ)V

1
στ +

∑
σ

µσ2 (κ)
2V 2
σ (147)

one reaches along identical lines as Appendix C the free energy

f =− 1

2

∑
στ

(V̂ 1
στq

1
στ − q̂1στV

1
στ )−

1

2

∑
σ

(V̂ 2
σ q

2
σ − q̂2σV

2
σ ) +

∑
σ

ζσ ζ̂σ

− 1

2d
Tr


∑
σ≤τ

q̂1στΩστ +
∑
σ∈V

q̂2σΠσ +
∑
σ

ζ̂2σΠσWvv⊤W⊤Πσ

∑
σ≤τ

V̂ 1
στΩστ +

∑
σ∈V

V̂ 2
σΠσ + λId

−1


+ αEκ,ξM(ξ, κ) (148)

where

Ωστ =
1

2
ΠσWΠW⊤Πτ +

1

2
ΠτWΠW⊤Πσ. (149)

The expression of the Moreau is almost unchanged compared to Appendix C:

M(ξ, κ) = inf
x

1

2V (κ)
(x−

√
q(κ)ξ)2 + ℓ(f⋆(κ),m(κ) + x), (150)

where we noted

m(κ) =
∑
σ∈V

µσ0 (κ)mσ + µσ1 (κ)κζσ. (151)

The saddle point equations read, for the square loss ℓ(y, z) = 1/2(y − z)2:

27



Asymptotics of Feature Learning in Two-layer Networks after One Gradient-step



q1στ = 1
d Tr

Ωστ (∑
σ≤τ

V̂ 1
στΩστ +

∑
σ∈V

V̂ 2
σΠσ + λId

)−2(∑
σ≤τ

q̂1στΩστ +
∑
σ∈V

q̂2σΠσ +
∑
σ
ζ̂2σΠσWvv⊤W⊤Πσ

)
q2σ = 1

d Tr

Πσ (∑
σ≤τ

V̂ 1
στΩστ +

∑
σ∈V

V̂ 2
σΠσ + λId

)−2(∑
σ≤τ

q̂1στΩστ +
∑
σ∈V

q̂2σΠσ +
∑
σ
ζ̂2σΠσWvv⊤W⊤Πσ

)
V 1
στ = 1

d Tr

(∑
σ≤τ

V̂ 1
στΩστ +

∑
σ∈V

V̂ 2
σΠσ + λId

)−1

Ωστ


V 2
σ = 1

d Tr

(∑
σ≤τ

V̂ 1
στΩστ +

∑
σ∈V

V̂ 2
σΠσ + λId

)−1

Πσ


ζσ = ζ̂σ

d Tr

(∑
σ≤τ

V̂ 1
στΩστ +

∑
σ∈V

V̂ 2
σΠσ + λId

)−1

ΠσWvv⊤W⊤Πσ


mσ = 1

Eκ

[
µσ
0 (κ)2

1+V (κ)

]Eκ
[
µσ
0 (κ)(f

⋆(κ)−
∑
τ ̸=σ

µτ
0 (κ)mτ−

∑
τ
µτ
1 (κ)κζτ )

1+V (κ)

]
(152)

V̂ 1
στ = αEκ µ

σ
1 (κ)µ

τ
1 (κ)

1+V (κ)

q̂1στ = αEκµσ1 (κ)µτ1(κ)
(f⋆(κ)−m(κ))2+q(κ)

(1+V (κ))
2

V̂ 2
σ = αEκ µ

σ
2 (κ)

2

1+V (κ)

q̂2σ = αEκµσ2 (κ)2
(f⋆(κ)−m(κ))2+q(κ)

(1+V (κ))
2

ζ̂σ = αEκµσ1 (κ)κ
(f⋆(κ)−m(κ))2+q(κ)

(1+V (κ))
2

(153)

Importantly, these equations are conjectured to be asymptotically exact, but note that they are not fully asymptotic, in the
sense that they still involve traces of large-dimensional matrices. Finally, the test error admits the compact asymptotic
expression

ϵg = Eκ


σ⋆(κ)− ∑

σ∈V

[
µσ0 (κ)mσ + µσ1 (κ)κζσ

]2

+ q(κ)


= Eκ

[(
σ⋆(κ)−m(κ)

)2
+ q(κ)

]
(154)

D.3. The special case W = Π⊥

We briefly discuss a special case of technical interest, for which the saddle-point equations admit a fully asymptotic
formulation, namely when W = Π⊥. Then

Ωστ ≈ δστΠσ (155)
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Figure 8. Test error for a sRF with c = 1, r = 1, γ = 1, and ReLU activation for non-uniform u in the special case W = Π⊥, when
learning from a single-index model with σ⋆ =ReLU. A regularization λ = 0.1 is used to train the readout. The components of u
were drawn as independent Rademacher variables, ui ∼ Rad(1/2) = 1/2δ·,1 + 1/2δ·,−1. Solid line: theoretical prediction of (156), for
W = Π⊥. Crosses represent numerical experiments in dimension d = 2000, averaged over 10 runs.

and the saddle point equations reduce to

qσ = nσ
q̂σ

(V̂σ+λ)
2

Vσ = nσ
1

V̂σ+λ

mσ = 1

Eκ

[
µσ
0 (κ)2

1+V (κ)

]Eκ
[
µσ
0 (κ)(f

⋆(κ)−
∑
τ ̸=σ

µτ
0 (κ)mτ )

1+V (κ)

] (156)


V̂σ = αEκ µ

σ
1 (κ)

2+µσ
2 (κ)

2

1+V (κ)

q̂σ = αEκ(µσ1 (κ)2 + µσ2 (κ)
2) (f

⋆(κ)−m(κ))2+q(κ)

(1+V (κ))
2

(157)

Where nσ is the fraction of components of u taking value σ. Fig. 8 represents the theoretical prediction of (156), and
displays good agreement with the corresponding numerical experiments.

Note that the formulae (156) are further amenable to being rewritten in functional form, denoting ν(x) the probability
density of the components of u. One can then conjecture in this limit the following limiting equations

q(x) = ν(x) q̂(x)

(V̂ (x)+λ)
2

V (x) = ν(x) 1
V̂ (x)+λ

m(x) = 1

Eκ

[
µ0(x,κ)2

1+V (κ)

]Eκ [µ0(x,κ)(f
⋆(κ)−

∫
dzν(z)µ0(z,κ)m(z)

1+V (κ)

] (158)


V̂ (x) = αEκ (µ2(x,κ)

2+µ1(x,κ)
2)

1+V (κ)

q̂(x) = αEκ(µ2(x, κ)
2 + µ1(x, κ)

2) (f
⋆(κ)−m(κ))2

(1+V (κ))
2

(159)

With the notations

q(κ) =

∫
dxν(x)(µ1(x, κ)

2 + µ2(x, κ)
2)q(x) (160)

V (κ) =

∫
dxν(x)(µ1(x, κ)

2 + µ2(x, κ)
2)V (x). (161)
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Figure 9. Vizualization of the functions µ0(r), µ̃1(r) for σ = tanh (bottom) and σ = sin (top), for various parameters r, in the perfectly
aligned case γ = 1, c = 1, as can be achieved for α0 → ∞, see also discussion below equation (27) in the main text. We remind that
the spike strength r cna be tuned via the learning rate η̃. The functions µ0(r), µ̃1(r) provide the basis of functions that can be used to
approximate the target σ⋆ .

As discussed in the main text, the exploration of the case of non-uniform u is of interest, as it affords a richer functional
basis to learn the target σ⋆ (see also discussion below (27)). This study falls well beyond the scope of the present work, and
is left for future work.

A brief comment on incorporating bias As mentioned in Appendix C, we can accommodate the case of non-uniform
quenched bias in the analysis, following identical lines as the one presented above, when the components of the bias can
take values in a finite vocabulary Vb. Note that the initial step of the computation involves partitioning the indices 1 ≤ i ≤ d
as a function of the values of ui, regrouping is corresponding to the same values of ui = σ into the vectors 1σ and matrices
Ωσ. If non-uniform biases are present, identical conditioning should be done, this time regrouping terms corresponding
to the same joint value σ, b of ui, bi. One implications is that instead of having µσ0,1,2(κ) as above, one needs to consider
µσ,b0,1,2(κ). The analysis proceeds identically. At the level of the network expressivity, quenched but non-uniform biases
allow the network to express functions from an even richer basis {µ0(ω · +b), µ̃1(ω + b·)}(b,ω)∈V , where V ⊂ Vb × V
correspond to all realized pairs b, ω by (bi, ui).

E. Derivation of the Bounds (26) and (27)

We detail – and illustrate– in this Appendix the derivation of the bounds (26) and (27) on the test error. Again, for definiteness,
we consider the case of perfect spike/target alignment γ = 1 (as can be achieved e.g. by using a large amount of data
α0 → ∞ in the first step).

E.1. Derivation of the upper bound (26)

We first focus on the upper bound (26), showing that it can be attained for λ→ ∞. In this limit, equations (116) imply that
all order parameters but m are vanishing q1 = q2 = V1 = V2 = ζ = ψ = 0. Then the expression for m simplifies as

m =
Eκ[µ0(κ)σ⋆(κ)]

Eκ[µo(κ)2]
=

⟨µ0, σ⋆⟩
⟨µ0, µ0⟩

, (162)
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where for two univariate functions f, g we denoted the scalar product with respect to the Gaussian measure:

⟨f, g⟩ ≡
∫

1√
2π
e−x2/2f(x)g(x). (163)

In other terms, m is proportional to the projection of the target function σ⋆ on span(µ0). Note that m is can also be rewritten
as

m = arginf
b1

∥σ⋆ − b1µ0∥2, (164)

where the norm is with respect to the scalar product (163). Finally, from (25), the test error in the λ→ ∞ limit admits the
compact expression

lim
λ→∞

ϵg = Eκ[(σ⋆(κ)−mµ0(κ))
2] = inf

b1
∥σ⋆ − b1µ0∥2. (165)

Finally, it follows that

ϵg
λ≤0

≤ lim
λ→∞

ϵg = inf
b1
∥σ⋆ − b1µ0∥2, (166)

which recovers the upper bound (26).

E.2. Derivation of the lower bound (27)

We now turn to the lower bound (27). First observe that by the definitions of q1, ψ, ρ (17), it follows from the Cauchy-Schwarz
inequality that

ψ ≤ √
q1ρ. (167)

Therefore, for all κ

q(κ)− µ1(κ)
2ψ2

ρ
= µ1(κ)

2 ρq1 − ψ2

ρ
+ µ2(κ)

2q2 ≥ 0 (168)

as a consequence, the test error (25) is lower bounded as

ϵg = Eκ

[(
σ⋆(κ)− µ0(κ)m− µ1(κ)κζ

)2

+q(κ)− µ1(κ)
2ψ2

ρ

]

≥ Eκ

[(
σ⋆(κ)− µ0(κ)m− µ1(κ)κζ

)2]

≥ inf
b1,b2

Eκ

[(
σ⋆(κ)− µ0(κ)b1 − µ1(κ)κb2

)2]
, (169)

which recovers the lower bound (27). The functions corresponding to the upper (resp. lower) bound (see (26), (27)) are
represented for a σ⋆ = sin target in Fig. 4.

E.3. Derivation of bounds (28)

Since the bounds (26) and (27) hold for all learning rates η̃, the bounds (28) follow immediately from taking the minimum
over η̃ on the right-hand side and left-hand side of (26) and (27). The functions {µ0(r), µ̃1(r)}r≥0, which form the pool of
functions which can be used to approximate the target function, are represented for σ = sin, tanh in Fig. 9.

F. Spectrum of The Features Empirical Covariance Matrix
In this section, we derive a tight asymptotic expression for the spectrum of the empirical covariance of the features
{φ(xµ)}nµ=1. Before starting the derivation, let us first remind that the population covariance is given by the conditional
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Gaussian equivalence 3.2 as

Ex[φ(x)φ(x)
⊤] = Eκ

[(
µ0(κ)1p +

1√
d
κµ1(κ)Wv

)⊗2

+ µ1(κ)
2WΠ⊥W⊤ + µ2(κ)

2Ip

]
(170)

where ·⊗2 denotes the outer product of a vector with itself.

We now turn to the characterization of the empirical covariance. Let us denote by Ψ ∈ Rn×p the matrix with rows
{φ(xµ)}nµ=1, and the empirical covariance Σ = 1/pΨ⊤Ψ. Note that up to zero eigenvalues, this matrix has the same
spectrum as the conjugate kernel 1/pΨΨ⊤. In order to access the spectrum of Σ, we aim to compute the Stieltjes transform

s(z) = E{xµ}n
µ=1

Tr
[
(Σ + zIp)−1

]
(171)

for some complex number z. This computation can be achieved again using the replica method, first observing the identity

s(z) = −2∂zE{xµ}n
µ=1

1

2
ln det

[
2π(Σ + zIp)−1

]
≡ 2∂zΦ(z). (172)

We introduced the free entropy Φ(z), which can be computed as

Φ(z) = E{xµ}n
µ=1

ln

∫
dwe−

1
2w

⊤(Σ+zIp)w︸ ︷︷ ︸
≡Z(z)

. (173)

Once more, the generative function E{xµ}n
µ=1

lnZ(z) can be evaluated using the replica method, leveraging the identity

E{xµ}n
µ=1

lnZ(z) = lim
s→0

ln
(
EvZ(z)s

)
− 1

s
. (174)

The problem thus reduces to the computation of the replicated partition function ExZ(z)
s

E{xµ}n
µ=1

Z(z)s =

∫ s∏
a=1

dwae
− z

2

∑
a
∥wa∥2 ∏

µ

[
Exe

− 1
2

∑
a
(w⊤

a φ(x)/√p)2
]

=

∫ s∏
a=1

dwae
− z

2

∑
a
∥wa∥2

[
EκEλe

− 1
2

∑
a
(µ0(κ)ma+µ1(κ)κζa+λa)

2

.

]n
(175)

Like in Appendix C, we introduced the order parameters

ma ≡ w⊤
a 1p√
p
, ζa ≡ w⊤

aWv√
dp

. (176)

We also introduced the local fields {λa}a, which are Gaussian with zero mean and joint statistics

E[λaλb] = µ1(κ)
2q1ab + µ2(κ)q

2
ab, (177)

denoting the summary statistics

q1ab ≡
w⊤
a Ωw

p
, q2ab ≡

w⊤
a w

p
, (178)
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where we remind Ω =WΠ⊥W⊤. The replicated partition function can thus be written as

Zs =

∫ s∏
a=1

dmadm̂adζadζ̂a
∏
a,b

dq1abdq̂
1
abdq

2
abdq̂

2
ab e

−√
p
∑
r
mam̂a−

√
dp

∑
a
(ζaζ̂a)−p

∑
a≤b

(q1abq̂
1
ab+q

2
abq̂

2
ab)︸ ︷︷ ︸

espΨt∫ ∏
a

dwae
− z

2

∑
a
∥wa∥2

e
+

s∑
a=1

w⊤
a (m̂a1p+ζ̂aWv)+

∑
a≤b

(q̂1abw
⊤
a Ωwb+q̂

2
abw

⊤
a wb)

︸ ︷︷ ︸
espΨwEκ

E{λa}s
a=1

e
− 1

2

s∑
a=1

(µ0(κ)ma+µ1(κ)κζa+λa)
2



n

︸ ︷︷ ︸
eα/βspΨy

, (179)

an expression bearing great similarity with that reached in Appendix C. In fact, formally, this expression is equivalent to the
finite-temperature (ω = 1) version of the one discussed in Appendix C, in the particular case of a regularization λ = z, and
with a loss function ℓ(y, z) = ℓ(z) = z2. Identical computational steps can then be followed to reach a tight characterization
of the free entropy. Again, we assume a RS ansatz

∀1 ≤ a, b ≤ s, q1ab = δabV1

∀1 ≤ a, b ≤ s, q2ab = δabV2

∀1 ≤ a ≤ s, ζa = ζ

∀1 ≤ a ≤ s, ma = m

∀1 ≤ a, b ≤ s, q̂1ab = −δabV̂1/2 (180)
∀1 ≤ a, b ≤ s, q̂2ab = −δabV̂2/2 (181)

∀1 ≤ a ≤ s, ζ̂a = ζ̂

∀1 ≤ a ≤ s, m̂a = m̂. (182)

Following identical steps as Appendix C, one finally reaches

Φ(z) = extr
V1,V2,m,ζ,V̂1,V̂2,m̂,ζ̂

V̂1V1 + V̂2V2
2

− mm̂
√
p

− ζζ̂√
β
− 1

2
ln det

[
zIp + V̂1Ω+ V̂2Ip

]
+

1

2
Tr

[
(zIp + V̂1Ω+ V̂2Ip)−1

(
m̂21p1

⊤
p + ζ̂2Wvv⊤W⊤

)]

− α

β

1

2
Eκ

(µ0(κ)m+ µ1(κ)κζ
)2

1 + V (κ)

− α

β

1

2
Eκ ln

(
1 + V (κ)

)
(183)

Expunding the extremization conditions with respect to m, m̂, ζ, ζ̂ imposes



0 = m̂Tr
[
(zIp + V̂1Ω+ V̂2Ip)−11p1

⊤
p

]
ζ = ζ̂ Tr

[
(zIp + V̂1Ω+ V̂2Ip)−1Wvv⊤W⊤

]
m = −

Eκ

[
µ1(κ)κµ0(κ)

1+V (κ)

]
Eκ

[
µ0(κ)2

1+V (κ)

] ζ

ζ̂ = Eκ
[
(µ0(κ)m+µ1(κ)κζ)µ1(κ)κ

1+V (κ)

]
(184)
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Figure 10. Spectrum of the empirical features covariance for α = 1, β = 1, σ = sign. Blue: numerical estimation in d = 2000. Red:
theoretical characterization (187). There is a single spike λspk. = Θd(d) in addition to the bulk, which is not represented in this figure.

Combining the last two equations imposes

ζ̂ = Eκ



−µ0(κ)
Eκ

[
µ1(κ)κµ0(κ)

1+V (κ)

]
Eκ

[
µ0(κ)2

1+V (κ)

] + µ1(κ)κ

µ1(κ)κ

1 + V (κ)


ζ (185)

from which it generically follows that ζ = 0, which also implies m = m̂ = ζ̂ = 0. Finally, the extremization conditions
with respect to V1,2, V̂1,2 yield the simple equations

V2 = Tr
[
(zIp + V̂1Ω+ V̂2Ip)−1

]
V1 = Tr[(zIp + V̂1Ω+ V̂2Ip)−1Ω]

V̂1 = α
βEκ

[
µ1(κ)

2

1+V (κ)

]
V̂2 = α

βEκ
[
µ2(κ)

2

1+V (κ)

] (186)

Note how these equations correspond exactly to the ones of Result 3.3, replacing the regularization λ by the Stieltjes
argument z. Finally, we observe that ∂zΦ(z) = 1/2V2, which implies that the Stieltjes transform s(z) is compactly given by

s(z) = V2, (187)

with V2 a solution of the system of equations above. The spectrum can then be extracted from the Stieltjes transform, and
matches well with numerical simulations on sRF features, see Fig. 10.

Spike The previous study allowed to characterize the asymptotic bulk eigenvalue distribution of the empirical features
covariance. Note that there is a single spike λspk. = Θd(d) not captured by the analysis, which relies on a Stieltjes argument
z = Θd(1). It is however reasonable to expect this spike eigenvalue to coincide with that of the population covariance. This
eigenvalue should then be asymptotically equal to

λspk.
d

= αEκ∼N (0,1)[c0(κ)
2]. (188)
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