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Abstract

The human brain is a complex inter-wired system
that emerges spontaneous functional fluctuations.
In spite of tremendous success in the experimental
neuroscience field, a system-level understanding
of how brain anatomy supports various neural
activities remains elusive. Capitalizing on the
unprecedented amount of neuroimaging data, we
present a physics-informed deep model to uncover
the coupling mechanism between brain structure
and function through the lens of data geometry
that is rooted in the widespread wiring topology of
connections between distant brain regions. Since
deciphering the puzzle of self-organized patterns
in functional fluctuations is the gateway to under-
standing the emergence of cognition and behav-
ior, we devise a geometric deep model to uncover
manifold mapping functions that characterize the
intrinsic feature representations of evolving func-
tional fluctuations on the Riemannian manifold.
In lieu of learning unconstrained mapping func-
tions, we introduce a set of graph-harmonic scat-
tering transforms to impose the brain-wide ge-
ometry on top of manifold mapping functions,
which allows us to cast the manifold-based deep
learning into a reminiscent of MLP-Mixer archi-
tecture (in computer vision) for Riemannian mani-
fold. As a proof-of-concept approach, we explore
a neural-manifold perspective to understand the
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relationship between (static) brain structure and
(dynamic) function, challenging the prevailing no-
tion in cognitive neuroscience by proposing that
neural activities are essentially excited by brain-
wide oscillation waves living on the geometry of
human connectomes, instead of being confined to
focal areas.

1. Introduction
Human brain is a complex system physically wired by mas-
sive bundles of nerve fibers (Bassett & Sporns, 2017). On
top of intertwined structural connectomes, ubiquitous neural
oscillations emerge remarkable functional fluctuations, syn-
chronizing across large-scale neural circuits, that support
myriad high-level cognitive functions necessary for every-
day living (Bressler & Menon, 2010). With the prevalence
of structural and functional neuroimaging technology (aka.
Magnetic Resonance Imaging, MRI) in many neuroscience
studies, the idea of understanding the mind forms an impor-
tant concept that the dynamic nature of human brain cannot
be understood by thinking of the system as comprised of in-
dependent components (Terras, 2012). In this regard, there
is a critical need to establish a system-level understanding of
how the brain function emerges from anatomical structures
and how the self-organized system behavior of functional
fluctuations supports the cognitive states.

Like many dynamic systems in the universe, the evolv-
ing functional fluctuations manifest remarkable geomet-
ric patterns to the extent of self-organized spontaneous co-
activation of neural activities. As shown in Fig. 1 (left), func-
tional connectivity (FC), formed by the pairwise correlation
between two time courses of BOLD (blood-oxygen-level-
dependent) signals (Bullmore & Sporns, 2009), exhibits
small world properties (Watts & Strogatz, 1998). From a
data science perspective, the FC matrix lives on the high-
dimensional Riemannian manifold of SPD (symmetric and
positive-definite) matrices. Due to many well-studied math-
ematical properties of SPD matrix, tremendous efforts have
been made to statistical modeling (You & Park, 2021), clus-
tering (Qiu et al., 2015), and characterization of temporal
dynamics (Dan et al., 2022a) from the manifold instances
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of SPD matrices.

Although manifold-based deep learning often presents
greater challenges compared to the counterpart machine
learning backbones operating in Euclidean space, prioritiz-
ing the preservation of data geometry substantially improves
both the reliability of model explanations and overall ac-
curacy (Tiwari & Konidaris, 2022). In this regard, various
manifold-based deep models have been proposed for learn-
ing feature representation of SPD matrices using Rieman-
nian manifold algebras (Huang & Van Gool, 2017; Dan et al.,
2022b). As shown in Fig. 1, the driving factor of most deep
models for SPD matrices is to find a cascade of mapping
functions that progressively project the input SPD matrices
into a latent subspace of Riemannian manifold which is in
line with the downstream learning tasks. Since there is no
constraint on the mapping functions, every element in the
mapping function is independently updated through the gra-
dients in back-propagation. Thus, it is evident that (1) the
learned mapping functions lack explainability, (2) such deep
model may demand a relatively large volume of training
data, and (3) adapting a pre-trained model to a new dataset
may pose challenges.
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Figure 1. Overview of answering open neuroscience questions us-
ing machine learning techniques. Top: The motivation of our work
is to understand how brain structure supports ubiquitous func-
tional fluctuations. Middle: Compared to conventional mapping
functions (left) in manifold-based deep learning, we introduce
scattering transform to form the basis of mapping functions on
the Riemannian manifold (right), which allows us to constrain
the mapping of functional connectivities underlying the geometric
of structural region-to-region connectome. Bottom: We devise a
Mixer architecture on top of the row-wise and column-wise scatter-
ing transform which not only yields a novel geometric deep model
for Riemannian manifold but also provides a new neuroscience
insight to understand the coupling mechanism between brain struc-
ture and function.
To address these limitations, we introduce the notion of scat-
tering transform to impose a geometric constraint on top of
the mapping functions in the Riemannian manifold. Follow-
ing the notion of recent pioneering work on brain structural

and functional coupling (Pang et al., 2023), each scattering
transform operator is derived from the graph spectrum of
structural connections, essentially operating as harmonic
wavelets at various oscillation frequencies (Hammond et al.,
2018). To link manifold-based deep learning with scatter-
ing transforms, we present a novel mapping mechanism
on the Riemannian manifold that allows us to preserve the
data geometry in machine learning. Furthermore, we dis-
sect the mapping process on Riemannian manifold into a
row-wise and another column-wise scattering transforms
(Fig. 1, middle-right) on each SPD matrix, which sets
the stage for the learning scenario of Mixer architecture, a
reminiscent of MLP-Mixer for computer vision (Tolstikhin
et al., 2021). Due to the simple network architecture, our
scattering-transform Mixer on Riemennian manifold of SPD
matrices can be trained efficiently compared to existing
manifold-based deep models with a significantly reduced
number of parameters. Meanwhile, graph-harmonic scatter-
ing transforms offer a new window to interpret the brain-
wide contribution of mapping functions on the coupling
mechanism between brain structure and function.

Our work makes a significant contribution to the fore-
front of computational neuroscience, enriching traditional
experimental neuroscience through the novel insight into
brain structure-function coupling mechanism from the deep
model. Specifically, we put the spotlight on the physics prin-
ciple of scattering-transform in the Mixer, which acts as a
stepping stone to understanding the mechanistic role of brain
structure on functional fluctuations. We use the geometric
pattern of graph harmonics to show that self-organized neu-
ral dynamics can be parsimoniously understood as resulting
from the wave-to-wave interference formed by superimpos-
ing the fundamental resonance modes of the brain’s geome-
try (i.e., topology of region-to-region connectivities) on the
subject-specific neural activities.

Furthermore, we connect the interference phenomenon dis-
covered in our deep model to the holography technique (Ga-
bor, 1948) in computer vision, a stereo-imaging technique
that generates a hologram by superimposing a reference
beam on the wavefront of interest. Following this notion, we
present a proof-of-concept theory, called DeepHoloBrain,
which computationally “records” the cross-frequency cou-
plings (CFC) of time-evolving interference patterns where
spontaneous functional fluctuations are constrained by the
graph harmonic waves (with predefined oscillation frequen-
cies).

In practice, we evaluate the clinical value of our manifold
mixer model in (1) disease early diagnosis and (2) generality
of adapting the pre-trained model to a new dataset. Com-
pared with current state-of-the-art deep models, our method
not only achieves the best performance in terms of accu-
racy and consistency but also shows potential in addressing
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real-world challenges in clinical practice, particularly in sit-
uations where disease data cohorts often have very limited
sample sizes.

Together, the contribution of our work has four folds: (1)
a new mapping mechanism on the Riemannian manifold
constrained by scattering transforms, (2) a novel geometric
deep model of scattering-transform Mixer for Riemannian
manifold of SPD matrices, (3) a new gateway to understand-
ing the human brain using deep learning technique, and
(4) a comprehensive evaluation of the clinical impact on
large-scale neuroimages.

2. Background and Related Works
2.1. Open Questions in Network Neuroscience

In the realm of neuroscience, a plethora of studies investi-
gate connections between N predefined regions in the brain
(Bassett & Sporns, 2017). Through diffusion-weighted
imaging (DWI), we are able to measure the structural
connections (SC) between two brain regions Ωi and Ωj
(i, j = 1, ..., N), in vivo, by tracking bundles of nerve fibers.
On the other hand, functional magnetic resonance imaging
(fMRI) technique enables to capture spontaneous functional
connections (FC) which indicate the synchronization be-
tween two time courses of neural activities at different brain
regions Ωi and Ωj. In general, we can form a network of
SC or FC, where each element denotes the region-to-region
SC/FC connection. A brief summary of an analytic pipeline
for constructing SC and FC networks is shown in Appendix
A.1. In contrast to the diverse FC patterns associated with
cognition and behavior, SC remains relatively static. In this
context, several interesting scientific questions arise: How
does the structural foundation of the brain shape its dynamic
functional activities? And, how does the coupling between
SC and FC contribute to the emergence of cognition and
behavior?

Since each FC matrix is symmetry and positive definite
(SPD), striking efforts have been made to understand the
self-organized pattern of FC through the lens of Riemannian
manifold of SPD matrices (You & Park, 2021; Dan et al.,
2022b). Following this spirit, we seek to explore the SC-
FC coupling mechanism using geometric deep models on
the Riemannian manifold, where the mathematical insight
might open a new window to answer neuroscience questions
through machine learning.

2.2. Canonical Deep Model on SPD Matrices

Suppose we have a N × N SPD matrix X residing on Rie-
mannian manifold, i.e., X ∈ Sym+

d (d = N), current deep
models such as SPDNet (Huang & Van Gool, 2017) are
trained to find a set of non-linear mapping functions to

obtain a new feature representation Xl at lth layer by:

Xl = ΨlXl−1Ψ
⊺
l , (1)

where the learnable mapping function Ψl ∈ Rdl×dl−1 is
a row full-rank matrix (usually dl ≪ dl−1). Ψl is called
positive mapping in Riemannian manifold of SPD matri-
ces (Bhatia, 2009), which ensure the output Xl maintains
the geometric property of SPD matrix, i.e, Xl ∈ Sym+

dl
.

Although it is a common practice to impose column-wise
orthogonality on Ψl , the optimization of each element in Ψl
is completely independent in back-propagation. As shown
in the middle-left of Fig. 1, the learned mapping function
Ψl lacks interpretability in the context of data geometry. To
address this limitation, we introduce the scattering trans-
form technique to decompose each Ψl into two dimensions:
frequency and location (the middle-right of Fig. 1).

2.3. Scattering Transforms on Graph

The scattering transform (such as wavelets) (Mollai, 2010;
Mallat, 2012; Gama et al., 2019) offers a stable and multi-
scale representation for signals in the Euclidean space Rd.
A collection of pre-defined scattering transforms can decom-
pose any signals into scale and orientation components sep-
arately, which allows us to capitalize on geometric intuition
while maintaining useful properties for machine learning
such as translational invariance. Following this spirit, the
scattering transform technique has been extended to geomet-
ric data living on the irregular domains (such as graph and
manifold) (Perlmutter et al., 2018; 2020; Gao et al., 2019).

Consider a smooth, compact, and connected N-dimensional
Riemannian manifoldM and a square-integrable function
f ∈ L2(M). The negative Laplace-Beltrami operator −∆
onM possesses a countable set of eigenvalues 0 = λ0 <
λ1 ≤ λ2 ≤ . . . ≤ λK−1. There exists a corresponding
sequence of eigenfunctions uk(k = 0, ..., K− 1) satisfying
−∆uk = λkuk, where {uk}k≥0 forms an orthonormal basis
for the manifoldM. Following the notion in (Perlmutter
et al., 2020; 2018), the eigenfunctions {uk}k≥0 serve as gen-
eralized Fourier modes on the manifoldM that is spanned
by the inner product with these eigenfunctions. In this
context, any function f can be represented as a sum over
these eigenfunctions as f (x) = ∑k≥0 f̂ (k)uk(x), where
f̂ (k) = ⟨ f , uk⟩L2(M) =

∫
M f (y)uk(y)dy is known as

Fourier coefficient corresponding to the eigenfunction uk.

Furthermore, we can expand Fourier’s bases to the wavelet
scattering transform on manifold M by localizing each
eigenfunction uk to particular region Ωi(i = 1, ..., N),
yielding a frequency-specific and location-specific harmonic
wavelet function ψk

i . In this work, we construct harmonic
wavelets on top of the graph topology (Hammond et al.,
2011; Shuman et al., 2013). Suppose the underlying graph
has N nodes and the node-to-node connection is encoded
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Figure 2. (a) Conventional mapping func-
tion (Eq. 1) on Riemannian manifold
of SPD matrices, where each element
in the mapping matrix is estimated inde-
pendently. (b) Our new mapping func-
tion which consists of (1) constructing
the block matrix P by stacking harmonic
wavelets over frequency and location, (2)
yielding a Supra-FC matrix X = P⊺XP

by Eq. 1, and (3) applying pooling op-
eration on X across frequencies at each
location. By doing so, the output is a
N × N SPD matrix.

in a N × N adjacency matrix A. Thus, the graph Lapla-
cian matrix L can be constructed by L = D− A, where
D ∈ RN×N is a diagonal matrix of node-wise total con-
nectivity degree. Next, we apply eigen-decomposition on
L, yielding L = UΛU⊺, where Λ = diag[λk]

N
k=1 is a

diagonal matrix of eigenvalues and U = [uk]
N
k=1 are eigen-

vectors, each corresponding to the eigenvalue λk. For each
eigenvector uk, we can derive in total N harmonic wavelets
by localizing uk to the underlying region Ωi by (Shuman,
2020):

ψk
i = Ugk(γΛ)U⊺δi (2)

where δi is a graph signal with a value of one at region Ωi
and zero elsewhere. gk(·) = e−γλk is a spectral filter that
defines the spectral pattern that is localized to each region
Ωi, where γ is a learnable hyper-parameter that controls the
scale of spectral pattern.

3. Methods
3.1. New Mapping Function on Riemannian Manifold

Constrained by Graph Scattering Transforms

Suppose both SC and FC networks consist of N nodes.
We construct K(K ≤ N) harmonic wavelets at each node
Ωi of SC network, denoted by Ψi = [ψk

i ]
K
k=1, where k

indicates harmonic frequency. For convenience, we use
P = [[Ψ1], [Ψ2], ..., [ΨN ]] ∈ RN×NK to denote the block
matrix by stacking N region-specific matrices of harmonic
wavelets Ψi one after another, as shown in Fig. 2 (b). Next,
we present a new mapping function, i.e., applying scattering
transforms P on FC matrix X, yielding a new SPD matrix
on the Riemannian manifoldM.
Remark 3.1. A real and symmetric matrix X ∈ Sym+

N is
said to be SPD matrix if vXv⊺ = ∑N

i,j=1 vixijvj > 0 for
any non-zero vector in v ∈ RN .

Lemma 3.2. Given a full-rank matrix W ∈ RN×M(M <
N) and a vector v ∈ RM, since the columns of W are
linearly independent and span RM, there exists, by the
fundamental theorem of linear algebra, a vector u ∈ RN

such that Wu = v (Proof shown in Proposition A.1).

Remark 3.3. Given an SPD matrix X ∈ Sym+
N and a

full-rank matrix W ∈ RN×M(M < N), the function
f : Sym+

N × RN×M → Sym+
M defined as f (X, W) =

W⊺XW (Huang & Van Gool, 2017).
Proposition 3.4. The output of f (X, W) is a N × N SPD
matrix.
Proof. According to Lemma 3.2, there exists a vector
u ∈ RN such that Wu = v. Note that u is not the zero
vector because v is not zero and W has full rank. Substi-
tute v = Wu into the quadratic form: v⊺(W⊺XW)v =
(Wu)⊺(W⊺XW)(Wu) = u⊺WW⊺XWW⊺u. Since W
has full rank and M < N, WW⊺ is positive definite. As
the product of positive definite matrices WW⊺, X, and
WW⊺ yields another positive definite matrix, we have
u⊺(WW⊺XWW⊺)u > 0. Because u is not the zero vector,
the quadratic form is strictly positive. This proves that the
output of f (X, W) = W⊺XW is indeed an SPD matrix (as
shown in Fig. 2 (a)).

Proposition 3.5. If the number of rows in W is less than the
number of columns, i.e, N < M, the mapping f (X, W) =
W⊺XW only yields a semi-positive definiteness matrix.
Proof. Similar to the proof for Proposition 3.4, we ex-
amine the quadratic form given by v⊺(W⊺XW)v =
(Wv)⊺X(Wv) for any vector v. Since N < M, there exist
a vector v such that Wv = 0, resulting in f = (X, W) = 0.
Since X is SPD, (Wv)⊺X(Wv) > 0 as long as Wv is non-
zero vector. Together, we have proven Proposition 3.5.

Recall that P ∈ RN×NK is a block matrix (primarily in-
dexed by location Ωi), where each block element is a N×K
matrix. Since N < NK (row number less than column
number), P̃ = f (X, P) does not guarantee that the output
matrix resides on the Riemannian manifold of SPD matrices.
However, X = P⊺XP ∈ RNK×NK essentially expand each
(scalar) element in X to a K × K matrix. In this context,
we coin X as Supra-FC matrix, where each element Xij is
a K × K block matrix, i.e., Xij = [ψs

i Xψt
j ]

K
s,t=1. In light

of this, we seek to use the following pooling operation to
regain the SPD property while reducing the dimensionality.
Proposition 3.6. Given a Supra-FC matrix X, we apply
max-pooling operation to each block matrix Xij (over fre-
quencies s and t). Thus, the resulting N × N matrix
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X̃ =


max(X11) max(X12) · · · max(X1N)
max(X21) max(X22) · · · max(X2N)

...
...

. . .
...

max(XN1) max(XN2) · · · max(XNN)


is positive-definite.

Proof. We sketch the proof as follows. By substituting
the formulation of wavelets into each ψs

i Xψt
j , we have

Xij[s, t] = g(λs)g(λt)us(i)us(j)Xut(i)ut(j) (for con-
venience, we skip the scaling effect γ and index value
δ in Eq. 2). Next, we prove that the lower bound of
max(us(i)us(j)Xut(i)ut(j)) is 1

N in Proposition A.2 of
Appendix. Recall that g(·) is an exponential function, we
show that X̃ is positive-definite in Proposition A.3 of Ap-
pendix since X̃ = eB where B is a N × N matrix.

Remarks. In Fig. 2(b), we demonstrate the workflow
of new mapping function on the Riemannian manifold
which includes (1) constructing Supra-FC matrix X =
P⊺XP, (2) applying block-wise max-pooling operation
X = max-pooling(X) via Proposition 3.6, and (3) make X̃
symmetric by X̃ ← 1

2 (X̃ + X̃⊺) (refer to Proposition A.4
in Appendix). Recall that there is a learnable parameter γ in
Eq. 2. In this regard, we present the following deep model
to optimize scattering transforms in P through the lens of
scaling effect on harmonic wavelets.

3.2. MLP-Mixer for Riemannian Manifold

Since each row in P is associated with a harmonic wavelet,
the operation of P⊺XP can be boiled down to first apply
scattering transform to each column of X followed by same
operation on its rows. Inspired by the efficient MLP-Mixer
architecture in computer vision (Tolstikhin et al., 2021), we
propose to deploy a set of MLPs to learn the optimal scaling
effect γ in the column-wise scattering transforms PX and
then another set of MLPs for the optimal scaling effect γ
in the counterpart row-wise scattering transforms. Suppose
σrow and σcolumn denote the MLPs (followed by the ReLU
layer on manifold (Huang & Van Gool, 2017)) for row-
wise and column-wise scattering transforms, respectively.
The MLP-Mixer architecture of positive mapping P⊺XP on
Riemannian manifold can be formulated as:

Xl+1 = σrow{LN[σcolumn(LN(P⊺X̃l))P]}
X̃l+1 = max-pooling(Xl+1)

X̃l+1 =
1
2
(X̃l+1 + (X̃l+1)

⊺)

(3)

where LN(·) denotes LayerNorm.

Remarks. It is clear that the input to each MLP-Mixer is
a SPD matrix X̃l . The backbone of positive mapping on
the Riemannian manifold is nothing but a set of MLPs and
block-wise max-polling operations, yielding a new SPD

matrix X̃l+1 in the same dimensions. In our implementa-
tion, we employ the classic positive mapping function in
Eq. 1 to learn the low-dimensional feature representations.
After that, we project the learned SPD matrix to the tangent
space (Huang et al., 2015) and then connect to the fully-
connected layer for various machine learning applications
such as classification.

3.3. DeepHoloBrain: A Proof-of-Concept Approach to
Explore the Enigma of Neural Dynamics Through
the Insight of Deep Model

Scattering Transforms: Stepping Stone between Deep
Learning and SC-FC Couplings. In functional MRI
studies, the FC matrix X encodes pairwise correlations
between two time course of neural activities hi =
[hi(1), hi(2), ..., hi(T)] at region Ωi and hj(t) at region Ωj,
where T is the number of time points. For convenience,
we stack each hi row-by-row and form a whole-brain time
course matrix H ∈ RN×T (purple lines in Fig. 3). In this
context, the FC matrix can be computed by X = HH⊺

(brown box), where each element xij = hih
⊺
j .
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Figure 3. Two ways to compute Supra-FC matrix X. Top: We
apply scattering transforms P on FC matrix X (brown box) and
obtain Supra-FC matrix by X = P⊺XP. Bottom: An alterna-
tive way is to break the FC matrix into the covariance of time
course matrix H (purple lines in the brown box). Then the inner
product between each scattering transform and the snapshot of
time course (columns in H is essentially the result of modulating
the whole-brain signal of neural activity using harmonic wavelets
from SC, which is constrained by the geometry of brain anatomy.
Eventually, the correlation between augmented neural signals Z
(blue lines) results in the same Supra-FC matrix X, accompanied
by an in-depth neuroscience underpinning for SC-FC coupling
mechanisms.

In Proposition 3.6, we apply harmonic wavelets on FC ma-
trix X. Here, we break down FC matrix X into HH⊺.
Furthermore, we study each column in H, which is the
whole-brain snapshot of neural activities ht ∈ RN at time t.
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As the blue dashed box in Fig. 3, we first apply harmonic
wavelets P to each snapshot ht, yielding an augmented time
course matrix Z = PH ∈ RNK×T (blue lines, compared
to original signals H). After that, the inner project of Z and
Z⊺ results in the Supra-FC matrix X (orange dashed box).

Neuroscience Insights. The oscillation patterns of each har-
monic wavelet ψk

i , constrained by the local topology of the
structural connectome, characterize the frequency-specific
neural activities supported by the underlying neural circuit.
The inner project ⟨ψk

i , ht⟩ over time essentially allows us to
modulate the observed neural activity signals with the pre-
define bandpass filters, which gives rise to coupled neural
oscillations at distinct frequencies. In analogy to the holog-
raphy technique in computer vision, the physics insight be-
hind is that X = ZZ⊺ (orange dashed box in Fig. 3) records
interference patterns generated by two SC-modulated neural
activity signals.

Since the geometry of harmonic wavelets is governed by
the topology from SC, we have initialed the effort of build-
ing an integrated framework to analyze the SC-FC cou-
pling mechanism using well-studied interference principles,
which yields a new research paradigm using deep learning
technology, called DeepHoloBrain.

Potential Applications. First, our manifold-based deep
model can be used to investigate SC-FC coupling mech-
anisms in response to specific tasks or stimuli. Specifi-
cally, the input to our model is time course from task-fMRI
images. The driving factor of machine learning is to pre-
dict the underlying cognitive tasks based on the learned
intrinsic feature representation of functional fluctuations
that describe the latent brain states. In addition, we integrate
node-specific and frequency-specific attention components
on top of the scattering transforms P, which allows us to
uncover how task-dependent spontaneous FC is supported
by a collection of anatomical neural circuits in SC.

Second, our approach offers an integrated approach to pre-
dict disease risks using both SC and FC information. Cur-
rent machine learning methods primarily focus on feature
fusion (Sarwar et al., 2021). We model the SC-FC relation-
ship through scattering transforms with great mathematical
insight. Thus, our model offers in-depth network neuro-
science underpinning to uncover the synergistic effect of
brain structure/function and elucidate their mechanistic role
in modifying cognitive performance in the context of neuro-
logical diseases.

4. Experiments
4.1. Data Description and Experimental Setting

Data Description. To thoroughly validate the effective-
ness of our proposed model, we utilize three existing public

datasets for our experiments.

The Lifespan Human Connectome Project Aging (HCP-
A) dataset (Bookheimer et al., 2019). HCP-A is instru-
mental in task recognition research, offering a comprehen-
sive view of the aging process. It includes data from 717
subjects, encompassing both fMRI (4,846 time series) and
DWI (717) scans. This rich collection facilitates in-depth
analyses of both functional and structural connectivity. HCP-
A dataset includes data from four brain tasks associated with
memory: VISMOTOR, CARIT, FACENAME, and Resting
State. In the related experiments, these tasks are treated as
distinct categories in a four-class classification problem.

Alzheimer’s Disease Neuroimaging Initiative (ADNI)
dataset (Weiner et al., 2015). The ADNI dataset serves as
an invaluable resource, featuring a collection of 250 fMRI
time series and 1,012 meticulously processed structural con-
nectomes. In our experiment, we selectively focused on
250 subjects who had undergone both DWI and fMRI scans.
This careful selection ensured that we had access to de-
tailed data on both functional connectivity and structural
connectomes for each subject. Additionally, the ADNI data
includes clinical diagnostic labels, encompassing a spec-
trum of cognitive states: Cognitive Normal (CN), Subjective
Memory Complaints (SMC), Early-Stage Mild Cognitive
Impairment (EMCI), Late-Stage Mild Cognitive Impairment
(LMCI), and Alzheimer’s Disease (AD). Considering the
data balance issue, we simplified these categories into two
broad groups based on disease severity. Specifically, we
combined CN, SMC, and EMCI into a single ‘CN’ group,
representing less severe conditions, while LMCI and AD
were grouped together as the ‘AD’ group. This categoriza-
tion is intended to facilitate a binary classification frame-
work for our analysis.

Open Access Series of Imaging Studies (OASIS) dataset
(LaMontagne et al., 2019). The OASIS dataset presents a
substantial collection of data from 924 subjects, compris-
ing 3,322 fMRI sessions in total. Each subject has BOLD
signals and structural connectome data, forming a compre-
hensive foundation for our analysis. In our experiment,
we focused on binary classification: subjects in preclinical
stages of Alzheimer’s disease (categorized as preclinical-
AD) or those manifesting dementia-related conditions (cat-
egorized as AD), while healthy individuals were classified
under the ‘CN’ group. This classification strategy aids in
diagnosing the preclinical conditions at the early stage.

We summarize the processing steps for SC and FC data in
the Appendix A.1. In all of the following experiments, we
partition each into 90 regions using AAL atlas (Tzourio-
Mazoyer et al., 2002). Thus, SC is a 90× 90 matrix where
each element is quantified by the number of fibers linking
two brain regions. We further normalize the fiber count by
the total fiber count of the underlying subject. Regarding
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FC, we first calculate the mean time course of BOLD signals
in each region from fMRI. Then FC is a 90× 90 matrix by
Pearson’s correlation between mean time courses in differ-
ent regions, which indicates temporal synchronization of
neuronal activity in the brain (as shown in Fig. 6).

Experimental Setup. In our evaluations, we have con-
ducted a thorough evaluation of the proposed DeepHolo-
Brain model, focusing on two key classification challenges
in neuroscience: brain task recognition and disease diagno-
sis. Since the geometric patterns in FC matrix have been
widely investigated in the neuroscience field (You & Park,
2021), our comparative analysis includes a range of state-of-
the-art SPD matrix learning methods: Covariance Discrimi-
native Learning (CDL) (Wang et al., 2012), Log-Euclidean
Metric Learning (LEML) (Huang et al., 2015), SPD Man-
ifold Learning (SPDML) (Harandi et al., 2014), Affine-
Invariant Metric (AIM) (Pennec et al., 2006), Rieman-
nian Sparse Representation (RSR) (Harandi et al., 2012),
DeepO2P network (Ionescu et al., 2015), and SPDNet
(Huang & Van Gool, 2017). For each method, we utilize
the source codes and meticulously fine-tuned parameters
according to the specifications provided by their respective
authors to ensure the integrity of our evaluation. The effec-
tiveness of these comparative methods has been rigorously
gauged using a comprehensive set of metrics, including ac-
curacy, recall, F1-score, and precision. For all classification
tasks, we use a cross-entropy loss function that compares
the ground truth Gm,c for the cth class of the mth sample
against the corresponding prediction Ĝm,c. Regarding our
deep model, a regularization term is added to the scale pa-
rameter γ in harmonic wavelets (Eq. 2) to prevent it from
taking negative values:

ℓ(γ) = − 1
M

M

∑
m=1

∑
c∈C

Gm,c log Ĝm,c(γ) + β|γ|[γ < 0]

(4)
Here, β is a hyperparameter, M represents the sample size,
and |γ|[γ < 0] denotes the absolute value of γ when it is
less than zero. We update the scale parameter using the rule
γ ← γ− αγ

∂ℓ
∂γ , where αγ is the learning rate for γ. This

update is performed via gradient-based methods along with
other learnable parameters. For gradient back-propagation,
we employ the Riemannian manifold optimizer (Huang &
Van Gool, 2017), with a learning rate of 0.001 and over
1000 epochs, the batch size is set to 16, weight decay is
set to 1e-5, momentum is set as 0.9, the transformation
matrix of SPDNet is initialized to a semi-positive definite
matrix (N × 64). Results from each experimental setup are
reported using five-fold cross-validation, with both the mean
and standard deviation documented for thorough analysis.
The permutation t-test (the number of permutations is set
to 10000) is used for statistical tests. All experiments were
conducted on an Intel(R) Xeon(R) Gold 6448Y, paired with
an NVIDIA RTX 6000 GPU.

4.2. Performance on Task-specific Recognition

In this series of experiments, we demonstrate task-specific
recognition using several methods including SPDNet, CDL,
LEML, SPDML, AIM, RSR, DeepO2P, and our DeepHolo-
Brain (denoted as ‘OURS’) on the HCP-A dataset. The
numerical results, presented in Table 1, clearly indicate
that DeepHoloBrain significantly outperforms (indicated
by ‘*’) the other seven methods, at a significance level
p < 0.05. Notably, all methods exhibit remarkable perfor-
mance in this task. This can be attributed to the distinctively
designed tasks (VISMOTOR, CARIT, FACENAME, and
Resting State) within the dataset. However, the transfor-
mation matrix Ψ in Eq. 1, a crucial component in these
methods, is learned through a ‘black-box’ deep learning
approach, leaving the exact nature of the parameters learned
somewhat obscure. To gain a deeper understanding of brain
dynamics, we have developed two attention mappings: one
for node-wise analysis and the other for graph wavelet con-
struction (frequency). After retraining the model to focus
solely on the VISMOTOR and FACENAME tasks, the vi-
sual results of the node-wise attention map, as shown in Fig.
4 (left), reveal a distinct spatial pattern in the sensorimo-
tor and visual regions (color bar denotes the degree). This
indicates that anatomical regions within the areas detected
by our model are highly relevant to the VISMOTOR and
FACENAME tasks, respectively. Such findings align with
current research (Bedel et al., 2023; Glasser et al., 2016),
suggesting that our model is capable of capturing intrinsic
features that differentiate various brain tasks. Furthermore,
Fig. 4 (right) displays the oscillation patterns underlying the
learned most relevant frequencies, indicating a distinct pref-
erence for high frequencies in the sensorimotor regions and
lower frequencies within the visual region. This informa-
tive location-frequency attention map suggests that different
cognitive tasks engage distinct neural circuits, manifesting
as varied frequency responses across brain regions.

Table 1. Results on brain task recognition for HCP-Aging dataset.

METHODS ACCURACY RECALL F1-SCORE

SPDNET 0.984± 0.003 0.975± 0.004 0.978± 0.004
CDL 0.976± 0.003 0.962± 0.005 0.966± 0.005
LEML 0.961± 0.022 0.903± 0.039 0.929± 0.036
SPDML 0.944± 0.015 0.908± 0.027 0.920±0.019
AIM 0.952± 0.014 0.9114± 0.016 0.929±0.015
RSR 0.966± 0.005 0.944± 0.010 0.951 ±0.008
DEEPO2P 0.977± 0.004 0.963± 0.006 0.969± 0.005
OURS 0.995± 0.003* 0.989± 0.003* 0.993± 0.003*

4.3. Performance on Disease Diagnosis

Disease Early Diagnosis. We evaluate the prediction ac-
curacy on ADNI and OASIS data, respectively, in fore-
casting the risk of developing AD by SPDNet, CDL,
LEML, SPDML, AIM, RSR, DeepO2P and DeepHoloBrain
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Visual

Sensorimotor

degreelow high low highfrequency

Visual

Sensorimotor

Figure 4. Left: Uncovered anatomical regions (using node-wise
attention) for task VISMOTOR and task FACENAME, respectively.
Right: Oscillation patterns underlying the more relevant harmonic
frequencies for VISMOTOR and FACENAME tasks, revealing
task-specific wavelet dynamics.

(marked ‘OURS’) in Table 2 (top and middle). At the sig-
nificance level of 0.001, our method outperforms all other
counterpart methods in terms of classification accuracy (in-
dicated by ‘*’).

Altered SC-FC Coupling in AD. Here, we seek to iden-
tify the alterations of SC-FC coupling that underline the
progression of AD. In this regard, we apply the node-size
attention module to characterize the regional contribution of
SC-FC coupling in recognizing AD from CN, which implies
the most vulnerable brain regions in AD progression. As
illustrated in Fig. 5, the analysis on both OASIS and ADNI
datasets reveals that the regions predominantly affected are
within the default mode regions (highlighted by red circles).
This finding aligns with numerous studies that have estab-
lished a strong correlation between these regions and human
memory (Greicius et al., 2004; Koch et al., 2012).

Performance on Learning Consistency across Data Co-
horts. Herein, we focus on consistency in terms of learned
attention maps from ADNI and OASIS. Although both are
AD-specific studies, variations exist in the choice of scan-
ner, study design, and demographic data of the subjects
between the two studies. Particularly, we skip the data har-
monization routine (Richter et al., 2022) and train our deep
model on ADNI and OASIS separately. The spatial maps of
region-specific and frequency-specific attentions are shown
in Fig. 5 side by side. It is evident that the oscillation
patterns in frequency-specific attention are quite consistent
between ADNI and OASIS. Although we only find one re-
gion (circles in Fig. 5 bottom) consistently selected in two
data cohorts, the top-ranked regions in OASIS and ADNI
(circles in Fig. 5 top) are both located in the default-mode
network (Greicius et al., 2004; Lee et al., 2020; Mevel et al.,
2011), a sub-network frequently affected by AD.

OASIS ADNI

low

high

low

high

Default mode

Figure 5. Consistency evaluation for region-specific (1st and 3rd

columns) and frequency-specific (2nd and 4th columns) attentions
learned from OASIS (left) and ADNI (right).

Table 2. Prognosis accuracies on forecasting AD risk for OASIS
(top) and ADNI (shaded, middle) datasets. Bold font denotes the
best performance. ‘OURS’ refers to our proposed model, named
DeepHoloBrain. When we mention ‘baseline’ (darker shade), they
specifically denote the version of the models that have been trained
using a particular dataset (i.e., OASIS and ADNI). Additionally,
‘baseline+’ (lighter shade, bottom) represents an enhanced variant
of the models, which has been pre-trained on the HCP-A dataset
and subsequently fine-tuned on the ADNI dataset.

METHODS ACCURACY RECALL F1-SCORE

SPDNET 0.871± 0.018 0.593± 0.017 0.613± 0.024
CDL 0.827± 0.623 0.570± 0.062 0.581 ±0.047
LEML 0.796± 0.193 0.624± 0.045 0.632± 0.117
SPDML 0.786± 0.148 0.739± 0.038 0.697±0.091
AIM 0.816± 0.098 0.540± 0.043 0.539±0.072
RSR 0.840± 0.020 0.690± 0.020 0.689 ±0.028
DEEPO2P 0.857 ± 0.019 0.684± 0.02 0.675± 0.021
OURS 0.885±0.017* 0.740± 0.045* 0.6974± 0.041*
SPDNET 0.800±0.085 0.670± 0.067 0.627± 0.090
CDL 0.710±0.095 0.500± 0.018 0.415±0.064
LEML 0.704±0.095 0.523±0.019 0.474±0.065
SPDML 0.672± 0.079 0.543± 0.037 0.529± 0.055
AIM 0.708± 0.089 0.500± 0.000 0.413± 0.032
RSR 0.740± 0.106 0.610± 0.059 0.608± 0.080
DEEPO2P 0.760± 0.089 0.614± 0.068 0.625±0.082
OURS 0.820± 0.071* 0.625± 0.049* 0.647±0.079*

ACCURACY RECALL F1-SCORE PRECISION
SPDNET+ 0.7120 0.7120 0.6632 0.7409
CDL+ 0.6640 0.5253 0.5168 0.5397
LEML+ 0.6080 0.5501 0.5466 0.5462
SPDML+ 0.5880 0.5803 0.5581 0.5671
AIM+ 0.6160 0.5356 0.5356 0.5356
RSR+ 0.6880 0.6880 0.8690 0.4716
DEEPO2P+ 0.6960 0.6880 0.5971 0.7369
OURS+ 0.7400* 0.6103 0.6081 0.7892*

Generality as A Pre-trained Model. One of the critical
challenges of deploying computer-assisted diagnosis in clin-
ical routine is the limited sample size, especially for disease
cohorts. Considering the fact that (1) the pre-defined scat-
tering transforms underscore the coupling mechanism of
SC-FC relationship and (2) the MLP-Mixer architecture en-
ables us to train the deep model with much fewer parameters
than conventional methods, we hypothesize that our model
pre-trained on a large dataset of normal healthy brains can
produce reasonable classification results for disease diag-
nosis after fine-tuning on a limited amount disease-specific
data. To test this hypothesis, we pre-train a regression model
based on Montreal Cognitive Assessment (MoCA) score on
HCP-A data and fine-tune a classification mode on ADNI
data. The experimental results, as presented in Table 2 (bot-
tom), it is apparent that our method has achieved significant
improvement in accuracy and precision, with a marginal
decrease in recall and F1-score. Furthermore, we compute
the AUC for SPDNet and our DeepHoloBrain, where our
method achieves 1.76% improvement over SPDNet. Con-
sidering early diagnosis of AD is critical in developing
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interventional therapeutics, the results in Table 2 (bottom)
suggest our method has better clinical value than SPDNet
in terms of diagnosis sensitivity.

5. Discussion
In this section, we delve into the performance comparison
of task recognition and disease diagnosis using graph-based
and transformer-based methods, which have been exten-
sively employed in neuroscience research. Specifically,
we evaluate six methods, comprising four GCN-based ap-
proaches and two transformer models. The comparison en-
compasses GCN (Kipf & Welling, 2017), GAT (Veličković
et al., 2017), GIN (Xu et al., 2018), BrainNetCNN (Kawa-
hara et al., 2017), Graph Transformer (GraphT) (Shi et al.,
2020), and BolT (Bedel et al., 2023), assessed on both the
HCP-A dataset (top) and an ADNI dataset (bottom) in Table
3. Notably, for GCN-based methods, we utilize FC as the
feature representation underlying the SC topology. For BolT
and BrainNetCNN, only FC information is used in the deep
model.

Table 3. Performance on task recognition for HCP-A dataset (top)
and forecasting AD risk for ADNI datasets (bottom), respectively.

Methods Accuracy Precision F1-score

GCN 0.690± 0.057 0.511± 0.157 0.582± 0.116
GAT 0.719± 0.123 0.540± 0.222 0.611 ±0.182
GIN 0.585± 0.124 0.513± 0.162 0.694± 0.066
GraphT 0.721± 0.127 0.542± 0.227 0.614±0.189
BrainNetCNN 0.725± 0.135 0.546± 0.235 0.617±0.195
BolT 0.863± 0.013 0.865± 0.015 0.864 ±0.014
GCN 0.541±0.313 0.447± 0.369 0.472± 0.366
GAT 0.659±0.287 0.562± 0.319 0.596±0.319
GIN 0.600±0.106 0.728±0.073 0.642±0.093
GraphT 0.541± 0.275 0.595± 0.297 0.497± 0.276
BrainNetCNN 0.800± 0.085 0.638± 0.124 0.643± 0.102
BolT 0.812± 0.075 0.618± 0.142 0.645± 0.105

It is evident that GCN-based methods yield less satisfac-
tory results in recognizing cognitive tasks for normal adults
(in HCP-A), largely due to the neuroscience fact that the
topological pattern usually does not highly correlate with
functional fluctuations exhibited in cognitive tasks. Mean-
while, some GCN-based methods are able to yield reason-
able prediction accuracy of AD risk since SC alteration is
a hallmark of AD progression in clinical findings. Taken
together, these results suggest that effectively employing
GCN-based techniques from machine learning in neuro-
science requires tailored adaptation of domain-specific ex-
pertise. Following this spirit, our DeepHoloBrain integrates
physics principles, neuroscience insights, and the power
of machine learning, which allows us to consistently out-
perform existing deep models. A good integration of SC
and FC information effectively provides a greater advantage
than using SC or FC alone. For instance, although BolT
uses a more advanced machine learning backbone (Trans-

former) than our DeepHoloBrain (MLPs), BolT (using FC
only) shows less accuracy in both cognitive task recognition
(0.863 vs. 0.995) and disease diagnosis (0.812 vs. 0.820)
than our method (using both SC and FC).

6. Conclusions
In this work, we have ventured into developing a unique
deep learning framework, DeepHoloBrain, which utilizes
a scattering-transform mixer on the Riemannian manifold
to delve into the complexities of neural dynamics. At its
core, DeepHoloBrain is a physics-informed model that aims
to unravel the intricate coupling mechanism between brain
structure and function, viewed through the prism of data
geometry. Our model innovatively combines: (1) A new
mapping mechanism on the Riemannian manifold using scat-
tering transforms; (2) A pioneering geometric deep learning
structure, tailored for SPD matrices; (3) An insightful ap-
proach to understanding the human brain with deep learning;
(4) A thorough evaluation against large-scale neuroimaging
data, proving its effectiveness and practicality. Our exten-
sive experimental results affirm the model’s effectiveness
and practicality, marking a promising pilot work in the field
of neuroscience.

Software and Data
HCP-A data can be found in https://
www.humanconnectome.org/study/
hcp-lifespan-aging, ADNI can be downloaded
in https://adni.loni.usc.edu/, OASIS can
be downloaded in https://sites.wustl.edu/
oasisbrains/home/oasis-3/.
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geometric deep model - Scattering-transform Mixer for the
Riemannian manifold of SPD matrices. From an application
standpoint, it offers (1) a novel approach to understanding
the human brain via deep learning techniques, and (2) a com-
prehensive evaluation of these techniques’ clinical impact
on large-scale neuroimaging datasets. These advancements
promise significant implications in both theoretical and prac-
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tical domains of neural science and machine learning. Po-
tential applications can be referred to the last paragraph of
Section 3.3.
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A. Appendix
A.1. Construction of SC and FC Networks

The data preprocessing involves the following steps to derive FC and SC matrices:

• fMRI Data Processing1:

▷ Structural MRI (T1-weighted) preprocessing, including brain extraction, tissue segmentation, spatial normalization, cost
function masking, longitudinal processing, and brain mask refinement.

▷ BOLD preprocessing, encompassing reference image estimation, head-motion estimation, slice time correction, suscepti-
bility distortion correction, EPI to T1w registration, resampling into standard spaces, sampling to Freesurfer surfaces, HCP
Grayordinates, and confounds estimation.

▷ Generation of BOLD time-series data for FC matrices construction.

• DWI Data Processing2:

▷ Initial processing, including image and gradient orientation conformity, distortion grouping, denoising, distortion
correction, head motion correction, and B0 template construction.

▷ Reconstruction steps, such as ODF/FOD estimation, anisotropy scalar computation, and tractography.

▷ Estimation of structural connectomes to generate SC matrices.

Figure 6 illustrates the process of constructing FC and SC networks.

fMRI

T1w MRI

DWI

Brain extraction, tissue segmentation, …, brain mask refinement, … 

Head-motion estimation, slice time correction, …, confounds estimation, …

Image and gradient, B0 template construction, …, tractography, …

FC
SC

Constructions of
SC and FC
Networks 

Workflow

Figure 6. Workflow of constructing FC and SC.

1https://fmriprep.org/en/stable/
2https://qsiprep.readthedocs.io/en/latest/
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A.2. Proof

Proposition A.1. Given a full-rank matrix W ∈ Rn×m and a vector v ∈ Rm, since the columns of W are linearly
independent and span Rm, there exists, by the fundamental theorem of linear algebra, a vector u ∈ Rn such that Wu = v.

Proof. Since W is full rank, its column space is a subspace of Rm. If the rank of W is m, it means that its column space is
actually the entire Rm. Thus, every vector in Rm can be linearly represented by the columns of W, that is, for each v ∈ Rm,
there exist coefficients c1, c2, . . . , cm such that v = c1w1 + c2w2 + . . . + cmwm, where w1, w2, . . . , wm are the columns of
W. We can write this equation to matrix form as

v = W


c1
c2
...

cm

 ,

where the vector of coefficients is u ∈ Rn which satisfies Wu = v, proving the existence of such a vector u for every
v ∈ Rm.

Proposition A.2. Remark. Suppose we have a graph Laplacian matrix L = D− A, where D is the degree matrix and
A is the adjacency matrix, the first eigenvalue is typically λ0 = 0, corresponding to the trivial eigenvector u0. This is
because the graph Laplacian represents the nodal connectivity, and the constant vector represents an equal state of all
nodes, naturally belonging to the kernel of L.

The eigenvector u0 is usually a vector with all equal elements. For an undirected graph, it is often chosen as u0 =
1√
N
(1, 1, . . . , 1)⊺, where N is the number of nodes in the graph. Thus, the first vector u0 has all positive elements and this

choice satisfies the definition of an eigenvector:

Lu0 = (D− A)u0 = 0 · u0 = 0

and the normalization condition of u0 (i.e., ∥u0∥ = 1), since each element is 1√
N

, the norm (length) of the vector is 1.

In this context, the value range harmonic wavelet is [−∞, 1
N ,+∞], thus the lower band of max(·) operator is 1

N > 0.
Proposition A.3. Given a symmetric matrix A, B = exp(A) is a SPD matrix.

Proof. To prove that exp(A) is positive definite, we use the fact that any symmetric matrix can be diagonalized. This means
that there exists an orthogonal matrix Q and a diagonal matrix D such that A = QDQ⊺.

Then, we have:
exp(A) = exp(QDQ⊺) = Q exp(D)Q⊺

where the exponential of a diagonal matrix is obtained by applying the exponential function to its diagonal elements.

Consider any non-zero vector v, we have:

v⊺ exp(A)v = v⊺Q exp(D)Q⊺v

Let y = Q⊺v, then we get:
v⊺ exp(A)v = y⊺ exp(D)y

Since exp(D) is positive definite (its diagonal elements are the results of the exponential function, hence all positive), we
have:

y⊺ exp(D)y > 0

unless y is a zero vector. However, since Q is orthogonal, y = 0 if and only if v = 0. Therefore, for all non-zero v, the
expression is positive.

This proves that B = exp(A) is a positive definite matrix.
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Proposition A.4. Given a positive definite matrix A, then B = (A + A⊺)/2 is a SPD matrix.

Proof. 1: Symmetry: The symmetry of B can be shown quite straightforwardly. Given A, a positive definite matrix, let A⊺

denotes its transpose. The matrix B is defined as B = A+A⊺

2 . Since the transpose of a sum of matrices is the sum of their

transposes, we have B⊺ = A⊺+(A⊺)⊺

2 . Since (A⊺)⊺ = A, it follows that B⊺ = B. Hence, B is symmetric.

2: Positive Definiteness: For any non-zero vector v, consider the quadratic form v⊺Bv:

v⊺Bv = v⊺
(

A + A⊺

2

)
v

=
1
2

v⊺Av +
1
2

x⊺A⊺v

Since A is positive definite, v⊺Av > 0 for all non-zero v. Similarly, v⊺A⊺v = (Av)⊺v = v⊺Av > 0 as A is positive
definite. Obviously, v⊺Bv = ( 1

2 v⊺Av + 1
2 v⊺A⊺v) > 0. Hence, B is positive definite.
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