
A decoder-only foundation model for time-series forecasting

Abhimanyu Das 1 Weihao Kong 1 Rajat Sen 1 Yichen Zhou 1

Abstract
Motivated by recent advances in large language

models for Natural Language Processing (NLP),
we design a time-series foundation model for
forecasting whose out-of-the-box zero-shot per-
formance on a variety of public datasets comes
close to the accuracy of state-of-the-art super-
vised forecasting models for each individual
dataset. Our model is based on pretraining a de-
coder style attention model with input patching,
using a large time-series corpus comprising both
real-world and synthetic datasets. Experiments
on a diverse set of previously unseen forecasting
datasets suggests that the model can yield accu-
rate zero-shot forecasts across different domains,
forecasting horizons and temporal granularities.

1. Introduction
Time-series data is ubiquitous in various domains such as
retail, finance, manufacturing, healthcare and natural sci-
ences. In many of these domains, one of the most im-
portant use-cases of time-series data is forecasting. Time-
series forecasting is critical to several scientific and indus-
trial applications, like retail supply chain optimization, en-
ergy and traffic prediction, and weather forecasting. In re-
cent times, Deep learning models (Salinas et al., 2020; Ore-
shkin et al., 2019) have emerged as a popular approach for
forecasting rich, multivariate, time-series data, often out-
performing classical statistical approaches such as ARIMA
or GARCH (Box & Jenkins, 1968). In several forecast-
ing competitions such as the M5 competition (Makridakis
et al., 2022) and IARAI Traffic4cast contest (Kopp et al.,
2021) deep network based solutions performed very well.

At the same time, we are witnessing a rapid progress in the
Natural Language Processing (NLP) domain on large foun-
dation models for downstream NLP tasks. Large language
models (LLMs) are growing in popularity because they can
be used to generate text, translate languages, write differ-

1Google Research. Correspondence to: Rajat Sen <senra-
jat@google.com>, Yichen Zhou <yichenzhou@google.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024
by the author(s).

Author names are listed in alphabetical order.

ent kinds of creative content, and answer your questions in
an informative way (Radford et al., 2019). They are trained
on massive amounts of data, which allows them to learn the
patterns of human language. This makes them very power-
ful tools that can be used for a variety of downstream tasks,
often in a zero-shot learning mode.

This motivates the question: “Can large pretrained mod-
els trained on massive amounts of time-series data learn
temporal patterns that can be useful for time-series fore-
casting on previously unseen datasets?” In particular, can
we design a time-series foundation model that obtains good
zero-shot out-of-the-box forecasting performance ? Such a
pretrained time-series foundation model, if possible, would
bring significant benefits for downstream forecasting users
in terms of no additional training burden and significantly
reduced compute requirements. It is not immediately obvi-
ous that such a foundation model for time-series forecast-
ing is possible. Unlike in NLP, there is no well defined
vocabulary or grammar for time-series. Additionally, such
a model would need to support forecasting with varying
history lengths (context) , prediction lengths (horizon) and
time granularities. Furthermore, unlike the huge volume
of public text data for pretraining language models, vast
amounts of time-series data is not readily available. In spite
of these issues, we provide evidence to answer the above
question in the affirmative.

In particular, we design TimesFM, a single foundation
model for time-series forecasting that, when applied to
a variety of previously-unseen forecasting datasets across
different domains, obtains close to state-of-the-art zero-
shot accuracy (compared to the best supervised models
trained individually for these datasets). Our model can
work well across different forecasting history lengths, pre-
diction lengths and time granularities at inference time.
The key elements of our foundation model are twofold: 1)
a large-scale time-series corpus built using both real-world
(mostly time-series data from web search queries1 and
Wikipedia page visits2) and synthetic data, which meets the
volume and diversity of data needed for training our foun-
dation model, and 2) a decoder style attention architecture
with input patching, that can be efficiently pre-trained on
this time-series corpus.

1https://trends.google.com
2https://wikimedia.org/api/rest_v1/

1

https://trends.google.com
https://wikimedia.org/api/rest_v1/

A decoder-only foundation model for time-series forecasting

Compared to the latest large language models, our time-
series foundation model is much smaller in both parameter
size (200M parameters) and pretraining data size (O(100B)
timepoints); yet we show that even at such scales, it is pos-
sible to pretrain a practical foundation model for forecast-
ing whose zero-shot performance comes close to the ac-
curacy of fully-supervised approaches on a diverse set of
time-series data. Our work also suggests that unlike recent
work (Gruver et al., 2023) that recommends Large Lan-
guage Models such as GPT-3 and LLama-2 as out-of-the-
box zero-shot forecasters, foundation models trained from
scratch exclusively on time-series data can obtain much
better zero-shot performance at a tiny fraction of its costs.

2. Related Work
In the last decade, deep learning models (Salinas et al.,
2020; Oreshkin et al., 2019) have emerged as powerful con-
tenders in forecasting time-series in the presence of large
training datasets and have been shown to outperform tra-
ditional statistical methods such as ARIMA and Exponen-
tial smoothing (McKenzie, 1984). Forecasting models can
be categorized broadly into: (i) Local univariate models
that include traditional methods like ARIMA, exponential
smoothing (McKenzie, 1984) and non-autoregressive mod-
els like Prophet (Taylor & Letham, 2018). These models
are trained individually for each time-series in a dataset
in order to predict the corresponding time-series’s future.
(ii) Global univariate models like DeepAR (Salinas et al.,
2020), Temporal Convolutions (Borovykh et al., 2017), N-
BEATS (Oreshkin et al., 2019) and long-term forecasting
models such as (Nie et al., 2022; Das et al., 2023) that are
trained globally on many time-series but during inference
they predict the future of a time-series as a function of its
own past and other related covariates. (iii) Global multi-
variate models that take in the past of all time-series in the
dataset to predict the future of all the time-series. Such
models include the classical VAR model (Zivot & Wang,
2006) as well as deep learning models like (Sen et al., 2019;
Zhou et al., 2022; Chen et al., 2023) to name a few.

All the works cited above have primarily been applied
in the supervised setting with the notable exception of
PatchTST (Nie et al., 2022) and N-BEATS (Oreshkin et al.,
2019). PatchTST has a section on dataset-to-dataset trans-
fer learning in the semi-supervised setting. Oreshkin et al.
(2021) also show that the N-BEATS architecture lends it-
self to transfer learn between various source-target dataset
pairs. However, none of these works aim to train a single
foundation model that can work on a plethora of datasets.
For an in-depth discussion about transfer learning in time-
series we refer the reader to the survey in (Ma et al., 2023).

There has been some very recent work on re-using or fine-
tuning large language models for time-series forecasting.

In particular, Gruver et al. (2023) benchmarks pretrained
LLMs like GPT-3 and LLaMA-2 for zero-shot forecasting
performance. As we show later, our model obtains much
superior zero-shot performance at a tiny fraction of these
model sizes. Zhou et al. (2023) and Chang et al. (2023)
show how to fine-tune a GPT-2 (Radford et al., 2019) back-
bone model for time-series forecasting tasks. With the ex-
ception of a transfer-learning study (forecasting on a tar-
get dataset after having trained on a source dataset), these
papers mostly focus on fine-tuning a pretrained model on
target datasets, and not on pretraining a single foundation
model with good out-of-the box zero-shot performance on
a variety of datasets. To the best of our knowledge, the
very recent work in TimeGPT-1 (Garza & Mergenthaler-
Canseco, 2023) is the only other parallel work on a zero-
shot foundation model for time-series forecasting. How-
ever the model is not public access, and several model de-
tails and the benchmark dataset have not been revealed.

3. Problem Definition
The task at hand is to build a general purpose zero-shot
forecaster that takes in the past C time-points of a time-
series as context and predicts the future H time-points. Let
the context be denoted by y1:L := {y1, · · · , yL} where we
follow a numpy-like notation for indices. Similarly the ac-
tual values in the horizon are denoted by yL+1:L+H . Note
that since we are building a single pre-trained model, we
cannot have dataset specific dynamic or static covariates
during training time. The task is then to learn a foundation
model that can map any time-series context to horizon,

f : (y1:L) −→ ŷL+1:L+H . (1)

The accuracy of the prediction can be measured by a metric
that quantifies their closeness to the actual values, for in-
stance, Mean Absolute Error (MAE) defined in Equation 6.

4. Model Architecture
A foundation model for time-series forecasting should be
able to adapt to variable context and horizon lengths, while
having enough capacity to encode all patterns from a large
pretraining datasets. Transformers have been shown to be
able to adapt to different context lengths in NLP (Radford
et al., 2019). However, there are several time-series spe-
cific design choices. The main guiding principles for our
architecture are the following:

Patching. Inspired by the success of patch based model-
ing in the recent long horizon forecasting work (Nie et al.,
2022) we also choose to break down the time-series into
patches during training. A patch of a time-series is a nat-
ural analogue for a token in language models and patching
has been shown to improve performance. Moreover this
improves inference speed as the number of tokens being

2

A decoder-only foundation model for time-series forecasting

fed into the transformer is reduced by a factor of the patch
length. On the other hand, increasing the patch length all
the way to the context length moves us away from decoder-
only training and the efficiencies that come with it. We
delve into this further in Section 6.2.

Decoder-only model. A key difference between our archi-
tecture and PatchTST (Nie et al., 2022) is that our model
is trained in decoder-only mode (Liu et al., 2018). In other
words, given a sequence of input patches, the model is op-
timized to predict the next patch as a function of all past
patches. Similar to LLMs this can be done in parallel over
the entire context window, and automatically enables the
model to predict the future after having seen varying num-
ber of input patches.

Longer output patches. In LLMs the output is always gen-
erated in an auto-regressive fashion one token at a time.
However, in long-horizon forecasting it has been observed
that directly predicting the full horizon yields better accu-
racy than multi-step auto-regressive decoding (Zeng et al.,
2023). But this is not possible when the horizon length is
not known apriori, as in the case of zero-shot forecasting
which is our primary goal.

We propose a middle ground by allowing our output
patches for prediction to be longer than the input patches.
As an example, suppose the input patch length is 32 and
output patch length is 128. During training, the model is
simultaneously trained to use the first 32 time-points to
forecast the next 128 time-steps, the first 64 time-points
to forecast time-steps 65 to 192, the first 96 time-points to
forecast time-steps 97 to 224 and so on. During inference,
suppose the model is given a new time-series of length 256
and tasked with forecasting the next 256 time-steps into
the future. The model will first generate the future predic-
tions for time-steps 257 to 384, then condition on the ini-
tial 256 length input plus the generated output to generate
time-steps 385 to 512. On the other hand, if in a model the
output patch length was fixed to the input patch length of
32, then for the same task we would have to go through 8
auto-regressive generation steps instead of just the 2 above.
However, there is a trade-off. If the output patch length
is too long, then it is difficult to handle time-series whose
lengths are less than the output patch length for instance
monthly, yearly time-series in our pretraining data.

Patch Masking. If we use patches naively, the model might
only learn to predict well for context lengths that are multi-
ples of the input patch length. Therefore we make a careful
use of masking during training. Parts of patches as well
as entire patches from the beginning of the context win-
dow can be masked in a data batch. We employ a specific
random masking strategy (described later) during training
that helps the model see all possible context lengths starting
from 1 to a maximum context length.

Now that we have mentioned the guiding principles, we
next formally describe each component of our model ar-
chitecture (illustrated in Figure 1), which we name as
TimesFM (Time-series Foundation Model).

Input Layers. The job of the input layers is to preprocess
the time-series into input tokens to the transformer layers.
We first break the input into contiguous non-overlapping
patches. Then each patch is processed by a Residual Block
into a vector of size model dim. Along with the input, we
also supply a binary padding mask m1:L where 1 denotes
that the corresponding input in y1:L should be ignored and
vice-versa. The Residual Block is essentially a Multi-layer
Perceptron (MLP) block with one hidden layer with a skip
connection, similar to that defined in Das et al. (2023).

In other words, the inputs y1:L are broken down into
patches of size input patch len (p). The j-th patch
can be denoted as ỹj = yp(j−1)+1:pj . Similarly the mask
can also be patched as m̃j = mp(j−1)+1:pj . Then the j-
th input token to the subsequent transformer layers can be
denoted as,

tj = InputResidualBlock(ỹj � (1− m̃j)) + PEj

(2)

where PEj denotes the j-th positional encoding as defined
in the original transformer paper (Vaswani et al., 2017).
There will be N = bL/pc such input tokens.

Stacked Transformer. The bulk of the parameters in our
model are in num layers (nl) transformer layers stacked
on top of each other. Each of these layers have the stan-
dard multi-head self-attention (SA) followed by a feed-
forward network (FFN). The main hyperparameters are
model dim which is equal to the dimension of the input
tokens tj’s and number of heads (num heads). We set the
hidden size of the FFNs to be equal to model dim as well.
We use causal attention that is each output token can only
attend to input tokens that come before it in the sequence
(including the corresponding input token). This can be de-
scribed by the equation

oj = StackedTransformer((t1, ṁ1), · · · , (tj , ṁj)),
(3)

for all j ∈ [N]. ṁj is the masking indicator for the j-th
token defined as min{mp(j−1)+1:pj} i.e if a patch has any
non-masked time-point the corresponding token marked as
not being masked. All patches that are masked out com-
pletely are not attended to by the causal self attention.

Output Layers. The remaining task is to map the output
tokens into predictions. We train in decoder only mode i.e
each output token should be able to be predictive of the
part of the time-series that follows the last input patch cor-
responding to it. This is common for popular large lan-
guage models like Radford et al. (2019). However, one key

3

A decoder-only foundation model for time-series forecasting

Figure 1. We provide an illustration of the TimesFM model architecture during training, where we show a input time-series of a specific
length that can be broken down into input patches. Each patch along is processed into a vector by a residual block (as defined in the
model definition) to the model dimension of the transformer layers. The vector is then added to positional encodings and fed into nl

stacked transformer layers. SA refers to self-attention (note that we use multi-head causal attention) and FFN is the fully connected layer
in the transformer. The output tokens are then mapped through a residual block to an output of size output patch len, which is the
forecast for the time window following the last input patch seen by the model so far.

difference in our time-series foundation model is that in-
put patch length need not be equal to output patch length
i.e we should be able to predict a larger chunk of the
time-series based on the encoded information from the in-
put patches seen so far. Let the output patch length be
output patch len (h). We use another Residual Block
to map the output tokens to the predictions. This can be de-
scribed as,

ŷpj+1:pj+h = OutputResidualBlock(oj). (4)

Thus we encode all the data in y1:pj into oj and use that
to predict the subsequent h time-points ypj+1:pj+h. This is
done for all patches in one training mini-batch.

Loss Function. In this work, we focus on point forecast-
ing. Therefore we can use a point forecasting loss during
training like Mean Squared Error (MSE). The loss that is
minimized during training can be expressed as,

TrainLoss =
1

N

N∑
j=1

MSE(ŷpj+1:pj+h,ypj+1:pj+h).

(5)

Note that if one is interested in probabilistic forecasting,
then it is easy to have multiple output heads for each out-
put patch, each head minimizing a separate quantile loss

as in Wen et al. (2017). Another approach can be to out-
put the logits of a probability distribution family and min-
imize the maximum likelihood loss for probabilistic fore-
casting (Awasthi et al., 2021; Salinas et al., 2020).

Training. We train the model with standard mini-batch
gradient descent in decoder-only fashion, that goes through
all windows for a time-series and across time-series. The
only non-standard part is the way we sample the mask dur-
ing training. For each time-series in the batch, we sample
a random number r between 0 and p − 1. Then we set the
m1:r = 1 and the rest as zero i.e we mask out a fraction
of the first input patch. However, this is sufficient to cover
all input context lengths from 1 to the maximum training
context length. We explain this using an example below:

Suppose the maximum context length is 512 and p = 32.
Then if r = 4, the output prediction after seeing the first
patch (from o1) is optimized to predict after seeing 28 =
32−4 time-points, the output of the next patch (from o2) is
optimized to predict after seeing 28 + 32 time-points, and
so on. When this argument is repeated for all such r’s, the
model has seen all possible context lengths till 512.

Inference. The trained network can be used to produce
forecasts for any horizon using auto-regressive decoding
similar to large language models. Given an input y1:L (as-
sume L is a multiple of p for simplicity) it can first pre-

4

A decoder-only foundation model for time-series forecasting

dict ŷL+1:L+h. Then, we can use the concatenated vector
ỹ1:L+h = [y1:L; ŷL+1:L+h] as an input to the network to
generate the next output patch prediction ŷL+h+1:L+2h and
so on. If L is not a multiple of p, we simply append zeros to
make it a multiple of p and mark the corresponding entries
in the mask as 1.

5. Pretraining Details
We would like our pretraining corpus to include large vol-
umes of temporal data representing a variety of domains,
trend and seasonality patterns and time granularities that
ideally capture the forecasting use-cases which we are in-
terested in serving by the deployed model. It is challeng-
ing to find a large time-series dataset that meets the vol-
ume and diversity of data needed for training our founda-
tion model. We address this problem by sourcing the bulk
of data used to train our models from three major sources:
Google trends, Wiki Pageview statistics and synthetic time-
series. In summary the main data sources are:

Google Trends. Google Trends 3 captures search interest
over time for millions of queries. We choose around 22k
head queries based on their search interest over 15 years
from 2007 to 2022. Beyond these head queries the time-
series become more than 50% sparse. We download the
search interest over time for these queries in hourly, daily,
weekly and monthly granularities to form our dataset. The
date ranges are Jan. 2018 to Dec. 2019 for hourly and Jan.
2007 to Dec. 2021 for the other granularities. The trends
datasets amounts to roughly 0.5B time-points.

Wiki Pageviews. Wiki Pageviews 4 captures the hourly
views of all Wikimedia pages. We download all pageview
data from Jan. 2012 to Nov. 2023, clean and aggregate the
views by page into hourly, daily, weekly and monthly gran-
ularities, and filter out pageview time-series with excessive
zeros. The final corpus contains roughly 300B time-points.

Synthetic Data. Another major component of our pre-
training data is of synthetic origin. We create generators
for ARMA (McKenzie, 1984) processes, seasonal patterns
(mixture of sines and cosines of different frequencies),
trends (linear, exponential with a few change-points) and
step functions. A synthetic time-series can be an additive
combination of one or more of these processes. We create
3M synthetic time-series each of length 2048 time-points.
More details about our synthetic data generation are pre-
sented in Appendix A.7.

Other real-world data sources. Along with the wiki and
trends data, we also add time-series from several other pub-
licly available datasets to our pretraining corpus. We add

3https://trends.google.com
4https://en.wikipedia.org/wiki/Wikipedia:

Pageview_statistics

all the granularities of the M4 dataset (Makridakis et al.,
2022), the hourly and 15 minute Electricity and the hourly
Traffic datasets (see Zhou et al. (2021)). We also add the
10-minute granularity Weather dataset used for evaluations
in Zhou et al. (2021). M4 has a good mix of granularities
with around 100k time-series in total. Traffic and Electric-
ity are large long-term forecasting datasets with > 800 and
> 300 time-series each having tens of thousands of time-
points. In addition, we add all the 15 min granularity traffic
time-series from Wang et al. (2023).

Table 1. Composition of TimesFM pretraining dataset.
Dataset Granularity # Time series # Time points

Synthetic 3,000,000 6,144,000,000
Electricity Hourly 321 8,443,584
Traffic Hourly 862 15,122,928
Weather (Zhou et al., 2021) 10 Min 42 2,213,232
Favorita Sales Daily 111,840 139,179,538
LibCity (Wang et al., 2023) 15 Min 6,159 34,253,622
M4 hourly Hourly 414 353,500
M4 daily Daily 4,227 9,964,658
M4 monthly Monthly 48,000 10,382,411
M4 quarterly Quarterly 24,000 2,214,108
M4 yearly Yearly 22,739 840,644
Wiki hourly Hourly 5,608,693 239,110,787,496
Wiki daily Daily 68,448,204 115,143,501,240
Wiki weekly Weekly 66,579,850 16,414,251,948
Wiki monthly Monthly 63,151,306 3,789,760,907
Trends hourly Hourly 22,435 393,043,680
Trends daily Daily 22,435 122,921,365
Trends weekly Weekly 22,435 16,585,438
Trends monthly Monthly 22,435 3,821,760

Dataset Mixing and Training. We train on a mixture
distribution over these datasets that aims to give sufficient
weight to all granularities and datasets. The training loader
samples 80% real data and 20% synthetic, with the real
data mixture providing equal weights to the groups: hourly
+ sub-hourly, daily, weekly, and monthly datasets. We train
with a maximum context length of 512 whenever the length
of the time-series allows that. For weekly granularity we
do not have sufficiently long time-series; therefore a max-
imum context length of 256 is used. For the same reason,
a maximum context length of 64 is used while training on
≥ monthly granularity data. We also use only the stan-
dard normalization part of reversible instance normaliza-
tion (Kim et al., 2021) – i.e, the context of each time-series
is scaled by the context mean and standard deviation of the
first input patch in the context.

6. Empirical Results
We evaluate our model in zero-shot settings on three groups
of well known public datasets against the best performing
baselines for each group. These datasets have been inten-
tionally held out from our pretraining data. We show that
a single pretrained model can come close or surpass the
performance of baselines models on the benchmarks even

5

https://trends.google.com
https://en.wikipedia.org/wiki/Wikipedia:Pageview_statistics
https://en.wikipedia.org/wiki/Wikipedia:Pageview_statistics

A decoder-only foundation model for time-series forecasting

(a) Monash Archive (Godahewa et al., 2021) (b) Darts (Herzen et al., 2022) (c) ETT (Horizons 96 and 192) (Zhou et al., 2021)

Figure 2. We report average performance in three groups of datasets. In all figures, the lower the metric the better and the error bars
represent one standard error. Note that among the baselines only TimesFM and llmtime are zero-shot. In (a) we report results on the
Monash datasets. Since the datasets have different scales, we take the Geometric Mean (GM) of the MAE’s scaled by the MAE of
a naive baseline. We can see that TimesFM is the top model. In (b), we report the similarly scaled MAE on the Darts benchmarks.
TimesFM is within significance of the best performing methods which are ARIMA and llmtime in this case. Note that these datasets
have one time-series each and therefore statistical methods are competitive with deep learning ones. Finally, in (c) we report the average
MAE for 96 and 192 horizon prediction tasks on 4 ETT datasets i.e 8 tasks in total. TimesFM and PatchTST are the best performing
models

when the baselines are specially trained or tuned for each
specific task. Subsequently, we perform ablation studies
that justify different choices made in our architecture.

6.1. Zero-shot Evaluation
To benchmark our model’s performance, we choose three
groups of commonly used forecasting datasets that cover
various domains, sizes, granularities, and horizon lengths:
Darts (Herzen et al., 2022), Monash (Godahewa et al.,
2021) and Informer datasets (Zhou et al., 2021), to test the
generalization power of our foundation model against other
baselines.

In all cases, we report performance on the official met-
rics and scalings of the datasets, using either their stan-
dard test splits or common test splits in other literature.
We present a summary of the results below - more de-
tails can be found in Appendix A.4. We provide the
hyper-parameters and other details about our model in Ap-
pendix A.5. A version of TimesFM has been released
on Hugging at timesfm-1.0-200m, with correspond-
ing inference code.

Monash (Godahewa et al., 2021). Monash archive is a
collection of 30 datasets of different training and predic-
tion lengths that covers granularities ranging from minutes
to years and domains including finance, demand forecast-
ing, weather and traffic. The archive reports four official
metrics for several statistical baselines such as Exponen-
tial Smoothing(ETS) and ARIMA, as well as supervised
ML baselines like CatBoost (Prokhorenkova et al., 2018),
DeepAR (Salinas et al., 2020) and WaveNet (Oord et al.,
2016). Following llmtime (Gruver et al., 2023) we start
from the Monash Huggingface repository 5 and filter out

5https://huggingface.co/datasets/monash_

the datasets that contain missing values. This leaves us with
18 datasets which we specify in Appendix A.4.2.

Out of the four official metrics, following prior work (Gru-
ver et al., 2023), we report our performance in terms of
mean MAE (see Appendix A.1). As the datasets have mas-
sively different scales, for each dataset we normalize the
metric by the metric achieved by a naive baseline that just
constantly predicts the last value in the context for each
time-series. Then the scaled MAE’s are averaged across all
datasets. The scaled aggregation was also used in Gruver
et al. (2023). In Figure 2a, we use the Geometric Mean
(GM) for averaging since it is more robust for normalized
metrics (Fleming & Wallace, 1986). We also report the
Arithmetic Mean based aggregated metrics in Figure 7 in
the appendix.

The mean scaled MAE across all datasets is plotted in Fig-
ure 2a along with standard error bars. We compare the
performance of TimesFM with the baseline models im-
plemented in Monash, and the zero-shot llmtime (Gruver
et al., 2023) model that uses GPT-3 (Radford et al., 2019)
with a specific prompting technique. Note that the zero-
shot models are marked as (Zero-Shot). TimesFM is the
top model even though we never trained on these datasets.
It is slightly better but within significance of N-BEATS but
outperforms deep supervised models like DeepAR (Salinas
et al., 2020), and improves on llmtime’s performance by
more than 25%.

Darts (Herzen et al., 2022). This is a collection of 8 uni-
variate datasets which include interesting seasonalities and
additive+multiplicative trends. We report performance of
several baselines implemented in the Darts package like

tsf

6

https://huggingface.co/datasets/monash_tsf
https://huggingface.co/datasets/monash_tsf
https://huggingface.co/datasets/monash_tsf
https://huggingface.co/datasets/monash_tsf
https://huggingface.co/datasets/monash_tsf
https://huggingface.co/datasets/monash_tsf
https://huggingface.co/datasets/monash_tsf
https://huggingface.co/datasets/monash_tsf
https://huggingface.co/datasets/monash_tsf
https://huggingface.co/datasets/monash_tsf
https://huggingface.co/datasets/monash_tsf
https://huggingface.co/datasets/monash_tsf
https://huggingface.co/datasets/monash_tsf
https://huggingface.co/datasets/monash_tsf
https://huggingface.co/datasets/monash_tsf
https://huggingface.co/datasets/monash_tsf
https://huggingface.co/datasets/monash_tsf
https://huggingface.co/datasets/monash_tsf
https://huggingface.co/datasets/monash_tsf
https://huggingface.co/datasets/monash_tsf
https://huggingface.co/datasets/monash_tsf
https://huggingface.co/datasets/monash_tsf
https://huggingface.co/datasets/monash_tsf
https://huggingface.co/datasets/monash_tsf
https://huggingface.co/datasets/monash_tsf
https://huggingface.co/datasets/monash_tsf
https://huggingface.co/datasets/monash_tsf
https://huggingface.co/datasets/monash_tsf
https://huggingface.co/datasets/monash_tsf
https://huggingface.co/datasets/monash_tsf
https://huggingface.co/datasets/monash_tsf
https://huggingface.co/datasets/monash_tsf
https://huggingface.co/datasets/monash_tsf

A decoder-only foundation model for time-series forecasting

TCN (Lea et al., 2016), N-HiTS (Challu et al., 2023) and
N-BEATS (Oreshkin et al., 2019). All these baselines
are supervised. As before, we also report zero-shot fore-
casting results from llmtime (Gruver et al., 2023) using
GPT-3 (Radford et al., 2019). Other supervised baselines
in (Gruver et al., 2023) like SM-GP (Wilson & Adams,
2013) and ARIMA (McKenzie, 1984) are also added.

We report the official metric for this dataset group that is
MAE for each individual dataset in Appendix A.4. In Fig-
ure 2b, we present the average scaled MAE across all 8
datasets, as we did for the Monash datasets. TimesFM is
within statistical significance of the best models that is llm-
time and seasonal ARIMA in this case. Note that since
there are only 8 individual time-series in this dataset group,
the standard errors are not sharp and therefore does not pro-
vide a clear ordering among the models. Also, note that for
ARIMA, the seasonality needs to be encoded correctly in
the parameters for the best results, which needed manual
tuning. Further, since these datasets are used in numerous
time series blog posts for illustrative purposes, data con-
tamination for llmtime cannot be ruled out.

Informer (Zhou et al., 2021). The Informer datasets have
been widely used for benchmarking various supervised
long-horizon forecasting methods. A few of these datasets
are used in pretraining, so we focus on the other datasets in
this collection (ETTm1, ETTm2. ETTh1 and ETTh2) re-
lated to electricity transformer temperatures over a two year
period in 1 hour and 15 minutes granularities. Note that the
long horizon baselines usually report rolling validation re-
sults on the test set which would amount to millions of to-
kens for evaluating llmtime (Gruver et al., 2023) and would
be too expensive. Therefore, following llmtime, we com-
pare all methods on the last test window. Also, it is reason-
able to directly average the MAE for these datasets since
the results are reported on standard normalized dataset (us-
ing the statistics of the training portion).

We consider the task of predicting horizon length 96 and
192, given a context length of 512 for all methods. The
MAE averaged over all 8 tasks (4 datasets with two hori-
zons each) is presented in Figure 2b. TimesFM performs
the best and the supervised PatchTST (Nie et al., 2022)
baseline (which is a state-of-the-art long horizon deep fore-
casting method) is within significance of it. The other long
horizon methods are quite a bit worse even though they
have been trained these datasets. llmtime is better than
FEDFormer but worse than PatchTST with statistical sig-
nificance.

We present visual examples of our forecasts along with
baselines in Appendix A.8.

6.2. Ablation
Next, we perform several ablation studies that inform the
design decisions we made for our model architecture.

Scaling. Performance curves with respect to number of pa-
rameters in a model have been a keenly studied area in the
context of LLMs. Kaplan et al. (2020) established a power
law like relationship between the number of parameters in
a language model and its downstream performance i.e the
more the number of paramaters the better the performance.
However, Hoffmann et al. (2022) established a more nu-
anced scaling law that lays down methods to train compute
optimal models based on the number of tokens available in
a training dataset.

We perform a preliminary scaling study where we train
three TimesFM models of sizes 17M, 70M and 200M pa-
rameters, using the same pre-training dataset till 1.5M it-
erations with a global batch-size of 4096. Then we col-
lect checkpoints that represent varying number of FLOPS
(Floating Point OPerationS) across the different model
runs. Then we plot the performance on Scaled MAE (GM)
on Monash as a function of FLOPS, in Figure 3. This is
now a standard way to perform scaling studies in LLMs
(see recent work like Gu & Dao (2023)). It can be clearly
seen that the errors decrease monotonically with the num-
ber of FLOPS (in log scale). All experiments were per-
formed on a TPUv5e6 setup with 16 tensor-cores. For the
200M model it takes 2 days to complete 1.5M iterations on
our setup.

Figure 3. Scaled MAE (GM) on Monash datasets as a function of
FLOPS across three model sizes 17M, 70M and 200M. The first
4 points are from 17M and 70M checkpoints while the last 3 are
from 200M.

Autoregressive Decoding. In recent long-term forecast-
ing works (Zeng et al., 2023; Nie et al., 2022; Das et al.,
2023) it has been observed that directly predicting the en-
tire forecasting horizon in one shot from a decoder can
yield better results than auto-regressive decoding on long
horizon benchmarks. For a foundation model, the horizon
length of the task is not known before inference time, there-

6https://cloud.google.com/tpu/docs/
v5e-training

7

https://cloud.google.com/tpu/docs/v5e-training
https://cloud.google.com/tpu/docs/v5e-training

A decoder-only foundation model for time-series forecasting

fore one-shot decoding might not be possible for very long
horizons. However, as mentioned earlier, by keeping the
output patch len longer than input patch len
one can ensure fewer autoregressive steps. This was one
of the key decisions in the design of TimesFM, that is quite
different from LLMs. In order to showcase this we choose
the task of predicting 512 time-steps into the future for the
ETT datasets on the original rolling validation task of the
ETT test sets (Zhou et al., 2021). In Figure 4, we present
results from models with output patch len varying from 8
to 128. We see a monotonic decrease in average MAE with
output patch len.

Figure 4. Ablation with respect to output patch length for the task
of predicting 512 steps into the future on ETT datasets on the
original test set in Zhou et al. (2021). We report the average across
all 4 ETT datasets.

Input Patch Length. The size of input patch len
represents an important trade-off. We have typically seen
that increasing its value from 8 to 32 increases performance
but having too high a input patch len is impractical
since that makes the model shift from decoder only train-
ing more towards encoder-decoder style training. Note that
in the ”Training” paragraph of Section 4, we describe the
mask sampling strategy to support any context length. If
in the extreme case p is set the maximum context length
we have to individually sample all possible context win-
dows from 1 to maximum context length, which would be
required for encoder-decoder style of training.

In Figure 5, we show the mean scaled MAE
(GM) TimesFM(ZS) - 70M model on Monash with
input patch len varying from 8 to 128. Note that
both models have been trained to about 1.5M steps even
though the p=8 model is three times slower to train. We
can see that p = 16, 32 marks the best performance, with
the error increasing towards either end. Note that p = 32
model is almost twice as fast to train compared to p = 16
and thus constitutes a prudent choice.

Dataset Ablation. Next we showcase the need for syn-
thetic data. Intuitively, the majority of our real datasets
have commonly found granularities like hourly, daily etc
which have specific periodic patterns like 24 time-point pe-
riod for hourly data. This can make the model not gen-
eralize well to underrepresented frequencies. We train a

Figure 5. Scaled MAE (GM) for our 70M models on Monash
datasets for different input patch lengths. We also plot error bars
denoting one standard error.

200M model with no synthetic data added in the mix and
showcase the performance on Monash and ETT datasets in
Figure 6. It can be seen that there is a performance drop
on Monash because many of the datasets in Monash have
under-represented granularities like quarterly, yearly or 10
minutes etc. Perhaps even more compelling is the com-
parison on ETT datasets. We can see that there is almost
no difference between the two models on the hourly ETTh
datasets which has a well represented granularity. How-
ever, for the 15min ETTm datasets the model with synthetic
data performs quite a bit better.

Figure 6. Average scaled MAE for Monash on the left and average
MAE on ETT datasets on the right. We compare the performance
of 200M model with and without the synthetic data.

We provide a finetuning study in the same setting as Zhou
et al. (2023) in Appendix A.2, where our model performs
better than all baselines on all the reported datasets. This
shows the utility of our model on downstream tasks.

7. Conclusion
In this paper, we presented TimesFM, a practical founda-
tion model for forecasting whose zero-shot performance
comes close to the accuracy of fully-supervised forecasting
models on a diverse set of time-series data. This model is
pretrained on real-world and synthetic datasets comprising

8

A decoder-only foundation model for time-series forecasting

O(100B) timepoints. The limitations and future directions
can be categorized under the following,

Prompt Tuning. In LLMs it is well known that prompt tun-
ing techniques like chain-of-thought (Wei et al., 2022) can
drastically improve performance in cases where the model
is inaccurate with simple prompts. Such techniques are less
clear for time-series foundation model. We can tune sim-
ple hyper-parameters like context length as the moment.
However, with probabilistic forecasting we might be able
to output different statistics as well as come up with tech-
niques that align more with user’s expectations while not
decreasing likelihood.

Probabilistic Forecasting. It should be straightforward to
train with probabilistic loss functions in our framework as
detailed in the ”Loss Function” part of Section 4. However,
being one of the first works of building a single foundation
model for forecasting, this was not our main focus and is
left to future explorations. Note that as mentioned before
we plan to release our model weights and after that such
loss functions (Salinas et al., 2020; Awasthi et al., 2021)
can be added during finetuning.

Covariate handling. Currently the model is not pretrained
with covariates as one of the key challenges is finding
large volumes of pretrained data with meaningful covari-
ates (apart from date features). We also need methods to
have a joint universal representation of covariates. Cur-
rently there are two simple techniques we can think of
for handling covariates (i) In a zero-shot setting at infer-
ence time we can predict in-context and linearly regress
the residual on covaraites. Then our model + the resid-
ual model can be used for forecasting in the horizon. (ii)
during finetuning it is straightforward to handle covariates
by adding them as inputs to the input and output residual
blocks. Categorical variables can be added as embeddings.

More finetuning studies. We perform a fintuning study in
Appendix A.2 following a prior work. However, a more
in depth study that involves finetuning in the presence of
covariates would be beneficial. This being one of the first
works of building a single foundation model for forecast-
ing, this was not our main focus and is left to future explo-
rations. Ideas in recent work such as (Chen et al., 2023)
could be useful in this regard.

Other architectures. Given the cost of training founda-
tion models we did not perform much hyper-parameter tun-
ing in our pretraining, while following some well estab-
lished best practices for training transformers. In a simi-
lar vein, it would also be interesting to try out alternatives
like the exciting directions of all MLP structures like Chen
et al. (2023) or efficient linear state space models like
Mamba (Gu & Dao, 2023) (and references there in).

Interpretability. Deep foundation models trained on a huge
corpuses of data could be inherently less interpretable com-
pared to statistical methods like ARIMA, ETS (Box &
Jenkins, 1968). In this regard methods like LOCO, SHAP
(see (Verdinelli & Wasserman, 2023) and references there
in) could be used to some extent to attribute feature impor-
tances to different lags in the context supplied to the model.
However, this does not solve the problem to a full extent
and one of the best things to do would be to open source
a version of the model with a proper model card. (Mitchell
et al., 2019).

Impact Statement
This paper shows that it is possible to train a single pre-
trained model that has phenomenal zero-shot performance
on a variety of forecasting tasks, thus opening up exciting
possibilities for downstream applications. Therefore it is
crucial to discuss ethical and societal considerations of us-
ing such a model and how some of the related concerns can
be mitigated.

Data Privacy. Note that most of our data sources are pub-
licly available and are aggregated i.e no individual user ac-
tivity constitutes a time-point. Further the Google Trends
data is differentially private.

Bias. Biases can creep into a foundation model through
a variety of sources especially through data. The model
might perpetuate these biases in forecasts, leading to un-
fair outcomes. Biased forecasts can have real-world conse-
quences. For example, a biased forecast of crime rates in a
neighborhood could lead to increased police presence, dis-
proportionately impacting certain communities. Note that
our model is not trained with any covariates so some of
these sensitivities are reduced but cannot be ruled out.

In this regard, we believe that it is best to release the exact
details of the datasets used for training and therefore we
have summarized our data sources in Table 1. Moreover we
plan to do a open weights release of our model so that the
community can analyze the model for downstream tasks.
We will ensure that we release a good model card (Mitchell
et al., 2019). This will also aid in finetuning the model with
more diverse data-sources.

Training cost. Our largest model has 200M parameters
which is much smaller compared to even smaller scale
LLMs. Our data volume is quite large but still smaller com-
pared to SOTA LLMs. We have revealed the exact compu-
tation requirements for the models i.e 16 core TPUv5e for
2 days. Note that experimentation and trial runs of course
cost more than the final model run. Therefore in the inter-
est of equitability we would like to release the weights of
our model in a responsible manner.

Lastly we would like to note that similar to LLMs there

9

A decoder-only foundation model for time-series forecasting

could be inputs on which the model does not perform well
or hallucinates. Therefore in many critical use cases it
might be recommended to use the model in a human-in-
the-loop fashion or alternatively do a wide range of testing
or finetuning.

References
Awasthi, P., Das, A., Sen, R., and Suresh, A. T. On the

benefits of maximum likelihood estimation for regres-
sion and forecasting. arXiv preprint arXiv:2106.10370,
2021.

Borovykh, A., Bohte, S., and Oosterlee, C. W. Condi-
tional time series forecasting with convolutional neural
networks. arXiv preprint arXiv:1703.04691, 2017.

Box, G. E. and Jenkins, G. M. Some recent advances in
forecasting and control. Journal of the Royal Statisti-
cal Society. Series C (Applied Statistics), 17(2):91–109,
1968.

Challu, C., Olivares, K. G., Oreshkin, B. N., Garza, F.,
Mergenthaler, M., and Dubrawski, A. NHITS: Neural
Hierarchical Interpolation for Time Series forecasting.
In The Association for the Advancement of Artificial In-
telligence Conference 2023 (AAAI 2023), 2023. URL
https://arxiv.org/abs/2201.12886.

Chang, C., Peng, W.-C., and Chen, T.-F. Llm4ts: Two-stage
fine-tuning for time-series forecasting with pre-trained
llms. arXiv preprint arXiv:2308.08469, 2023.

Chen, S.-A., Li, C.-L., Yoder, N., Arik, S. O., and Pfister,
T. Tsmixer: An all-mlp architecture for time series fore-
casting. arXiv preprint arXiv:2303.06053, 2023.

Das, A., Kong, W., Leach, A., Mathur, S. K., Sen, R.,
and Yu, R. Long-term forecasting with TiDE: Time-
series dense encoder. Transactions on Machine Learn-
ing Research, 2023. ISSN 2835-8856. URL https:
//openreview.net/forum?id=pCbC3aQB5W.

Fleming, P. J. and Wallace, J. J. How not to lie with statis-
tics: the correct way to summarize benchmark results.
Communications of the ACM, 29(3):218–221, 1986.

Garza, A. and Mergenthaler-Canseco, M. Timegpt-1. arXiv
preprint arXiv:2310.03589, 2023.

Godahewa, R., Bergmeir, C., Webb, G. I., Hyndman, R. J.,
and Montero-Manso, P. Monash time series forecasting
archive. arXiv preprint arXiv:2105.06643, 2021.

Gruver, N., Finzi, M., Qiu, S., and Wilson, A. G. Large lan-
guage models are zero-shot time series forecasters. arXiv
preprint arXiv:2310.07820, 2023.

Gu, A. and Dao, T. Mamba: Linear-time sequence
modeling with selective state spaces. arXiv preprint
arXiv:2312.00752, 2023.

Herzen, J., Lässig, F., Piazzetta, S. G., Neuer, T., Tafti, L.,
Raille, G., Van Pottelbergh, T., Pasieka, M., Skrodzki,
A., Huguenin, N., et al. Darts: User-friendly modern
machine learning for time series. The Journal of Ma-
chine Learning Research, 23(1):5442–5447, 2022.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya,
E., Cai, T., Rutherford, E., Casas, D. d. L., Hen-
dricks, L. A., Welbl, J., Clark, A., et al. Training
compute-optimal large language models. arXiv preprint
arXiv:2203.15556, 2022.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Kim, T., Kim, J., Tae, Y., Park, C., Choi, J.-H., and Choo,
J. Reversible instance normalization for accurate time-
series forecasting against distribution shift. In Interna-
tional Conference on Learning Representations, 2021.

Kopp, M., Kreil, D., Neun, M., Jonietz, D., Martin, H.,
Herruzo, P., Gruca, A., Soleymani, A., Wu, F., Liu,
Y., Xu, J., Zhang, J., Santokhi, J., Bojesomo, A.,
Marzouqi, H. A., Liatsis, P., Kwok, P. H., Qi, Q.,
and Hochreiter, S. Traffic4cast at neurips 2020 - yet
more on the unreasonable effectiveness of gridded geo-
spatial processes. In Escalante, H. J. and Hofmann, K.
(eds.), Proceedings of the NeurIPS 2020 Competition
and Demonstration Track, volume 133 of Proceedings of
Machine Learning Research, pp. 325–343. PMLR, 06–
12 Dec 2021. URL https://proceedings.mlr.
press/v133/kopp21a.html.

Lea, C., Vidal, R., Reiter, A., and Hager, G. D. Tem-
poral convolutional networks: A unified approach to
action segmentation. In Computer Vision–ECCV 2016
Workshops: Amsterdam, The Netherlands, October 8-10
and 15-16, 2016, Proceedings, Part III 14, pp. 47–54.
Springer, 2016.

Liu, P. J., Saleh, M., Pot, E., Goodrich, B., Sepa-
ssi, R., Kaiser, L., and Shazeer, N. Generating
wikipedia by summarizing long sequences. arXiv
preprint arXiv:1801.10198, 2018.

Ma, Q., Liu, Z., Zheng, Z., Huang, Z., Zhu, S., Yu, Z., and
Kwok, J. T. A survey on time-series pre-trained models.
arXiv preprint arXiv:2305.10716, 2023.

10

https://arxiv.org/abs/2201.12886
https://openreview.net/forum?id=pCbC3aQB5W
https://openreview.net/forum?id=pCbC3aQB5W
https://proceedings.mlr.press/v133/kopp21a.html
https://proceedings.mlr.press/v133/kopp21a.html

A decoder-only foundation model for time-series forecasting

Makridakis, S., Spiliotis, E., and Assimakopoulos, V. M5
accuracy competition: Results, findings, and conclu-
sions. International Journal of Forecasting, 38(4):1346–
1364, 2022.

McKenzie, E. General exponential smoothing and the
equivalent arma process. Journal of Forecasting, 3(3):
333–344, 1984.

Mitchell, M., Wu, S., Zaldivar, A., Barnes, P., Vasserman,
L., Hutchinson, B., Spitzer, E., Raji, I. D., and Gebru,
T. Model cards for model reporting. In Proceedings
of the conference on fairness, accountability, and trans-
parency, pp. 220–229, 2019.

Nie, Y., Nguyen, N. H., Sinthong, P., and Kalagnanam, J.
A time series is worth 64 words: Long-term forecasting
with transformers. International conference on learning
representations, 2022.

Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K.,
Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A.,
and Kavukcuoglu, K. Wavenet: A generative model for
raw audio. arXiv preprint arXiv:1609.03499, 2016.

Oreshkin, B. N., Carpov, D., Chapados, N., and Bengio,
Y. N-beats: Neural basis expansion analysis for inter-
pretable time series forecasting. In International Con-
ference on Learning Representations, 2019.

Oreshkin, B. N., Carpov, D., Chapados, N., and Bengio, Y.
Meta-learning framework with applications to zero-shot
time-series forecasting. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pp. 9242–
9250, 2021.

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush,
A. V., and Gulin, A. Catboost: unbiased boosting with
categorical features. Advances in neural information
processing systems, 31, 2018.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Salinas, D., Flunkert, V., Gasthaus, J., and Januschowski,
T. Deepar: Probabilistic forecasting with autoregressive
recurrent networks. International Journal of Forecast-
ing, 36(3):1181–1191, 2020.

Sen, R., Yu, H.-F., and Dhillon, I. S. Think globally,
act locally: A deep neural network approach to high-
dimensional time series forecasting. Advances in neural
information processing systems, 32, 2019.

Taylor, S. J. and Letham, B. Forecasting at scale. The
American Statistician, 72(1):37–45, 2018.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Verdinelli, I. and Wasserman, L. Feature importance: A
closer look at shapley values and loco. arXiv preprint
arXiv:2303.05981, 2023.

Wang, J., Jiang, J., Jiang, W., Han, C., and Zhao,
W. X. Towards efficient and comprehensive urban
spatial-temporal prediction: A unified library and per-
formance benchmark. arXiv preprint arXiv:2304.14343,
2023.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F.,
Chi, E., Le, Q. V., Zhou, D., et al. Chain-of-thought
prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:
24824–24837, 2022.

Wen, R., Torkkola, K., Narayanaswamy, B., and Madeka,
D. A multi-horizon quantile recurrent forecaster. arXiv
preprint arXiv:1711.11053, 2017.

Wilson, A. and Adams, R. Gaussian process kernels for
pattern discovery and extrapolation. In International
conference on machine learning, pp. 1067–1075. PMLR,
2013.

Wu, H., Xu, J., Wang, J., and Long, M. Autoformer: De-
composition transformers with auto-correlation for long-
term series forecasting. Advances in Neural Information
Processing Systems, 34:22419–22430, 2021.

Zeng, A., Chen, M., Zhang, L., and Xu, Q. Are transform-
ers effective for time series forecasting? Proceedings of
the AAAI conference on artificial intelligence, 2023.

Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H.,
and Zhang, W. Informer: Beyond efficient transformer
for long sequence time-series forecasting. In Proceed-
ings of the AAAI conference on artificial intelligence,
2021.

Zhou, T., Ma, Z., Wen, Q., Wang, X., Sun, L., and Jin,
R. Fedformer: Frequency enhanced decomposed trans-
former for long-term series forecasting. In International
Conference on Machine Learning, pp. 27268–27286.
PMLR, 2022.

Zhou, T., Niu, P., Wang, X., Sun, L., and Jin, R. One fits
all: Power general time series analysis by pretrained lm.
arXiv preprint arXiv:2302.11939, 2023.

Zivot, E. and Wang, J. Vector autoregressive models for
multivariate time series. Modeling financial time series
with S-PLUS R©, pp. 385–429, 2006.

11

A decoder-only foundation model for time-series forecasting

A. Appendix
A.1. Metrics
The metrics that are used for reporting results in this paper are:

• MAE (Godahewa et al., 2021)

MAE(yL+1:L+H , ŷL+1:L+H) =
1

H
‖yL+1:L+H − ŷL+1:L+H‖1. (6)

• msMAPE (Godahewa et al., 2021)

msMAPE(yL+1:L+H , ŷL+1:L+H) =
1

H

H∑
i=1

2|yL+i − ŷL+i|
max{|yL+i|+ |ŷL+i|+ ε, 0.5 + ε}

. (7)

In Monash benchmarks (Godahewa et al., 2021) ε = 0.1 was used. This metric is used in order to avoid undefined
values in other normalized metrics like MAPE. In multivariate datasets the metrics are calculated for each time-series
and then we take the mean or the median. In this paper we only use the mean versions.

Aggregating across datasets. Since the datasets have wildly different scales averaging unnormalized metrics like MAE is
not kosher. Therefore following (Gruver et al., 2023) we scale the metric of each baseline for a dataset by the same metric
achieved by a naive baseline on that dataset. The naive baseline just makes the constant prediction yL repeated across the
prediction length. We did not need to do that for the Informer datasets since on these datasets metrics are usually reported
on standard normalized data (Nie et al., 2022).

A.2. Finetuning study on ETT
In this section, we test whether TimesFM can be fintuned on a small fraction of a dataset to provide even better performance.
We follow the same protocol as in GPT4TS (Zhou et al., 2023) (see Table 13 in their paper). (Zhou et al., 2023) finetune
GPT2 input and output blocks on long-term forecasting benchmarks on 10% of the of the original datasets and compare it
against models trained from scratch on the same data. Then the models are evaluated on the original test set task of (Zhou
et al., 2021). We also tune the input and output residual blocks on 10% of the training set and present the results in Table 2.
We can see that our model performs the best by a large margin. In ETTh1, ETTh2, ETTm1 our finetuned model is better
than 18%, 3% and 12% better than GPT4TS, respectively. In fact we can see our 10% finetuned model’s performances are
comparable or better than that of most baselines trained on the whole training dataset as reported in Table 14 of (Zhou
et al., 2023). This shows that the inductive biases encoded in our model weights by finetuning on a large time-series corpus
are better for downstream forecasting task than an off the shelf language model like GPT2, even though our model is orders
of magnitude smaller.

A.3. Pretraining PatchTST
Since TimesFM applies a similar patching strategy as PatchTST (Nie et al., 2022), for an ablation study we use the
same data loader and pretrain a PatchTST model of 200M parameters to the same number of FLOPS as the final 200M
TimesFM model. We denote it as PatchTST(ZS). The two models share the same hyperparameters of the transformer stack.
For PatchTST(ZS) we use the same input patch length = 32, and a stride of length half of input patch size (i.e. stride = 16)
as done in the original PatchTST paper.

We report the detailed results on Monash and ETT in Appendix A.4.2 and A.4.3. It can be seen that the results are not
that good for PatchTST(ZS) on Monash. This is expected since our pretrain data loader will predominantly have context
lengths of 512 instead of shorter context lengths as in Monash. Moreover the PatchTST model does fewer iterations at the
same number of FLOPS. On ETT datasets, the PatchTST(ZS) model is performs similarly to TimesFM(ZS) and PatchTST.
This is also expected since the context length for this study is indeed 512.

As PatchTST(ZS) is an encoder-decoder model, to pretrain it for zero shot forecasting one should theoretically prepare all
possible context lengths and horizon lengths in the pretrain datasets. Pretraining it to its maximum performance requires
much more compute and likely more careful tuning compared to pretraining TimesFM.

A.4. Additional Empirical Results
In this section, we provide more detailed tables for our zero-shot datasets and experiments described in Section 6.1. The
AM based aggregated metrics are presented in Figure 7.

12

A decoder-only foundation model for time-series forecasting

Table 2. MAE of different methods on ETT datasets. All methods use 10% of the original training set for training or finetuning. The
baseline numbers are from Table 13 in (Zhou et al., 2021).

Dataset TimesFM(FT) GPT4TS(FT) DLinear PatchTST TimeNet FEDFormer Autoformer

ETTh1

96 0.398 0.456 0.495 0.485 0.628 0.499 0.552
192 0.424 0.516 0.538 0.524 0.593 0.555 0.598
336 0.436 0.535 0.622 0.550 0.648 0.574 0.619
720 0.445 0.591 0.743 0.610 0.641 0.614 0.616
Avg 0.426 0.525 0.600 0.542 0.628 0.561 0.596

ETTh2

96 0.356 0.374 0.411 0.389 0.409 0.416 0.451
192 0.400 0.411 0.519 0.414 0.467 0.474 0.477
336 0.428 0.433 0.572 0.441 0.494 0.501 0.543
720 0.457 0.464 0.648 0.480 0.491 0.509 0.523
Avg 0.410 0.421 0.538 0.431 0.465 0.475 0.499

ETTm1

96 0.345 0.404 0.392 0.419 0.501 0.518 0.614
192 0.374 0.423 0.412 0.434 0.528 0.546 0.592
336 0.397 0.439 0.434 0.454 0.568 0.775 0.677
720 0.436 0.498 0.477 0.556 0.549 0.579 0.630
Avg 0.388 0.441 0.429 0.466 0.537 0.605 0.628

ETTm2

96 0.263 0.269 0.303 0.274 0.285 0.399 0.454
192 0.309 0.309 0.345 0.317 0.323 0.379 0.691
336 0.349 0.346 0.385 0.353 0.353 0.559 1.407
720 0.415 0.417 0.440 0.427 0.449 0.614 1.166
Avg 0.334 0.335 0.368 0.343 0.353 0.488 0.930

(a) Monash Archive (Godahewa et al., 2021) (b) Darts (Herzen et al., 2022) (c) ETT (Horizons 96 and 192) (Zhou et al., 2021)

Figure 7. We report average performance in three groups of datasets. In all figures, the lower the metric the better and the error bars
represent one standard error. Note that among the baselines only TimesFM and llmtime are zero-shot. In (a) we report results on the
Monash datasets. Since the datasets have different scales, we take the Arithmetric Mean (AM) the MAE’s scaled by the MAE of a naive
baseline. We can see that TimesFM is within significance of the top model N-BEATS. In (b), we report the similarly scaled MAE on the
Darts benchmarks. TimesFM is within significance of the top of method which is ARIMA in this case. Note that these datasets have one
time-series each and therefore statistical methods are competitive with deep learning ones. Finally, in (c) we report the average MAE
for 96 and 192 horizon prediction tasks on 4 ETT datasets i.e 8 tasks in total. TimesFM and PatchTST are the best performing models
in this case.

A.4.1. DARTS

We present the MAE results individually from all 8 datasets in Table 3. It can be seen that TimesFM performs well for all
datasets with clear seasonal patterns. On an average we are within significant level of the best model. Note that there are
only 8 time-series as a whole in Darts and theerfore these evaluations have very wide confidence intervals.

In Figure 11 we present visual comparisons of our forecasts vs some of the baselines.

A.4.2. MONASH

In Table 4 we present the actual MAE numbers that are behind the main Figure 2a. In Figure 12, we present some examples
of our zero-shot forecasts. For most datasets, we set the context window to be the maximum length of the series in the

13

A decoder-only foundation model for time-series forecasting

Table 3. MAE for Darts datasets. We also include the naive baseline that predicts the last values in the context repeatedly.
GP ARIMA TCN N-BEATS N-HiTS llmtime(ZS) TimesFM(ZS) PatchTST NAIVE

AirPassengersDataset 34.67 24.03 54.96 97.89 59.16 34.37 62.51 44.65 81.45
AusBeerDataset 102.05 17.13 30.90 10.39 34.23 16.13 11.94 21.97 96.35
GasRateCO2Dataset 2.27 2.37 2.64 2.63 3.85 3.50 2.50 2.67 2.29
MonthlyMilkDataset 30.33 37.19 70.86 33.64 32.73 9.68 28.09 42.60 85.71
SunspotsDataset 53.74 43.56 51.82 73.15 49.93 47.34 41.40 62.33 48.24
WineDataset 4552.06 2306.70 3287.14 4562.02 3909.51 1569.32 2871.33 2498.69 4075.28
WoolyDataset 649.98 588.78 1158.79 903.01 382.09 808.73 728.92 542.28 1210.33
HeartRateDataset 5.65 5.56 5.49 6.57 6.10 6.21 5.85 6.74 5.92

Scaled MAE (Arithmetic Mean) 0.8193 0.6045 0.8427 0.9176 0.8109 0.6641 0.6829 0.7462 1.0000
Scaled MAE (Geometric Mean) 0.7509 0.5219 0.7946 0.7316 0.6936 0.4882 0.5767 0.6458 1.0000

Table 4. We present the mean MAE results for our methods along size Monash baselines. We also include the naive baseline that predicts
the last values in the context repeatedly.

llmtime(ZS) SES Theta TBATS ETS (DHR-)ARIMA PR CatBoost FFNN DeepAR N-BEATS WaveNet Transformer PatchTST(ZS) TimesFM(ZS) NAIVE
Dataset

australian electricity demand 459.96 659.60 665.04 370.74 1282.99 1045.92 247.18 241.77 258.76 302.41 213.83 227.50 231.45 382.23 448.81 659.60
bitcoin 1.75e18 5.33e18 5.33e18 9.90e17 1.10e18 3.62e18 6.66e17 1.93e18 1.45e18 1.95e18 1.06e18 2.46e18 2.61e18 1.11e18 1.3e18 7.77e17
pedestrian counts 70.20 170.87 170.94 222.38 216.50 635.16 44.18 43.41 46.41 44.78 66.84 46.46 47.29 51.27 40.71 170.88
weather 2.32 2.24 2.51 2.30 2.35 2.45 8.17 2.51 2.09 2.02 2.34 2.29 2.03 2.07 2.07 2.36
nn5 daily 9.39 6.63 3.80 3.70 3.72 4.41 5.47 4.22 4.06 3.94 4.92 3.97 4.16 3.77 3.54 8.26
nn5 weekly 15.91 15.66 15.30 14.98 15.70 15.38 14.94 15.29 15.02 14.69 14.19 19.34 20.34 17.00 14.67 16.71
tourism yearly 140081.78 95579.23 90653.60 94121.08 94818.89 95033.24 82682.97 79567.22 79593.22 71471.29 70951.80 69905.47 74316.52 224411.89 109977.29 99456.05
tourism quarterly 14121.09 15014.19 7656.49 9972.42 8925.52 10475.47 9092.58 10267.97 8981.04 9511.37 8640.56 9137.12 9521.67 21276.98 12102.04 15845.10
tourism monthly 4724.94 5302.10 2069.96 2940.08 2004.51 2536.77 2187.28 2537.04 2022.21 1871.69 2003.02 2095.13 2146.98 4596.21 3183.77 5636.83
cif 2016 715086.33 581875.97 714818.58 855578.40 642421.42 469059.49 563205.57 603551.30 1495923.44 3200418.00 679034.80 5998224.62 4057973.04 8374813.14 773980.44 386526.37
covid deaths 304.68 353.71 321.32 96.29 85.59 85.77 347.98 475.15 144.14 201.98 158.81 1049.48 408.66 348.60 209.80 353.71
fred md 2013.49 2798.22 3492.84 1989.97 2041.42 2957.11 8921.94 2475.68 2339.57 4264.36 2557.80 2508.40 4666.04 4965.51 947.12 2825.67
traffic hourly 0.03 0.03 0.03 0.04 0.03 0.04 0.02 0.02 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.03
traffic weekly 1.17 1.12 1.13 1.17 1.14 1.22 1.13 1.17 1.15 1.18 1.11 1.20 1.42 1.23 1.12 1.19
saugeenday 28.63 21.50 21.49 22.26 30.69 22.38 25.24 21.28 22.98 23.51 27.92 22.17 28.06 22.33 24.63 21.50
us births 459.43 1192.20 586.93 399.00 419.73 526.33 574.93 441.70 557.87 424.93 422.00 504.40 452.87 1193.28 437.27 1152.67
hospital 24.62 21.76 18.54 17.43 17.97 19.60 19.24 19.17 22.86 18.25 20.18 19.35 36.19 20.87 19.41 24.07
solar weekly 2049.09 1202.39 1210.83 908.65 1131.01 839.88 1044.98 1513.49 1050.84 721.59 1172.64 1996.89 576.35 1093.46 1258.27 1729.41

Scaled MAE (Arithmetic Mean) 1.0588 1.3115 1.2295 0.8824 0.9337 1.2427 1.0382 0.8924 0.8942 1.1925 0.7844 1.8119 1.4840 2.1419 0.8005 1.0000
Scaled MAE (Geometric Mean) 0.9715 1.0855 0.9371 0.7736 0.8104 0.9449 0.8218 0.7733 0.7044 0.7477 0.7005 0.9384 0.8619 1.0557 0.6846 1.0000

dataset capped at 512 (similar to statistcal models used in the official Monash baselines). For some datasets, we did some
inference time-tuning of the context length, i.e we predict the last horizon length number of points in the training set with
context lengths 32, 64 and maximum allowed and chose the best one in terms of this validation metric. This is fair as
most Monash DL baselines use different context lengths for different datasets during training and our model is completely
zero-shot. The max context lengths used for these datasets are (cif 2016, 32), (tourism yearly, 32), (covid deaths, 32),
(bitcoin, 32), (tourism monthly, 32) and (tourism monthly, 64).

A.4.3. INFORMER

We present the MAE on the last split of the test set for all dataset, horizon pairs considered in Table 5. Owing to expensive
evaluations for llmtime, the results are reported on the last test window of the original test split, as done in (Gruver et al.,
2023).

Table 5. MAE for ETT datasets for prediction horizons 96 and 192. Owing to expensive evaluations for llmtime, the results are reported
on the last test window of the original test split.

llmtime(ZS)* PatchTST PatchTST(ZS) FEDFormer AutoFormer Informer TimesFM(ZS)
Dataset

ETTh1 (horizon=96) 0.42 0.41 0.39 0.58 0.55 0.76 0.45
ETTh1 (horizon=192) 0.50 0.49 0.50 0.64 0.64 0.78 0.53
ETTh2 (horizon=96) 0.33 0.28 0.37 0.67 0.65 1.94 0.35
ETTh2 (horizon=192) 0.70 0.68 0.59 0.82 0.82 2.02 0.62
ETTm1 (horizon=96) 0.37 0.33 0.24 0.41 0.54 0.71 0.19
ETTm1 (horizon=192) 0.71 0.31 0.26 0.49 0.46 0.68 0.26
ETTm2 (horizon=96) 0.29 0.23 0.22 0.36 0.29 0.48 0.24
ETTm2 (horizon=192) 0.31 0.25 0.22 0.25 0.30 0.51 0.27

Avg 0.45 0.37 0.35 0.53 0.53 0.99 0.36

14

A decoder-only foundation model for time-series forecasting

A.5. More Details on Models
We now present implementation details about TimesFM and other baselines.

TimesFM. For our main 200M model we use 16 attention heads, 20 layers, a input patch length of 32 and output patch
length of 128. The model dimension is set to 1280. We train with layer norm and a cosine decay learning rate schedule
with peak learning rate of 5e − 4. The hyper-parameters of TimesFM for various sizes are provided in Table 6. Note that
the settings are for the base models and not ablation models. The hidden dims of both the residual block and the FFN in
the transformer layers are set as the same as model dimensions. We keep layer norm in transformer layers but not in the
residual blocks.

Table 6. Hyper-parameters for TimesFM

num layers model dims output patch len input patch len num heads dropout
Size

200M 20 1280 128 32 16 0.2
70M 10 1024 128 32 16 0.2
17M 10 512 128 32 16 0.2

Monash Baselines. The raw metrics for the Monash baselines are directly taken from Tables 9 and 11 of the supplementary
material of the original paper (Godahewa et al., 2021). For llmtime, we use the precomputed outputs provided by the
authors of (Gruver et al., 2023).

Darts Baselines. For all the Darts baselines we use the precomputed outputs provided by the authors of (Gruver et al.,
2023). For more details please see Section C.1 in that paper.

Informer Baselines. For FEDFormer (Zhou et al., 2022), Autoformer (Wu et al., 2021), Informer (Zhou et al., 2021) and
PatchTST (Nie et al., 2022) we use the original hyperparameters and implementation. The results presented in the main
paper are obtained on the last test window of length horizon length as stated in the llmtime (Gruver et al., 2023) paper.

We generate the llmtime predictions using the code provided by the authors 7 but adapted to the ETT datasets. Note that as
of January 2024, OpenAI has discontinued access to GPT-3, therefore we had to use the GPT-3.5-Turbo model.

A.6. Date Features
As we mentioned earlier, since we are building a single pre-trained model, we cannot have dataset specific dynamic or static
covariates during training time. However, the datetime column is ubiquitous in all time-series data, so we can technically
have date derived features like day of the week, month of the year etc processed into a vector at each time-point t, denoted
by xt ∈ Rr.

If so, the learning task can be rewritten as

f : (y1:L,x1:L+H) −→ ŷL+1:L+H .

There are many options to incorporate these features into the model, one being to directly concatenate them after the
time-points in each patch. For this paper we decide to focus on the univariate time-series input, and will investigate this
enhancement in the future.

A.7. Synthetic Data
We create the synthetic data to reflect common time-series patterns using traditional statistical models. We start with four
simple times series patterns:

• Piece-wise linear trends (I), where the number of the piece-wise linear components is randomly chosen between 2 and
8.

• ARMA(p, q) (II), where 1 ≤ p, q ≤ 8 and the corresponding coefficients are generated from either a multivariate
Gaussian or a uniform, then normalized.

7https://github.com/ngruver/llmtime/blob/main/experiments/run_monash.py

15

https://github.com/ngruver/llmtime/blob/main/experiments/run_monash.py

A decoder-only foundation model for time-series forecasting

• Seasonal patterns. In particular we create the sine (III) and the cosine (IV) waves of different random periods between
4 and max context length / 2 time-points and time delays.

We then randomly enable / disable these four components (I) - (IV), generate their time-series of length 2048 respectively,
and sum them up using uniformly sampled random weights to create each times series in the synthetic datasets. We also
choose to apply the trend multiplicatively 50% of the times the trend component is chosen.

A.8. Illustrative Examples
We conduct a visual inspection of the forecasts generated by TimesFM, first on some synthetic examples and then on the
benchmark datasets.

In Figure 8 we show 4 different synthetic curves: (1) sum of 5 sine curves of different periods, (2) a sine curve linearly
scaled, (3) a sine curve with a linear trend, and (4) minimum of two sine curves with a linear trend. Our results suggests
that TimesFM picks up the trend and seasonal components readily interpretable by humans, while ARIMA and (to a lesser
extent) llmtime fail in some of the instances.

As illustrated in Figure 9, TimesFM also effectively captures these subtle characteristics within both the trend and seasonal
patterns of the depicted real world time-series. For instance, in the Air Passenger dataset, TimesFM correctly captures the
amplitude increase with trend –this is also reflected by the fact that it attains the best MAE on this dataset (see Table 3).
In the traffic hourly example on the left, it can be seen that TimesFM can correctly identify the seasonal peaks even in the
presence of outliers in the context, while llmtime is thrown off.

Figure 8. Forecasts visualized on synthetic curves. The bottom row plots zoom in on the prediction horizon for the sake of clarity.

We provide more visualization in Figure 10, Figure 11 and Figure 12.

16

A decoder-only foundation model for time-series forecasting

Figure 9. Forecasts visualized on Darts and Monash. The bottom row plots zoom in on the prediction horizon for the sake of clarity.

17

A decoder-only foundation model for time-series forecasting

Figure 10. Forecasts visualized on synthetic curves. The second row plots zoom in on the prediction horizon for the sake of clarity.

18

A decoder-only foundation model for time-series forecasting

Figure 11. Forecasts visualized on all Darts datasets. The second row plots zoom in on the prediction horizon for the sake of clarity.

19

A decoder-only foundation model for time-series forecasting

Figure 12. Forecasts visualized on a few Monash datasets. The second row plots zoom in on the prediction horizon for the sake of clarity.

20

