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Abstract

Causal inferences from a randomized controlled
trial (RCT) may not pertain to a target popula-
tion where some effect modifiers have a different
distribution. Prior work studies generalizing the
results of a trial to a target population with no
outcome but covariate data available. We show
how the limited size of trials makes generalization
a statistically infeasible task, as it requires esti-
mating complex nuisance functions. We develop
generalization algorithms that supplement the trial
data with a prediction model learned from an addi-
tional observational study (OS), without making
any assumptions on the OS. We theoretically and
empirically show that our methods facilitate bet-
ter generalization when the OS is “high-quality”,
and remain robust when it is not, and e.g., have
unmeasured confounding.

1. Introduction
Experimental data from randomized controlled trials (RCT)
is the gold standard for causal inference as various biases
are avoided by design (Imbens & Rubin, 2015; Hernan &
Robins, 2021). However, in addition to being time and cost-
intensive, RCTs often exhibit limited external validity, and
their findings may not apply to a target population (Roth-
well, 2005; Stuart et al., 2011). The generalizability of an
RCT is compromised when baseline factors that influence
prognosis (effect modifiers) have different distributions in
the trial and target populations (Dahabreh et al., 2019) (see
Figure 1). For instance, trials may consist of healthier indi-
viduals on average than routine clinical practice. Since the
overall health status likely affects the prognosis, it leads to
“confounding” bias between the population-level effects in
the trial and the target populations (Hernán et al., 2004).
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Dahabreh et al. (2019; 2020) develop methods that use
individual-level covariate, treatment, and outcome data from
a trial and only covariate information from the target pop-
ulation to estimate causal quantities in the latter (general-
ization). In this work, we show how combining trial data
with potentially biased observational data, e.g., found from
electronic health records, can power better generalization.

Our Contributions We derive the generalization mean-
squared error when an outcome model learned from the trial
is used in the target sample to estimate an average causal
effect in the target population, and probe how it increases
when the trial is small and not representative of the target
population (Section 3). Drawing inspiration from recent
advances in using black-box models for valid statistical in-
ference (Schuler et al., 2021; Angelopoulos et al., 2023),
we develop prediction-powered estimators that leverage ad-
ditional observational data without any assumptions on it
and discuss when they lead to lower generalization error
(Section 4). We simulate over a thousand data-generating
processes and find that our estimators yield remarkable im-
provements when the observational data is high-quality and
maintain baseline performance when it is not (Section 5).

Related Work There is growing interest in integrating
data from trials and observational studies (OS) (Bareinboim
& Pearl, 2016; Yang & Ding, 2019; NICE, 2022; Colnet
et al., 2024). Schuler et al. (2021); Liao et al. (2023) show
how adjustment by the predictions of a model learned from
an OS can increase power in analyzing a trial. Similarly,
Guo et al. (2021) investigate how coupling trial data and
with “control-variates” constructed in an OS may enable
smaller-variance estimation of the average treatment effect
(ATE) in the trial population. Hartman et al. (2015); Deg-
tiar et al. (2023) study generalization to a target population
defined by the OS population or its union with the trial
population. Han et al. (2023) study ATE estimation in a tar-
get population by incorporating data from multiple source
populations, where the ATE is identifiable in all of the pop-
ulations but different. Oberst et al. (2023) review methods
that combine ATE estimates from a trial and an OS to obtain
a better hybrid estimate (Rosenman et al., 2020; Cheng &
Cai, 2021; Yang et al., 2023). Kallus et al. (2018); Chen
et al. (2021); Hatt et al. (2022) consider the heterogeneity
in effects and focus on the conditional ATE (CATE) func-
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tion. Rosenman & Owen (2021) adopt a different angle and
studies more efficient trial design using data from OS.

Another line of papers studies benchmarking evidence from
OS (Forbes & Dahabreh, 2020). Hussain et al. (2022; 2023);
Demirel et al. (2024) develop falsification tests for the causal
assumptions by comparing the findings of an OS and a
trial. De Bartolomeis et al. (2024a;b) focus on quantifying
the hidden confounding in an OS, and Karlsson & Krijthe
(2024) show how one can detect hidden confounding using
multiple OS with a shared data-generating process.

In the works above, the target population of interest is taken
as either the OS population or its union with the trial popu-
lation. We consider a more general setting where the target
population is defined separately from the trial and OS popu-
lations so long as it consists of trial-eligible individuals. For
instance, the target population can represent a subgroup in
the trial with a small sample size.

Our goal is to estimate population-level causal effects in the
target population, for which only covariate information is
available, by integrating data from a small trial and a large
OS. We detail the necessary causal identification assump-
tions in Section 2, which crucially do not enforce any un-
verifiable conditions on the OS, and describe our estimators
in Section 4. We do not go the route of cooking a recipe to
combine real-valued estimates from the trial and the OS, nor
promise to give guarantees on the granular CATE function,
as the former offers poor flexibility in utilizing rich obser-
vational data and the latter replaces the causal assumptions
on the OS with statistical assumptions on its bias function.
Our approach lies somewhere in between: we fit an out-
come function from the OS using flexible machine learning
models, which can be subject to causal biases, and analyze
how coupling it with trial data can power the estimation of
a real-valued causal estimand in the target population.

2. Background
2.1. Notation and Objective

We consider a nested design where a trial is sampled from
an underlying population of trial-eligible individuals. Note
that our methods can easily be extended to nonnested de-
signs where the target sample is obtained separately; e.g., to
represent a subgroup for which the trial sample alone cannot
power statistically significant inference.

We have access to an i.i.d. sample of observations D =
{Wi}ni=1 with Wi = (Xi, Si, Si × Ai, Si × Yi), where
X ∈ X is a d-dimensional covariate vector, S is a binary
trial participation indicator, A is a categorical treatment, and
Y ∈ R is the outcome of interest. Only covariate data is
available for non-participants (S = 0), while treatment and
outcome data are also available for participants (S = 1).

Age distribution in RCT ( )
and target  ( ) populations.

RCT cohort is younger than
target cohort.

Mean outcome in RCT is larger than in the target population.

Outcome of interest, , is
larger for younger.

Age Age 

Mean potential outcome
 for age .

Figure 1. Age influences both selection into the trial and the out-
come, inducing confounding bias between the population-level
mean potential outcomes in the trial and target populations.

The target population of interest is represented by non-
participants. We denote by D1 ⊂ D the set of trial par-
ticipants and by D0 ⊂ D the set of non-participants with
sizes n1 =

∑n
i=1 1 {Si = 1} and n0 =

∑n
i=1 1 {Si = 0},

partitioning the composite sample D. Further, we denote by
P1 and P0 the joint distribution of W in the underlying trial
and target populations. For instance, X ∼ P0 represents a
covariate drawn from the target distribution P (X | S = 0).

We seek causal inference in the target population. Specifi-
cally, denoting by Y a the potential outcome under treatment
A = a, we want to estimate the average potential outcomes
in the target population.

µa := E[Y a | S = 0]. (1)

A more common causal estimand, the average treatment
effect, can be directly derived from the average potential
outcomes (e.g., µ1 − µ0 in a binary treatment setting). Fo-
cusing on potential outcomes allows for simpler exposition,
and they are of independent interest in many applications.

The challenge in estimating µa is three-fold. The first is
obvious: no outcome data is available for non-participants.
One can contemplate resorting to outcome data from the
trial, which brings us to the second challenge. The potential
outcome Y a can only be observed for those who received
treatment A = a. When treatment assignment depends on
unobserved factors that also affect the outcome, one risks
confounding bias, which presents a non-trivial challenge in
analyzing observational data (see Section 4). However, it
is easily avoided in trials by randomized treatment assign-
ment, and the average potential outcome in trial population,
E[Y a|S = 1], can be reliably estimated. The final challenge
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is E[Y a|S = 0] ̸= E[Y a|S = 1] when there is confounding
by trial participation, leading to different distributions of
effect modifiers in trial and target populations (see Figure 1).
Therefore, one cannot generalize population-level effect es-
timates from a trial to the target population, but needs to
adjust for confounding by trial participation.

Next, we state the causal assumptions needed to estimate
µa by incorporating outcome data from the trial.

2.2. Assumptions for Causal Inference

Assumption 2.1 (Consistency). A = a =⇒ Y = Y a.

Assumption 2.2 (Mean ignorability of treatment assignment
in trial). E[Y a | X,S = 1] = E[Y a | X,S = 1, A = a].

Assumption 2.3 (Positivity of treatment assignment in trial).
P (A = a | X = x, S = 1) > 0.

Assumptions 2.1-2.3 are satisfied in an RCT by design, and
they enable causal inference within the trial population, i.e.,
reliable estimation of E[Y a | S = 1].

Assumption 2.4 (Mean ignorability of trial participation).
E[Y a | X] = E[Y a | X,S = 1] = E[Y a | X,S = 0].

Assumption 2.5 (Positivity of selection into trial).
P (S = 0 | X = x) > 0 =⇒ P (S = 1 | X = x) > 0.

Assumption 2.4 requires that within levels of measured
covariates X , potential outcomes in the trial and target pop-
ulations are the same on average. Assumption 2.5 ensures
that every patient has a nonzero probability of participating
in the trial, and we do not have to rely on pure extrapolation.
Assumptions 2.4 and 2.5 transform the problem of “general-
izing the results of a trial” into a covariate shift problem and
allow one to identify µa as follows (Dahabreh et al., 2020).

µa = EX∼P0
[E[Y a | X,S = 0]]

= EX∼P0
[E[Y a | X,S = 1]]

= EX∼P0
[E[Y | X,S = 1, A = a]]. (2)

where last two steps follow from Assumptions 2.4-2.5 and
2.1-2.3. Note that (2) can be estimated using only covariate
data from non-participants (S = 0) and covariate, treatment,
and outcome data from the trial participants (S = 1).

3. Generalization Using Experimental Data
Dahabreh et al. (2020) propose estimators of (2) based on
outcome functions, weighting by the inverse of the trial
participation probability, and doubly-robust (DR) ones. We
focus on the outcome function approach as it more lucidly
uncovers the limitations of generalization from trial data,
and the synthetic results in Dahabreh et al. (2020) show
that it outperforms the weighting-based approaches and
performs on par with the DR ones (as we also verify in

Appendix B.2). Our findings reveal how a predictive model
trained on large-scale observational data could help.

We define the mean outcome function in the trial population
S = 1 under treatment A = a as

ga(X) := E[Y | X,S = 1, A = a] (3)
= E[Y a | X,S = 1] (Assumptions 2.1-2.3)
= E[Y a | X]. (Assumptions 2.4-2.5)

One can estimate ĝa(X) from the trial sample D1, and then
average its predictions in the target sample D0. This leads
to the following outcome model (OM) estimator on the
composite sample D.

µ̂OM
a =

1

n0

n∑
i=1

1 {Si = 0} ĝa(Xi). (4)

In the remainder of this section, we investigate when µ̂OM
a is

expected to have high mean-squared error (MSE). Our next
result gives an approximation for the MSE in the special case
where X is purely categorical, which provides perspective
into the limitations of µ̂OM

a for the more general case as well.
Proposition 3.1. Let X be a categorical covariate strati-
fying the population into K groups and denote by ns=1,a,k

the number of trial participants from group X = k assigned
to treatment A = a, and by σ2

a,k the variance of outcome
among such patients. Let us estimate the outcome func-
tion ga(X = k) with the sample mean of outcomes Y of
participants in group X = k assigned to treatment A = a.

Suppose that Assumptions 2.1-2.5 hold. When n0 is large,
the MSE of µ̂OM

a in (4) can be approximated as

E[(µ̂OM
a − µa)

2] ≈
K∑

k=1

p2s=0(k)
σ2
a,k

ns=1,a,k
, (5)

where ps=0(k) := P (X = k | S = 0) is the proportion of
patients from group X = k in the target population.

Proposition 3.1 reveals the key challenge in our endeavor.
The reason behind the need for a “generalization procedure”
is that some effect modifiers’ distributions might differ in
the trial and target populations. Reading off (5), one can see
that when the trial is limited in representing patient profiles
that are prevalent in the target population (small ns=1,a,k,
large ps=0(k)), the MSE will be larger. That is, inference
in target population gets more challenging when it becomes
“more different” from the trial population.

The insights from Proposition 3.1 extend to the case with
continuous covariates and parametric estimators ĝa(X) =

ga(X; θ̂) (e.g., a random forest). Let us denote by A the
algorithm that fits θ̂ from the trial sample (e.g., ridge regres-
sion), i.e., θ̂ = A(D1). As D1 ∼ P1, we write θ̂ ∼ A(P1)

to refer to the randomness in estimating θ̂ from D1. Next,
we give an approximation for the MSE in the general case.
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Theorem 3.2. Suppose that Assumptions 2.1-2.5 hold and
consider a parametric estimator ĝa(X) = ga(X; θ̂) for the
outcome function. For large n0, the MSE of µ̂OM

a in (4) can
be approximated as

E[(µ̂OM
a − µa)

2]

≈ EX∼P0

[
Eθ̂∼A(P1)

[ga(X; θ̂)]− ga(X)︸ ︷︷ ︸
=: SBg(X)

]2
(6)

+ Varθ̂∼A(P1)

(
EX∼P0

[ga(X; θ̂)]
)
. (7)

The first term, (6), is the statistical bias (SB). Crucially, it is
obtained by integrating the bias function SBg(X) over the
target covariate distribution PX|S=0, making µ̂OM

a suscep-
tible to weak overlap between trial and target populations.
Consider the case where ga(X; θ̂) is misspecified/underfit.
SBg(X) will be larger where PX|S=1 has little weight, since
ga(X; θ̂) is fit using the trial sample D1. µ̂OM

a may then suf-
fer substantial bias if PX|S=0 is large in covariate regions
where the trial support is weak. It is therefore essential to
ensure that ga(X; θ̂) is rich enough and can match the com-
plexity of ga(X) to avoid a large bias term. However, in
practice, one’s ability to flexibly model ga(X; θ̂) is severely
limited as the small size of trials (e.g., ∼ 200) can lead
to overfitting, i.e., increasing the variance term (7). We
empirically demonstrate this tradeoff in Appendix B.1.

4. Prediction-powered Generalization Using
Experimental and Observational Data

Here, we study how integrating rich observational data with
limited experimental data can make the generalization task
more statistically feasible. We index by S = 2 the obser-
vational population with joint distribution P2. We assume
access to an i.i.d. sample of observations (Xi, Ai, Yi) ∼ P2

and denote by D2,a the set of patients who received treat-
ment A = a in the observational data. In the first step,
we fit a predictive model fa : X → R by minimizing the
empirical mean-squared error in D2,a to approximate

E[Y | X,S = 2, A = a]. (8)

Unlike the trial sample, large observational data can sup-
port parametrizing fa(X) with powerful machine learning
models, allowing it to model complex functions.

If one is willing to make Assumptions 2.1-2.5 for the ob-
servational study (OS), i.e., S = 2 instead of S = 1, µa

can be identified as EX∼P0
[E[Y |X,S = 2, A = a]] via the

same machinery in (2). One could then apply fa(X) in the
composite sample D to estimate µa as

µ̂OS-OM
a =

1

n0

n∑
i=1

1 {Si = 0} fa(Xi), (9)

analogous to (4). While Assumptions 2.1-2.5 are defensible
for trials, some of them rarely hold for observational studies
in practice, particularly the ignorability of treatment assign-
ment (no unmeasured confounding). In contrast to most of
the literature on causal inference using observational data,
we take an extremely assumption-light approach, making
no assumptions on observational data. We define the “bias
function” as the difference between the outcome function in
the trial, ga(X), and the observational predictor, fa(X).

ba(X) := fa(X)− ga(X) (10)
= fa(X)−E[Y | X,S = 2, A = a]︸ ︷︷ ︸

statistical bias

+E[Y a | X,S = 2, A = a]−E[Y a | X,S = 2]︸ ︷︷ ︸
confounding bias

+E[Y a | X,S = 2]−E[Y a | X,S = 1]︸ ︷︷ ︸
transportation bias

,

since E[Y a | X,S = 1] = ga(X) (see (3)). The statistical
bias term is related to fitting fa(X) using a finite sample,
and it vanishes with more data given enough model capacity.
Confounding and transportation biases, however, are the
price of avoiding Assumptions 2.2 and 2.4 for the observa-
tional study (S = 2). They will not disappear even with
infinite data from the observational population, rendering
µ̂OS-OM
a in (9) an inconsistent estimator for µa = E[Y a |

S = 0] even when fa(X) = E[Y | X,S = 2, A = a].

In Sections 4.1 and 4.2, we derive two new identifications of
µa that integrate the predictions of fa in a statistically valid
way and discuss how they lead to more sample-efficient es-
timation in comparison to (2). We give regression function-
based estimators, derive their MSEs, and compare them to
that of the baseline in Theorem 3.2.

4.1. Additive Bias Correction to Predictive Model

We covered why using fa alone is unreliable. Nonetheless,
it may carry useful signal we can exploit when coupled
with trial data. First, using the trial sample D1, we show
how one can learn the bias function of the predictive model,
ba(X) = fa(X) − ga(X). We then give an estimator for
µa that uses the predictions fa(X) in the target sample by
correcting with their estimated bias, b̂a(X). We formalize in
Theorem 4.2 and Section 4.1.3 when it is more advantageous
to construct an estimator of µa that relies on fitting the
bias function ba(X) instead of the outcome function ga(X),
such as the illustrative example depicted in Figure 2.

4.1.1. IDENTIFICATION

We start by trivially writing

µa = E [fa(X) | S = 0]−E [fa(X)−Y a | S = 0] . (11)
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Estimating a complex 
from a small RCT is
statistically infeasible.

An observational predictor,
, is biased in general. 

Nonetheless, its bias, ,
may be estimated more sample
efficiently from a small RCT.

Age 

Figure 2. A biased predictor fa(X) can still capture higher order
polynomials, making its bias ba(X) “easier” to learn than ga(X).

The first term can be estimated by averaging fa(X) in the
target sample, which is generally biased for µa. The sec-
ond term “removes” this bias; however, as it contains a
counterfactual variable, Y a, it is not immediately clear how
one would estimate it. Our next result shows that it can be
identified without additional assumptions on fa.

Lemma 4.1. Suppose that Assumptions 2.1-2.5 hold. Let
fa : X → R and define the error variable

Z := fa(X)− Y. (12)

µa can be identified as

µa = EX∼P0
[fa(X)−E[Z | X,S = 1, A = a]

]
. (13)

Note that Z can be calculated for trial participants and sec-
ond term in (13) can be estimated with covariate information
from the target sample and covariate, treatment, and “error”
information from the trial sample, as we cover next.

4.1.2. REGRESSION FUNCTION-BASED ESTIMATION

By (10), (12), and (3), it is straightforward to see that

ba(X) = E[Z | X,S = 1, A = a].

That is, the identification in (13) is through the bias function
in (10). We denote by ba(X; γ̂) a parametric fit obtained by
regressing Z onto covariates X in the trial sample and write
the additive-bias-correction (ABC) estimator.

µ̂ABC
a =

1

n0

n∑
i=1

1 {Si = 0}
(
fa(Xi)− ba(Xi; γ̂)

)
. (14)

Theorem 4.2. Suppose that Assumptions 2.1-2.5 hold. For
large n0, the MSE of µ̂ABC

a in (14) can be approximated as

E[(µ̂ABC
a − µa)

2]

≈ EX∼P0

[
Eγ̂∼A(P1)[ba(X; γ̂)]− ba(X)

]2
(15)

+ Varγ̂∼A(P1)

(
EX∼P0 [ba(X; γ̂)]

)
. (16)

Algorithm 1 Generalization via additive bias correction
Input: Sample D, Predictor fa, MSE optimizer A
D1,a ⊂ D: Trial cohort (Si = 1) with treatment Ai = a
for Wi ∈ D1,a do

Calculate the prediction error Zi = fa(Xi)− Yi

end for
Fit ba(X; γ̂) by minimizing MSE for Z in D1,a using A
Return µ̂ABC

a in (14)

The significance of Theorem 3.2 is showing that the MSE
of µ̂ABC

a admits the same form with that of µ̂OM
a in Theo-

rem 3.2. The difference is that the MSE is governed by
how well the bias function ba(X) is estimated instead of
the outcome function ga(X). This result formalizes how
leveraging a potentially biased observational predictor can
be more viable for the “generalization” task. Consider the
case in Figure 2 where fa(X) captures higher degree poly-
nomials in ga(X), resulting in ba(X) being a low-degree
polynomial. One can then fit a linear model with a few poly-
nomial features for ba(X; γ̂), resulting in both controlled
bias (15) and variance (16) terms. On the other hand, fitting
ga(X; θ̂) similarly will result in a large bias term (6). We
provide a detailed discussion in the next section and empiri-
cally demonstrate how the bias ((6), (15)) and variance ((7),
(16)) terms compare in Appendix B.1.

4.1.3. CASE STUDY: POLYNOMIAL RIDGE REGRESSION

The symmetry between the MSEs in Theorems 3.2 and 4.2
allows one to reason about the (comparative) performances
of the outcome and bias function-based estimators in (4)
and (14). To gain further insight, we study the polynomial
ridge regression framework and describe the regime where
estimating ba(X) is more feasible than ga(X) in the setting
described below. We focus on finite-sample results, which
are of significant interest given the limited size of trials.

We consider X ∈ [−1, 1], denote by L2([−1, 1]) the
space of square-integrable functions 1 endowed with the
inner-product ⟨f, g⟩ =

∫ 1

−1
f(x)g(x) dx, and assume that

ga, ba ∈ L2([−1, 1]) with bounded norms ∥ga∥ , ∥ba∥ ≤ 1.
Finally, we assume the following generative equations.

Yi = ga(Xi) + ηi, Zi = ba(Xi)− ηi, (17)

where ηi ∼ N (0, σ2) are zero-mean i.i.d. noise variables
and Zi are the patient-wise error terms for the predictive
model fa(X), defined previously in (12).

Let us now define, for a generic function f , the “empirical
excess risk” of a fit f̂ obtained from a sample of size m as

Rm(f̂ , f) :=
1

m

m∑
i=1

(f̂(Xi)− f(Xi))
2, (18)

1∫ 1

−1
f2(x) dx < ∞, ∀f ∈ L2([−1, 1]).
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which quantifies how far away the fit is from the true func-
tion. In the rest of this section, we study oracle upper bounds
on Rn1(ĝa, ga) and Rn1(b̂a, ba) when ĝa and b̂a are fit via
polynomial ridge regression in the trial sample D1. To
that end, let us now introduce the Legendre polynomials
which have convenient properties that facilitate clear ex-
position. We denote by ϕk : [−1, 1] → R the k-th order
normalized Legendre polynomial. The set {ϕk}∞k=0 form
an orthonormal basis 2 for L2([−1, 1]); meaning that any
function f ∈ L2([−1, 1]) can be uniquely represented as a
linear combination of {ϕk}∞k=0, allowing us to write

ga(X) =

∞∑
k=0

λkϕk(X), ba(X) =

∞∑
k=0

ωkϕk(X), (19)

where λk = ⟨ga, ϕk⟩ and ωk = ⟨ba, ϕk⟩. In practice, one
can fit ĝa and b̂a using Legendre polynomials up to de-
gree d′ ∈ N with ridge regularization to avoid overfitting
to the trial sample. Leaving the intermediary steps to Ap-
pendix A.2, we proceed to state the corresponding upper
bounds on the expected empirical excess risks.

Lemma 4.3 (Adopted from Wainwright (2019)). Let X ∈
[−1, 1], ga, ba∈L2([−1, 1]), ∥ga∥ , ∥ba∥ ≤ 1, and consider
the generative equations in (17) with noise variance σ2.
Denote by ĝa and b̂a the fits obtained by regressing Y and
Z (see (12)) onto {ϕk(X)}d′

k=0 in trial sample D1 with an
appropriately chosen ridge regularization penalty. We have

EXi,ηi
[Rn1

(ĝa, ga)] ≤ σ2d′/n1 +
∑∞

k=d′+1
λ2
k, (20)

EXi,ηi [Rn1(b̂a, ba)] ≤ σ2d′/n1 +
∑∞

k=d′+1
ω2
k. (21)

The upper bounds in (20) and (21) share the first statistical
error term, which grows with the number of polynomial
features d′. Comparing the second terms reveals that esti-
mating the bias function is favorable when

∑∞
k=d′+1 ω

2
k <∑∞

k=d′+1 λ
2
k. One would expect the preceding condition to

hold in two scenarios, which we discuss next.

The first one is when the observational predictor is high
quality. Precisely, if fa(X) ≈ ga(X), then ba(X) ≈ 0,
implying small values for ωk and sum of their squares. This
is the same condition in Angelopoulos et al. (2023) for a
black-box predictor to power better inference when coupled
with a small amount of gold-standard data. In the context of
causal inference, it would take the individual terms in (10)
to be as small as possible to warrant fa(X) ≈ ga(X), which
requires observational study to have negligible hidden con-
founding for treatment assignment and to be transportable
conditioned on X .

The second scenario is when ba “mostly” consists of lower
degree polynomials, that is, wk ≈ 0 for k > d′. This is a

2⟨ϕi, ϕj⟩ = δij , span({ϕk}∞k=0) = L2([−1, 1]).

relaxed and more general version of the key assumption in
Kallus et al. (2018), which requires ba(X) to be linear in
X . The idea is that even when fa(X) is biased, it can still
capture complex structure, such as the higher order poly-
nomials modeling rapid turns in ga(X), and make ba(X)
considerably simpler, as illustrated in Figure 2.

4.2. Augmented Outcome Modeling

Here we draw from Schuler et al. (2021); Liao et al. (2023)
and leverage the observational model by using its predic-
tions as an additional regressor while estimating the out-
come function from the trial.

Using fa(X) as a covariate still makes for an easier esti-
mation task when ga(X) = fa(X) + ba(X) with fa(X)
capturing most of the complexity in ga(X) and ba(X) is a
simpler function. However, it has two advantages over the
additive bias correction approach we discuss below.

First is robustness when fa(X) does not carry useful in-
formation. For instance, let fa(X) be an independent
noise term, η, for all X . Then the additive bias ba(X) =
η− ga(X) is just a noisier version of ga(X) and even more
challenging to estimate. On the other hand, when the predic-
tions fa(X) are used as a covariate, a good learning algo-
rithm would just ignore it. We compare the two approaches’
robustness with synthetic experiments (see Figure 5).

Second is the flexibility in how the predictions are utilized.
Consider the illustrative example where ga(X) = fa(X)/2
and the bias of fa(X) can be corrected simply dividing it
by two. On the other hand, additive bias ba(X) = ga(X) is
identical to the outcome function and not easier to estimate.

4.2.1. IDENTIFICATION

Let us define the augmented covariate vector as

X̃i := [X1
i , X

2
i , . . . , X

d
i , fa(Xi)], (22)

where Xn
i is the n-th original covariate out of d. We denote

X̃ ∈ X̃ where X̃ = X × R.

Lemma 4.4. Suppose that Assumptions 2.1-2.5 hold. Let
fa : X → R and define the augmented outcome function

ha(X̃) := E[Y | X̃, S = 1, A = a]. (23)

where X̃ is defined in (22). µa can be identified as

µa = EX∼P0 [ha(X̃)]. (24)

Note that X and X̃ carry the same information and Assump-
tions 2.1-2.5 continue to hold for X̃ . The identification in
(24) thus follows from the same steps that lead to (2).
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Algorithm 2 Generalization via augmented outcome model
Input: Sample D, Predictor fa, MSE optimizer A
D1,a ⊂ D: Trial cohort (Si = 1) with treatment Ai = a
for Wi ∈ D do

Calculate the outcome prediction fa(Xi)
Construct the augmented covariate vector X̃i as in (22)

end for
Fit ha(X̃; β̂) by minimizing MSE for Y in D1,a using A
Return µ̂AOM

a in (25)

4.2.2. REGRESSION FUNCTION-BASED ESTIMATION

Note that ha(X̃) = ha(X, fa(X)) = ga(X) and the only
difference from the baseline approach in Section 3 is that we
have an additional regressor, X̃d+1 = fa(X). We denote
by ha(X̃i; β̂) the parametric fit for ha(X̃i) and write the
augmented outcome modeling (AOM) estimator as

µ̂AOM
a =

1

n0

n∑
i=1

1 {Si = 0}ha(X̃i; β̂). (25)

The approximation to the MSE E[(µ̂AOM
a − µa)

2] follows
the same form with that of µ̂OM

a in Theorem 3.2 with the
augmented outcome function ha replacing ga. In the interest
of space, we defer the precise statement to Appendix A.3.

We close this section by mentioning two critical directions
for future work to leverage observational data more effi-
ciently: one related to modeling and the other to estimation.

Representation-powered Outcome Modeling Instead of
using a model’s predictions fa(X), one can use the repre-
sentations learned by the model as additional covariates in
the trial (Johansson et al., 2016; Shalit et al., 2017). This
approach also allows for extracting richer information from
the observational data more flexibly, e.g., via unsupervised
and multimodal learning methods.

Doubly-robust Estimation For the prediction-powered
identifications of µa in (13) and (24), we focused only on
regression function-based estimators to demonstrate the ad-
vantages of our approach. In Appendix A.4, we give doubly-
robust estimators that enjoy desirable properties such as
asymptotic normality that enable the construction of confi-
dence intervals (Chernozhukov et al., 2018; Kennedy, 2023).

5. Synthetic Experiments
We simulate over a thousand different synthetic data gener-
ating processes with varying levels of complexity in the out-
come function ga(X), confounding bias in the observational
study, and trial size n1. We compare the root MSE (RMSE)

Observational study Nested trial design 

only if  

Figure 3. Data-generating process used in simulated experiments.
(Left.) X (observed) induces confounding by trial participation.
(Right.) In the observational study, there is hidden confounding
for treatment assignment due to U (unobserved).

of our estimators (14) and (25), which combine experimen-
tal and observational data, to that of the baselines (4) and (9)
which use them alone. Bias-variance terms (e.g., (15) and
(16)) are presented in Appendix B.1. Further, we demon-
strate the robustness of the augmented outcome modeling
estimator in (25) over the additive bias correction estimator
in (14). While the main results are concerned with outcome-
modeling-based estimators, we present additional empirical
results for the inverse propensity weighting and and doubly-
robust estimators in Appendix B.2. Our code is available at
https://github.com/demireal/ppci.

5.1. Data-generating Process

We consider two covariates X,U ∈ [−1, 1], a binary treat-
ment strategy A ∈ {0, 1}, and a real-valued outcome Y ∈ R.
We first describe the probabilistic model that generates the
potential outcomes Y 0 and Y 1 conditioned on X and U .
We then move on to explain the sampling mechanism in the
nested trial design that generates the trial and target cohorts.
Finally, we specify the patient sampling and treatment as-
signment mechanism underpinning the observational data
we use to train a predictive model fa : [−1, 1]2 → R. Re-
sults of simpler experiments where the functions underlying
the data-generating process are specified to be linear are
presented in Appendix B.4.

Generating (Potential) Outcomes We denote the full
outcome model (FOM) for treatment A = a by FOMa :
[−1, 1]2 → R. For a patient with covariates (Xi, Ui), the
potential outcome is calculated as Y a

i = FOMa(Xi, Ui).
Note that we use the same outcome model for patients in
the trial, target, and observational samples.

We generate FOMa by sampling from a GP with mean func-
tion m(X,U) = 0 and kernel function k ((X,U), (X ′, U ′))
(Rasmussen et al., 2006). We create a composite kernel by
adding a squared-exponential (SE) kernel to model the local
variations and a linear kernel to model the trends in the

7

https://github.com/demireal/ppci


Prediction-powered Generalization of Causal Inferences

Figure 4. 100 different set of data-generating functions are sampled for each (lFOM1
x , αPA

u , n1). We plot the RMSE averaged over 100
scenarios. Results are reported for four different numbers of polynomial features used to fit the underlying regression functions (if any).

outcome. Precisely, we have

k((X,U),(X ′, U ′))= αFOMa
x XX ′ + αFOMa

u UU ′ (linear)

+ exp

(
− (X −X ′)2

2(lFOMa
x )2

− (U − U ′)2

2(lFOMa
u )2

)
, (SE) (26)

where αFOMa
x , αFOMa

u , lFOMa
x , lFOMa

u ∈ R+ are free param-
eters. We experiment with different values to simulate a
diverse set of scenarios. For instance, a larger value for
αFOMa
u implies a stronger linear trend in FOMa(X,U) along

U -axis. More details are given at the end of this section.

Generating Trial and Target Samples We consider a
nested study design and generate a composite trial-eligible
patient cohort by sampling Xi, Ui ∼ Uniform[−1, 1] inde-
pendently. We denote by P (S = 1 | Xi, Ui) the probability
of trial participation, which is generated as

P (S = 1|Xi, Ui) = median
{ 1

1 + e−LPS(Xi,Ui)
, 0.1, 0.9

}
.

(27)
where the “logit” function LPS(Xi, Ui) is sampled from a
GP with the composite linear + SE kernel in (26) with pa-
rameters αPS

x = 10, lPS
x = 1, αPS

u = 0, lPS
u = +∞. The

last two parameters effectively imply that the trial participa-
tion probability does not depend on U but X only, ensuring
Assumption 2.4. Taking a median with 0.1 and 0.9 en-
sures Assumption 2.5. Trial participation is then sampled as
Bernoulli(P (S = 1 | Xi, Ui)).

Finally, for trial participants (Si = 1), the treatment as-
signment is sampled as Ai ∼ Bernoulli(0.5) and the

observed outcome is generated as Y = FOMAi
(Xi, Ui),

which ensures that Assumptions 2.1-2.3 hold.

Generating an Observational Sample An observational
cohort is generated by sampling Xi, Ui ∼ Uniform[−1, 1]
independently. For each patient, treatments are sampled
as Ai ∼ Bernoulli(P (A = 1|S = 2, Xi, Ui)), where
the probability of treatment assignment is generated similar
to (27) through a logit function LPA(X,U) sampled from a
GP with parameters αPA

x , αPA
u , lPA

x , lPA
u ∈ R+. The observed

outcomes are generated as Y = FOMAi
(Xi, Ui).

Simulated Scenarios and GP Parameters We focus on
the mean potential outcome under treatment A = 1 in the
target population, µ1 = E[Y 1 | S = 0]. The sample size
for the observational study (OS) and the target sample are
set to 50, 000 and 20, 000, respectively. We experiment with
different values for the parameters n1, l

FOM1
x , and αPA

u . We
fit f1(X) from the OS with a neural network, and g1(X; θ̂),
b1(X; γ̂), h1(X̃; β̂) are fit from the trial sample D1 via
polynomial ridge regression with 5-fold cross-validation.

We use trial sizes n1 ∈ {200, 1000} and lFOM1
x ∈ {0.5, 0.2},

where a smaller value leads FOM1(X,U) to change more
quickly in response to X (i.e., consist of high order polyno-
mials), thus resulting in a more complex outcome function
g1(X). We provide examples in Appendix B.3.

When learning f1(X) from the OS, we conceal U and ex-
periment with (lPA

u , αPA
u ) ∈ {(∞, 0), (0.5, 0), (0.5, 10)}. In

the first setting, P (A = 1|S = 2, X, U) does not depend
on U , and there is no hidden confounding, which is intro-
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duced when lPA
u is changed to 0.5. Finally setting αPA

u to
10 increases the “weight” of U in P (A = 1|S = 2, X, U),
leading to a larger confounding bias.

The preceding sets of hyperparameters lead to 2×2×3 = 12
combinations. For each combination, 100 different data-
generating functions were sampled from the GPs, leading to
1200 distinct scenarios. For each scenario, 100 independent
runs were made where a new trial sample D1 was generated,
and estimates for µ1 were calculated. An average RMSE
is calculated for each scenario over 100 runs and for each
combination over 100 scenarios, presented in Figure 4.

5.2. Discussion of Results

We first discuss the results in Figure 1 and focus on the
advantages of our prediction-powered estimators over the
baselines. We then investigate Figure 2 which demonstrates
why the augmented outcome modeling (AOM) is more ro-
bust than the additive bias correction (ABC) approach.

Using the OS Alone As the hidden confounding in the
OS increases, µ̂OS-OM

1 in (9), which directly applies f1(X)
in the target population, suffers higher RMSE. Note that its
performance does not improve with a larger trial size, as
confounding bias does not result from a small sample size.

Using the Trial Sample Alone The performance of µ̂OM
1

in (4) relies on fitting the outcome function g1(X) from the
trial sample accurately. Therefore, it incurs higher RMSE
when the trial is small and g1(X) is complex. The RMSE
gets even worse when higher-order polynomials are used
to fit ĝ1(X) in a small trial, due to the quickly increasing
variance term (7) (see Appendix B.1).

Combining Trial and Observational Data Prediction-
powered estimators µ̂ABC

1 and µ̂AOM
1 yield significant im-

provement over µ̂OM
1 when the trial is small, outcome func-

tion is complex, and the hidden confounding is small. This
is because when f1(X) accurately estimates away most of
the complex structure in g1(X), the resulting bias function
has a small norm, i.e., b1(X) ≈ 0 (see Appendix B.3 for
some examples), and is more feasible to fit from the small
trial sample and generalize to the target population.

Confounding in the OS leads to slightly worse RMSEs for
µ̂ABC
1 and µ̂AOM

1 , but they still compare favorably to µ̂OM
1 .

Note that a larger hidden confounding need not impede ben-
efiting from f1(X), so long as b1(X) consists of lower de-
gree polynomials. The results in Figure 4 are averaged over
many scenarios, and we provide examples in Appendix B.3
where b1(X) is also “complex” and no improvement over
the baseline is achieved. Finally, when the trial is large
enough to support fitting g1(X) with a higher order polyno-
mial, µ̂OM

1 perform on par with µ̂ABC
1 and µ̂AOM

1 .

Figure 5. Convention same as Figure 4. The observational predic-
tor is not trained on any data but generates i.i.d. noise for all X .

Which Prediction-powered Estimator is Better? For
the experiments in Figure 4, µ̂ABC

1 and µ̂AOM
1 have similar

performances. We demonstrate the robustness of µ̂AOM
1 in

Figure 5, where f1(X) is just noise and b1(X) is harder
to estimate than g1(X). While µ̂ABC

1 suffers high RMSE,
µ̂AOM
1 simply ignores f1(X) as a regressor and retains the

performance of the baseline approach.

6. Concluding Remarks
We investigated the statistical challenges of generalizing
causal inferences from a randomized controlled trial to a
target population whose characteristics differ from the trial.
We showed how observational data could make generaliza-
tion more statistically feasible without unrealistic assump-
tions. Through a diverse set of synthetic experiments, we
verified the effectiveness of our methods. Future work in-
cludes investigating more flexible approaches to leverage
observational data and exploring further experiment setups
(e.g., with different kernels to simulate specific real-world
settings) to gain further insight into the potentials and limita-
tions of integrating experimental and observational evidence.
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A. Proofs and Additional Results
A.1. Deferred Proofs

Proposition 3.1. Let X be a categorical covariate stratifying the population into K groups and denote by ns=1,a,k the
number of trial participants from group X = k assigned to treatment A = a, and by σ2

a,k the variance of outcome among
such patients. Let us estimate the outcome function ga(X = k) with the sample mean of outcomes Y of participants in
group X = k assigned to treatment A = a.

Suppose that Assumptions 2.1-2.5 hold. When n0 is large, the MSE of µ̂OM
a in (4) can be approximated as

E[(µ̂OM
a − µa)

2] ≈
K∑

k=1

p2s=0(k)
σ2
a,k

ns=1,a,k
, (5)

where ps=0(k) := P (X = k | S = 0) is the proportion of patients from group X = k in the target population.

Proof. Let us denote by Ds=1,a,k ⊆ D1 the set of trial participants in group k that received treatment A = a, with size
ns=1,a,k =

∑n
i=1 1 {Xi = k, Si = 1, Ai = a}. We estimate the outcome model as

ĝa(X = k) =

∑n
i=1 1 {Xi = k, Si = 1, Ai = a}Yi

ns=1,a,k
. (28)

ĝa(X = k) is simply the sample mean of outcomes Yi in Ds=1,a,k and we have

E [ĝa(X = k)] = E [Y | X = k, S = 1, A = a]

= E [Y a | X = k, S = 1, A = a]

= E [Y a | X = k, S = 1]

= E [Y a | X = k, S = 0] (29)

where the first equality follows from the unbiasedness of the sample mean and the rest from Assumptions 2.1, 2.2, and 2.4,
respectively. When X is categorical and ĝa(X) is estimated via (28), (4) admits the following equivalent expression.

µ̂OM
a =

K∑
k=1

p̂s=0(k)ĝa(k). (30)

where p̂s=0(k) =
∑n

i=1 1{Si=0,Xi=k}∑n
i=1 1{Si=0} is the proportion of patients in the target sample D0 from group k.

Note that the target D0 and trial D1 samples are disjoint of each other. Since p̂s=0(k) is effectively calculated from the
observations in the target sample D0 only, and similarly ĝa(k) from D1 only, p̂s=0(k) and ĝa(k) are independent. Following
(30), we can then write

E[µ̂OM
a ] = E

[
K∑

k=1

p̂s=0(k)ĝa(k)

]

=

K∑
k=1

E [p̂s=0(k)ĝa(k)]

=

K∑
k=1

E [p̂s=0(k)]E [ĝa(k)]

=

K∑
k=1

ps=0(k)E [Y a | X = k, S = 0] (31)

= E[Y a | S = 0] (law of total expectation)
= µa, (32)
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where (31) follows from the unbiasedness of sample proportion and (29).

Next, by the law of total variance we write

Var
(
µ̂OM
a

)
= ED0

[
VarD1

(µ̂OM
a | D0)

]
+ VarD0

(
ED1

[
µ̂OM
a | D0

])
. (33)

We start with the first term.

ED0

[
VarD1(µ̂

OM
a | D0)

]
= ED0

[
VarD1

(
K∑

k=1

p̂s=0(k)ĝa(k)
∣∣∣D0

)]

= ED0

[
K∑

k=1

p̂2s=0(k)VarD1

(
ĝa(k)

∣∣D0

)]
(34)

=

K∑
k=1

ED0

[
p̂2s=0(k)VarD1

(
ĝa(k)

∣∣D0

)]
=

K∑
k=1

ED0

[
p̂2s=0(k)

]
VarD1 (ĝa(k)) (35)

=

K∑
k=1

ED0
[p̂s=0(k)]

2
+ VarD0

(p̂s=0(k))︸ ︷︷ ︸
n0→∞−−−−→0

VarD1
(ĝa(k)) (36)

≈
K∑

k=1

p2s=0(k)
σ2
a,k

ns=1,a,k
, (37)

where (34) holds since the participants in different groups are independent of each other and p̂2s=0(k) is no longer random
after conditioning on D0. Similar to above, (35) holds since ĝa(k) is independent of the target sample D0 and therefore
p̂2s=0(k). (36) follows after writing the variance of the sample proportion

VarD0
(p̂s=0(k)) =

ps=0(k) (1− ps=0(k))

n0
. (38)

For the second term we write

VarD0

(
ED1

[
µ̂OM
a | D0

])
= VarD0

(
ED1

[
K∑

k=1

p̂s=0(k)ĝa(k) | D0

])

= VarD0

(
K∑

k=1

p̂s=0(k)ED1
[ĝa(k) | D0]

)

= VarD0

(
K∑

k=1

p̂s=0(k)ED1 [ĝa(k)]

)

= VarD0

(
K∑

k=1

p̂s=0(k)E [Y a | X = k, S = 0]

)

=

K∑
k=1

VarD0
(p̂s=0(k))︸ ︷︷ ︸

n0→∞−−−−→0

E [Y a | X = k, S = 0]
2 (39)

≈ 0, (40)

where (39) follows again from (38). Combining (33), (37), and (40), we have, as n0 goes to infinity,

Var
(
µ̂OM
a

)
≈

K∑
k=1

p2s=0(k)
σ2
a,k

ns=1,a,k
(41)
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Finally, we have

E[(µ̂OM
a − µa)

2] = E[(µ̂OM
a − µa)]

2︸ ︷︷ ︸
0 by (32)

+Var
(
µ̂OM
a

)

≈
K∑

k=1

p2s=0(k)
σ2
a,k

ns=1,a,k
, (by (41))

and we are done.

Theorem 3.2. Suppose that Assumptions 2.1-2.5 hold and consider a parametric estimator ĝa(X) = ga(X; θ̂) for the
outcome function. For large n0, the MSE of µ̂OM

a in (4) can be approximated as

E[(µ̂OM
a − µa)

2]

≈ EX∼P0

[
Eθ̂∼A(P1)

[ga(X; θ̂)]− ga(X)︸ ︷︷ ︸
=: SBg(X)

]2
(6)

+ Varθ̂∼A(P1)

(
EX∼P0 [ga(X; θ̂)]

)
. (7)

Proof.

E[
(
µ̂OM
a − µa

)2
] =

(
E
[
µ̂OM
a

]
− µa

)2︸ ︷︷ ︸
Bias2

+Var(µ̂OM
a )︸ ︷︷ ︸

Variance

. (42)

We will start with the bias term. Note that, under Assumptions 2.1-2.5, we have

µa = E[E[Y | X,S = 1, A = a] | S = 0] (see (2))
= E[ga(X) | S = 0] (by definition, see (3))
= EX∼P0 [ga(X)]. (43)

with a manipulation of notation at the final step. Once θ̂ is estimated from the trial sample D1 via an algorithm A, µ̂OM
a is

calculated by effectively taking a sample mean of ga(Xi; θ̂) for the covariates Xi in the target sample D0. We can write,

E[µ̂OM
a ] = E

[
1

n0

n∑
i=1

1 {Si = 0} ga(Xi; θ̂)

]

= E

[
1

n0

∑
Xi∈D0

ga(Xi; θ̂)

]

= Eθ̂∼P1

[
ED0

[
1

n0

∑
Xi∈D0

ga(Xi; θ̂)
∣∣∣θ̂]]

= Eθ̂∼P1

[
ED0

[
1

n0

∑
Xi∈D0

ga(Xi; θ̂)

]]
= Eθ̂∼P1

[
EX∼P0

[
ga(X; θ̂)

]]
= EX∼P0

[
Eθ̂∼P1

[
ga(X; θ̂)

]]
. (44)

since Xi ∈ D0 are i.i.d and independent of θ̂. Combining (43) and (44) we write

Bias = E
[
µ̂OM
a

]
− µa

= EX∼P0

[
Eθ̂∼A(P1)

[ga(X; θ̂)]− ga(X)
]
. (45)

14
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We continue with the variance term by invoking the law of total variance.

Variance = Var
(
µ̂OM
a

)
= Varθ̂∼A(P1),D0

(
1

n0

∑
Xi∈D0

ga(Xi; θ̂)

)

= Varθ̂∼A(P1)

(
ED0

[
1

n0

∑
Xi∈D0

ga(Xi; θ̂)

∣∣∣∣∣θ̂
])

+Eθ̂∼A(P1)

VarD0

(
1

n0

∑
Xi∈D0

ga(Xi; θ̂)

∣∣∣∣∣θ̂
)

︸ ︷︷ ︸
n0→∞−−−−→0


︸ ︷︷ ︸

≈0

≈ Varθ̂∼A(P1)

(
ED0

[
1

n0

∑
Xi∈D0

ga(Xi; θ̂)

])
= Varθ̂∼A(P1)

(
EX∼P0

[
ga(X; θ̂)

])
, (46)

where in the third equality, the variance of the sample mean vanishes for large n0. Last two steps follow since the target
sample D0 and θ̂ are independent and Xi ∈ D0 are i.i.d. Plugging (45) and (46) into the definition of the MSE in (42), we
are done.

Lemma 4.1. Suppose that Assumptions 2.1-2.5 hold. Let fa : X → R and define the error variable

Z := fa(X)− Y. (12)

µa can be identified as
µa = EX∼P0 [fa(X)−E[Z | X,S = 1, A = a]

]
. (13)

Proof. Recall that we have
µa = E [fa(X) | S = 0]−E [fa(X)− Y a | S = 0] . (47)

Note that the prediction model fa is fixed. Therefore we have

E[fa(X) | S = 0] = EX∼P0
[fa(X)], (48)

which is only a change of notation. Further, conditioned on X , fa(X) is no more random, We can then write

E[fa(X)− Y a | S = 0] = EX∼P0

[
E[fa(X)− Y a | X,S = 0]

]
= EX∼P0

[
E[fa(X)− Y a | X,S = 1]

]
(49)

= EX∼P0

[
E[fa(X)− Y a | X,S = 1, A = a]

]
(50)

= EX∼P0

[
E[fa(X)− Y | X,S = 1, A = a]

]
(51)

= EX∼P0

[
E[Z | X,S = 1, A = a]

]
, (52)

where (49) is due to Assumptions 2.4 and 2.5, (50) is due to Assumptions 2.2 and 2.3, and (51) is due to Assumption 2.1.

Combining (47), (48), and (52) completes the proof.

Theorem 4.2. Suppose that Assumptions 2.1-2.5 hold. For large n0, the MSE of µ̂ABC
a in (14) can be approximated as

E[(µ̂ABC
a − µa)

2]

≈ EX∼P0

[
Eγ̂∼A(P1)[ba(X; γ̂)]− ba(X)

]2
(15)

+ Varγ̂∼A(P1)

(
EX∼P0 [ba(X; γ̂)]

)
. (16)
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Proof. We have, by Lemma 4.1,

µa = E[fa(X)− ba(X) | S = 0]

= E[fa(X)− ba(X) | S = 0]. (53)

where
ba(X) = E[fa(X)− Y | X,S = 1, A = a].

We consider a parametric estimator ba(X; γ̂) where γ is estimated from the instance-wise prediction errors fa(X)− Y in
the trial sample D1.

We will follow the same steps in the proof of Theorem 3.2 for the most part.

E[
(
µ̂ABC
a − µa

)2
] =

(
E
[
µ̂ABC
a

]
− µa

)2︸ ︷︷ ︸
Bias2

+Var(µ̂ABC
a )︸ ︷︷ ︸

Variance

. (54)

We have

E[µ̂ABC
a ] = E

[
1

n0

n∑
i=1

1 {Si = 0}
(
fa(Xi)− ba(Xi; γ̂)

)]

= E

[
1

n0

∑
Xi∈D0

fa(Xi)− ba(Xi; γ̂)

]
. (55)

Since the sample mean is unbiased, it follows that

E

[
1

n0

∑
Xi∈D0

fa(Xi)

]
= EX∼P0 [fa(X)] . (56)

Next, via the same machinery that derives (44), we have

E

[
1

n0

∑
Xi∈D0

ba(Xi, γ̂)

]
= EX∼P0

[
Eγ̂∼P1

[ba(X; γ̂)]
]
. (57)

By (55), (56), and (57), we observe

E[µ̂ABC
a ] = EX∼P0

[
fa(X)−Eγ̂∼P1 [ba(X; γ̂)]

]
, (58)

which leads to, in combination with (53)

Bias = E
[
µ̂ABC
a

]
− µa

= EX∼P0

[
ba(X)−Eγ̂∼P1

[ba(X; γ̂)]
]
. (59)

We continue with the variance term.

Variance = Var
(
µ̂ABC
a

)
= Var

(
1

n0

∑
Xi∈D0

fa(Xi)− ba(Xi; γ̂)

)

= VarD0

(
1

n0

∑
Xi∈D0

fa(Xi)

)
︸ ︷︷ ︸

n0→∞−−−−→0

+ Varγ̂∼A(P1),D0

(
1

n0

∑
Xi∈D0

ba(Xi; γ̂)

)
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≈ Varγ̂∼A(P1) (EX∼P0
[ba(X; γ̂)]) . (60)

The decomposition in third equality is due to the independence of the models predictions fa(X) and errors fa(X)− Y (γ̂ is
derived using the latter only). Finally, (60) follows through the same machinery that derives (46).

We are done after plugging (59) and (60) into (54).

A.2. Polynomial Ridge Regression

We consider polynomial ridge regression in the trial sample D1 using Legendre polynomials up to degree d′, to fit the
outcome model and bias model estimates, ĝa and b̂a which results in the following fits with an appropriately chosen penalty
parameter λ (Wainwright, 2019).

ĝa ∈ argmin
g∈F(d′)

{
1

n1

n1∑
i=1

(Yi − g(Xi))
2

}
, (61)

b̂a ∈ argmin
b∈F(d′)

{
1

n1

n1∑
i=1

(Zi − b(Xi))
2

}
. (62)

where

F(d′) :=

∑
k=0

βkϕk(X) |
d′∑

k=0

β2
k ≤ 1

 , (63)

is the class of polynomials up to degree d′ with bounded norm. The results then follow from the oracle inequalities derived
for the orthogonal basis approximation problem in Example 13.14, Section 13.3 of (Wainwright, 2019).

A.3. MSE Approximation for the Augmented Outcome Modeling Approach

Theorem A.1. Suppose that Assumptions 2.1-2.5 hold. For large n0, the MSE of µ̂AOM
a in (25) can be approximated as

E[(µ̂AOM
a − µa)

2] ≈ EX∼P0

[
Eβ̂∼A(P1)

[ha(X̃; β̂)]− ha(X̃)
]2

+ Varβ̂∼A(P1)

(
EX∼P0

[ha(X̃; β̂)]
)
. (64)

Proof. The proof follows from the same steps in the proof of Theorem 3.2.

A.4. Doubly-Robust Estimation

In order to leverage the prognostic model fa(X) in the analysis, we can proceed with two identifications of µa, (13) and
(24), for which we considered estimators based only on regression functions ((14) and (25)). However, in practice, we can
directly use the so-called doubly-robust (DR) estimators for (13) and (24), which have several desirable properties.

In addition to a regression function component, DR estimators also have weighting function components, which, in our
case, are the probability of trial enrollment, P (S = 1 | X), and the probability of treatment assignment in the trial,
P (A = a | X,S = 1). Estimators based only on weighting models are also available but will not be covered here in the
interest of space. (Dahabreh et al., 2020) derives a generic DR estimator for the functional

EX∼P0
[E[Y | X,S = 1, A = a]], (65)

which we can directly adopt and use to estimate (24) and the second term of (13). Estimating the first term of (13) remains
unchanged as the average of predictions fa(X) in the target sample. We make the following definitions.

p = P (S = 1). (66)
p(X) = P (S = 1 | X). (67)

πa(X) = P (A = a | X,S = 1), (68)

and denote by p̂, p̂(X), and π̂a(X) their estimates. Note that in order to use DR estimators, one now needs to fit those
functions using the composite sample D. Next we give the DR estimator for (13) and (24).

µ̂DR-ABC
a =

1

n0

n∑
i=1

1 {Si = 0} fa(Xi)
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+
1

n(1− p̂)

n∑
i=1

(
1 {Si = 0} b̂a(Xi) + 1 {Si = 1, A = a} 1− p̂(Xi)

p̂(Xi)π̂a(Xi)

(
Zi − b̂a(Xi)

))
. (69)

µ̂a
DR-PA =

1

n(1− p̂)

n∑
i=1

(
1 {Si = 0} ĥa(X̃i) + 1 {Si = 1, A = a} 1− p̂(Xi)

p̂(X̃i)π̂a(X̃i)

(
Y − ĥa(X̃i)

))
. (70)

An essential property of DR estimators is that consistent estimation of either the regression or weighting functions guarantees
consistent estimation of µa, hence the name “doubly-robust”. Beyond this DR property, however, they have other desirable
properties (under certain regularity conditions or cross-fitting techniques (Chernozhukov et al., 2018)) such as asymptotical
efficiency and normality, which enable one to construct confidence intervals beyond point prediction and allow for, e.g.,
calculating p-values and testing hypotheses. We refer the interested reader to (Kennedy, 2023) for a unifying overview of
the theory around the DR estimators, their properties, and how to construct them for different estimands of interest. We
present empirical results for the DR estimators in Appendix B.2.

B. Additional Experimental Results
B.1. Bias-Variance Tradeoff

We do not plot the bias and variance terms for µ̂OS-OM
1 . It has minimal (≈ 0) variance as one applies the observational

predictor directly to the target sample, and nothing is fit from the small trial data. Since the target sample is taken to be large,
the variance in µ̂OS-OM

1 is negligible. Almost all of its MSE (see Figure 4) consists of the bias, which results from hidden
confounding introduced by concealing the U variable (see Figure 3).

In Figure 6, we see that the bias resulting from estimating the outcome function g1(X) from the trial sample is very large
with a small model. Although it decreases with a larger model as expected, we see in Figure 7 that the variance quickly
explodes when the trial size is small (n1 = 200) and g1(X) is complex and has high intrinsic variation. Whenn1 = 1000, the
variance terms significantly decrease by a factor of 10, and the RMSE of µ̂OM

1 becomes comparable to prediction-powered
estimators when higher-degree polynomials are fit for ĝ1(X).

Our approaches leveraging the additional predictor have smaller bias and variance terms. The difference is the most
significant when the trial is small and the outcome function is complex.

Figure 6. Convention same as Figure 4. Average squared bias of each estimator is plotted.
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Figure 7. Convention same as Figure 4. Average variance of each estimator is plotted.

B.2. IPW and DR-based Estimators

In Figure 8, we include the generalization RMSE for the doubly-robust (DR) and inverse propensity weighting (IPW)
estimators. DR versions of our methods are given in Appendix A.4. Baseline IPW and DR estimators are detailed in
(Dahabreh et al., 2020). The IPW estimator performs the worst due to the high variance in the propensity weight estimates,
and the DR estimators perform similarly to the outcome-model (OM) estimators. Dahabreh et al. (2020) report similar
results. Finally, we note that as the sample size in the trial n1 increases, the MSE of different estimators converge as before.

Figure 8. Generalization RMSE with DR and IPW estimators included.
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B.3. Example Cases

In Figures 9-12, we demonstrate several example cases where we plot the ground truth functions for the synthetic data-
generating processes, an example trial sample that is used to fit b̂1(X), ĝ1(X), ĥ1(X) (plotted the linear fits only for
simplicity, i.e., 1st-degree polynomials), and the observational predictor f1(X).

We aim to demonstrate how the outcome function g1(X) becomes “wiggly” as lFOM1
x decreases and has more rapid turns

representing higher-order polynomials. Further, we see that as the hidden confounding increases, i.e., as we move along the
x-axis of plots, the bias of the observational predictor, b1(X) = g1(X)−f1(X) also increases and becomes a “higher-norm”
function, decreasing the utility of leveraging observational data and increasing the RMSE.

As we referred to earlier, one can see in Figures 11 and 12, for the cases with lFOM1
x = 0.2 (complex outcome function

g1(X)) and (lPA
u = 0.5, αFOM1

u = 10) (large hidden confounding), the bias function b1(X) is also a complex function with
high norm, and the RMSE of the prediction-powered approaches are not significantly better than the baseline estimator µ̂OM

1 .

B.4. Using (Generalized) Linear Models in the Data-generating Process

We sincerely thank Reviewer xwX2 for taking the time during the author-reviewer discussion phase to provide the initial
codebase for the results presented here. Instead of generating the outcome and propensity score functions using GPs, we use
polynomial models.

The full outcome model under treatment A = 1 is specified as a 5-th order polynomial with parameter β. Precisely, we set

FOM1(X,U) = β0 + βX
1 X + · · ·+ βX

5 X5 + γ
(
βU
1 U + · · ·+ βU

5 U5 + βXU
1 XU + · · ·+ βXU

5 (XU)5
)
, (71)

and observe Y 1 = FOM1(X,U) + ϵ where ϵ ∼ N (0, σ2) for some σ ∈ R+ which we use to model the intrinsic variation
in outcome observations. Larger values for σ increase the risk of overfitting when the trial size n1 is small. β parameters
characterize the complexity of the outcome function.

The probability of selection into the trial and the probability of treatment assignment in the OS are modeled as follows.

P (S = 1|X,U) =
1

1 + exp (λ0 + λ1X + · · ·+ λ5X5)
. (72)

P (A = 1|S = 2, X, U)

=
1

1 + exp
(
α0 + αX

1 X + · · ·+ αX
5 X5 + γ

(
αU
1 U + · · ·+ αU

5 U
5 + αXU

1 XU + · · ·+ αXU
5 (XU)5

)) . (73)

γ ∈ R+ determines the amount of hidden confounding in the OS, as U is concealed. Further, λ parameters characterize how
weak the overlap is between the trial and target samples.

Briefly, larger values for β, γ, λ, and σ parameters make the generalization task more challenging. In Table 1, we present
the generalization MSEs under various settings. We always use α ∼ N (0, 1). We sample 100 ground-truth α, β parameters
for each setting, make 100 independent runs for each ground-truth, and then present the average MSE values. We use both
1st and 5th order polynomials to fit the bias and outcome functions, b̂1(X) and ĝ1(X).

Setting 1st order poly. fit 5th order poly. fit

µ̂ABC
1 µ̂OM

1 µ̂ABC
1 µ̂OM

1

γ = 0, ϵ ∼ N (0, 0.12), β ∼ N (0, 1), λ = 1 .0001 .0092 .0002 .0002
γ = 1, ϵ ∼ N (0, 0.12), β ∼ N (0, 1), λ = 1 .0087 .0183 .0148 .0148
γ = 0, ϵ ∼ N (0, 22), β ∼ N (0, 1), λ = 1 .0044 .0054 .0066 .0066
γ = 0, ϵ ∼ N (0, 22), β ∼ N (0, 22), λ = 1 .0044 .0082 .0066 .0066
γ = 0, ϵ ∼ N (0, 22), β ∼ N (0, 22), λ = 2 .0048 .0127 .0151 .0151
γ = 1, ϵ ∼ N (0, 22), β ∼ N (0, 22), λ = 2 .0060 .0141 .0139 .0139

Table 1. Generalization MSEs using (generalized) linear models in the data-generating process.
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Figure 9. Example case 1.
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Figure 10. Example case 2.
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Figure 11. Example case 3.
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Figure 12. Example case 4.
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