
Network Tight Community Detection

Jiayi Deng 1 Xiaodong Yang 2 Jun Yu 3 Jun S. Liu 2 Zhaiming Shen 4 Danyang Huang 1 Huimin Cheng 5

Abstract
Conventional community detection methods often
categorize all nodes into clusters. However, the
presumed community structure of interest may
only be valid for a subset of nodes (named as
“tight nodes”), while the rest of the network may
consist of noninformative “scattered nodes”. For
example, a protein-protein network often contains
proteins that do not belong to specific biological
functional modules but are involved in more gen-
eral processes, or act as bridges between different
functional modules. Forcing each of these pro-
teins into a single cluster introduces unwanted
biases and obscures the underlying biological im-
plication. To address this issue, we propose a
tight community detection (TCD) method to iden-
tify tight communities excluding scattered nodes.
The algorithm enjoys a strong theoretical guar-
antee of tight node identification accuracy and is
scalable for large networks. The superiority of
the proposed method is demonstrated by various
synthetic and real experiments.

1. Introduction
Community detection, a task pervasive in numerous scien-
tific realms, aims to extract coarse-grain community struc-
tures where nodes within each community are densely con-
nected, and nodes between communities are sparsely con-
nected. Community detection has been widely used in
many applications, including identifying allegiances in so-
cial networks (Cheng et al., 2021), elucidating biological
function in metabolic networks (Guimera & Nunes Amaral,
2005), and exploring homology in genetic similarity net-
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works (Haggerty et al., 2014). Over the years, the field of
community detection methods has witnessed a surge (You
et al., 2016; Liu et al., 2019), starting with greedy algorithms
(Clauset et al., 2004; Newman & Girvan, 2004), advancing
to probabilistic model-based methods (Celisse et al., 2012;
Bickel et al., 2013), and further to spectral clustering meth-
ods (Rohe et al., 2011; Jin, 2015; Deng et al., 2024).

One critical assumption in many community detection meth-
ods is that every node in the network can and should be
allocated to a community. However, real-world networks
often contain “scattered nodes” that do not fit into any spe-
cific community, thereby challenging this assumption. For
example, a protein-protein network often contains proteins
that do not belong to specific biological functional modules.
Such proteins may be involved in more general processes
such as system maintenance, or may act as bridges between
different functional modules. Assigning these non-specific
proteins to clusters can introduce biases and obscure un-
derlying biological implications. Another example is an
email network within a university, where each node rep-
resents an email address, and a connection between two
nodes indicates communication. Spam accounts scattered
unsolicited messages across groups, posing security threats
(Shrivastava et al., 2008). Isolating these uninformative scat-
tered nodes from tight communities mitigates privacy and
financial risks.

Figure 1. (a) A network with 12 nodes. (b) Spectral clustering
results. (c) TCD results, where nodes 9-12 are flagged as scattered
nodes, while two tight communities are extracted: nodes 1-4 and
nodes 5-8.

Despite the urgent need, many conventional community de-
tection methods overlook the presence of scattered nodes,
yielding undesirable results. To illustrate, consider a toy
example in Figure 1(a), where two clear communities are
formed by nodes 1-4 and 5-8, while nodes 9-12 appear as
scattered entities without apparent community structures.
Without taking into account scattered nodes, conventional
methods such as the spectral clustering method tend to inap-
propriately force these scattered nodes into existing clusters,
as shown in Figure 1(b). This obscures the intrinsic com-
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munity structure of the network. To accurately model such
networks, we assume a network has n tight nodes and m
scattered nodes. Tight nodes preferentially connect within
their own communities rather than between communities.
Tight communities are community structures formed exclu-
sively by these tight nodes. Scattered nodes do not show
any community structure, connecting with other nodes in
the graph in an arbitrary way.

To take into account scattered nodes, Cai & Li (2015) pro-
posed a robust community detection method. However,
this method focuses on minimizing the impact of scattered
nodes on the clustering process, without assigning labels to
individual nodes to indicate whether they are scattered or
tight. A more recent work (Gaucher et al., 2021) identifies
scattered nodes using optimization but relies on the assump-
tion that these scattered nodes are hubs and their counts are
significantly lower than that of tight nodes. Additionally,
(Dey et al., 2023) proposed a node-based metric to identify
scattered nodes. Another line of research related to our work
is outlier detection with statistical (Yamanishi & Takeuchi,
2001; Rousseeuw & Hubert, 2011; 2018), proximity-based
(Ramaswamy et al., 2000; Aggarwal & Aggarwal, 2017;
Abuzaid, 2020), and neural network (Hawkins et al., 2002;
Chen et al., 2017; Goodge et al., 2022) approaches. Out-
liers in the aforementioned literature are often seen as nodes
belonging to multiple communities or having weak connec-
tions (Xu et al., 2007; Dey et al., 2023). Our approach,
however, considers scattered nodes as those without any
community affiliation. Other related topics include commu-
nity extraction (Zhao et al., 2011; Gibbs et al., 2022) and
local clustering (Andersen et al., 2006; Kloster & Gleich,
2014; Mahoney et al., 2012; Li et al., 2018; Lai & Mcken-
zie, 2020; Lai & Shen, 2023; Shen et al., 2023), however,
they either suffer from a lack of theoretical guarantee or
computational efficiency.

In this work, we propose a tight community detection (TCD)
method, motivated by a tight clustering method for i.i.d
data (Tseng & Wong, 2005) and the network sub-sampling
based community detection method in (Mukherjee et al.,
2021). TCD first employs a network sub-sampling ap-
proach to get multiple sub-networks, detects community
structure for each sub-network, and constructs an average
co-membership matrix with its (i, j)th entry representing
the frequency of nodes i and j being clustered in the same
community. Then, it uses a depth-first search (DFS) method
to search for stable tight components in the co-membership
matrix, which will be treated as tight nodes. It finally ap-
plies spectral clustering to the sub-network consisting of
only tight nodes to identify the tight community structure.
The computational cost of TCD is scalable atO(N2), where
N is the number of nodes. We demonstrate the excellent
empirical performance of TCD in comparison with existing
methods by both extensive simulation studies and a real

protein-protein network.

2. Model Setup
LetG = (V,E) denote a random graph, where V represents
a fixed set of nodes, and E, a random set of edges. Let
A = (aij)1≤i,j≤n denote the adjacency matrix of this graph,
where n is the number of nodes, and aij = 1 or 0 if node i
and j are or are not connected by an edge. We only consider
a network with no self-loops, so all diagonal entries of A
are 0. In this paper, we present our idea based on undirected
networks (A is symmetric), but it can be easily extended to
directed networks (A is not symmetric).

Stochastic block model (SBM). The stochastic block model
(SBM) is a popular probabilistic framework for modeling
the connectivity in random networks (Holland et al., 1983;
Karrer & Newman, 2011; Rohe et al., 2011; Lei & Ri-
naldo, 2015; Paul & Chen, 2020; Yang et al., 2024). In
SBM, nodes are assigned to specific latent groups, known
as communities, and the probability of edge formation be-
tween any two nodes is determined by their community
membership. Let zi ∈ {1, · · · ,K} denote the community
label of node i, where K is the number of communities.
Let Θ ∈ {0, 1}n×K denote the membership matrix, where
Θizi = 1. For any node pair (i, j), aij ∼ Bernoulli(pij),
where pij = Bzizj , and Bzizj is the connecting probabil-
ity between any node in community zi and any node in
community zj . SBM usually assumes that the connectivity
probability within a community is larger than that between
communities, In sum, SBM is parameterized by

P̃ := ΘBΘT ∈ (0, 1)n×n, (1)

where B = (Bkl) ∈ (0, 1)K×K is the community connec-
tivity matrix. Extensions of SBM include degree-corrected
SBM (Karrer & Newman, 2011), the overlapping SBM (La-
touche et al., 2011), the mixed membership SBM (Airoldi
et al., 2008), and binary tree SBM (Li et al., 2022).

General stochastic block model (GSBM). Despite their
popularity, all aforementioned models do not consider the
scenario where scattered nodes exist. Cai & Li (2015) pro-
poses a general stochastic block model (GSBM) that takes
into account the presence of scattered nodes. Following the
notation of GSBM (Cai & Li, 2015), we assume that our
network G = (V,E) has N := n+m nodes, among which
there are n tight nodes having community structures and
m scattered nodes having no community structure. Let T
denote the set of the tight nodes, and S denote the set of the
scattered nodes, such that V = T ∪ S.

The ordered probability matrix under GSBM is

P =

(
P̃ D1

D⊤
1 D2

)
∈ (0, 1)N×N , (2)
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where P̃ ∈ (0, 1)n×n is a block probability matrix in the
usual SBM, which models the connection between tight
nodes. D1 = (D1ij) ∈ (0, 1)n×m models the connectivity
between tight nodes and scattered nodes. D2 = (D2ij) ∈
(0, 1)m×m models the connectivity between scattered nodes.
Scattered nodes do not admit community structure and do
not belong to any specific community. Therefore, the con-
nection probability matrix P should not exhibit block struc-
ture except within the tight community subsection P̃. Here,
we present three scenarios that adhere to this structure in
the order of increasing generality.

• Erdős–Rényi (ER)-type scattered nodes. A scattered
node connects to any other node with identical proba-
bility. That is, (P)ij = ζ if any of i or j is in S. The
ER-type connection is arguably the most basic form of
non-informative structure.

• Inhomogeneous ER (IER)-type scattered nodes. A
scattered node connects with any other node with a
probability drawn from a uniform distribution, i.e.,
U(ζmin, ζmax). This captures the essence of the non-
block structure of scattered nodes while permitting
variability in edge probabilities across node pairs. Here
the expected degree of each scattered node is the same,
N(ζmin + ζmax)/2.

• Heterogenous degree (HetD)-type scattered nodes. A
scattered node i ∈ S connects with any other node with
a probability drawn from its own uniform distribution,
i.e., U(ζimin, ζ

i
max). This can adopt arbitrary degree

distributions for the scattered nodes.

Examples of SBM and GSBM. Figure 2(a) shows an ex-
ample of the ordered probability matrix under SBM. In
this example, there are n = 120 nodes partitioned into
K = 3 communities, i.e., community 1 contains nodes
1-40, community 2 contains nodes 41-80, and community
3 contains nodes 81-120. The within-group probability is
set to 0.3, and the cross-group probability is 0.03. For the
GSBM example, all 120 nodes are considered tight nodes,
and the model includes 10 scattered nodes. These scattered
nodes are of different types: ER-type, ζ = 0.1; IER-type,
ζmin = 0, ζmax = 0.2; HetD-type, ζimin = 0, and ζimax

is randomly generated from the interval (0.1, 0.2), for all
i = 1, · · · ,m. The corresponding ordered probability ma-
trices are shown in Figure 2(b)-(d), respectively.

Given that scattered nodes lack community structure, apply-
ing spectral clustering directly to networks containing such
nodes may yield contaminated clustering results. Specif-
ically, spectral clustering tends to assign scattered nodes
to communities arbitrarily rather than leaving them unas-
signed or clustering them together. This arbitrary assign-
ment of scattered nodes makes it more difficult to distin-
guish them from tight nodes, as they are not consistently
associated with any specific group. To demonstrate this

Figure 2. Column 1: SBM. Columns 2-4: GSBM with ER, IER,
and HetD scattered nodes. (a)-(d) Ordered probability matrices.
(e)-(h), (i)-(l) are averaged co-membership matrices for 3 and 4
communities, respectively.

issue, we employ an averaged co-membership matrix that
quantifies the co-clustering frequency of node pairs. By
simulating 100 networks from the same underlying model
and applying spectral clustering to them, we obtain a set of
co-membership matrices. Averaging these co-membership
matrices, we obtain a matrix where (i, j)th entry represents
the proportion of nodes i and j being grouped together.

Figure 2(e)-(h) shows the co-membership matrix results
when setting the number of communities as three when
applying the spectral clustering method. In the case of an
SBM without scattered nodes, as depicted in Figure 2(e), the
averaged co-membership matrix demonstrates perfect com-
munity recovery: the nodes within the predefined clusters
(1-40, 41-80, and 81-120) are consistently grouped together
with a co-membership frequency of one. Figure 2(f) shows
the result under a GSBM with additional ER-type scattered
nodes, while the original communities of nodes 1-40, 41-80,
and 81-120 remain intact, the scattered nodes do not display
such consistent clustering behavior. The co-membership
frequency between any scattered node and the rest of the
network is similar, reflecting their random assignment rather
than a systematically clustered status. We can reach sim-
ilar conclusions for GSBM with IER-type and HetD-type
scattered nodes, as illustrated in Figure 2(g)-(h). We further
demonstrate that simply treating all scattered nodes as an
additional single community fails to mitigate this issue. As
shown in Figure 2(i)-(l), setting the number of communities
to 4 in spectral clustering, tight nodes still show a tendency
to co-cluster, albeit at a reduced frequency, while scattered
nodes remain randomly distributed.

These results reveal a phenomenon that is seemingly trivial,
yet extremely important: tight nodes within communities ex-
hibit a strong tendency to co-cluster, while scattered nodes
exhibit no such tendency. This suggests that properly esti-
mated co-membership frequencies could enable distinguish-
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ing tight nodes from scattered nodes. However, in practice,
we observe only a single instance of a network, yielding
only one co-membership matrix from clustering rather than
an averaged co-membership matrix which could capture
the frequency. To surmount this challenge, we show in the
following section how to employ a network sub-sampling
approach to generate multiple sub-samples of the original
network, based on which we propose a tight community
detection (TCD) method.

3. Tight Community Detection
The main idea of TCD is to use a network sampling pro-
cedure to get multiple sub-networks and detect community
structure for each sub-network. If a pair of nodes are stably
clustered together, they are more likely to be tight nodes
from the same community. Figure 3 shows the workflow of
TCD, which works in the following steps.

Figure 3. Workflow of TCD demonstrated using a toy network
with ten nodes. TCD randomly selects L = 2 sets of nodes,
{1, 2, 3, 4, 7, 8} and {3, 4, 7, 8, 9, 10}, which give rise to two rect-
angular sub-adjacency matrices. We apply SVD to each rectangular
matrix to obtain its K̃ = 2 leading right singular vectors, and then
conduct k-means clustering on the rows of these singular vectors to
group all nodes into K̃ = 2 clusters. We then construct an average
co-membership matrix. DFS is utilized to differentiate tight from
scattered nodes, with spectral clustering subsequently applied to
tight nodes to recover community structures.

Network sub-sampling. To use the network sub-sampling
method in Chen & Lei (2018), we randomly select a set
of nodes Ṽ and then construct a rectangular sub-adjacency
matrix Ã ∈ {0, 1}Ñ×N by selecting rows corresponding to
Ṽ from the original adjacency matrix A, where Ñ = |Ṽ |
is the number of selected nodes. We repeat this network
sub-sampling procedure L times to obtain L rectangular
matrices Ã(1), Ã(2), . . . , Ã(L). For instance, in Figure 3,
we obtain two 6× 10 sub-adjacency matrices by randomly
selecting L = 2 subsets of nodes from a 10-node network.
We then use each rectangular matrix to get an estimate of
community labels, as we will show below.

Intermediate community detection. For each rectangu-
lar matrix Ã(l), l = 1, . . . , L, we apply singular value de-

composition (SVD) to obtain its leading K̃ right singular
vectors, where K̃ is pre-specified number of communities.
We then conduct k-means clustering on the rows of these
singular vectors to get K̃ clusters, thus obtaining estimated
community labels for all nodes. For example, as shown in
column 3 of Figure 3, the clustering result based on each
of the sub-adjacency matrices with K̃ = 2 is indicated by
blue (cluster 1) and orange (cluster 2) labels on the nodes.
Based on the clustering results using Ã(l), we construct a
co-membership matrix C(l) = (C

(l)
ij ) ∈ {0, 1}N×N , where

C
(l)
ij = 1 if nodes i and j are grouped into the same cluster,

and C
(l)
ij = 0 otherwise.

Average co-membership matrix construction. To ag-
gregate the results across the L replications, we aver-
age the obtained co-membership matrices to obtain C̄ =∑L

l=1 C
(l)/L. Critically, an (i, j)th entry C̄ij in C̄ repre-

sents the frequency that nodes i and j are clustered into
the identical community over L replications. For example,
in Figure 3, nodes 5 and 7 are not clustered into the same
community based on the first sub-adjacency matrix, so
their corresponding co-membership label is 0. However,
they do cluster together in the second iteration, giving a
co-membership value of 1. Averaging these, the final co-
membership proportion is 0.5. Intuitively, two tight nodes
within the same latent community have a higher chance to
be consistently co-clustered together across L resamples.
This motivates us to use C̄ to search for tight nodes.

Distinguishing tight nodes from scattered nodes. In this
step, we first construct a weighted graph representation
of the average co-membership matrix C̄, where the edge
weight between nodes i and j denotes the resampling fre-
quency C̄ij that the two nodes i and j are assigned to the
same community. We then employ the depth-first search
(DFS) (Tarjan, 1972) to extract potential tight community
candidates from this weighted graph. Specifically, the DFS
starts at a random node i, initializing the visited node set
V = {i}. It then moves to an unvisited neighboring node
j, if its connection strength with all nodes in V exceeds
1− α, where α ∈ (0, 1) is a hyperparameter close to zero.
Expand V to include j. The search continues until no neigh-
boring unvisited nodes remain, marking the end of a path
and identifying all nodes in V as a tight component, which
are then excluded from further search. The process restarts
from another unvisited node if any remain, iterating until
every node has been visited. If our method identifies a to-
tal of KV such tight components, we can represent them
as V1, · · · ,VKV . The union of nodes encompassed within
these tight components is then labeled as the set of estimated
tight nodes, denoted by T̂ = ∪KV

k=1Vk. The remaining nodes
are identified as scattered nodes, denoted by Ŝ = V \T̂ . For
example, in Figure 3, we identifyKV = 2 tight components,
{1, 2, 3, 4} and {7, 8, 9, 10}. So the output tight nodes in

4



Network Tight Community Detection

this example are nodes 1−4 and 7−10, and output scattered
nodes are {5, 6}.

Tight community structure recovery. The final step is to
extract the submatrix between estimated tight nodes T̂ . A
subsequent spectral clustering onto this submatrix gives the
community labels for tight nodes.

Computational complexity. The pseudo-code of TCD is
summarized in Algorithm 1. Under the assumption that the
number of replications L is a constant, the computational
complexity of TCD is O(N2), where N is the number of
nodes. The specific details for analyzing the computational
complexity can be found in Appendix D. We also note that
the L resampling replications are trivially parallelizable.
Details on the implementation of the parallel computing
variant are provided in Appendix D. Thus, our algorithm is
scalable and efficient for large-scale network analysis.

Algorithm 1 Tight Community Detection Algorithm (TCD)

Input: Adjacency matrix A, number of communities K̃,
sub-sampling repetitions L, sub-sampling size Ñ , and
tightness hyperparameter α.
Output: Scattered nodes Ŝ, tight nodes T̂ , and the esti-
mated community label vector ẑ.
Step 1. For l = 1, · · · , L :

• Step 1.1. Network sub-sampling. Randomly select
Ñ rows from the entire adjacency matrix, and obtain
a rectangular sub-adjacency matrix Ã(l) = (a

(l)
ij ).

• Step 1.2. Intermediate community detection. Per-
form SVD on Ã(l), obtaining its leading K̃ right
singular vectors. Apply k-means clustering on the
rows of the vectors to estimate z̃(l).

• Step 1.3. Co-membership matrix construction.
Calculate the co-membership matrix C(l) based on
z̃(l) by C

(l)
ij = 1{z̃(l)i = z̃

(l)
j }.

Step 2. Get averaged co-membership matrix across L
replications, i.e., C̄ =

∑L
l=1 C

(l)/L.
Step 3. Perform the DFS to obtain tight component Vk

such that for any i, j ∈ Vk, C̄ij > 1−α. Estimated tight
nodes are T̂ = ∪kVk, and scattered nodes are Ŝ = V −T̂ .
Step 4. Perform spectral clustering to the square sub-
adjacency matrix (aij)i,j∈T̂ to obtain the tight commu-
nity label ẑ = (ẑi)i∈T̂ .

4. Theoretical Properties
To establish the theoretical properties of TCD, we impose
the following assumptions.

Assumption 4.1 (Edge probability between tight nodes).
The connectivity matrix between communities takes the
form of B = ρnB0 where ρn = Ω(log n/n) and B0 is
a fixed matrix with distinct rows and K non-degenerate
eigenvalues.

Assumption 4.1 allows the edge probability between tight
nodes to decrease at a rate ρn as n increases, requiring ρn
to be no greater than log n/n. It ensures that the network
becomes sparser with increasing n, at a controlled rate that
retains sufficient connectivity to obtain accurate community
structure recovery. Similar conditions have been used by
other community detection literature (Lei & Rinaldo, 2015;
Paul & Chen, 2020; Deng et al., 2024).

Assumption 4.2 (Edge probability involving scattered
nodes). The connectivity of scattered nodes is uniformly
upper bounded, satisfying

max {P (aij = 1) : i ∈ S or j ∈ S} = O(
√
ρn/m).

Assumption 4.2 postulates that the edge probability involv-
ing scattered nodes is not arbitrary but is constrained by
an upper bound. For example, when m = n/ log n and
ρn = log n/n, the connectivity upper bound of scattered
nodes is log n/n. In this case, tight and scattered nodes
have indistinguishable connectivity strength, indicating that
brute-force identification of tight nodes solely based on their
degree centrality measure will be ineffective.

Assumption 4.3 (Number of scatter nodes). The number of
scattered nodes is no greater than the minimum community
size.

Assumption 4.3 requires m to be no greater than the min-
imum community size. In particular, for a network with
the same number of nodes in each community, we require
m ≤ n/K, a less restrictive condition compared with exist-
ing literature (Cai & Li, 2015; Gaucher et al., 2021).

Assumption 4.4 (Community Structure). The connection
between tight nodes follows the the Stochastic Block Model
(SBM).

Assumption 4.4 clearly states that the considered graph
follows the SBM, which guarantees the existence of com-
munity structure among tight nodes. In this scenario, theo-
retical properties of eigenvalues and eigenvectors of tight
and scattered nodes are derived in the following lemma.

Lemma 4.5. Let D =

(
0 D1

D⊤
1 D2

)
, where D1 and D2 are

the ordered probability matrix in Eq. (2). Under Assump-
tions 4.1–4.4, one has

λK(P )

λmax(D)
= Ω (

√
nρn) .

Due to this eigengap, the top-K eigenvectors of P defined
in Eq. (2) is captured by its upper left block P̃, and thus can

be approximated by U =

(
ΘR
0

)
. Here Θ ∈ {0, 1}n×K is

the membership matrix of n tight nodes, where (i, k)th entry
is one if i belongs to the community k and zero otherwise.√
K/nR ∈ RK×K is a rotation matrix, and 0 ∈ 0m×K .
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The proof of Lemma 4.5 is given in Appendix B.1. Lemma
4.5 states that the ratio of the K-th largest eigenvalue of the
probability matrix P and the largest eigenvalue of a matrix
D is at least on the order of

√
nρn. This eigenvalue gap

indicates that the subspace spanned by the top-K eigenvec-
tors can be primarily characterized by the upper right block
P̃ . Thus, these eigenvectors can be approximated by U.
The projection of the tight nodes onto the top-K eigenvector
space is ΘR, while the projection of the scattered nodes
is represented by the bottom m rows of zeros. Thus, the
distance from a scattered node to any community centroid
is equivalent, i.e.,

√
2K/n. The equidistance implies that

when the k-means algorithm is applied to U, a scattered
node will be randomly assigned a community label. This
lemma provides a theoretical explanation for the empirical
finding, which observes that scattered nodes are assigned
random community labels in each resampling replication.
The following theorem derives some statistical properties of
C̄ij for two tight nodes.

Theorem 4.6. Under Assumptions 4.1–4.4, there exists a
constant C, with high probability over 1− 1/2N , we have

2

n(n− 1)

∑
1≤i̸=j≤n

∣∣∣C̄ij −
(
ΘΘ⊤)

ij

∣∣∣ ≤ C

nρn
,

where i, j are two distinct tight nodes. Moreover, there exists
an event E , which is only related to the generating process
of A and happens with probability 1− 1/2N , such that re-
peated sub-sampling greatly reduces conditional estimation
variance,

2

n(n− 1)

∑
1≤i ̸=j≤n

Var(C̄ij | E) ≤
C

Lnρn
.

A proof of the theorem is given in Appendix B.2. Theo-
rem 4.6 implies that differences between the average co-
membership entries C̄ij for tight nodes, obtained using
TCD, and the true co-membership

(
ΘΘ⊤)

ij
is bounded

by a term that decays to 0 as the number of tight nodes
n → 0. In addition, performing sub-sampling multiple
times reduces the overall variance of the co-membership
estimates, making the estimation more reliable.

We then analyze the behavior of C̄ij for scattered nodes.
From Lemma 4.5, we know that in the top-K eigenvector
space of P, each scattered node has the same distance to any
community centroid, thus will be assigned to each commu-
nity with probability 1/K. This theoretical underpinning
is substantiated by empirical evidence, where we observe
that, in practice, a scattered node is randomly assigned to
a community in each resampling replication, as shown in
Figure 8. This implies that C̄ij is bounded away from 0 and
1, where i or j is a scattered node. From Theorem 4.6, we
know that C̄ij for two tight nodes will converge to either
one or zero when the number of replications L converges to

infinity. Thus, there is a distinction in the co-membership
patterns when comparing tight and scattered nodes. Lever-
aging this distinction, we can employ the co-membership
patterns to differentiate between tight and scattered nodes.
This explains why our algorithm works.

5. Simulation Studies
In this section, we present the simulation setup and em-
pirical results for synthetic datasets generated using the
GSBM model with IER-type scattered nodes. In the ap-
pendix, we also show some results for the GSBM model
with ER-type and HetD-type scattered nodes. For evaluation
purposes, we consider the following two metrics. (1) To
quantify the accuracy in identifying scattered nodes, we use
F-score:= 2 × precision×recall

precision+recall where precision is the ratio
of the number of identified true scattered nodes over the
total number of identified scattered nodes, and recall is the
ratio of the number of identified true scattered nodes over
the total number of true scattered nodes. (2) To measure
the tight community detection accuracy, we adopt the mis-
clustering rate for all tight nodes, which is widely used in
the community detection literature (Lei & Rinaldo, 2015).
For example, suppose we have 100 true tight nodes: nodes
1-50 are community 1, and nodes 51-100 are community
2. We identify nodes 1-90 as tight nodes: nodes 1-50 as
community 1, and nodes 51-90 as community 2. Missed
tight nodes 91-100 are labeled as community 3. We then
compare (I50, 2I40, 3I10) with (I50, 2I50) to calculate mis-
clustering rate, where In is an n-length vector of ones. A
higher F-score and a lower misclustering rate indicate better
results.

We compare our method with Community Boundary Nodes
(CBNs) (Dey et al., 2023) and also benchmark against three
recent graph outlier detection methods. These methods,
RADAR (Li et al., 2017), ANOMALOUS (Peng et al.,
2018), and ONE (Bandyopadhyay et al., 2019), have out-
lier definitions different from the scattered nodes definition
in this paper. Following reviewers’ suggestions, we incor-
porate six additional methods for comparison: Two local
clustering approaches, PageRank-Nibble (PRN) (Andersen
et al., 2006) and a heat kernel-based method (HK; Kloster &
Gleich 2014); two community extraction techniques, Extrac-
tion (Zhao et al., 2011) and ECoHeN (Gibbs et al., 2022);
and two community detection methods, hierarchical com-
munity detection (HCD; Li et al. 2022), and robust com-
munity detection (RCD; Cai & Li 2015). Note that HCD
and RCD cannot detect scattered nodes, leading to non-
applicable (NA) F-scores. All numerical experiments were
implemented in Python 3.10 on a Linux server consisting of
a 2.2 GHz 24-core Intel Xeon E5-2650 v4 CPU and 64GB
of RAM memory capacity.

Hyperparameters. The TCD algorithm has four hyperpa-
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Figure 4. The top panel illustrates the F-score for identifying scattered nodes. Meanwhile, the bottom panel shows the misclustering
rate of recovering community labels for tight nodes. The error bars in both panels represent the standard deviation calculated from 100
repetitions.

rameters. (1) The network sub-sampling procedure involves
the number of subsampled nodes, Ñ . The sub-sampling
proportion is Ñ/N . Empirical results, as depicted in Fig-
ure 5, demonstrate that TCD maintains stable accuracy for
sub-sampling rates between 45% and 75%. (2) The count of
sub-sampling replications L is also a hyperparameter. Our
numerical results in Figure 5 suggest that the accuracy is sta-
ble for L ∈ (10, 250). (3) The tight component search step
involves a hyperparameter α, which controls the strictness
in identifying tight components. While the numerical results
in Figure 5 advocate for an α value of 0.1 for optimal per-
formance, the algorithm exhibits a commendable tolerance
to variations around this value, indicating its robustness in
delineating tightly-knit communities. (4) The last hyperpa-
rameter is the number of communities, K̃. This hyperpa-
rameter is determined through a cross-validation technique,
as proposed in the studies by Chen & Lei (2018) and Li
et al. (2020). In all of our examples, we set Ñ/N = 0.7,
α = 0.1, L = 50.
Simulation setup. We generated synthetic datasets ac-
cording to GSBM with IER-type scattered nodes. In Ap-
pendix C.1, we also show simulation results for ER-type
and HetD-type scattered nodes. Specifically, we generated
an N -node network with m scattered nodes and N − m
tight nodes. We employed a three-community SBM to
generate communities among the tight nodes. Let p de-
note the intra-community connection probability and q the
inter-community connection probability. A scattered node
is connected randomly to all the other nodes in the net-
work with a probability drawn from U(0, ζmax). We con-
sidered the following simulation scenarios. Scenario 1: We
vary N ∈ {500, 700, . . . , 2000}, while fixing p = 0.3, q =

0.12, ζmax = 0.2,m = 0.1N , to examine asymptotic per-
formances. Scenario 2: We vary m from 20 to 200 while
fixing N = 1000, p = 0.3, q = 0.12, ζmax = 0.2, to
investigate the impact of the number of scattered nodes.
Scenario 3: We vary ζmax from 0.1 to 0.9, while fixing
N = 1000,m = 100, p = 0.3, q = 0.12, to investigate the
impact of the scattered node connectivity strength. Scenario
4: We introduce a new notation ρ to control the overall
network density. We vary ρ from 0.8 to 2, while fixing
N = 1000,m = 100, p = 0.3ρ, q = 0.12ρ, ζmax = 0.2ρ,
to investigate the impact of overall network density.

Simulation results. Figure 4 shows the simulation results,
demonstrating that TCD outperformed other methods in
both F-score and misclustering rate across all scenarios. The
top panel shows the F-score results and the bottom panel
shows the misclustering rate results over 100 replications.
The four columns represent Scenarios 1-4, respectively. In
Scenario 1, as the network sizeN increases, TCD’s F-scores
increase to one and its misclustering rates decay to zero, very
fast with low variance. CBNs performed the second best, but
with a high variance. In Scenario 2, as the number of scat-
tered nodes m increases from 20 to 80, the F-score of TCD
increases from 0.8 to nearly 1 with decreasing variances.
This performance improvement is attributed to the stronger
signal provided by the greater number of scattered nodes,
enabling more accurate detection. TCD demonstrate robust
performance for both Scenario 3 and Scenario 4, with an F-
score remaining close to one and a misclustering rate close
to zero. In contrast, CBNs exhibits inferior performance at
lower ζmax and lower ρ, due to its theoretical reliance on
the presence of hub-like scattered nodes to enable effective
detection.
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Table 1. Results (mean ± std) on benchmark datasets with scattered nodes scaled to one-fourth of original network size. NA indicates
non-applicable results.

Dataset Metric (%) TCD CBNs RADAR Anomalous ONE PRN

Football F-score ↑ 83.0 ± 2.8 12.2± 4.2 36.8± 3.7 16.1± 2.3 14.3± 2.6 24.5± 4.5
misclustering rate ↓ 11.4 ± 2.6 19.5± 2.3 16.0± 3.1 23.1± 2.8 21.0± 3.3 40.1± 7.6

Polbooks F-score ↑ 68.7 ± 3.2 18.7± 5.2 20.6± 3.2 15.4± 2.9 19.0± 3.7 30.2± 8.0
misclustering rate ↓ 31.0± 3.2 34.0± 4.2 27.7± 3.9 28.8± 3.2 31.0± 4.0 50.9± 9.5

Polblogs F-score ↑ 54.7 ± 2.3 10.4± 3.0 12.2± 3.2 14.4± 2.1 19.6± 1.6 10.0± 3.2
misclustering rate ↓ 13.3 ± 2.6 37.1± 4.2 32.9± 2.9 35.5± 2.2 33.9± 3.7 36.8± 5.0

BlogCata F-score ↑ 43.6 ± 3.2 16.6± 4.2 11.2± 2.8 13.4± 3.9 12.6± 3.3 1.89± 0.2
misclustering rate ↓ 35.3 ± 3.6 65.1± 5.1 43.9± 4.1 42.1± 3.8 43.9± 4.2 68.9± 8.7

Dataset Metric (%) HK Extraction ECoHeN HCD RCD

Football F-score ↑ 26.4± 6.5 39.7± 5.3 7.7± 4.2 NA NA
misclustering rate ↓ 48.1± 7.3 46.2± 4.8 45.0± 13.0 56.2± 3.8 65.1± 5.2

Polbooks F-score ↑ 31.1± 8.4 54.1± 8.7 4.4± 7.0 NA NA
misclustering rate ↓ 51.3± 16.6 56.7± 5.3 53.4± 1.1 56.0± 3.7 21.1 ± 3.3

Polblogs F-score ↑ 28.9± 13.8 22.6± 1.2 1.1± 0.6 NA NA
misclustering rate ↓ 43.9± 12.3 56.9± 1.8 49.2± 1.6 34.3± 4.7 26.5± 1.2

BlogCata F-score ↑ 10.4± 2.3 16.7± 4.3 0.0± 0.0 NA NA
misclustering rate ↓ 64.1± 39.4 70.3± 13.2 82.3± 0.0 56.9± 6.2 64.1± 6.2

6. Real Application
In this section, we evaluate the performance of our algorithm
on some constructed semi-real data sets and a real data set.

6.1. Semi-Real Data
Since it is usually unknown to us which nodes are the ground
truth scattered nodes in a real network data, we manually
generate some scattered nodes and add them to some real
networks. In this way, we create some semi-real data and
we are able to evaluate the performance of TCD in detecting
tight and scattered nodes in such data. Specifically, we
consider four networks with ground truth community labels:
(1) football (Girvan & Newman, 2002) with 115 nodes
and 12 communities, (2) polbooks (Krebs, 2005) with 105
nodes and 3 communities, (3) polblogs (Adamic & Glance,
2005) with 1222 nodes and 2 communities, (4) BlogCatalog
(Zafarani & Liu, 2009) with 5196 nodes and 6 communities.
These datasets, with sizes ranging from 100 to 5000 and 2
to 12 communities, enable a comprehensive analysis across
diverse network scale and community granularity.

When simulating scattered nodes, we considered the IER-
type, i.e., each scattered node connects to any other nodes
with a probability drawn from a uniform distribution
U(0, ρn), where ρn is the edge density of the original net-
work. To thoroughly assess our method, we added varying
proportions of scattered nodes to each network, i.e., one-
sixth, one-fourth, and one-half of the original node size.

Table 1 shows the results of adding scattered nodes with
the size one-fourth of the original network. As we can see,
TCD outperforms the other methods in most cases. Ap-
pendix C.2 shows some results of adding scattered nodes
with the size one-sixth and one-half of the original network.
By comparing Tables 1, 4, 5, we also observe that as the
proportion of the scattered nodes increases, the F-scores
generally increase in most cases, while the misclustering
rate does not exhibit a clear trending pattern.

6.2. COVID-19 Protein-Protein Interaction Network
We constructed a real-world COVID-19 protein-protein in-
teraction network, where each node represents a protein
related to SARS-CoV-2 infection, and an edge is formed be-
tween two proteins according to the String database (Varusai
et al., 2020). This network has 291 nodes and 4,380 edges.

We initially estimate the number of communities using a
cross-validation technique proposed by (Chen & Lei, 2018),
resulting in K̂ = 2. Subsequently, we applied TCD to this
network to identify scattered nodes and to partition tight
nodes into communities. We identified 37 scattered nodes,
and 254 tight nodes clustered into two communities. Further
details are shown in Table 6 in the Appendix, which lists
protein names of tight nodes and scattered nodes. Figure 9
in the Appendix C.2 visualizes the protein network, where
the detected scattered nodes are colored in red.The orange
and blue dots represent the two communities, consisting of
206 and 48 tight nodes, respectively.
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To elucidate the biological relevance of the identified node
clusters and scattered nodes, we further conducted a KEGG
pathway enrichment analysis. Given a set of proteins, we
employed the hypergeometric test (Rivals et al., 2007) to
determine if the representation of proteins within specific
KEGG pathways is significantly greater than what random
chance would predict. The enrichment analysis unveils that
the tight nodes within the orange community are signifi-
cantly associated with pathways including “Coronavirus
disease - COVID-19”, “Toll-like receptor signaling path-
way”, and “Hepatitis B”. This suggests that proteins in the
orange community play an important role in directing vi-
ral pathogenesis, innate immune response, and potentially
shared response mechanisms across different viral infec-
tions. The tight nodes within the blue community showed
significant enrichment in “Nucleocytoplasmic transport”,
“Amyotrophic lateral sclerosis”, and “Spliceosome”, indi-
cating that these proteins play crucial roles in maintaining
cellular function, mediating stress or damage responses due
to infection, and influencing gene expression during the
viral life cycle. Interestingly, the scattered nodes did not
exhibit significant enrichment in any of the aforementioned
pathways.

Furthermore, to enhance our evaluation, we introduced two
quantitative metrics. (1) Normalized Cut (Ncut): A widely
adopted metric that evaluates the strength of the identified
community structure (Von Luxburg, 2007). A smaller Ncut
value indicates the clusters are well separated from each
other. (2) Overlapping enriched pathway ratio (OEPR),
which is a novel metric proposed by us specifically for the
biological context of PPI networks. In particular, for PPI
network, we aim to find clutsers of proteins which share the
same biological function, and find scattered proteins which
do not share biological functions with tight nodes. OEPR
measures the overlap between enriched KEGG pathways

of scattered and tight proteins: OEPR =
∑K

k=1 EPS∩EPTk∑K
k=1 EPTk

,
whereEPTk

denotes the set of enriched KEGG pathways for
proteins in the identified tight community k, k = 1, . . . ,K,
EPS denotes the enriched pathways for scattered proteins.
Lower OEPR indicates less functional overlap between scat-
tered and tight proteins, suggesting successful identification.

Table 2 shows, TCD achieves the best (lowest) Ncut value
of 0.087, outperforming all other methods. This indicates
that TCD is able to identify the tight and well-separated
community structure in the PPI network. In addition, TCD
has the best (lowest) OEPR value of zero, validating its
effectiveness in discerning functionally distinct proteins. In
comparison, other methods either have high Ncut value or
high OEPR values. While the PRN method also reports
an OEPR of zero, this is due to an artifact of the small
number of scattered proteins that are not enriched in any
KEGG pathway, rather than an ability to discern functionally

Table 2. PPI network results. Lower Ncut and OEPR values in-
dicate better performance. For HCD and RCD, the OEPR is NA
(non-applicable), as they cannot identify scattered nodes.

TCD CBNs RADAR Anomalous

Ncut 0.087 0.915 0.104 0.114
OEPR 0.000 0.286 0.667 0.167

ONE PRN HK Extraction

Ncut 0.109 0.110 0.915 0.251
OEPR 0.833 0.000 0.667 0.667

ECoHeN HCD RCD

Ncut 5.537 0.958 0.366
OEPR 0.028 NA NA

distinct scattered proteins.

7. Discussion
Despite the outstanding empirical performances of our
method, it has several limitations. First, similar to many
other spectral-based techniques, our approach may experi-
ence challenges when applied to extremely sparse graphs
where the connectivity scales as 1/n. In such extremely
sparse settings, the spectral properties of the graph may
not be as informative, and our co-membership-based ap-
proach could fail to accurately capture the underlying com-
munity structure. Second, although our empirical investiga-
tion showcases TCD’s superior performances in both SBM
and DCSBM settings, our theoretical framework is currently
restricted to the SBM. Rigorous theoretical results under
DCSBM setting are still under investigation. Third, simi-
lar to many other spectral clustering methods, our method
requires a predefined number of communities.

There are several possible extensions to pursue following
the proposed framework. One interesting direction is in-
vestigate how to generalize the current framework for the
setting in which additional node attributes are available. In
this case, the notion of a tight community could be extended
such that nodes in the same community not only exhibit
dense internal connectivity but also share similar attributes.
Another interesting direction is to employ SBM variations to
model the tight community structure. In Appendix C.1, we
empirically found our current framework still achieves supe-
rior performance under degree-corrected SBM (DCSBM).
It would be interesting to investigate theoretical properties
under DCSBM or other SBM variants. Finally, the idea of
distinguishing core and scattered structures could be general-
ized beyond community structures. For instance, exploring
analogous structure decomposition in nonparametric models
such as graphon poses an open question.
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Impact Statement
This paper explores a new approach to community detection
by strategically removing scattered nodes in observed net-
works. This innovative methodology significantly enhances
the accuracy and interpretability of community structures
in complex networks, providing valuable insights for re-
searchers and practitioners in machine learning. Our work
has broad practical applications, from improving social net-
work analysis to optimizing resource allocation in various ar-
eas. By unveiling cohesive structures and eliminating noise
introduced by scattered nodes, our research contributes to
more efficient interventions and targeted decision-making,
ultimately advancing the field of network science and ma-
chine learning with tangible, real-world impact.
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A. Preliminary Notations and Lemmas
In this section, we first provide a notation table to briefly introduce important notations in this manuscript. Then, we
introduce four useful lemmas to be used in the proofs in Appendices B.

A.1. Details of Notation

We present the detailed expressions of notations widely used in the proposed model and algorithm in Table 3.

Table 3. Notations

Notations Description

N entire network size
n number of tight nodes
m number of scattered nodes
V entire node set
E entire edge set
T set of tight nodes
S set of scattered nodes
A ∈ {0, 1}N×N adjacency matrix of entire network
K underlying number of communities
K̃ predefined number of communities
z ∈ [K]n ground truth community label
B ∈ (0, 1)K×K community connectivity matrix
ζ connectivity probability of scattered nodes
ζmax the upper bound of connectivity probability associated with scattered nodes
L subsampling times
Ñ subsampling size
Ã ∈ {0, 1}Ñ×N adjacency matrix of subnetwork
T̂ set of estimated tight nodes
Ŝ set of estimated scattered nodes
|T̂ | number of estimated tight nodes
ẑ ∈ [K̃]|T̂ | estimated community label
C ∈ {0, 1}N×N co-membership matrix
C̄ ∈ (0, 1)N×N the averaged co-membership matrix
α tightness hyperparameter

A.2. Useful Lemmas

The following Lemma A.1 identifies an approximate low-rank structure for the sub-matrix P, which supports the use of
spectral clustering in our problem. We provide the detailed proofs in Appendix B.1.

Lemma A.1 (Structure of probability matrix). There exists R ∈ RK×K with ∥Rk· − Rl·∥ =
√
n−1
k + n−1

l for all

1 ≤ k < l ≤ K, such that the eigen-decomposition of P̃ can be represented by (ΘR)W(ΘR)⊤. Furthermore, we can
decompose P by

P =

(
ΘR
0m×K

)
W

(
R⊤Θ⊤ 0K×m

)
+D, (3)

with ∥D∥ ≤ Cξ
√
m(m+ n), where C is a constant.

Below are three more useful lemmas in asserting the consistency of the spectral clustering algorithm. Lemma A.2 is a Wedin
sinΘ theorem, addressing the error in right singular subspace when the matrix is perturbed. Readers can refer to Lemma 7 in
(Chen & Lei, 2018) for a formal proof.
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Lemma A.2 (Wedin sinΘ theorem). Let M, M̂ be two matrices of the same dimension, and U, Û be two n×K orthonormal
matrices corresponding to the top K right singular vectors respectively. Then there exists a K ×K orthonormal matrix Q
such that

∥Û−UQ∥F ≤ 2
√
2K∥M̂−M∥
σK(M)

.

Lemma A.3 is a graph concentration inequality, asserting the error of ∥A−P∥. This result firstly appeared as Theorem 5.2
in (Lei & Rinaldo, 2015) in the literature of network analysis. Here we are adopting a direct corollary where matrices are
rectangular.

Lemma A.3 (Graph concentration inequality). Let A be the adjacency matrix generated from a (corrupted) block model
with E [A] = P and ρn := maxij Pij ≥ c log n/n for a positive constant c. Let A(l) be an arbitrary subset of rows of A
and P(l) be the corresponding submatrix of P. We have, for some constant C,

P
(
∥A−P∥ ≤ C

√
NρN

)
≥ 1− 1

2N
.

Lemma A.4 asserts that an approximate k-means solution yields an approximately reliable clustering result. It is the same as
Lemma 5.3 (Lei & Rinaldo, 2015) and Lemma 8 (Chen & Lei, 2018).

Lemma A.4 (Approximate k-means error bound). Let Û and U be two n×K matrices. Let δ be the minimum distance
between two distinct rows of U, and Θ be the membership vector given by clustering the rows of U. Let Θ̂ be the output of
a k-means clustering algorithm on Û, with objective value no larger than a constant factor of the global optimum. Assume
that ∥Û−U∥F ≤ Cnδ for some small enough constant C. Then Θ̂ agrees with Θ on all but C−1∥Û−U∥F δ−1 nodes
after an appropriate label permutation.

B. Proof of Theoretical Guarantees
In Appendix B, we first present the proof of Lemma 4.5 in Appendix B.1. Then, we provide the proof of Theorem 4.6 in
Appendices B.2, respectively.

B.1. Proof of Lemma 4.5

Proof. To prove the claims in Lemma 4.5, we first provide detailed proofs for Lemma A.1. By the definition of a K-
community stochastic block model, each entry of P̃ satisfies P̃ij = Bzizj . Therefore, we find P̃ = ΘBΘ⊤ is of rank K.
Let ∆ = diag

(√
n1, . . . ,

√
nK

)
, then

P̃ = ΘBΘ⊤ = Θ∆−1(∆B∆)∆−1Θ⊤,

where Θ∆−1 already has orthonormal column vectors. Let ŨWŨ⊤ be the eigen-decomposition of ∆B∆. As a result,
orthonormal n×K matrix R := ∆−1Ũ serves as the eigenvector matrix of P̃. Taking

D =

(
0n×n D1

D⊤
1 D2

)
,

we can arrive at the probability matrix decomposition (3). Moreover, ∥D∥ ≤ Cξ
√
m(m+ n) directly follows from that

ξ = max{∥D1∥∞, ∥D2∥∞}.

To this end, we can use the conclusions in Lemma A.1 to demonstrate Lemma 4.5. Note that Lemma 4.5 is a direct corollary
of Lemma A.1 as long as firstly using |λK(P )− λK(P −D)| ≤ ∥D∥ and then there exists constant C1 and C2 such that

λK(P )

λmax(D)
≥ λmin(W)− λmax(D)

C1ξ
√
m(m+ n)

≥ C2
nρn

ξ
√
m(m+ n)

− 1 = Ω (
√
nρn) .
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B.2. Proof of Theorem 4.6

Proof. Throughout this proof, the probability, the expectation and the variance are all conditioned on the event E ={
∥A−P∥ ≤ C

√
NρN

}
which happens with probability at least 1− 1/(2N) by Lemma A.3.

During each repetition of our sub-sampling procedure, a spectral clustering algorithm is applied to a sub-rectangle matrix
A(l) ∈ {0, 1}Ñ×N with only Ñ randomly selected rows. The first step is to extract the top-K right singular vectors
Û(l) ∈ RN×K of A(l). According to Lemma A.1, P = P1 +D is decomposed into two components where the top-K
right singular vectors

U =

(
ΘR
0m×K

)
of P1 encodes all membership information of tight nodes. We are able to effectively control the discrepancy between U and
Û(l) as shown below. Lemma A.2 yields,

min
Q∈OK

∥Û(l) −UQ∥F ≤ 2
√
2K

σK(P
(l)
1 )

∥∥∥A(l) −P
(l)
1

∥∥∥
≤ 2C

√
2K

nρn

(∥∥∥A(l) −P(l)
∥∥∥+

∥∥∥P(l) −P
(l)
1

∥∥∥) , (4)

where we used σK(P
(l)
1 ) ≥ Cnρn for some constant C > 0. Subsequently, Lemma A.1 helps to bound∥∥∥P(l) −P

(l)
1

∥∥∥ ≤ ∥D∥ ≤ Cξ
√
m(m+ n).

Conditioned on event E ,
∥A(l) −P(l)∥ ≤ ∥A−P∥ ≤ C

√
(m+ n)(ρn + ξ).

Equipped with these two upper bounds, continue from equation 4 to find a constant C1 such that

min
Q∈OK

∥Û(l) −UQ∥F ≤ C1

√
K

√
nρn

,

where we already adopt ξ = O(
√
ρn/m) and m ≤ n. To this end, a clustering problem is posted on the row vectors of Û(l),

min
∥∥∥H(l)R(l) − Û(l)

∥∥∥2
F
, s.t.H(l) ∈ MN,K ,R

(l) ∈ RK×K ,

where MN,K denote a set of membership matrix. Although solving an exact solution is NP-hard in nature, it suffices to
obtain an (1 + ϵ)-approximate solution (Ĥ(l), X̂(l)),∥∥∥Ĥ(l)X̂(l) − Û(l)

∥∥∥2
F
≤ (1 + ϵ)min

H,R

∥∥∥H(l)R(l) − Û(l)
∥∥∥2
F
,

which is guaranteed to be feasible by (Kumar et al., 2004). Based on Ĥ(l), define the estimated membership matrix for tight
nodes as Θ̂(l) = (Ĥ

(l)
ij )1≤i,j≤n. Lastly, applying Lemma A.4, we know that the K-means clustering algorithm misclusters

no more than C/ρn nodes, i.e.
1

n

n∑
i=1

1(Θi ̸= Θ̂
(l)
i ) ≤ C

nρn
.

These estimated labels give reliable co-membership matrix estimates Ĉ(l)
ij = 1(Θ̂

(l)
i = Θ̂

(l)
j ) whose error is bounded by

2

n(n− 1)

∑
1≤i<j≤n

∣∣∣Cij − Ĉ
(l)
ij

∣∣∣ ≤ 1−
(
1− C

nρn

)2

= O

(
1

nρn

)
.

This bound holds for any sub-sampled adjacency matrix A(l). Therefore, while averaging over all repetitions

C̄ij =
1

L

L∑
l=1

Ĉ
(l)
ij ,
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the error of the averaged co-membership matrix estimator is given by

2

n(n− 1)

∑
1≤i<j≤n

∣∣Cij − C̄ij

∣∣
≤ 1

L

L∑
l=1

2

n(n− 1)

∑
1≤i<j≤n

∣∣∣Cij − Ĉ
(l)
ij

∣∣∣ = O

(
1

nρn

)
,

therefore yielding the first assertion of Theorem 4.6. For the second assertion on conditional variance, we need to condition
on the event E ,

2

n(n− 1)

∑
1≤i<j≤n

Var(C̄ij | E)

=
2

Ln(n− 1)

∑
1≤i<j≤n

Var(Ĉ
(1)
ij | E)

=
2

Ln(n− 1)

∑
1≤i<j≤n

E
{[

Ĉ
(1)
ij − E(Ĉ(1)

ij | E)
]2

|E
}

≤ 4

Ln(n− 1)

∑
1≤i<j≤n

E
{∣∣∣Ĉ(1)

ij − E(Ĉ(1)
ij | E)

∣∣∣ |E}
≤ 8

Ln(n− 1)

∑
1≤i<j≤n

E
[∣∣∣Ĉ(1)

ij −Cij

∣∣∣ | E] = O

(
1

Lnρn

)
.

C. Additional Experimental Results
In this section, we first conduct extensive synthetic studies on hyperparameter selection (see in Appendix C.1). Subsequently,
we evaluate the performance of the TCD algorithm for networks generated from GSBM with ER-type and HetD-type
scattered nodes. Additionally, we investigate the DCSBM in Appendix C.1. Finally, further results on real data analysis are
presented in Appendix C.2.

C.1. Experiments on Synthetic Datasets

We perform a sensitivity analysis on hyperparameters, including subsample size Ñ , sub-sampling times L, and the tightness
parameter α. The experimental settings align with Scenario 1, keeping the entire network size fixed at N = 1, 000 while
varying the corresponding hyperparameter. The results are shown in Figure 5. Moreover, we also examine the estimation
accuracy of the cross-validation method when applied to determine the number of clusters K. The identification results are
displayed in Figure 6.

Subsequently, we evaluate the performance of the proposed TCD algorithm concerning ER-type and HetD-type scattered
nodes. In the case of ER-type scattered nodes, we set P (aij = 1) = ζ = 0.1 for i ∈ S. For HetD-type scattered nodes,
we define P (aij = 1) to follow a uniform distribution with U(0, ζimax), where i ∈ S. Additionally, we specify (ζimax) as
ζimax = 0.1 + 0.8(i− 1)/(m− 1). The other parameter settings are kept the same as Scenario 1. Then, we increase the
number of scattered nodes m from 20 to 200, while keeping the total number of network nodes fixed at N = 1, 000. The
simulation results are shown in Figure 7. The results demonstrate that the proposed TCD algorithm can effectively identify
both ER-type and HetD-type scattered nodes, showcasing superior performance when compared with other approaches.

Additionally, to visually demonstrate the phenomenon of scattered nodes being randomly distributed across any community,
we present the averaged co-membership matrix obtained by generating 100 sub-adjacency matrices and applying spectral
clustering. The parameter settings align with those in the manuscript’s example section. The experimental results are
illustrated in Figure 8.

Based on existing literature (Lei & Rinaldo, 2015; Jin, 2015), the TCD algorithm can be easily extended to the degree-
corrected stochastic block model (DCSBM) by modifying Step 1.2 as follows:
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Figure 5. The performance of TCD under varying hyperparameters is presented. In the first column, results are displayed for varying
the proportion of sub-sampling size, i.e., Ñ = Nprop, while keeping N fixed at 1, 000. The second column illustrates the impact of
sub-sampling times L, which ranges from 10 to 250. The third column shows the variation in the tightness hyperparameter in TCD,
ranging from 0.05 to 0.5.

Figure 6. Estimating the number of clusters using a cross-validation approach (Chen & Lei, 2018). The x-axis represents the true
underlying number of clusters, while the y-axis illustrates the results obtained through the cross-validation method. Error bars, derived
from 100 repetitions, are also incorporated to provide a measure of variability in the estimation process.
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Figure 7. Simulation results for networks generated from GSBM with ER-type scattered nodes (first column) and GSBM with HetD-type
scattered nodes (second column) are presented. The performance of each algorithm is further compared under DCSBM (third column).

Step 1.2. Intermediate community detection: Perform SVD on Ã(l) to acquire its leading K̃ right singular vectors.
Normalize each row of these singular vectors to unit length. Subsequently, employ k-means clustering on the rows of the
normalized singular vectors to estimate z̃(l).

Furthermore, the performance under DCSBM is further investigated. Consider a DCSBM for tight nodes, where each
tight node allows for a specific connectivity strength. Let ψi denote the degree parameter. For each i, j ∈ T , P (aij =
1) = ψiBzizjψj . We then investigate the performance of TCD algorithm in a DCSBM. Specifically, under the settings in
Scenario 1, we fix N = 1, 000, m = 0.1N , p = 0.3, q = 0.12, and ζmax = 0.2. According to (Zhao et al., 2012), we define
P (ψi = δx) = P (ψi = x) = 1/2, with x = 2/(δ + 1). We set δ = 2 in this experiment. The other parameter settings
remain the same as in Scenario 1, while the network size varies from 1,000 to 2,000. The simulation results are shown in the
third columns of Figure 7.

C.2. Experiments on Real Data Analysis

Here, we present more detailed results from the real data analysis, as shown in Tables 4-6 and Figure 9. Specifically, Tables
4 and 5 show the performance of each compared algorithm on simi-real data with scattered nodes, with sizes one-sixth
and one-half of the original node size, respectively. Additionally, Figure 9 shows the identification results by TCD in the
Covid-19 protein-protein interaction network, and Table 6 presents the nodes in each community, along with details of the
scattered nodes.

18



Network Tight Community Detection

Figure 8. Averaged co-membership matrix for GSBM with ER (first column), IER (second column), and HetD (third column) scattered
nodes, with 100 repetition results.

Table 4. Results (mean ± std) on benchmark datasets with scattered nodes scaled to one-sixth of original network size. NA indicates
non-applicable results.

Dataset Metric (%) TCD CBNs RADAR Anomalous ONE PRN

Football F-score ↑ 77.3 ± 2.6 21.9± 4.1 27.6± 3.9 12.4± 2.9 14.1± 3.2 16.9± 5.3
misclustering rate ↓ 11.6 ± 2.3 15.2± 2.7 15.4± 3.0 17.7± 2.9 17.1± 3.0 38.3± 7.9

Polbooks F-score ↑ 60.6 ± 4.1 20.2± 4.9 34.5± 4.2 13.9± 3.9 13.3± 3.3 23.7± 6.9
misclustering rate ↓ 28.0± 2.9 31.3± 4.2 25.0± 3.6 26.2± 4.1 25.2± 3.9 45.9± 9.1

Polblogs F-score ↑ 48.7 ± 3.2 12.4± 3.0 15.4± 3.5 11.1± 2.9 15.7± 3.6 6.41± 2.1
misclustering rate ↓ 19.9 ± 3.2 39.1± 3.5 31.6± 4.2 34.9± 3.9 32.3± 4.5 36.2± 6.2

BlogCata F-score ↑ 33.6 ± 3.1 18.2± 3.9 13.1± 2.9 15.2± 3.1 13.2± 3.2 1.70± 0.15
misclustering rate ↓ 34.2 ± 3.7 68.2± 4.2 46.9± 4.2 40.1± 5.2 45.9± 3.9 66.2± 7.9

Dataset Metric (%) HK Extraction ECoHeN HCD RCD

Football F-score ↑ 19.5± 5.8 35.6± 4.1 14.6± 20.7 NA NA
misclustering rate ↓ 38.3± 7.5 43.2± 3.7 37.0± 14.1 52.4± 3.1 64.4± 3.7

Polbooks F-score ↑ 17.4± 6.9 32.6± 8.9 1.8± 3.0 NA NA
misclustering rate ↓ 53.0± 23.1 53.4± 6.1 45.5± 10.3 52.0± 5.2 23.8 ± 2.7

Polblogs F-score ↑ 16.1± 6.9 17.3± 1.4 3.6± 1.9 NA NA
misclustering rate ↓ 39.2± 17.4 56.1± 1.3 50.3± 1.5 21.8± 0.5 30.3± 4.2

BlogCata F-score ↑ 12.4± 3.6 11.3± 2.4 0.1± 0.2 NA NA
misclustering rate ↓ 67.4± 28.6 69.2± 9.8 82.3± 0.0 52.1± 7.2 61.3± 4.2
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Figure 9. Clustering results for the COVID-19 protein-protein interaction network. The scattered nodes are labeled in red, while the tight
nodes are partitioned into two clusters indicated by yellow and blue, respectively.
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Table 5. Results (mean ± std) on benchmark datasets with scattered nodes scaled to one-half of original network size. NA indicates
non-applicable results.

Dataset Metric (%) TCD CBNs RADAR Anomalous ONE PRN

Football F-score ↑ 82.9 ± 2.3 14.8± 3.1 28.7± 3.3 16.7± 3.2 17.9± 3.2 24.2± 3.8
misclustering rate ↓ 10.4 ± 2.2 18.8± 2.9 13.5± 3.5 21.0± 3.7 18.4± 2.9 39.7± 6.1

Polbooks F-score ↑ 75.0 ± 3.3 9.06± 2.9 20.8± 3.3 13.5± 3.2 17.4± 3.2 35.1± 8.3
misclustering rate ↓ 34.3± 3.7 36.6± 4.7 25.6± 3.8 26.4± 3.5 28.2± 4.4 47.3± 6.5

Polblogs F-score ↑ 55.2 ± 3.1 10.7± 2.6 18.8± 3.1 14.9± 2.9 19.0± 3.2 16.7± 4.4
misclustering rate ↓ 13.3 ± 2.6 34.9± 4.3 37.7± 3.9 38.9± 4.2 37.0± 4.1 39.2± 4.5

BlogCata F-score ↑ 50.4 ± 3.5 20.6± 4.2 16.2± 4.8 16.4± 4.6 17.6± 4.1 3.69± 0.3
misclustering rate ↓ 37.3 ± 3.9 62.2± 5.2 45.9± 4.6 46.1± 4.9 42.2± 5.2 57.3± 6.4

Dataset Metric (%) HK Extraction ECoHeN HCD RCD

Football F-score ↑ 30.6± 4.6 41.2± 5.1 3.0± 3.2 NA NA
misclustering rate ↓ 43.3± 6.3 45.8± 4.9 53.7± 14.3 60.5± 2.1 64.2± 4.3

Polbooks F-score ↑ 37.3± 8.4 56.2± 8.9 5.2± 10.3 NA NA
misclustering rate ↓ 54.6± 11.8 53.3± 7.9 48.7± 8.3 60.9± 5.1 24.4 ± 9.8

Polblogs F-score ↑ 34.5± 20.1 25.7± 0.8 1.4± 1.0 NA NA
misclustering rate ↓ 42.9± 8.0 57.0± 1.5 50.7± 1.8 35.1± 8.8 26.9± 6.8

BlogCata F-score ↑ 8.38± 5.9 19.8± 6.2 0.5± 0.4 NA NA
misclustering rate ↓ 70.6± 29.4 73.2± 16.3 82.3± 0.0 59.2± 9.1 66.5± 8.5
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Network Tight Community Detection

Figure 10. Framework of parallel tight community detection (PTCD) procedure.

D. Scalability of the Tight Community Detection Algorithm
In this section, we first discuss the computational complexity of TCD algorithm. Specifically, Step 1.1 involves a network
sub-sampling procedure, which requires O(N) computation. In Step 1.2 and Step 4, we employed a fast version of spectral
clustering (Feng et al., 2018; Martin et al., 2018), which only requires a computational effort of O(N2). Step 3 involves
a depth-first search algorithm, which requires O(N + |E|) computation, with |E| representing the number of edges, and
typically, |E| ≪ N2. Consequently, the overall computational time for our algorithm is O(N2).

Notably, the TCD algorithm is ready for parallel computing, making computational tasks more feasible for large-scale data
analysis. We introduce the parallel framework for conducting TCD in parallel, as illustrated in Figure 10.

Moreover, for large-scale networks, to tackle memory scalability issues, we have developed a strategy that calculates the
elements of C̄ sequentially as required. Specifically, C̄ is only used in Step 3 of our algorithm, where we use depth-first
search (DFS) to identify connected components in C̄. DFS works in a manner similar to a random walk, requiring only the
selected node’s connectivity information in each step of the walk. Thus, we only need to store the connectivity information
of the currently explored node in each step of the walk, effectively reducing the space complexity from O(N2) to O(N).
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