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Abstract
Much of the causal discovery literature prioritises
guaranteeing the identifiability of causal direc-
tion in statistical models. For structures within
a Markov equivalence class, this requires strong
assumptions which may not hold in real-world
datasets, ultimately limiting the usability of these
methods. Building on previous attempts, we show
how to incorporate causal assumptions within the
Bayesian framework. Identifying causal direction
then becomes a Bayesian model selection prob-
lem. This enables us to construct models with real-
istic assumptions, and consequently allows for the
differentiation between Markov equivalent causal
structures. We analyse why Bayesian model selec-
tion works in situations where methods based on
maximum likelihood fail. To demonstrate our ap-
proach, we construct a Bayesian non-parametric
model that can flexibly model the joint distribu-
tion. We then outperform previous methods on a
wide range of benchmark datasets with varying
data generating assumptions.

1. Introduction
Many fields use statistical models to predict the response
to actions (interventions), e.g. health outcomes after treat-
ment. Such predictions can not be made based on corre-
lations gained from purely observational data, but require
access to causal structure (Pearl, 2009). In machine learn-
ing, causal structure also helps in many prediction tasks
ranging from domain adaptation (Wang and Veitch), robust-
ness (Bühlmann, 2020), and generalisation (Scherrer et al.,
2022). Conditional independencies in data can be used to
infer causal structures, but only up to a Markov equivalence
class (MEC) (app. A) (Pearl, 2009). Further assumptions
are required to completely recover a causal structure. In this
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paper, we aim to identify causal direction within a Markov
equivalence class. Hence, for simplicity, we focus solely on
distinguishing X→Y and X←Y1.

In the bivariate case, much of the causal literature assumes
restrictions on a model, which when they match reality,
guarantee identifiabilility of the causal direction. For exam-
ple, for data generated by an additive noise model (ANM),
an ANM model achieves a higher likelihood in the causal
direction, as the anti-causal direction violates the ANM
assumptions (Hoyer et al., 2008; Zhang et al., 2015). A
method’s overall usefulness is then empirically verified
on a wider array of data generating distributions, includ-
ing datasets where the rigid restrictions of models such as
ANMs hamper their performance, as the models are mis-
specified. Moreover, in these settings, causal identifiability
is no longer guaranteed. The goal of our work is to investi-
gate whether causality can be identified in models without
hard restrictions, reducing misspecification, even if we lose
strict guarantees of identifiability.

We replace hard restrictions on models with softer ones en-
coded by Bayesian priors. Each causal direction is treated
as a separate Bayesian model, after which causal discov-
ery can be formulated as Bayesian model selection. The
causal models encode the independent causal mechanisms
(ICM) assumption in their respective causal directions. We
show that if the anti-causal factorisation violates the ICM as-
sumption, Bayesian model selection can discern the causal
direction. This is true even for model classes whose flex-
ibility prevents likelihood based discrimination. We then
analyse the probability of error of the method, both when
the model is correct and when it is misspecified. Our work
shows that when faced with datasets for which no restricting
assumptions can reasonably be made, our framework allows
for use of an appropriate model that can better enable iden-
tification of causal direction, relative to a more restricted
model with inappropriate assumptions.

To demonstrate the usefulness of our approach, we use a
Gaussian process latent variable model (GPLVM) (Titsias
and Lawrence, 2010), which has the ability to model a wide
range of densities. We test this on a range of benchmark
datasets with various data generating assumptions. We also
compare against previously proposed methods, both those

1For clarity, we colour the cause blue throughout.
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Figure 1: Toy figure with datasets on the x axis and values of densities on the y axis (a) With a sufficiently flexible model,
maximising the likelihood for each dataset will give the same value for both causal models in Section 2.3. (b) This has been
solved by making restrictions on the datasets they can model. (c) Bayesian model selection retains the ability to identify
causal direction, while allowing flexibility. This may lead to some probability of error (overlap).

which rely on strict restrictions, and those which are more
flexible, but lack formal identifiability guarantees. Whereas
most methods perform well on the types of datasets where
their assumptions hold, we find that our method performs
well across all datasets. Our findings show that causal
discovery is possible without losing the ability to model
datasets well, a property that is desirable in real world cases.

2. Preliminaries & Assumptions
In this paper, we focus on the problem of bivariate causal
discovery, under the assumption that there are no hidden
confounders. We first introduce notation.

Throughout, given a space Z , we write P(Z) for the space
of probability measures over Z . Similarly, given a pair of
spaces Z,Z ′, we write K(Z,Z ′) for the space of Markov
kernels from Z to Z ′. In all models considered, individ-
ual bivariate observations take the form (x, y) ∈ X × Y ,
where X ,Y are (potentially distinct) spaces. We will view
(x, y) as realisations of random variables, using capital let-
ters (e.g. P ) to denote the associated probability measure
in P(X × Y) (which we will refer to as a ‘data-generating
process’), and lower-case letters (e.g. p) to denote the associ-
ated probability density with respect to a suitable reference
measure. Our ‘datasets’ will then be modelled asN ∈ N iid
observations from this probability measure, which we abbre-
viate as DN =

(
xN ,yN

)
= {(xi, yi) : i ∈ [N ]}. Our as-

sumption is that our data-generating process admits a causal
interpretation, whereby either i) X causes Y (X→Y ), or
ii) Y causes X (X ← Y). Our goal is to then determine
which of these causal directions underlies the ‘true’ data-
generating process, based on our observed dataset.

2.1. Data Generation through Structural Causal Models

We can express causal relationships by a Structural Causal
Model (SCM), which describes the hierarchical ordering
of variable generation from causes to effects (Pearl, 2009).
Each SCM can be represented as a Directed Acyclic Graph
(DAG) with a vertex for each variable. We denote the par-
ents of a vertex j in a DAG G as paG(j). In our bivariate

setting, the causal direction X→Y corresponds to a data-
generating process of the form

Xi := fX
(
NX

i

)
, Yi := fY

(
Xi, N

Y
i

)
(1)

for i = 1, . . . , N , where fX and fY are determinis-
tic ‘generation functions’, and

{
NX

i : i ∈ [N ]
} iid∼ νX ,{

NY
i : i ∈ [N ]

} iid∼ νY are iid realisations of some mu-
tually independent ‘noise’ random variables. This natu-
rally induces a factorisation PX,Y (d(x, y)) = PX(dx) ·
PY |X(dy | x), which we term the ‘causal factorisation’ of
this SCM. By disintegration of measure, one can equally
factorise PX,Y (d(x, y)) = PY (dy) · PX|Y (dx | y), which
we term the ‘anti-causal factorisation’ of the same SCM.
The SCM for X←Y is analogously defined with the causal
factorisation being PY (dy) · PX|Y (dx | y).

2.2. Interventions and Independent Causal Mechanisms
(ICM)

An intervention on a variable is an action which alters its
value, generation function, or noise input, while leaving
those of all other variables unchanged. In the causal fac-
torisation, an intervention on a cause means that only the
distribution of the cause is changed, while the conditional
distribution of effect given cause remains unchanged. For
example, if our model assumes the causal direction X→Y ,
then an intervention on X can be achieved by changing
either fX or NX

i in Equation (1). Such an action changes
only changes one term in the causal factorisation PX(dx),
but will leave PY |X(dy | x) invariant. By contrast, the same
action will often induce a change in both terms of the anti-
causal factorisation, PY (dy) and PX|Y (dx | y). Given this
invariance, we thus say that the causal factorisation satis-
fies the Independent Causal Mechanisms (ICM) assumption
(Peters et al., 2017, ch. 2). The ICM assumption implies a
fundamental asymmetry for the impact of interventions on
different factorisations of the same joint distribution.

2.3. Causal Models

A causal model which encodes the ICM assumption should
directly specify the causal factorisation. Specifying terms
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of the causal factorisation ensures that parts of the model
remain well specified under interventions. Conversely, a
model which specifies the anti-causal factorisation will of-
ten find both of its components to be mismatched after an
intervention (Schölkopf et al., 2012). We define a causal
model in line with the ICM assumption.

Definition 2.1. A causal model is a tupleMG = (G, C,F),
where G is a DAG with vertex set V , and C is a set of condi-
tional distributions that specifies the causal factorisation

C =
∏
i∈V
Ci|paG(i) ⊂

∏
i∈V
K(XpaG(i) → Xi). (2)

Given a tuple of conditionals, one for each variable, P =
(Pi : i ∈ V) ∈ C, define δC : C → P(X × Y) as the map
that assembles P into the corresponding joint

δC(P )(dxV) =
∏
i∈V

Pi(dxi | xpaG(i)). (3)

Finally, define F as the set of induced joint distributions
F = {δC(P ) : P ∈ C}.

For example, MX→Y specifies C = CX × CY |X , with an
induced joint δC(PX , PY |X)(dx, dy) = PX(dx)PY |X(dy)
for PX ∈ CX , PY |X ∈ CY |X . Note that the mapping δC is
injective. Throughout, we work directly with distributions
for generality. In practice, the elements of C are constructed
as a parameterised family (though the parameter may in
principle be infinite-dimensional). When relevant, we de-
note the parameterisation by parameter spaces Φ and Θ for
X and Y respectively, as in Figure 2. To emphasise the
direction of the causal model, we will often appendMX→Y

andMX←Y to distributions and densities of interest.

We are interested in the case where the causal structure is
not known in advance and we seek to determine it from
data. In the case that both FX→Y and FX←Y are sufficiently
expressive such that there are few restrictions on which joint
distributions on X × Y can be learned (in principle), then
model selection based on maximum likelihood will fail to
identify causal direction, as it assigns equal scores to the
‘best’ model compatible with each causal direction (Zhang
et al., 2015). The notion of distribution-equivalence (Geiger
and Heckerman, 2002) helps to capture this principle.

Definition 2.2. Two causal models MX→Y =
(X→Y, CX→Y ,FX→Y ) and MX←Y =
(X←Y, CX←Y,FX←Y) are distribution-equivalent
if FX→Y = FX←Y. Equivalently, there exists a unique
translating bijection γ : CX→Y → CX←Y such that for any
P ∈ CX→Y , there holds an equality of (joint) measures
δCX→Y

(P ) = δCX←Y(γ(P )).

In short, for every (m, c) ∈ CX × CY |X , there exists
(m′, c′) ∈ CY × CX|Y such that m(dx) · c(dy | x) =
m′(dy) · c′(dx | y) as probability measures, and vice versa.

A solution to restore identifiability is to restrict CX→Y , CX←Y,
but this comes at the cost of not being able to learn some
distributions (Figure 1 (a,b), app. A.2), i.e. a loss in mod-
elling flexibility. Our aim in the following sections is to
allow for discovering causal relations, even with distribution-
equivalent models.

3. Related Work
One class of methods makes hard restrictions on the set
of distributions (C) which induce the causal factorisation.
For example, linear function with non-Gaussian noise
(LiNGAM) (Shimizu et al., 2006), non-linear functions with
additive noise (ANM) (Hoyer et al., 2008), and post non-
linear models (PNL) (Zhang and Hyvarinen, 2012), among
others (Immer et al., 2022). These restrictions can crudely
be thought of as controlling the complexity of F . Identi-
fiability is proven by showing that the more complex anti-
causal factorisation lies outside of the core model. Zhang
et al. (2015) showed that the likelihood can be used to iden-
tify the causal direction in these models (Figure 1(b)), but
if the dataset is generated by a model without these restric-
tions, it is possible for both causal directions to achieve
similar likelihoods (Zhang et al., 2015).

Another class of methods assumes more flexibility but try
and control a measure of complexity. Marx and Vreeken
(2019) (SLOPPY) build on previous non-identifiable meth-
ods (RECI (Blöbaum et al., 2018), QCCD (Tagasovska et al.,
2020)) and assume that the causal factorisation has been
generated by a model with fewer parameters than the anti-
causal factorisation. Balancing mean squared error along
with the number of parameters can then identify the causal
direction. However, measuring complexity by the number of
parameters can be parametrisation-dependent. Such concep-
tual problems are amplified in the setting of non-parametric
or over-parametrised models. Additionally, SLOPPY also
assumes low noise and additive noise. CGNN (Goudet et al.,
2018) forego strict identifiability and try to learn a causal
generative model of the data using neural networks. Their
methods works with small networks but with no clear way
of mitigating overfitting, their method easily achieves the
same score for both causal factorisations.

Other methods either try to i) directly measure the depen-
dence of the factorisation, based on the ICM principle, or
ii) measure the complexity of a proposed direction. CURE
(Sgouritsa et al., 2015) and IGCI (Daniusis et al., 2012)
try to measure the dependence of the factorisations. CDCI
(Duong and Nguyen, 2021), CDS (Fonollosa, 2019) and
KCDC (Mitrovic et al., 2018) try to measure the stability
of the conditional distributions under different input values,
arguing that the more stable conditional is more likely the
cause. Of the above, only IGCI has proven identifiability.
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We base our approach on Bayesian model selection, which
has automatic mechanisms of balancing model fit and com-
plexity. The prescribed procedure is straightforward ( Sec-
tion 4.1), and was first investigated in the 90s in the context
of finding Bayesian network structure (Heckerman et al.,
1995; 2006; Heckerman, 1995; Chickering, 2002; Geiger
and Heckerman, 2002). However, while we argue that
Bayesian model selection is helpful for causal discovery
within a Markov Equivalence Class (MEC), these early pa-
pers restricted their focus to finding network structure up
to an MEC. This is due to a focus on linear causal rela-
tionships, which is one key setting where Bayesian model
selection does not provide much benefit (see app. D.1 for a
discussion). Indeed, the wider benefits of Bayesian methods
to infer causality within an MEC has been touched upon in
MacKay (2003, ch. 35). Friedman and Nachman (2000) are
first to apply Bayesian model selection to do bivariate causal
discovery (i.e. within an MEC). They compare two Gaus-
sian process regression models, and attempt to determine
which variable should be used as the input (cause). However,
since this model was effectively an ANM, Bayesian model
selection provided little added value, since causal direction
is already identifiable by the likelihood alone (Zhang et al.,
2015) ( Section 2.3). A similar approach was used by Kur-
then and Enßlin (2019). Stegle et al. (2010) highlighted
these issues by noting that Friedman and Nachman (2000)
worked only due to model fit. Like us, they acknowledge the
larger benefit when C is not restricted. While their method
is similar to Bayesian model selection, it is heuristically
justified by Kolmogorov complexity (Janzing and Steudel,
2010) (see app. B); as such, the impact of both model and
prior on their procedure is unclear. This is explicit in our
work (Section 4.2, Section 4.3).

Our contributions follow in the path of Friedman and Nach-
man (2000) and Stegle et al. (2010). Specifically, we provide
a more complete view of why and under what conditions
Bayesian model selection can identify causal direction (Sec-
tion 4.2). Our work gives insight into the performance when
a chosen model correctly encodes the assumptions on a
dataset (Section 4.3), and when it does not (Section 4.4).

4. Bayesian Inference of Causal Direction
We explain how causal discovery can be viewed as a
Bayesian model selection problem, outlining the requisite
assumptions. We then give conditions under which Bayesian
model selection discriminates even distribution-equivalent
causal models. Correctness then depends on the exact as-
sumptions made in the model, and how well they match
reality. We analyse the case when the assumptions are cor-
rect, providing a statistical test that can be used to quantify
the probability of error inherent in the procedure. We also
provide analysis when the assumptions might be wrong.

4.1. Bayesian Model Selection for Causal Inference from
First Principles

The maximum likelihood approach outlined in Section 2.3
was restricted in its ability to simultaneously i) estimate
model parameters and ii) infer causal direction. The core
issue is that for richly-parameterised models, both causal
models can express distributions which explain the observed
data equally well. Bayesian inference provides a general
framework for inferring unknown quantities in statistical
models (Gelman et al., 2013; MacKay, 2003; Bernardo and
Smith, 2009) which offers solutions to this problem. In this
section, we will describe how Bayesian inference allows
us to directly infer our quantity of interest — the causal
direction — and the additional assumptions which need to
be specified in order for this approach to succeed.

Inferring causal direction can be seen as a Bayesian model
selection problem, where we seek to distinguish which
causal model (Section 2.3) is more likely to have gener-
ated a dataset. The evidence for each causal direction is
quantified in the posterior

P (MX→Y |D) =
P (D|MX→Y )P (MX→Y )

P (D)
. (4)

We can summarise the balance of evidence for both causal
directions with the log ratio:

log
P (MX→Y |D)
P (MX←Y|D)

= log
P (D|MX→Y )P (MX→Y )

P (D|MX←Y)P (MX←Y)
. (5)

Bayesian inference requires us to specify a prior on which
causal direction is more likely. To represent our lack of
specific knowledge, we set these prior probabilities to
be equal P (MX→Y ) = P (MX←Y) = 0.5. Thus, the
above log posterior ratio will determined only by the ra-
tio P (D|MX→Y )/P (D|MX←Y).

To find the ratio in Equation (5), we are required again to
specify prior measures, this time on C. We denote prior
over distributions by π (as opposed to distributions over
observations). This augments a causal model to form a
Bayesian Causal Model (BCM).
Definition 4.1. A Bayesian causal model (BCM) is a
causal modelMG equipped with a prior distribution over C,
that is a tuple (G, C,F , π), shortened to (MG , π).

While we will discuss the consequences of selecting a par-
ticular prior later, we can now already determine some of
its properties from our problem setting. A strict view of
the ICM assumption implies that information about the dis-
tribution on causes should not provide information on the
distribution of effect given cause. This implies that the prior
should be separable, with respect to the causal factorisation,
for both causal models.2. We formally define separability of

2Guo et al. (2022) provide the most direct argument for this,
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priors as follows.

Definition 4.2. Given a BCM (MG , π), we call prior π
separable with respect to C if it factorises as

∏
i∈V πi for

some (πi : i ∈ V) ∈
∏

i∈V P(Ci|paG(i)).

ForMX→Y , this amounts to saying that the prior factorises
as πX(PX)πY (PY |X) with PX ∈ CX and PY |X ∈ CY |X .
For parametrised models, our BCMs can be represented as
the graphical models in Figure 2.

Given a prior, any BCM (MG , π) naturally induces data
distribution, i.e. a probability measure over sequences of bi-
variate observations, P (· | M). This is found by integrating
the joint over the prior distribution.

Definition 4.3. The data distribution of (MG , π) is

P (dx, dy|MG) =
∫
P ′∈C

δC(P
′)(dx, dy|MG)π(dP ′|MG).

The density of this measure with respect to a suitable refer-
ence measure is known as the marginal likelihood.

Given a dataset, and under the above procedure, the most
likely modelM∗ can be chosen as the one with the higher
marginal likelihood

M∗ =

{
MX→Y if p(D|MX→Y ) > p(D|MX←Y)

MX←Y if p(D|MX→Y ) < p(D|MX←Y)
. (6)

This is straightforward Bayesian model selection, but ap-
plied to models that incorporate the causal assumptions of
Section 2.3. Following this procedure from first principles,
we see that Bayesian inference prescribes that we must
specify priors π. In specifying these priors, one implicitly
constrains the sets distributions which will be used to ex-
plain the observed data. This is consistent with earlier work,
where hard constraints on these sets are imposed to ensure
identifiability (Zhang et al., 2015). While these hard con-
straints can be represented in the priors by only assigning
non-zero mass to the desired regions, priors also allow the
specification of softer constraints (Figure 1(c)).

While Bayesian inference prescribes the procedure which
our method will follow, it is not clear this will produce cor-
rect answers. The performance of all Bayesian methods,
including ours, depends on how compatible our prior as-
sumptions are with reality. This is also the case for previous
causal discovery methods that provide identifiability guaran-
tees, since the assumptions made have to hold in reality. In

by proving a “causal de Finetti” theorem, based on the require-
ment that additional information on the cause mechanism does not
give information on the effect mechanism. Earlier, Janzing and
Schölkopf (2010) also argue that this must be the case, but from a
more heuristic argument based on Kolmogorov complexity. The
assumption has also been made in earlier methods (Stegle et al.,
2010; Sgouritsa et al., 2015; Heckerman, 1995).

Xi Yiϕ θ

i = 1, . . . , N

(a)

Xi Yiϕ θ

i = 1, . . . , N

(b)

Figure 2: Graphical models for parametrised Bayesian
causal models MX→Y and MX←Y. The causal direction
indicates the factorisation that encodes ICM.

the next sections, we investigate the influence of prior design
on the performance of Bayesian model selection. Specif-
ically, we will analyse conditions under which choices of
priors cannot imply the same data distributions for the two
BCMs, the guarantees we can get when the assumptions
made are correct, and when they are incorrect.

4.2. Asymmetry Between Dataset Densities of Bayesian
Causal Models

In Section 2.3 we discussed that the maximum likelihood
score is indifferent to causal direction when the causal mod-
els are distribution-equivalent. In general, we can expect
this to cause difficulties when the distributions specified (C)
are sufficiently flexible. By contrast, Bayesian inferences
prescribes using the marginal likelihood to guide model se-
lection. Here, we show that Bayesian model selection can be
sensitive to causal direction, even when using distribution-
equivalent causal models. This shows that the marginal
likelihood is capable of providing a preference between fac-
torisations in situations where maximum likelihood cannot.
While this result does not, by itself, imply that Bayesian
model selection will identify the correct causal direction
(which we discuss later), it does offer insight into the differ-
ence between the two approaches. All proofs are in app. C.

We will find a necessary condition under which marginal
likelihood cannot discriminate BCMs. If the condition does
not hold, the BCMs can surely be discerned. We thus define
a notion of equivalence, similar to Definition 2.2, but for
BCMs and marginal likelihoods.

Definition 4.4. Given two BCMs (MX→Y , πX→Y ),
(MX←Y, πX←Y), say they are Bayesian distribution-
equivalent if P (· | MX→Y ) = P (· | MX←Y), i.e. for all
N ∈ N, and for all

(
xN ,yN

)
∈ (X × Y)N , it holds that

p
(
xN ,yN | MX→Y

)
= p
(
xN ,yN | MX←Y

)
.

In the following, we show that if two causal models are
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not distribution-equivalent, then there exist Bayesian causal
models that are not Bayesian-distribution equivalent. This
demonstrates that if maximum likelihood can distinguish
causal models, then suitably constructed Bayesian causal
models can be differentiated using the marginal likelihood.

Proposition 4.5. Given two BCMs (MX→Y , πX→Y ),
(MX←Y, πX←Y), suppose that there exists a subset C∆ ⊂
CX→Y such that πX→Y (C∆) > 0, and δCX→Y

(C∆) ∩ FX←Y
is empty. Then the two Bayesian causal models are not
Bayesian distribution-equivalent.

We are ultimately interested in the case where the underlying
causal models are distribution-equivalent. To help with this,
we introduce separable-compatibility.

Definition 4.6. Let (MX→Y , πX→Y ), (MX←Y, πX←Y) be
two BCMs where the underlying causal models are
distribution-equivalent, denoting γ as the corresponding
translation mapping γ : CX→Y → CX←Y (in Definition 2.2).
Say the two are separable-compatible if: i) the push-
forward γ#πX→Y is separable with respect to CX←Y, ii)
γ−1#πX←Y is separable with respect to CX→Y .

Under the above definition, we see that the ICM assump-
tion is preserved in the anti-causal factorization. We now
show that if two Bayesian causal models are not separable-
compatible, they cannot be Bayesian distribution-equivalent.

Proposition 4.7. Given two BCMs (MX→Y , πX→Y ),
(MX←Y, πX←Y), where the underlying causal models are
distribution-equivalent, the two Bayesian causal models are
Bayesian distribution-equivalent only if they are separable-
compatible.

For parametrised models, we require that the parametrisa-
tion is injective for the same result to hold. Being separable-
compatible then implies that each BCM can factorise as
both graphical models in Figure 2.

Corollary 4.8. Given two injectively parametrised BCMs,
B1 := (MX→Y , πX→Y ) that factorises as Figure 2(a), and
B2 := (MX←Y, πX←Y) that factorises as Figure 2(b),
assume the underlying causal models are distribution-
equivalent. The two Bayesian causal models are Bayesian
distribution-equivalent only if: i) B1 also factorises as Fig-
ure 2 (b), ii) B2 also factorises as Figure 2 (a).

This result can be interpreted as follows: given models corre-
sponding to each causal direction, suppose that both models
are distribution-equivalent. Supposing that the priors for
each causal direction are specified in line with the ICM
assumption, one can compute the anti-causal factorisation
of each model, and see which prior it induces in the con-
verse model. If this induced prior is incompatible with the
ICM assumption (i.e. it is not separable with respect to the
anti-causal factorisation), then we can deduce that the two
models cannot be Bayesian distribution-equivalent. In short,

if ICM does not hold in the anti-causal factorisation, there
exist datasets for which the marginal likelihood of the two
models is not equal. This is a necessary condition for distin-
guishing causal directions. We analyse specific models in
app. D. Next, we analyse correctness and provide a test to
quantify the level overlap between the models.

4.3. Correctness of Bayesian Model Selection

Distinguishing between models is necessary but not suf-
ficient for correctly identifying the causal direction. Cor-
rectness depends on how well the assumptions made in the
method match reality. We follow the causal literature by ask-
ing when Bayesian model selection will identify the correct
causal direction, when the model is correctly specified. The
causal literature commonly aims to prove a strict notion of
identifiability, where the correct causal direction is always
be recovered as N→∞ when assumptions hold. Here, we
follow Guyon et al. (2019) in quantifying the probability of
making an error in identifying the causal direction.

The assumptions made in a Bayesian model are specified
by the model structure and prior densities. In this section,
we thus assume that our assumptions hold, and that the data
is generated from the chosen BCMs. Given the true causal
direction and the decision rule in Equation (6), we find the
probability of error by integrating over the region where the
wrong model would be selected, i.e.

P (E|MX→Y ) =

∫
RY

p(D|MX→Y )dD , (7)

where RY = {D | p(D|MX←Y) > p(D|MX→Y )}. The
total probability of error can be written as (app. E.3)

P (E) =
1

2
(1− TV[P (·|MX→Y ), P (·|MX←Y)]), (8)

where TV(P,Q) ∈ [0, 1] is the total variation distance. We
can see that the probability of making an error falls as the
distance between the data distributions increases. For iden-
tifiable models where the data distributions are completely
separate, TV = 1 and hence P (E) = 0, showing that the
same guarantees hold for Bayesian model selection as in
these strictly identifiable settings. For models without hard
restrictions, this probability of error may be positive (over-
lap in Figure 1(c)). However, this may still be preferable to
the error incurred by using an overly-restricted model.

Statistical Test of Asymmetry: We can estimate Equa-
tion (8) to find the error under the assumption that a model
is correct. This can be used as a statistical test for whether
causality can be discerned between two BCMs. The pro-
cedure is to sample multiple datasets from the two BCMs,
and classify the causal direction by using Equation (6). We
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(a) (b)

Figure 3: Samples of datasets from our chosen GPLVM model. ALL figures have the variable X on the x-axis and the
variable Y on the y-axis. (a) Shows 6 datasets sampled from GPLVM withMX→Y . (b) Shows 6 datasets sampled from
GPLVM withMX←Y. The figures show that the data distribution varies between the two Bayesian causal models.

do this here for our model choice: the GPLVM3. For 100
datasets of 1000 samples each, we get an approximate prob-
ability of error of 0 with a standard deviation upper bounded
by 0.05 (app. E). To aid intuition, we plot samples (Fig-
ure 3) from the GPLVM prior for the two causal assump-
tions. Here, we can see that while datasets fromMX→Y are
multimodal when conditioned on Y , datasets fromMX←Y
are multimodal when conditioned on X . This shows that
the likely datasets are strongly influenced by the causal as-
sumptions. When the GPLVM is a good description of the
data generating process, we thus expect to obtain the correct
causal direction with high probability.

4.4. Model Misspecification

The previous result relied on assuming that our model de-
scribes the data generating process well. When our models
deviate from the true data generating process, our estimate
for the probability of error is incorrect. In this case, we can
bound the difference between the true probability of error
and the one of our models. We denote the true data distri-
butions as Q(·|X→ Y ) and Q(·|X← Y), but we use our
models to decide on the causal direction, i.e. the decision
rule in Equation (6). We can then find a bound (app. E.4)

2|Q(E)−P (E)| ≤TV[Q(·|X→Y ), P (·|MX→Y )]+

TV[Q(·|X←Y), P (·|MX←Y)].

Thus, the difference between the model error and the true
error is bounded by the total variation between the true
and our model’s data distribution, i.e. when assumptions
are violated only mildly, we can still accurately estimate
the probability of error. However, large deviations from
the assumptions will result in an inaccurate probability of
error. We test the GPLVM under different data generating
assumptions in Section 6.1.

3We use an approximation to the marginal likelihood that we
describe later.

5. Model Choice
The practical advantage of our approach is the ability to
specify causal models with a large C, which may help with
reducing model misspecification. To use this advantage, we
choose to use the (conditional) GPLVM (Dutordoir et al.,
2018) as a prior. Densities for this model are constructed by
warping a Gaussian random (latent) variable by a non-linear
function (as in a VAE (Kingma and Welling, 2014)), with a
Gaussian Process (GP) prior. The latent and flexible prior
on f, g allows highly non-Gaussian and heteroskedastic
distributions for C. ForMX→Y , CX→Y takes the form

p(yi|xi, f,MX→Y ) =

∫
p(yi|f(xi, wi), xi, wi)p(wi)dwi ,

p(xi|g,MX→Y ) =

∫
p(xi|g(vi), vi)p(vi)dvi ,

where wi, vi are standard Gaussian distributed and priors
f |λ ∼ GP , g|λ ∼ GP , with λ collecting all hyperparam-
eters. The marginal likelihoods are found by integrating
over the priors of f, g. We use existing variational inference
schemes (Dutordoir et al., 2018; Lalchand et al., 2022) to ap-
proximate the marginal likelihoods ( app. F). This can cause
additional loss in performance compared to ideal Bayesian
model comparison (Blei et al., 2017). However, we found
our model to have a near zero probability of error with vari-
ational inference (Section 4.3). Due to the symmetry of the
problem, we assume the same prior on the cause, and effect
given cause in the two BCMs. We expand on integrating out
hyperparameters in app. G.

6. Experiments
Having laid out our method, we now test it on a mixture of
real and synthetic datasets. We test our method on bench-
mark datasets of a wide variety of dataset-generating distri-
butions, showcasing the benefits of removing model restric-
tions. These datasets are not sampled from our model, and
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Table 1: Performance comparisons. Numbers convey the ROC AUC metric (higher is better). Best results are in bold while
the best results from the baselines are underlined. Our method (GPLVM) outperforms competing methods. CDCI contains
multiple methods, we show the result of the best method on each dataset.

Methods CE-Cha CE-Multi CE-Net CE-Gauss CE-Tueb

LiNGAM 57.8 62.3 3.3 72.2 31.1
ANM 43.7 25.5 87.8 90.7 63.9
PNL 78.6 51.7 75.6 84.7 73.8
IGCI 55.6 77.8 57.4 16.0 63.1
RECI 59.0 94.7 66.0 71.0 70.5
SLOPPY 60.1 95.7 79.3 71.4 65.3
CGNN 76.2 94.7 86.3 89.3 76.6
GPI 71.5 73.8 88.1 90.2 70.6
CDCI (best method reported) 72.2 96.0 94.3 91.8 58.7

GPLVM 81.9 97.7 98.9 89.3 78.3

hence provide empirical verification of Section 4.4, i.e. that
good performance can be obtained with imperfect models.
The details of our method are in app. H.2.

Following previous work (Mooij et al., 2016), we use the
Area under the curve (AUC) of the Receiver Characteris-
tic Operator (ROC) metric, ensuring there is 50% of each
causal direction present to avoid directional bias. We nor-
malise all datasets following Reisach et al. (2021). Addi-
tional experiments are in app. I.

6.1. Real and Synthetic Data

We test the GPLVM under model misspecification on a wide
variety of data-generating mechanisms, not all generated
from known identifiable models, the full details of which
are in app. H.1. The results of our method (GPLVM) are
shown in Table 1, along with competing methods. Results
for SLOPPY were obtained by rerunning the author’s code
(app. H.3), results for CDCI are from (Duong and Nguyen,
2021), and the rest are taken from (Guyon et al., 2019).

Patterns to note here are that methods with restrictive as-
sumptions, in exchange for strict identifiability, do not per-
form very well. Methods with weaker assumptions and
without strict identifiability perform better. The poor per-
formance of LiNGAM (Shimizu et al., 2006) can be at-
tributed to the fact that few of the datasets contain linear
functions. ANM is seen to perform well when the datasets
contain additive noise (CE-Gauss). PNL is less restrictive
than ANM, which contributes to its better performance on
most datasets. Methods dependent on low noise, such as
IGCI, RECI, and SLOPPY only perform well on CE-Multi.
RECI and SLOPPY also rely on the additive noise assump-
tion, explaining their similar performance; we observe that
SLOPPY performs better in most cases due to its better com-
plexity control. More flexible methods based informally on

the ICM assumption such as CGNN, GPI, and CDCI tend
to perform better across all datasets. Although CGNN uses
neural networks, it requires additional datasets to tune its
complexity. GPI uses a similar model as us, but their infer-
ence method differs. CDCI is a class of methods and the
reported results are the best of 5 different methods. Our
approach, labelled GPLVM, performs well on datasets re-
gardless of the data generating assumptions, owing to its
ability to model flexible densities. These results demonstrate
the strength of our approach in identifying causal direction
for more realistic assumptions.

7. Conclusion
In this work, we show that causal discovery with Bayesian
model selection allows for removing restrictions on mod-
elling capability that may hamper performance on real world
datasets. Starting from first principles, we show how to view
causal discovery as Bayesian model selection, encoding im-
portant causal assumptions. We then show that Bayesian
model selection can infer causality in cases where flexi-
ble model choices inhibit likelihood based discovery. We
exhibit the reversibility of the ICM assumption as the key
underlying mechanism for this. We also discuss the cor-
rectness of our method and provide a statistical method for
quantifying the probability of error of chosen Bayesian pri-
ors. We show that under mild model misspecification, the
estimated probability of error can retain its accuracy. We
significantly outperform previous methods on a wide range
of data generating processes, owing to the removal of restric-
tions on the model. Such an approach is vital for expanding
the use of causal discovery to real world datasets. While we
provide a statistical test for quantifying cross-model overlap,
an open question is to find universal, practical conditions
for model equivalence. An avenue of further interest would
be to use deeper models (Damianou and Lawrence, 2013).

8



Bivariate Causal Discovery using Bayesian Model Selection

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Peter Bühlmann. Invariance, causality and robustness. Sta-
tistical Science, 35(3), 2020.

David Maxwell Chickering. Optimal structure identification
with greedy search. Journal of machine learning research,
3(Nov), 2002.

Andreas Damianou and Neil D Lawrence. Deep gaussian
processes. In Artificial intelligence and statistics. PMLR,
2013.

Povilas Daniusis, Dominik Janzing, Joris Mooij, Jakob
Zscheischler, Bastian Steudel, Kun Zhang, and Bernhard
Schölkopf. Inferring deterministic causal relations. arXiv
preprint arXiv:1203.3475, 2012.

Bao Duong and Thin Nguyen. Bivariate causal discovery
via conditional divergence. In First Conference on Causal
Learning and Reasoning, 2021.

Vincent Dutordoir, Hugh Salimbeni, James Hensman, and
Marc Deisenroth. Gaussian process conditional density
estimation. Advances in neural information processing
systems, 31, 2018.
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and kolmogorov complexity. arXiv preprint cs/0410002,
2004.

Peter D Grünwald. The minimum description length princi-
ple. MIT press, 2007.
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A. Background
A.1. Markov Equivalence Class

Definition A.1. Given a directed acyclic graph (DAG) G and a joint distribution P (X1, . . . , XD), the distribution is said to
satisfy the Markov property if for disjoint sets Xi,Xj ,Xk

Xi ⊥⊥G Xj |Xk =⇒ Xi ⊥⊥ Xj |Xk, (9)

where ⊥⊥G denotes d-separation in G and ⊥⊥ denotes independence (Peters et al., 2017).

There can be more than one distribution that is Markov with respect to a DAG G. If there exists a set of distributions
that is Markov with respect to two distinct DAGs, G1 and G2, then G1 and G2 are Markov equivalent. The set of all
Markov equivalent DAGs is called a Markov equivalence class. Verma and Pearl (1990) provide a graphical criteria for
determining whether two graphs are Markov equivalent. Simply stated, two DAGs are Markov equivalent if they share the
same adjacencies and the same colliders. This effectively states that the respective Markov distributions must obey the same
set of conditional independences.

A.2. Distribution-equivalence and causal identification

In this section, we expand on the relation between distribution-equivalence and causal identifiability. For readability, we
state the relevant definitions again.

A.2.1. DISTRIBUTION-EQUIVALENCE

For clarity, we reintroduce the definition of a causal model.

Definition A.2. A causal model is a tupleMG = (G, C,F), where G is a DAG with vertex set V , and C is a set of conditional
distributions

C =
∏
i∈V
Ci|paG(i) ⊂

∏
i∈V
K(XpaG(i) → Xi) (10)

that are Markov with respect to G. Given P = (Pi : i ∈ V) ∈ C, define δC : C → P(X × Y) as the map that assembles P
into the corresponding joint

δC(P )(dxV) =
∏
i∈V

Pi(dxi | xpaG(i)). (11)

Finally, define F as the set of induced joint distributions F = {δC(P ) : P ∈ C}.

We restate the definition of distribution-equivalence from (Geiger and Heckerman, 2002).

Definition A.3. Two causal models MX→Y = (X→Y, CX→Y ,FX→Y ) and MX←Y = (X←Y, CX←Y,FX←Y) are
distribution-equivalent if FX→Y = FX←Y. Equivalently, there exists a unique translating bijection γ : CX→Y → CX←Y such
that for any P ∈ CX→Y , there holds an equality of (joint) measures δCX→Y

(P ) = δCX←Y(γ(P )).

Distribution equivalence implies that for every (m, c) ∈ CX × CY |X , there exists (m′, c′) ∈ CY × CX|Y such that

m(dx) · c(dy | x) = m′(dy) · c′(dx | y).

Thus, given a dataset DN =
(
xN ,yN

)
(and for sufficiently large N ), maximum likelihood cannot distinguish distribution-

equivalent causal models. Hence, causal models that are distribution-equivalent, are not identifiable by maximum likelihood.
Note that Markov equivalent graphs need not imply distribution-equivalent causal models (Geiger and Heckerman, 2002).

A.2.2. CAUSAL IDENTIFIABILITY.

If two causal models,MX→Y andMX←Y, are not distribution equivalent, then there exists a (m, c) ∈ CX × CY |X such that
for all (m′, c′) ∈ CY × CX|Y ,

m(dx) · c(dy | x) ̸= m′(dy) · c′(dx | y).
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In this case, there exists some dataset DN such that (for large enough N ) maximum likelihood can be used to identify the
causal model.

We retain the traditional notion of causal identifiability if we force FX→Y and FX←Y to be disjoint.

Definition A.4. (adapted from Guyon et al. (2019, ch. 2)) Given two causal modelsMX→Y andMX←Y, the models are
said to be identifiable if for every (m, c) ∈ CX × CY |X , there is no (m′, c′) ∈ CY × CX|Y such that

m(dx) · c(dy | x) = m′(dy) · c′(dx | y).

The above definition ensures that the two causal models will never get the same maximum likelihood score, regardless of the
dataset.

An example of an identifiable causal model is when C is restricted to an additive noise form (Hoyer et al., 2008); these are
collectively called additive noise models (ANM). In this case, we can define the conditional family that induces FX→Y as

CY |X =
{
PθY |X : PθY |X (Y |X) = θY |X(X) +N, θY |X ∈ ΘY |X

}
,

where ΘY |X is an arbitrary space of non-linear functions, N is sampled from some arbitrary distribution and N ⊥⊥ Y . For
this choice of conditional distribution family, Hoyer et al. (2008, thm. 1) show that, unless some complicated conditions
hold, the backward factorisation of an ANM causal model is not expressible as an ANM model. Simply put, suppose CY |X
and CX|Y are additive non-linear models, then if P ∈ FX←Y, then generally P /∈ FX→Y . Hence, additive noise models are
identifiable.

Zhang et al. (2015) demonstrated that for a Structural Causal Model (SCM) assuming independence of noise on the effect
from the cause, certain restrictions on the SCM are necessary to ensure identifiability. If the restrictions imply that the
backward factorisation does not admit independence between the noise and the input, the causal model is identifiable. This
assumption on the conditional family for FX→Y can be written as

CY |X =
{
PθY |X : PθY |X (Y |X) = θY |X(X,N), Y ⊥⊥ N, θY |X ∈ ΘY |X

}
,

with an analogous family CX←Y, with the same parameter space, Θ := ΘY |X = ΘX|Y and the same noise distribution. The
causal models with this family are then identifiable if Θ is restricted appropriately such that P ∈ FX→Y =⇒ P /∈ FX←Y.
Zhang et al. (2015) also formally show that maximum likelihood can be used to identify such models.

B. Discussion on Kolmogorov Complexity, Causality and Bayes
B.1. Kolmogorov Complexity and Causality

The Kolmogorov complexity of a string x, denoted K(x), is the length of the shortest computer program that prints x and
halts (Grunwald and Vitányi, 2004). This computer program can be written in any universal language, the complexity will
change based on the universal language by a constant factor not depending on x. We can equally define a conditional version
of Kolmogorov complexity, given an input string y as the shortest program that generates x from y and halts — K(x|y). We
can then think of the Kolmogorov complexity of a function, for a given input x, as the shortest program that generates the
output f(x) up to a certain precision. The definition of the Kolmogorov complexity of a probability distribution follows.

Janzing and Schölkopf (2010) propose using the Kolmogorov complexity of factorisations of the joint to infer causality.
Given a causal graph X→ Y , they formalised the assumption of Independent Causal Mechanisms (ICM) in terms of
Kolmogorov complexity by stating that the algorithmic mutual information of the causal factorisation is zero,

I(PX : PY |X)
+
= 0 (12)

=⇒ K(PX , PY |X)
+
= K(PX) +K(PY |X) (13)

=⇒ K(PX) +K(PY |X)
+
≤ K(PY ) +K(PX|Y ) , (14)

where I(· : ·) is the algorithmic mutual information (Grunwald and Vitányi, 2004), Equation (13) follows by definition and
Equation (14) follows from the fact that the Kolmogorov complexity of the anti-causal factorisation cannot be less than that
of the joint. The addition symbol above the inequality relations symbolises the fact they only hold up to an additive constant.

13



Bivariate Causal Discovery using Bayesian Model Selection

Equation (14) suggests that causality can be inferred by finding the factorisation with the lowest Kolmogorov complexity.
However, in addition to the fact that Equation (14) requires access to the actual distributions, and that the relation only
holds up to unknown additive constants, the Kolmogorov complexity is also uncomputable (Grunwald and Vitányi, 2004).
Equation (14) has thus been used informally to try and infer causality from data (Goudet et al., 2018; Mitrovic et al., 2018;
Duong and Nguyen, 2021; Stegle et al., 2010). These methods only use Equation (14) as a philosophical foundation, and
Equation (14) does not necessarily provide guarantees that their method will return the correct causal direction.

B.2. Minimum Description Length relaxations

Recently there have been attempts to find an analogous inequality to Equation (14) using the Minimum Description length
(MDL) principle (Grünwald, 2007). First, MDL allows for reasoning about finite data that has to be used to estimate the
relevant probability distributions. Marx and Vreeken (2022) use relations between Shannon entropy and Kolmogorov
complexity to find a formulation in terms of the Kolmogorov complexity of the model and data given the probability
distribution (Marx and Vreeken, 2022)

KX→Y := K(PX) +K(x|PX) +K(PY |X) +K(y|x, PY |X). (15)

In expectation, above equation will equal the left hand side of the inequality Equation (14),

EP (x,y)[KX→Y ] = K(PX) +K(PY |X). (16)

Hence, the inequality in Equation (14) only holds in expectation for finite data. Second, MDL restricts the definition of
Kolmogorov complexity from the set of all programs to only those that can be computed, usually specified by a model class.
Marx and Vreeken (2022) further make the assumption of a model class,M, and assume that the data is generated from that
model class. In this case Equation (15) can be written as

LMX→Y
:= L(MX) + L(x|MX) + L(MY |X) + L(y|x,MY |X), (17)

where L is some encoding scheme. As such, the above approach can be considered as balancing the fit of the model
(encoding of data given the model) and the complexity of the model class (encoding of the model). However, here the exact
performance will depend on the encoding scheme used.

The Bayesian approach we have considered can be seen as a variant of the MDL principle. Here, the data given the model
and model are note encoded separately. Specifically, due to the fact that the marginal likelihood has to normalise over
datasets, it has an in built complexity penalty. It thus also balances model fit along with a complexity penalty. To see this
clearly, consider a modelM with parameter ρ and prior p(ρ|M), we can write the marginal likelihood as

p(x|M) = Ep(ρ|x,M)[p(x|ρ,M)]− KL[p(ρ|x,M)∥p(ρ|M)], (18)

where the first term is the model fit (expectation of the likelihood under the posterior), and the second term is the complexity
penalty (distance from the posterior to the prior). Our approach can thus also be justified by using MDL arguments, though
the MDL view does not provide insight into why the Bayesian approach works, nor into the consequences of the choice
of priors and models. The choice of the prior is subjective and equivalent to choosing a normalised luckiness function in
refined MDL (Grünwald, 2007).

C. Proofs
We re-state the propositions and provide their proofs in this section. We being by proving a lemma that will help us prove
the propositions.

Lemma C.1. Given two Bayesian causal models (MX→Y , πX→Y ) and (MX←Y, πX←Y), they are Bayesian distribution
equivalent precisely when

δCX→Y
#πX→Y = δCX←Y#πX←Y. (19)
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Proof. To prove this, we make use of the Hewitt-Savage representation theorem in Hewitt and Savage (1955, thm. 9.4).
From this, it holds that for each model, the data distribution is uniquely expressible in the form

P (· | MX→Y ) =

∫
P(X×Y)

µX→Y (dQ) ·Q⊗∞ , (20)

P (· | MX←Y) =

∫
P(X×Y)

µX←Y(dQ) ·Q⊗∞, (21)

where µX→Y and µX←Y are probability measures over the space P(X × Y), that is probability measures over the space of
probability measures over X × Y . In particular P (· | MX→Y ) = P (· | MX←Y) precisely when µX→Y = µX←Y (Hewitt and
Savage, 1955). By construction we can take µX→Y = δCX→Y

#πX→Y and µX←Y = δCX←Y#πX←Y. The result follows.

In words, the substance of this result is that in order to check the property of Bayesian distribution-equivalence, it suffices to
compare the marginal distribution of a single bivariate observation under each model. Note that this result is agnostic to the
model parametrisation and its identifiability, as it concerns only marginal data distributions.

Proposition C.2. Given two BCMs (MX→Y , πX→Y ), (MX←Y, πX←Y), suppose that there exists a subset C∆ ⊂ CX→Y

such that πX→Y (C∆) > 0, and δCX→Y
(C∆) ∩ FX←Y is empty. Then the two Bayesian causal models are not Bayesian

distribution-equivalent.

Proof. Let F∆ := δCX→Y
(C∆) noting that F∆ ∈ FX→Y but F∆ /∈ FX←Y. There is no choice of prior πX←Y such that

(δCX←Y#πX←Y)(F∆) = (δCX→Y
#πX→Y )(F∆). The result immediately follows from Lemma C.1.

Note that the same result as above holds if we assume that δCX→Y
(C∆) ∩ FX←Y is non-empty, but C∆ no mass under πX←Y.

In this respect, the effect of placing hard restrictions on the set of conditionals can be mimicked by suitable prior design.

For distribution-equivalent models, we show that the ICM assumption must also hold in the anti-causal factorisation for
the models to be Bayesian distribution-equivalent. We formalise the reversibility of the ICM assumption by introducing
separable-compatibility.

Definition C.3. Let (MX→Y , πX→Y ), (MX←Y, πX←Y) be two Bayesian causal models where the underlying causal models
are distribution-equivalent, denoting γ as the corresponding translation mapping γ : CX→Y → CX←Y (in Definition 2.2). Say
the two are separable-compatible if: 1) the pushforward γ#πX→Y is separable with respect to CX←Y, 2) γ−1#πX←Y is
separable with respect to CX→Y .

Proposition C.4. Fix two Bayesian causal models (MX→Y , πX→Y ), (MX←Y, πX←Y), where the underlying causal models
are distribution-equivalent. The two Bayesian causal models are Bayesian distribution-equivalent only if they are separable-
compatible.

Proof. Assume that (MX→Y , πX→Y ) and (MX←Y, πX←Y) are Bayesian distribution-equivalent. Take µX→Y = δCX→Y
#πX→Y

and µX←Y = δCX←Y#πX←Y. By Lemma C.1 µX→Y = µX←Y. Recalling thatMX→Y andMX←Y are distribution-equivalent,
the translation mapping γ satisfies δCX→Y

= δCX←Y ◦ γ, also that the mapping δCX←Y is injective. We can argue

δCX→Y
#πX→Y = δCX←Y#πX←Y,

(δCX←Y ◦ γ)#πX→Y = δCX←Y#πX←Y,

γ#πX→Y = πX←Y,

that is, the pushforward γ#πX→Y is equal to πX←Y, and hence is separable with respect to CX←Y. To conclude,
(MX→Y , πX→Y ) and (MX←Y, πX←Y) are separable-compatible.

The proof of Corollary 4.8 directly follows from the above. For parametrised models, we can define δ as the map from the
parameter space Θ× Φ to the space of probability measures P(X × Y). From the above proof, we can see that this will
require the parametrisation to be injective, that is, the map δ : Θ× Φ→ P(X × Y) to be injective.
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D. Analysis of Models
In Section 4.2, we showed that two models being separable-compatible is a necessary condition for the models to be Bayesian
distribution-equivalent. Thus, if the models are not separable-compatible, they will not be Bayesian distribution-equivalent.
In this section, we analyse specific models and argue that Bayesian causal models being separable-compatible is a strong
condition that does not hold very often.

D.1. Unnormalised linear Gaussian model

Xi Yi

a0

σ0

a1

σ1
i = 1, . . . , N

(a)

Xi Yi

a0 σ0 a1 σ1

i = 1, . . . , N

(b)

Xi Yi

a′0

σ′0

a′1

σ′1i = 1, . . . , N

(c)

Figure 4: Graphical models for: (a) The linear Gaussian causal modelMX→Y in Equation (22). (b) The anti-causal factori-
sation ofMX→Y in Equation (24). (c) The causal model forMX←Y, where ICM holds in the factorisation P (Y )P (X|Y ).

Here, we consider the Linear Gaussian model of the form

P (X|a0, σ0,MX→Y ) = N (a0, σ
2
0),

P (Y |X, a1, σ1,MX→Y ) = N (a1X,σ
2
1). (22)

We can compute the anti-causal factorisation of this model as

P (Y |a0, σ0, a1, σ1,MX→Y ) = N (a1a0, σ
2
1 + a21σ

2
0), (23)

P (X|Y, a0, σ0, a1, σ1,MX→Y ) = N
(
Σ

(
a1
σ2
1

Y +
a0
σ2
0

)
,Σ

)
(24)

with Σ =
σ2
0σ

2
1

σ2
1+σ2

0a
2
1

. We can see that while the causal factorisation factorises as Figure 4 (a), the anti-causal factorisation, in
general, factorises as Figure 4 (b). The only way for the linear Gaussian Bayesian causal models to be separable-compatible,
is if the priors on the parameters are chosen such that

a1a0 ⊥⊥ Σ

(
a1
σ2
1

Y +
a0
σ2
0

)
, (25)

σ2
1 + a21σ

2
0 ⊥⊥ Σ. (26)

If the above holds, we can reparametrise the anti-causal factorisation to factorise as in Figure 4 (c). Geiger and Heckerman
(2002) show that the only prior that satisfies this property is the normal-Wishart prior (the Wishart prior can be scaled by a
real function for the bivariate case, see Appendix of Geiger and Heckerman (2002)). This is known as the BGe model.

BGe Model: We illustrate how the prior in the BGe model gives the independence required in Equation (23). We only
show this for the mean and defer to the results in Geiger and Heckerman (2002) for the complete argument. In this model, a
Normal-Wishart prior is placed directly on the joint Gaussian

P

([
X
Y

])
= N

([
µ1

µ2

]
,

[
W11 W12

W21 W22

]−1)
. (27)

A normal-Wishart prior on µ is of the form P (µ) = N (η, γW−1). We can factorise the distribution for X and Y , for
example

P (X) = N
(
µ1, (W11 −W12W

−1
22 W21)

−1), (28)

P (Y |X) = N (µ2 −W−121 W22X +W21W
−1
22 µ1,W

−1
22 ). (29)

16



Bivariate Causal Discovery using Bayesian Model Selection

We show that the random variable µ1 is independent of µ2 +W21W
−1
22 µ1. Hence, separability of priors holds. To see this,

we can factorise the prior

p(µ1) = N (η1, (W11 −W12W
−1
22 W21)

−1),

p(µ2|µ1) = N (η2 −W21W
−1
22 (µ1 − η1),W−122 )

The implied distribution of µ′2 = µ2 +W21W
−1
22 µ1 is thus

pµ2|µ1
(µ2 +W21W

−1
22 µ1) = N (η2 +W21W

−1
22 η1,W

−1
22 ),

which is readily seen to be independent of µ1. The same can be shown for the Wishart distribution on W, i.e. that
W11 −W12W

−1
22 W21 is independent of W22 (Geiger and Heckerman, 2002).

Thus for any other choice of prior, if the prior matches the data generating distribution, we expect Bayesian model selection
to find the correct causal direction in this case. However, this requires knowledge of the true variance of the cause and effect
in this case. This matches known results in Loh and Bühlmann (2014). The above may not be desirable as simple scaling of
the data, changing the variance, may alter inference of the causal direction, see discussion in Reisach et al. (2021). We thus
suggest normalising all datasets which will render the method mean and scale invariant.

We can also visually verify that two Bayesian Linear Gaussian models imply different data distributions. We draw parameters
from priors — an inverse gamma for the scales. For ease of exposition, we consider the case where the means are 0. Of
course, the datasets will differ more if we do not include this constraint. For the same set of drawn parameters, we also
find the parameters of the joint for the causal modelMX←Y. We then plot the contours of the resulting joint distributions
as generated by the two causal models. This shows the likely joint distributions that a model generates. Figure 5 shows
contours of such Gaussians. This shows distributions with the same mean and variances for the cause and effect but with
different ground truth causal directions X→Y (red) and X←Y (blue). Figure 5 (a) shows 1 such joint, and (b) shows 10
such joints. From these figures, it is clear to see that the causal directions alone imply different joint distributions.

(a) (b)

Figure 5: Shows samples of joint distributions from the same priors on parameters of the cause and effect, but with different
causal models. Red shows the joint of the causal model X→Y and blue shows the joint of the causal model X←Y. The
contours are plotted for the same draw of parameters, showing that the different causal models will explain different joint
distributions well.

D.2. Normalised linear Gaussian model

As we suggest normalising the dataset in line with Reisach et al. (2021), we show here that for this model, if the same
prior is used for both causal models (as we recommend for our model choice), then the causal models will be Bayesian
distribution-equivalent.

We conduct the same procedure as above, but ensure that the marginal distributions of X and Y are normalised to N (0, 1).
Figure 6 (a) shows the contours of one such joint distribution for the two causal models X→Y and X←Y, while (b) shows
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10 such joints. We can see that the joints completely overlap for the two causal models, hence the Bayesian model selection
will have no opinion on the true causal model, and will convey this uncertainty.

We can show this mathematically by assuming the data samples has been generated as follows

Π(X|a0, σ0) = N (a0, σ
2
0), (30)

Π(Y |X, a1, σ1) = N (a1X,σ
2
1). (31)

On normalisation, we create two new variables X ′ and Y ′ that have a standard normal distribution. Accordingly, we set
X ′ = X−a0

σ0
and Y ′ = Y−a0a1√

σ2
1+σ2

0a
2
1

, with distributions

Π(X ′) = N (0, 1), (32)

Π(Y ′|X ′, a1, σ0, σ1) = N

(
σ0a1√

σ2
1 + σ2

0a
2
1

X ′,
σ2
1

σ2
1 + σ2

0a
2
1

)
. (33)

We can see that both Π(X ′) and Π(Y ′) are standard normal. The anti-causal factorisation in this case results in the exact
same distribution. Using simple algebra we get

Π(Y ′) = N (0, 1), (34)

Π(X ′|Y ′, a1, σ0, σ1) = N

(
σ0a1√

σ2
1 + σ2

0a
2
1

Y ′,
σ2
1

σ2
1 + σ2

0a
2
1

)
. (35)

For any prior on the parameters of Π(X ′)Π(Y ′ | X ′a1, σ0, σ1), the same prior on Π(Y ′)Π(X ′ | Y ′a1, σ0, σ1) will result in
the two causal models having the same data distribution. Hence, there exist priors such that the Bayesian causal models
constructed out of these causal models cannot be discriminated by the marginal likelihood. Note, we can clearly see here
that for any choice of priors, the two models are separable-compatible.

(a) (b)

Figure 6: Best viewed in colour. Joint contours for normalised cause and effect. The joint contours completely overlap for
the two causal models. Hence, both causal models will explain both datasets equally well.

D.3. Gaussian Process Latent variable model

We refer the reader to Rasmussen (2003) for an introduction to Gaussian processes. Here, we argue that the GPLVM
prior does not satisfy separability with respect to the anti-causal factorisation. We only condition on the model (MX→Y

orMX←Y) on the left hand side of equations to avoid clutter of notation. Note that the final data density (density implied
by the data distribution) is found by integrating over the hyperparameters as laid out in app. G. For clarity, we omit this
additional step from this section.
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ModelMX→Y : InMX→Y , x is modelled directly, and y is modelled conditional on x. For the estimation of x we have

p(x, fX ,wX |λX ,MX→Y ) = p(x|fX)p(fX |wX , λX)p(wX), (36)

where λX collects all the hyperparameters for modelling x. The data density can be found by integrating over the priors

p(x|λX ,MX→Y ) =

∫∫
p(x|fX)p(fX |wX , λX)p(wX)dfXdwX (37)

=

∫
p(x|wX , λX)p(wX)dwX , (38)

where p(x|wX , λX) = N (0,KλX
(wX ,w

′
X) + σ2

X), σ2
X is the likelihood noise hyperparameter and KλX

is the chosen
kernel with hyperparameters λX . All modelling choices are as laid out in section 5. p(wX) is usually chosen to be standard
Gaussian distribution. From this, we can see that the dataset density is a mixture of Gaussians, mixed by Gaussian-distributed
weights. Similarly, for the conditional model y|x we have

p(y|x, λY ,MX→Y ) =

∫∫
p(y|x, fY )p(fY |wY , λY )p(wY )dfY dwY (39)

=

∫
p(y|x,wY , λY )p(wY )dwY , (40)

where p(y|x,wY , λY ) = N (0,KλY
((x,wY ), (x,wY )

′) + σ2
Y ), and p(wY ) is a standard Gaussian. Hence

p(x|λX ,MX→Y )p(y|x, λY ,MX→Y ) =

∫
p(x|wX , λX)p(wX)dwX

∫
p(y|x,wY , λY )p(wY )dwY . (41)

ModelMX←Y: Similarly, for the causal modelMX←Y, we have

p(y|λX ,MX←Y)p(x|y, λY ,MX←Y) =

∫
p(y|wY , λY )p(wY )dwY

∫
p(x|y,wX , λX)p(wX)dwX , (42)

where

p(y|wY , λY ,MX←Y) = N (0,KλY
(wY ,w

′
Y ) + σ2

Y ),

p(x|y,wX , λX ,MX←Y) = N (0,KλX
((y,wX), (y,wX)′) + σ2

X). (43)

To compare against the modelMX→Y , we must find the anti-causal factorisation ofMX←Y. First, we can see that if we
factorise Equation (42), then the priors on the distributions are no longer separable and hence the integrals cannot be
estimated separately∫

p(y|wY , λY )p(wY )dwY

∫
p(x|y,wX , λX)p(wX)dwX (44)

=

∫∫
p(x|wY ,wX , λX , λY )p(y|x,wY ,wX , λX , λY )p(wY )p(wX)dwY dwX . (45)

Here,

p(x|wX ,wY , λX , λY ,MX←Y) =

∫
p(y|wY , λY )p(x|y,wX , λX)dy, (46)

p(y|x,wX ,wY , λX , λY ,MX←Y) =
p(y|wY , λY )p(x|y,wX , λX)

p(x|wX ,wY , λX , λY )
. (47)

As the kernel K is generally complicated non-linear function, these terms are not Gaussian distributed, in contrast with the
terms of the causal factorisation ofMX→Y .

Directly comparing the marginals over x in the two causal models,

p(x|λX ,MX→Y ) =

∫
p(x|wX , λX)p(wX)dwX , (48)

p(x|λX , λY ,MX←Y) =

∫∫ (∫
p(y|wY , λY )p(x|y,wX , λX)dy

)
p(wY )p(wX)dwY dwX ,
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while the term forMX→Y is a mixture of Gaussians, the term forMX←Y is clearly not a mixture of Gaussians. The same
holds for the conditionals

p(y|x, λY ,MX→Y ) =

∫
p(y|x,wY , λY )p(wY )dwY , (49)

p(y|x, λX , λY ,MX←Y) =

∫∫
p(y|wY , λY )p(x|y,wX , λX)

p(x|wX ,wY , λX , λY )
p(wY )p(wX)dwY dwX .

As there is no analytical form for the terms of the anti-causal factorisation ofMX←Y, we proceed by explicitly showing
that the variance of p(x|wX ,wY , λX , λY ,MX←Y) depends on wX ,wY for a certain choice of kernel (thus that the term
actually depends on wX ,wY ). We then contend that it is unlikely that the variance of p(y|x,wX ,wY , λX , λY ,MX←Y)
also does not depend on wX ,wY . If this holds, then the induced prior over wX ,wY is not separable with respect to the
anti-causal factorisation.

Explicit Derivation for RBF kernels. From Equation (47), we can see that both terms of the anti-causal factorisation of
MX←Y depend on wX , wY and hence the prior over these terms is not separable. That is, while the causal factorisation
factorises as Figure 2(b), the anti-causal factorisation does not factorise as Figure 2(a). We can show the explicit dependence
on wX , wY to one of the terms in Equation (47) for certain kernel choices — specifically the ARD RBF kernel. We can
find the variance of

p(x|wX ,wY , λX , λY ,MX←Y) =

∫
p(y|wY , λY )p(x|y,wX , λX)dy. (50)

Here (suppressing the λ and model notation for clarity),

E[X2 |WX ,WY ] =

∫
p(y|wY )

∫
x2p(x|y,wX)dxdy (51)

=

∫
p(y|wY )

[
k(y,y′)k(wX ,w

′
X) + σ2

X

]
dy. (52)

We can calculate the kernel expectation

Ψ :=

∫
p(y|wY )k(y,y

′)dy, (53)

where Ψ ∈ RN×N . Let knm be the 2× 2 matrix of the form (covariance of p(yn, ym|wYn
, wYm

))

knm =

(
k(wYn

, wYn
) k(wYn

, wYm
)

k(wYm , wYn) k(wYm , wYm)

)
=

(
k11 k12
k21 k22

)
. (54)

We can write the nmth element of Ψ as

[Ψ]nm =

∫∫
p(yn, ym|wYn , wYm)k(yn, ym)dyndym (55)

=

∫
p(ym|wYm

)

∫
p(yn|ym, wYn

, wYm
)k(yn, ym)dymdyn, (56)

where

p(ym|wYm
) = N (0, k22) (57)

p(yn|ym, wYn , wYm), = N (k12k
−1
22 ym, k11 − k12k

−1
22 k21). (58)

We let µ = k12k
−1
22 and Σ = k11 − k12k

−1
22 k21 in the following. We can write the terms inside the exponential of

p(yn|ym, wYn
, wYm

)k(yn, ym) as (ignoring the lengthscale of the RBF kernel)

∝ exp

(
−1

2

(
(yn − µym)2Σ−1 + (yn − ym)2

))
(59)

= exp

(
−1

2
c

)
exp

(
−1

2

(
(yn − ν)2η−1

))
, (60)
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where η−1 = (Σ−1 + 1), ν = η(µymΣ−1 + ym), and c = η(y2mµ
2Σ−1 + y2mΣ−1 − 2µy2mΣ−1). This gives that

[Ψ]nm =

√
η

|knm|0.5

∫
exp

(
−1

2
c

)
p(ym|wYm

)dym. (61)

We again expand the terms inside the exponential of the integrand,

∝ exp

(
−1

2
y2m(k−122 + ηµ2Σ−1 + ηΣ−1 − 2µηΣ−1)

)
. (62)

Integrating this gives

[Ψ]nm =

√
2η

|knm|0.5
√
k−122 + ηµ2Σ−1 + ηΣ−1 − 2µηΣ−1)

. (63)

Hence, we can explicitly see that the variance of p(x|wX ,wY , λX , λY ,MX←Y) depends on both wY and wX . The
variance of p(y|x,wX ,wY , λX , λY ,MX←Y) is much harder to calculate. We view it as highly unlikely that it would
marginally depend on neither of wY and wX . If it depends on either wY or wX , then the anti-causal factorisation shares
parameters, and the prior is thus unlikely to be separable in the anti-causal direction.

E. Derivations for section 4.3
E.1. Derivation of the probability of error of both models being the same under similar priors

Here we show that the probability of error of both the models is exactly the same. Assuming a parametrisation and denoting
parameters as ϕ for X and θ for Y , we get

p(x,y|MX→Y ) =

∫
p(x|ϕ,MX→Y )π(ϕ|MX→Y )dϕ

∫
p(y|x, θ,MX→Y )π(θ|MX→Y )dθ , (64)

p(x,y|MX←Y) =

∫
p(y|θ,MX←Y)π(θ|MX←Y)dϕ

∫
p(x|y, ϕ,MX←Y)π(ϕ|MX←Y)dθ . (65)

The marginal and conditional densities in the above are chosen from the same families. If we assume similar priors
on the cause and effect in both models, then π(ϕ|MX→Y ) = π(θ|MX←Y) and π(θ|MX→Y ) = π(ϕ|MX←Y). Thus,
p(x,y|MX→Y ) = p(y,x|MX←Y). That is, swapping x and y in one model will give the dataset density of the other model.
We can use this to show

P (E|MX→Y ) =

∫
R
p(x,y|MX→Y )d(x,y) , R = {(x,y) | p(x,y|MX←Y) > p(x,y|MX→Y )} (66)

=

∫
R
p(y,x|MX←Y)d(x,y) , R = {(x,y) | p(y,x|MX→Y ) > p(y,x|MX←Y)} (67)

= P (E|MX←Y). (68)

E.2. Upper bound on standard deviation of probability of error

The probability of error is

P (Error) = P (Error|MX→Y ) (69)

=

∫
I[D ∈ R] · p(D|MX→Y )dD (70)

Î =
1

T

T∑
t=1

I[Dt ∈ R], Dt ∼ p(D|MX→Y ), (71)

where I[·] is the indicator function and Î is the Monte Carlo estimator of P (Error). We can bound the variance by using the
fact that Var(I[Dt ∈ R]) ≤ 0.25, upon viewing I[·] as a Bernoulli random variable. We hence obtain that

Var(Î) ≤ 1

4T
. (72)

This can be calculated numerically.
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E.3. Derivation of total probability of error

The total probability of error is (see Nielsen (2014) for more details)

P (E) = P (E|MX→Y )P (MX→Y ) + P (E|MX←Y)P (MX←Y) (73)

=

∫
RY

p(D|MX→Y )p(MX→Y )dD +

∫
RX

p(D|MX←Y)p(MX←Y)dD (74)

=

∫
min(p(D|MX→Y )p(MX→Y ), p(D|MX←Y)p(MX←Y))dD, (75)

where RY = {D | p(D|MX←Y) > p(D|MX→Y )}, and RX = {D | p(D|MX←Y) < p(D|MX→Y )}. We now use
min(a, b) = a+b−|b−a|

2 to obtain

P (E) =
1

2
− 1

2

∫
|p(D|MX→Y )− p(D|MX←Y)|dD (76)

=
1

2
(1− TV[P (·|MX→Y ), P (·|MX←Y)]). (77)

E.4. Misspecification

We can write

|Q(E)− P (E)| = 1

2
|TV(P (·|MX→Y ), P (·|MX←Y))− TV(Q(·|MX→Y ), Q(·|MX←Y)| (78)

=
1

2

∣∣∣∣∫ (|p(D|MX→Y )− p(D|MX←Y)| − |q(D|MX→Y )− q(D|MX←Y)|)dD
∣∣∣∣ (79)

≤ 1

2

∣∣∣∣∫ (|p(D|MX→Y )− q(D|MX→Y ) + q(D|MX←Y)− p(D|MX←Y)|)dD
∣∣∣∣ (80)

≤ 1

2

∣∣∣∣∫ (|p(D|MX→Y )− q(D|MX→Y )|+ |q(D|MX←Y)− p(D|MX←Y)|)dD
∣∣∣∣ (81)

=
1

2
|TV(P (·|MX→Y ), Q(·|MX→Y )) + TV(P (·|MX←Y), Q(·|MX←Y))|. (82)

Where we use the reverse triangle inequality and the triangle inequality. We can get rid of the absolute value by noticing that
TV is bounded by 0 and 1.

F. Model Details
Here, we provide a more in depth introduction to our model and approximations.

F.1. Latent variable Gaussian Processes with inducing points

Gaussian processes (GPs) (Rasmussen, 2003) are non-parametric Bayesian models that define a prior over functions. The
form of the prior is controlled by choice of a kernel function, K. Specifically, the kernel defines a covariance over outputs
for the function. The kernels are parametrised by continuous hyperparameters. Adding kernels together and varying their
hyperparameters allows for construction of flexible priors which support a wide range of functions.

Latent variable Gaussian Processes (GPLVM) consider a latent noise term w as an input with an associated prior. Integrating
over the noise term allows for modelling heteroscedastic noise as well as non-Gaussian likelihoods. GPs have a well-known
computational cost of O(N3) where N is the number of samples, which prohibits their direct application to large datasets.
To allow for scalability, we use an inducing point approximation (Titsias, 2009; Hensman et al., 2013) to the posterior. Here,
we approximate the inputs x and latents w with M < N ‘inducing’ inputs z, and their corresponding outputs with u. This
formulation now has a cost of O(M3).

We collectively denote all hyperparameters of the model with λ. The latent variable Gaussian process for modelling
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p(y|x,λ) has the following form

y|x,w ∼ N (f(x,w), σ2), F|u ∼ N (KfuK
−1
uuu,Σ),

u ∼ N (0,Kuu), [Kff ]nn′ = K(xn, xn′),

where Σ = Kff −KfuK
−1
uuKuf , and σ denotes the likelihood noise hyperparameter. We posit an approximate posterior

over the latents q(w) and inducing outputs q(u) following the variational inference framework. This yields a lower bound
to the log marginal likelihood that can then be maximised with respect to the variational distributions q and the inducing
inputs z. The lower bound for the conditional p(y|x,λ) has the form

Ly|x(q, z,λ):=
∑
n

Eq(wn)q(u)p(f |u)[log p(yn|xn, wn)]+KL[q(w)||p(w)]+KL[q(u)||p(u)]. (83)

For smaller datasets, we follow the steps in Titsias and Lawrence (2010) and analytically integrate over p(f |u) first and
then find the closed form solution for q(u) — denoted GPLVM-closed form. For certain kernels, for example the RBF and
linear kernels, we can analytically find the expectation under q(wn) of the remaining first term in Equation (83). For larger
datasets, we need to use stochastic variational inference (Hensman et al., 2013) as finding the closed form solutions are
prohibitive — we denote this GPLVM-stochastic. This requires using doubly stochastic variational inference to calculate the
expectations (Lalchand et al., 2022). We assume a standard Gaussian distribution for p(w) and a Gaussian for q(w), with
variational parameters to be trained. The final KL term is between two Gaussians and is analytically tractable. We use the
evidence approximation for the hyperparameters, which we detail in app. G.

The bound for all the marginal and conditional models, p(y|x), p(x), p(x|y), and p(y), follows the form of Equation (83).
We assume the same kernels and priors for all the models as well.

F.2. Final Score

To model each distribution, we maximise the lower bound with respect to the variational distributions q and inducing inputs
z to tighten the bound. Simultaneously, we maximise the lower bound with respect to the kernel hyperparameters and the
likelihood noise, collectively denoted as λ (see app. G). The final scores we calculate are

FX→Y = Lx(q̂, ẑ, λ̂) + Ly|x(q̂, ẑ, λ̂), (84)

FY→X = Ly(q̂, ẑ, λ̂) + Lx|y(q̂, ẑ, λ̂), (85)

where (q̂, ẑ, λ̂) denote the values the maximise the corresponding lower bound. We finally infer the predicted causal model
asMX→Y if FX→Y > FY→X ,MY→X if FY→X > FX→Y , and undecided otherwise.

G. Justifying MAP estimation of Hyperparameters
In this section, we give details on the approximation we consider to integrate over the prior over hyperparameters. This
is standard practice in Gaussian process training (Titsias, 2009; Damianou and Lawrence, 2013; Dutordoir et al., 2018;
Rasmussen, 2003).

We need to integrate out all model hyperparameters to get an accurate value of the marginal likelihood. Otherwise, the
actual quantity being compared is the posterior of the model with a specific hyperparameter setting. Due to non-linearity of
kernels, the integral over priors over hyperparameters tend to be intractable for our method, the GPLVM. As such, we use
the Laplace Approximation to approximate these integrals (MacKay, 1999). Taking the conditional p(y|x) as an example
(leaving out terms in the conditional for simplicity), we wish to calculate

p(y|x) =
∫
p(y|x, λ)p(λ)dλ, (86)

where p(λ) is a prior over the hyperparameters. The justification for this approximation is that integral in Equation (86) is
simply the normalising constant of the posterior over the hyperparameters. This posterior tends to be highly peaked, and
even more so as the number of datapoints increases and the number of hyperparameters are few (Rasmussen, 2003). Thus, as
most of the volume is around the MAP solution of the posterior, we can assume a Gaussian distribution around this point and
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approximate the integral Equation (86) as the normalising constant of this Gaussian. The approximation of Equation (86) is

log p(y|x) ≈ log p(y|x, λ̂)p(λ̂)
∣∣∣∣ 12πA

∣∣∣∣− 1
2

, (87)

λ̂ = argmax
λ

p(y|x,λ), (88)

A = −∇2
λ log p(y,λ|x). (89)

We ignore the value p(λ̂) as we don’t actually take a prior over the hyperparameters, this can be thought of assuming the
same density over all hyperparameter values (Rasmussen, 2003). We further ignore A; this is based on the expectation that
in the large sample limit, the posterior of the hyperparameters will concentrate around a single point. We can thus safely
ignore A, and simply approximate logP (y|x) ≈ logP (y|x, λ̂). We find that this works well in practice.

It is possible to ‘overfit’ with this approximation (Ober et al., 2021). This is not a major issue in our chosen model, as the
number of hyperparameters is very low compared to the number of data samples.

As we lower bound P (y|x,λ) using Ly|x in Equation (83), we can carry out the procedure described above by considering
Ly|x instead. Thus, our approximation of the integral over the hyperparameters will involve finding the values of the
hyperparameters λ̂ that maximise Ly|x and using Ly|x(q, λ̂).

H. Experiment Details
We outline the experimental details of our method. As we implement SLOPPY, we also outline the details of the settings we
used. The results for the rest of the baselines were taken from (Guyon et al., 2019) and (Duong and Nguyen, 2021).

H.1. Dataset details

CE-Cha: A mixture of synthetic and real world data. Taken from the cause-effect pairs challenge (Guyon et al., 2019).

CE-Multi (Goudet et al., 2018): Synthetic data with effects generated with varying noise relationships. The noise
relationships are pre-additive (f(X+E)), post-additive (f(X)+E), pre-multiplicative (f(X×E)), or post-multiplicative
(f(X)× E). The function is linear or polynomial.

CE-Net (Goudet et al., 2018): Synthetic data with randomly initialised neural networks for functions and random exponential
family distributions chosen for the cause.

CE-Gauss (Mooij et al., 2016): Synthetic data generated with random noise distributions E1, E2 defined in (Mooij et al.,
2016). The cause and effect are generated according to X = fx(E1) and Y = fy(X,E2), where fx, fy are sampled from
Gaussian processes.

CE-Tueb (Mooij et al., 2016): Contains 105 pairs of real cause effect pairs taken from the UCI dataset. We use the version
dating August 22, 2016. We also remove high dimensional datasets leaving 99 datasets in total.

H.2. GPLVM details

We use the GPLVM-closed form for all datasets except for CE-Tueb where we GPLVM-stochastic due to the high number
of variables in some of the datasets.

For GPLVM-closed form, we use the sum of an RBF and linear kernels. q(wn) has an analytical expectation for these
kernels, as discussed in app. F.1. As detailed in app. F.1, we find the optimal form of q(u) following the procedure of
(Titsias and Lawrence, 2010). We use 200 inducing points for all experiments. The model was first trained using Adam
with a learning rate of 0.1. After 20,000 epochs, the model was trained using BFGS. We found that this greatly helped the
numerical instability of BFGS, but found better ELBO (variational approximation to the marginal likelihood) values than
simply using Adam.

For GPLVM-stochastic, as expectations are calculated by sampling, it was possible to use a larger number of kernels. We
used a sum of RBF, Linear, Matern32 and Rational Quadratic kernels. 10 samples were used to calculate the expectations.
The model was trained with Adam with a learning rate of 0.05. The model stopped training if the value of the ELBO
plateaued, else it ran for a maximum of 100,000 epochs. In our experiments, we only use GPLVM-stochastic for CE-Tueb
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as it had a few datasets that had a large number of samples.

The approximate posteriors for both the models q(wn) are initialised with low variance and the mean equal to 0.01 times the
output. This reduced the instability during optimisation.

As GPLVMs are known to suffer from local optima issues, we use 20 random restarts of hyperparameter initialisations, and
choose the highest estimate of the approximate marginal likelihood as the final score. For the various hyperparameters, the
sampling procedures were:

1. The kernel variances were always set to 1.

2. The likelihood variances were sampled by first sampling κ ∼ Uniform(10, 100), and then σ2
Likelihood = 1/κ2.

3. The kernel lengthscales were sampled by first sampling ψ ∼ Uniform(1, 100), then set λLengthscale = 1/ψ.

H.3. SLOPPY details

For benchmarking the SLOPPY method, we use the author’s code (Marx and Vreeken, 2019). We use the spline estimator
as it performs better on all the dataset. For this estimator, we select the best performing regularisation metric between the
AIC and BIC.

I. Additional Experiments
We carry out some additional experiments that give us insight into our method. In app. I.1, we show that the GPLVM
performs well on ANM data, despite being more fleixble than an ANM. In app. I.2, we show that importance of modelling
the joint instead of just the conditional or marginal densities.

I.1. ANM Data

Table 2: ROC AUC scores for identifying causal direction of datastes generated by an ANM (higher is better).

Methods ANM

Gaussian Process 100.0
GPLVM 100.0

ANM is an example of a strictly identifiable model. Here we show that our added flexibility does not result in a loss in
performance when compared to identifiable models.

The GPLVM model contains the hyperparameters λ of the GP priors, which makes the GPLVM a hierarchical model.
Depending on which λ is inferred, the GPLVM can learn to behave in different ways. For example, for datasets that follow
ANM assumptions, the effect of the latent variable wi can be ignored, making the model behave as an ANM. In this section,
we show that the added flexibility of the GPLVM model (over ANM) does not lead to a reduction in performance when
tested on data from an ANM.

We use datasets generated from an ANM (taken from Tagasovska et al. (2020)). A straightforward Gaussian process (GP)
model satisfies the conditions of an ANM which have been shown to identify causal direction using the likelihood only
(Zhang et al., 2015). Table 2 shows that the marginal likelihood also perfectly identifies causal direction. Furthermore, even
though a GPLVM is a more flexible model than a GP, the added flexibility does not suffer from a loss of performance.

I.2. Only modelling the conditional or marginal

Methods such that ANM, PNL, SLOPPY, RECI only model the conditional densities to find the causal direction. In fact,
methods such as SLOPPY base their theory on modelling the joint, but make the assumption that the cause is always
Gaussian distributed, and hence only consider the conditional. The Kolmogorov complexity formalisation of the ICM
principle (Janzing and Schölkopf, 2010; Peters et al., 2016) also considers the whole joint.

We show that modelling the joint is crucial to our approach, and that we suffer a degradation in performance when only
considering one component - the marginal or conditional. In Table 3, we show that results of the same model, but making
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the decision on the predicted causal model with the joint, the conditional, or with the marginal. The results corroborate with
our theory.

Table 3: Results of making the decision on the predicted causal model with the full joint, or just with the marginal or
conditional densities. In accordance with our theory, modelling the joint is important. The numbers are ROCAUC (higher is
better).

Methods CE-Cha CE-Multi CE-Net CE-Gauss CE-Tueb

GPLVM - Joint 81.9 97.7 98.9 89.3 78.3
GPLVM - Conditional 61.5 89.7 70.3 21.7 36.2
GPLVM - Marginal 44.5 23.3 42.6 83.1 75.7
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